JP4383029B2 - Specimen evaluation device - Google Patents

Specimen evaluation device Download PDF

Info

Publication number
JP4383029B2
JP4383029B2 JP2002242461A JP2002242461A JP4383029B2 JP 4383029 B2 JP4383029 B2 JP 4383029B2 JP 2002242461 A JP2002242461 A JP 2002242461A JP 2002242461 A JP2002242461 A JP 2002242461A JP 4383029 B2 JP4383029 B2 JP 4383029B2
Authority
JP
Japan
Prior art keywords
expanded graphite
packing
protrusion
gas
flange portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002242461A
Other languages
Japanese (ja)
Other versions
JP2004081898A (en
Inventor
隆志 江草
敏和 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Horiba Ltd
Original Assignee
Horiba Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Horiba Ltd filed Critical Horiba Ltd
Priority to JP2002242461A priority Critical patent/JP4383029B2/en
Publication of JP2004081898A publication Critical patent/JP2004081898A/en
Application granted granted Critical
Publication of JP4383029B2 publication Critical patent/JP4383029B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、各種ガスを加熱して供試材に接触させることで、ガスを反応させる供試材評価装置に関する。
【0002】
【従来の技術】
ガス反応装置は、自動車の排気に含まれる各種ガスを適量で供給することが可能なガス供給器、及び、供給されるガスを加熱して供試材である触媒又は吸着材等と接触反応させる加熱炉等で構成されている。ガス反応装置の加熱炉には、素早い温度調節に対応できるように、加熱手段に赤外線を用いるものがある。
【0003】
図8(a)は、従来の赤外線で加熱するタイプの加熱炉1の概略断面図である。加熱炉1は反応管として機能し、ガス供給器(図示せず)からのガスが流入する石英ガラス製の第1管体2を、シール用のパッキン4を介在させて金属製の第2管体3に継合すると共に、第1管体2の外方に赤外線照射器5を配置している。第1管体2を流れるガスは赤外線照射器5から照射される赤外線で加熱されてから、第2管体3の内部に配置された触媒(図示せず)と接触し、組成が変化する反応を起こす。
【0004】
第1管体2を石英ガラスで形成しているのは、赤外線を管内に透過させてガスを加熱するため、及び、加熱されたガスは400〜1000℃に到達するので、このような高温に対する耐熱性を確保するためである。また、上述した温度域では通常の弾性パッキンを適用できないので、パッキン4には耐熱性を有すると共に外力に対して塑性変形する非弾性の特性を示す塑性体の膨張黒鉛パッキンが適用されている。
【0005】
図8(b)は加熱炉1のシール構造に係る拡大断面図であり、第1管体2及び第2管体3の平坦な各シール面2a、3aでパッキン4を挟み込み、ボルト(図示せず)で第1管体2及び第2管体3を所要圧で締め付けることにより、ガス流路の気密性を確保するようにしている。なお、上述したような加熱炉を備えるガス反応装置は、反応前後のガスの組成を分析する分析器と組み合わされることで、全体として供試材評価装置が構成される。
【0006】
【発明が解決しようとする課題】
パッキン4は上述した膨張黒鉛パッキンが具備する特性より、適正な気密性を確保するために、パッキン面圧が5MPa以上となるように第1管体2及び第2管体3を締め付ける必要がある。一方、締め付けに対して石英ガラス製の第1管体2が破損しないようにするには、第1管体2にかかる締付圧を最大でも0.8MPa程度に抑える必要があり、このような締付圧ではパッキン4に対して所要のパッキン面圧を確保できず、加熱炉1の内部を流れるガスのリーク量が大きくなると云う問題がある。
【0007】
また、パッキン4は塑性変形するため、流通時及び組付時等にパッキン面に傷が付きやすい上、傷が付く程度はパッキン4毎に夫々相違することから、加熱炉1に組み付けられるパッキン4のパッキン面の表面粗さは最大高さでRmax10〜100μmと、ばらつきが大きいと云う問題がある。その結果、適用されるパッキン4の表面粗さの相違により加熱炉1におけるガスのリーク量は一様でなく、パッキン4の交換毎にガスのリーク量が変動し、一定量のガスを安定して触媒のような供試材に反応させることが困難になると云う問題がある。
【0008】
本発明は、斯かる問題に鑑みてなされたものであり、シール面の形状を改良することにより、膨張黒鉛パッキンのような塑性シール部材に対する規定圧より低い締付圧でもガスのリーク量を抑制できる供試材評価装置を提供することを目的とする。
また、本発明は、塑性シール部材毎の表面粗さの相違に影響を受けることなく、一定の気密性を維持する供試材評価装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る供試材評価装置は、ガス供給器と、該ガス供給器から供給されたガスが流入して赤外線照射器で加熱されるガラス製の第1管体及び加熱されたガスを内部に配置される供試材に接触反応させる金属製の第2管体を膨張黒鉛パッキンを介在させて継合してある反応管と、前記接触反応させる前後のガスを夫々分析する分析器と、前記第1管体下端周縁に形成され、下面にて前記膨張黒鉛パッキン上面に載置された上フランジ部と、前記第2管体上端周縁に形成され、前記膨張黒鉛パッキンを介在させて前記上フランジ部を収める下フランジ部と、前記上フランジ部及び/または前記下フランジ部の前記膨張黒鉛パッキンを介在させる面に周設された突起と、前記上フランジ部に被せられた締付部材と、前記下フランジと前記締付部材とを締結するネジとを備えることを特徴とする。
【0010】
発明に係る供試材評価装置は、前記突起は、周方向に直交する方向の断面がV字状をなすことを特徴とする。
発明に係る供試材評価装置は、前記突起が、高さが110μm以上であることを特徴とする。
発明に係る供試材評価装置は、前記突起が、同心的に複数設けてあることを特徴とする。
【0013】
発明にあっては、膨張黒鉛パッキンのような塑性シール部材を介在させる面に、突起を周設しているので、第1管体及び第2管体で塑性シール部材を挟み込むと、突起が塑性シール部材に当接し、この当接した箇所に第1管体及び第2管体の締付圧が集中してガスの漏洩に対するシール部を形成できる。このように形成されるシール部により、第1管体を形成する石英ガラスのような材質に応じた低い締付圧で締付を行っても、従来に比べて第1管体及び第2管体の継合箇所の気密性を向上でき、その結果、加熱されて高温となったガスのリーク量を低減できる。
【0014】
さらに、上述したように当接させることで、塑性シール部材の表面粗さの相違に関係なく一様なシール部を形成して一定の気密性を確保でき、適用される塑性シール部材によりガスのリーク量が変動すると云う事象を解消できる。なお、突起の形成に対する加工性及び確保できる気密性の程度等のバランスを考慮すると、突起はガスの反応を行う第2管体に設けることが好ましい。また、第1管体が対応し得る締付圧の範囲の中の高い数値で第1管体及び第2管体を締め付ける場合は、より高い気密性を得られるように第1管体及び第2管体の両方に突起を設けることが好適である。なお、塑性シール部材はパッキン以外の形態としてガスケットのような形態も適用可能である。
【0015】
発明にあっては、突起の断面形状をV字状にすることで、突起の先端と塑性シール部材が当接する形態が線接触的になり、締付圧を一段と当接箇所に集中でき、その結果、従来のシール構造と比べて同じ締付圧でも気密性が向上しガスのリーク量も低減できる。
【0016】
発明にあっては、突起の高さを110μm以上にすることで、塑性シール部材として膨張黒鉛パッキンを用いた場合でも、パッキン面の表面粗さにおける最大高さの100μmを越えることができる。その結果、第1管体及び第2管体に膨張黒鉛パッキンを挟み込んだだけの状態でも、突起の先端をパッキン面に当接することができ、気密性の高いシール部の形成に貢献できる。
【0017】
なお、より気密性の高いシール部を形成するためには、突起の高さは150μm以上にすることが好ましく、さらに、一段と高い気密性を維持できるシール部を形成するためには、突起の高さを200μm以上にすることが好適である。また、突起の高さの上限は、塑性シール部材の厚みとの関係で気密性を確保できると云う限界の観点から、塑性シール部材の厚みの4分の1程度の寸法が妥当である。
【0018】
発明にあっては、複数の突起が同心的に設けてあるので、管内から外方へ何重にも重なるシール部が形成されることになり、さらに高い気密性を確保できる。また、このような多重の突起は、第1管体と第2管体のいずれか一方のシール面に形成してもよく、両方のシール面に形成してもよい。
【0019】
なお、塑性シール部材は突起が当接してシール面にくい込むことで、くい込んだ形状の窪みが残存する。よって、一旦、第1管体及び第2管体の間に挟み込んだ塑性シール部材が移動すると、突起と窪みとの位置関係がずれてしまい、窪みを通じてガスが漏洩するおそれがあるため、塑性シール部材を一定の個所に位置決めする手段を設けることが好適である。特に、第1管体及び第2管体の両方のシール面に突起を設ける場合は、塑性シール部材の両面に窪みが形成されて、ガス漏洩のおそれが生じる箇所も多くなるので、塑性シール部材の位置決めを確実に行うことが重要になる。
【0020】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面に基づいて説明する。
図1は本発明の第1の実施形態に係るガス反応装置10を示しており、ガス反応装置10は、各種ガスを供給するガス供給器11と、ガス供給器11から供給されるガスを加熱して供試材である触媒と接触反応させる反応管である加熱炉12から構成されている。また、ガス反応装置10は、加熱炉12を流れるガスの触媒に対する反応前後の組成を夫々分析する分析器21及び分析評価及び記録等を行う評価記録器22と組み合わされて、触媒のような供試材の評価を行う供試材評価装置20の一部を構成している。なお、供試材評価装置20は、触媒の代わりに吸着材を加熱炉12の内部に配置して吸着材の評価を行うことも可能である。
【0021】
ガス供給器11は、自動車の排気に含まれる種々のガスを所要量で供給するものであり、供給するガスの種類には、窒素、酸素、二酸化炭素、一酸化炭素、水素、一酸化窒素及び炭化水素等がある。
【0022】
加熱炉12は、ガス供給器11からのガスが流入する石英ガラス製の第1管体13及び内部に評価される触媒を配置する金属製の第2管体14を、塑性シール部材である膨張黒鉛パッキン15を介在させて継合すると共に、第1管体13の周囲外方には加熱手段として赤外線照射器16を設けている。
【0023】
図2に示すように、第1管体13は、上方の円管部分13aの下端に円錐状に縮径する縮径管部13bを連続させると共に、この縮径管部13bの下端に円錐状に拡径する拡径管部13cを連続させた形状に形成されている。拡径管部13cの下端周縁は厚みを持たして上フランジ部13dを形成し、上フランジ部13dの下面を平坦な上シール面13eにしている。
【0024】
一方、第2管体14は、図2、図3(a)(b)に示すように、上端周縁に下フランジ部14aを形成しており、下フランジ部14aの外縁箇所には、継合用のボルト18を挿通する貫通孔14hを設けている。さらに、下フランジ部14aの内周側には上フランジ部13dが収まるように凹部14bを形成している。
【0025】
凹部14bは、底面を膨張黒鉛パッキン15を介在させる下シール面14cとしており、内径を上フランジ部13dの外径より少し大きくして上フランジ部13dがスムーズに凹部14bの内部に収まるようにすると共に、加熱に対する膨張黒鉛パッキン15の逃げ代を確保している。なお、凹部14bの内縁には膨張黒鉛パッキン15を嵌め込む周壁部14dを立設している。
【0026】
また、第2管体14は、下シール面14cに突起14eを周設している。詳しくは、下シール面14cの法線方向の略中間位置で第2管体14の周方向に連続した状態で、周方向に直交する方向の断面形状がV字状になるように突起14eは形成されており、突出高さは200μmにしている。
【0027】
なお、第2管体14の上記以外の部分は、図2に示すように、下フランジ部14aの下方に鼓状管部14fを設け、鼓状管部14fの上部には微量ガス添加管14gを複数接合し、エンジンをふかした状態(燃料リッチ)や成層燃焼(燃料リーン)状態を再現できるように、微量ガス添加管14gを通じて各種成分のガスを微量添加するようにしている。また、第2管体14は、図2で示していない鼓状管部14fの下方に反応前のガスを抽出する抽出管を接合すると共に、鼓状管部14fの下方の内部には触媒を配置する配置部を設けている。
【0028】
第1管体13及び第2管体14の上下シール面13e、14cで挟み込まれる膨張黒鉛パッキン15は、各シール面13e、14cの大きさに応じたリング形状に形成されており、本実施形態では厚みが1.6mmのものが適用されている。また、第1管体13及び第2管体14の継合には、ネジ穴17aが形成してあるリング状の締付部材17を用いている。
【0029】
上述した加熱炉12の第1管体13及び第2管体14を継合する工程について以下に説明する。
先ず、第2管体14の下シール面14cに膨張黒鉛パッキン15を載置する。このように載置した状態では、膨張黒鉛パッキン15のパッキン面の表面粗さが最も粗い状態のRmax100μmであっても、突起14eの高さが200μmであるため、パッキン面の表面粗さに関係なく突起14eの先端はパッキン面に当接している。
【0030】
この状態で、締付部材17を上フランジ部13dに被せた第1管体13を、膨張黒鉛パッキン15の上面側のパッキン面に載置し、第2管体14の貫通孔14hに挿通したボルト18をネジ穴17aと締結させることで、第1管体13及び第2管体14を締め付けて継合する。また、継合する際の締付圧は、石英ガラス製の第1管体13が破損することのない締付圧にしている。
【0031】
このように継合することで、図4に示すように、突起14eは、膨張黒鉛パッキン15の下面側のパッキン面15aにくい込んで、パッキン面15a及び突起14eの表面が圧接したシール部19が形成され、第1管体13及び第2管体14の継合箇所における気密性を確保している。
【0032】
このような構成の加熱炉12の気密性の程度を確認するため、従来の加熱炉及び本発明に係る加熱炉の気密性を比較する実験を行った。
この実験では、従来の加熱炉に第1管体及び第2管体の膨張黒鉛パッキンに対するシール面が平坦な突起の無い構造のものを用い、一方、本発明に係る加熱炉には上述した加熱炉12と同様の第2管体14の下シール面14cに突起14eを設けたものを用いた。
【0033】
また、実験方法は、従来及び本発明の各加熱炉に40kPaの加圧力で試験ガスを充填させた後、第1管体の流入口及び第2管体の流出口等を密封して内部容積が180mlとなるようにして、この状態で5分間経過させた時点での加熱炉の内部圧の減少値を測定すると云う内容にした。
【0034】
さらに、膨張黒鉛パッキンには厚みが1.6mmのものを適用し、膨張黒鉛パッキンの個体間の表面粗さの相違を考慮して、従来及び本発明の加熱炉毎に2枚の膨張黒鉛パッキンを使用し、計4枚の膨張黒鉛パッキンに対して測定を行った。さらに、また、パッキン面圧が相違した場合の気密性を比較するため、各膨張黒鉛パッキンに対する測定は、第1管体及び第2管体の締め付け圧を変化させて3種類のパッキン面圧(0.338MPa、0.677MPa、0.846MPa)で行った。この実験結果を以下の表1に示す。
【0035】
【表1】

Figure 0004383029
【0036】
表1より、最も低いパッキン面圧(0.338MPa)の場合、従来の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(1)(2)に対して3.10kPa、3.20kPaとなり、平均で3.15kPaになった。一方、本発明の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(3)(4)に対して1.50kPa、1.40kPaとなり、平均で1.45kPaになり、内部圧の減少値が従来に比べて約54%も低減し、気密性が向上したことが判明した。
【0037】
また、パッキン面圧が0.677MPaである場合、従来の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(1)(2)に対して2.00kPa、1.70kPaとなり、平均で1.85kPaになった。一方、本発明の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(3)(4)に対して0.70kPa、0.70kPaであり、平均でも0.70kPaになって、内部圧の減少値が従来に比べ約62%も低減し、気密性が向上したことが判明した。特に、従来の加熱炉に膨張黒鉛パッキン(1)を適用した場合と本発明の加熱炉に膨張黒鉛パッキン(3)(4)を適用した場合の比較では、内部圧の減少値が約65%も低減した。
【0038】
さらに、パッキン面圧が0.846MPaである場合、従来の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(1)(2)に対して1.70kPa、1.50kPaであり、平均で1.60kPaになった。一方、本発明の加熱炉における内部圧の減少値は、各膨張黒鉛パッキン(3)(4)に対して0.70kPa、0.70kPaとなり、平均でも0.70kPaになり、内部圧の減少値が従来に対して56%も低減し、気密性が向上したことが判明した。
【0039】
さらに、また、従来の加熱炉における内部圧の減少値に対する各膨張黒鉛パッキン(1)(2)の差は、パッキン面圧が0.338MPaのとき0.1kPa、0.677MPaのとき0.3kPa、0.846MPaのとき0.2kPaであり、適用する膨張黒鉛パッキン間での差は大きかった。
【0040】
それに対し、本発明の加熱炉における内部圧の減少値に対する各膨張黒鉛パッキン(3)(4)の差は、パッキン面圧が0.338MPaのとき0.1kPa、0.677MPaのとき0kPa、0.846MPaのとき0kPaであり、適用する膨張黒鉛パッキン間で差は殆ど生じなかった。よって、本発明の加熱炉は、適用される膨張黒鉛パッキンにより気密性が左右されず、安定した気密性を維持することが確認できた。
【0041】
なお、第1の実施形態に係るガス反応装置10における加熱炉12は、上述した形態に限定されるものではなく、種々の変形が可能である。例えば、突起14eの突出高さは、200μmに限定されるものではなく、膨張黒鉛パッキン15の表面粗さに応じて110μm以上を確保すればよい。
【0042】
また、突起14eの断面形状はV字状以外にも種々の形状に形成することが可能である。例えば、図5(a)に示す突起140のようにU字状、図5(b)の突起141に示すように半円状、図5(c)の突起142に示すように矩形状、図5(d)の突起143に示すように略五角形状、図5(e)の突起144に示すように直角三角形状に形成してもよい。
【0043】
突起をU字状及び半円状に形成した場合は、図4に示す突起14eに比べて、膨張黒鉛パッキン15に対する接触幅が広くなり、膨張黒鉛パッキン15に対する締付圧を分散でき、厚みが薄目の膨張黒鉛パッキン15を適用するような場合に好適である。突起が矩形状の場合は、一段と膨張黒鉛パッキン15に対する接触幅が広がり、膨張黒鉛パッキン15の締め付けに対する負荷を低減でき幅広のシール部を形成できる。突起が略五角形状の場合は、根元付近の突出幅が幅広であるため、突出高さを高くしても剛性を確保できる。直角三角形状の場合は、図4の突起14eより先端を鋭利にできるため、膨張黒鉛パッキンに対するくい込み性を向上できる。
【0044】
さらに、図6に示す変形例の第2管体24のように、下シール面24cに、同心円状に2重の突起241、242を周設するようにしてもよい。このように2重の突起を設けることで、膨張黒鉛パッキンに対して2重のシール部が形成され、一段と気密性を向上できる。なお、同心的に設ける突起の数は、2重以上が可能である。
【0045】
図7は、本発明の第2の実施形態に係る加熱炉52の要部概略断面図である。第2実施形態の加熱炉52は、第1管体53の上シール面53e及び第2管体54の上シール面54cの両方に上下突起53f、54eを夫々設けていることが、第1の実施形態の加熱炉12と相違している。第1管体53の上突起53fは、第2管体54の下突起54eと同様に、断面形状をV字状にして上シール面53eに周設してある。
【0046】
上下突起53f、54eは、第1管体53及び第2管体54の上下シール面53f、54eの間に挟まれた膨張黒鉛パッキン55の上下パッキン面に夫々くい込んで、上下のシール部59を形成して気密性を向上している。なお、上述した箇所以外の構成は、第1の実施形態の加熱炉12と同様なので説明を省略する。
【0047】
このような構成の加熱炉52に対しても気密性の程度を確認するため、上述した実験と同様の条件で実験を行った。なお、この実験では、各膨張黒鉛パッキンに対して、第1管体及び第2管体の締付圧を2回変化させて2種類のパッキン面圧(0.677MPa、0.846MPa)毎に測定した。この実験結果を表2に示す。
【0048】
【表2】
Figure 0004383029
【0049】
表2より、パッキン面圧が0.677MPaである場合、内部圧の減少値は各膨張黒鉛パッキン(5)(6)に対して0.70kPa、0.80kPaとなり、平均で0.75kPaになった。このような値を、表1の従来の加熱炉と比べると、内部圧の減少値を約59%低減することが判明した。
【0050】
また、パッキン面圧が0.846MPaである場合、内部圧の減少値は各膨張黒鉛パッキン(5)(6)に対して、いずれも0.60kPaとなり、表1の従来の加熱炉と比べると、内部圧の減少値が約62%低減され、気密性が向上したことが判明すると共に、片面にのみ突起ある場合に対しても気密性が向上することも確認できた。
【0051】
さらに、加熱炉52でも内部圧の減少値の各膨張黒鉛パッキン(5)(6)間での差は、パッキン面圧が0.677MPaの場合で0.1kPa、パッキン面圧が0.846MPaの場合で0kPaと殆ど生じず、安定した気密性を維持できることが分かった。
【0052】
なお、第2の実施形態の加熱炉52でも第1の実施形態における各種変形例の適用が可能である。また、加熱炉52では、膨張黒鉛パッキン55の上下のパッキン面にシール部59を形成するので、第1の実施形態の加熱炉12に比べて膨張黒鉛パッキンの位置決めが重要となり、膨張パッキンの位置決め壁等を設けて正確に位置決めを行うことが好適である。また、このように正確な位置決めを行うことで、パッキン面圧が0.677MPaより低くても従来に比べて優れた気密性を確保することが可能になる。
【0053】
【発明の効果】
以上に詳述した如く、発明にあっては、シール面に突起を周設しているので、第1管体及び第2管体の間に介在する塑性シール部材に突起がくい込んでシール部が形成され、ガス流路の気密性を向上できると共に、適用される塑性シール部材の表面粗さに影響されることなく、安定した気密性を維持できる。
【0054】
発明にあっては、突起をV字状にすることで、塑性シール部材に対する締付圧を突起の先端に集中でき、さらに気密性を向上できガスのリーク量を低減できる。
【0055】
発明にあっては、突起の高さを110μm以上にすることで、適用されるシール部材の表面粗さの影響を受けることなく安定した気密性を維持できる。
発明にあっては、複数の突起を同心的に設けることで、多重のシール部を形成してガスのリーク量を一段と低減できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係るガス反応装置及び供試材評価装置の構成図である。
【図2】第1の実施形態の加熱炉の要部断面図である。
【図3】(a)は第2管体の要部拡大断面図、(b)は第2管体の要部平面図である。
【図4】加熱炉のシール構造を示す概略断面図である。
【図5】(a)〜(d)は各種変形例の突起の形状を示す断面の端面を示す概略図である。
【図6】別の変形例の第2管体の要部拡大断面図である。
【図7】第2の実施形態に係る加熱炉のシール構造を示す要部概略断面図である。
【図8】(a)は従来の加熱炉の概略断面図、(b)はシール構造を示す拡大断面図である。
【符号の説明】
10 ガス反応装置
11 ガス供給器
12 加熱炉
13 第1管体
14 第2管体
14e 突起
15 膨張黒鉛パッキン
20 供試材評価装置
21 分析器
22 評価記録器[0001]
BACKGROUND OF THE INVENTION
The present invention is brought into contact with the test material by heating the various gases, to test materials evaluation device Ru reacted gas.
[0002]
[Prior art]
The gas reactor is a gas supply device capable of supplying various gases contained in the exhaust of an automobile in appropriate amounts, and the supplied gas is heated to cause contact reaction with a catalyst or adsorbent as a test material. It consists of a heating furnace. Some heating furnaces of gas reactors use infrared rays as heating means so as to cope with quick temperature control.
[0003]
Fig.8 (a) is a schematic sectional drawing of the heating furnace 1 of the type heated with the conventional infrared rays. The heating furnace 1 functions as a reaction tube. A first tube 2 made of quartz glass into which gas from a gas supplier (not shown) flows is inserted into a metal second tube with a seal packing 4 interposed therebetween. While being joined to the body 3, an infrared irradiator 5 is disposed outside the first tubular body 2. The gas flowing through the first tubular body 2 is heated by infrared rays irradiated from the infrared irradiator 5 and then comes into contact with a catalyst (not shown) arranged inside the second tubular body 3 to change the composition. Wake up.
[0004]
The first tube 2 is formed of quartz glass because the infrared gas is transmitted through the tube to heat the gas, and the heated gas reaches 400 to 1000 ° C. This is to ensure heat resistance. In addition, since an ordinary elastic packing cannot be applied in the above-described temperature range, a plastic expanded graphite packing that has heat resistance and inelastic characteristics that plastically deforms against an external force is applied to the packing 4.
[0005]
FIG. 8B is an enlarged cross-sectional view related to the sealing structure of the heating furnace 1. The packing 4 is sandwiched between the flat sealing surfaces 2 a and 3 a of the first tube body 2 and the second tube body 3, and bolts (not shown). The air tightness of the gas flow path is ensured by tightening the first tube 2 and the second tube 3 with the required pressure. Note that the gas reaction apparatus including the heating furnace as described above is combined with an analyzer that analyzes the composition of the gas before and after the reaction, thereby forming a specimen evaluation apparatus as a whole.
[0006]
[Problems to be solved by the invention]
The packing 4 needs to tighten the first tubular body 2 and the second tubular body 3 so that the packing surface pressure is 5 MPa or more in order to ensure proper airtightness due to the characteristics of the expanded graphite packing described above. . On the other hand, in order to prevent the first tube body 2 made of quartz glass from being damaged during tightening, it is necessary to suppress the tightening pressure applied to the first tube body 2 to about 0.8 MPa at the maximum. With the tightening pressure, a required packing surface pressure cannot be ensured for the packing 4, and there is a problem that the amount of leakage of gas flowing inside the heating furnace 1 increases.
[0007]
Further, since the packing 4 is plastically deformed, the packing surface is easily damaged during distribution, assembly, and the like, and the degree of damage is different for each packing 4. Therefore, the packing 4 assembled in the heating furnace 1 is used. There is a problem that the surface roughness of the packing surface has a large variation with a maximum height of Rmax 10 to 100 μm. As a result, the amount of gas leakage in the heating furnace 1 is not uniform due to the difference in the surface roughness of the packing 4 to be applied, and the amount of gas leakage varies every time the packing 4 is replaced, so that a certain amount of gas is stabilized. Therefore, there is a problem that it becomes difficult to react with a test material such as a catalyst.
[0008]
The present invention has been made in view of such a problem. By improving the shape of the sealing surface, the amount of gas leakage is suppressed even at a tightening pressure lower than a specified pressure for a plastic seal member such as expanded graphite packing. and to provide a can Ru test material evaluation device.
Further, the present invention is not affected by the difference in the surface roughness of each plastic seal member, and to provide a test piece evaluation device that maintain constant sealability.
[0009]
[Means for Solving the Problems]
The test material evaluation apparatus according to the present invention includes a gas supply unit, a glass first tube heated by an infrared irradiator through which the gas supplied from the gas supply unit flows, and the heated gas. A reaction tube in which a metal second tube body to be contact-reacted with the test material disposed in the tank is joined via an expanded graphite packing, and an analyzer for analyzing the gas before and after the contact reaction, respectively, An upper flange formed on the lower end periphery of the first tubular body and placed on the upper surface of the expanded graphite packing on the lower surface, and formed on the upper peripheral edge of the second tube body, with the expanded graphite packing interposed therebetween, A lower flange portion that accommodates the flange portion, a projection that is provided around the surface of the upper flange portion and / or the lower flange portion through which the expanded graphite packing is interposed, and a tightening member that covers the upper flange portion, The lower flange and the fastening member And a screw for fastening the two.
[0010]
The test material evaluation apparatus according to the present invention is characterized in that the protrusion has a V-shaped cross section in a direction orthogonal to the circumferential direction.
In the test material evaluation apparatus according to the present invention, the protrusion has a height of 110 μm or more.
The test material evaluation apparatus according to the present invention is characterized in that a plurality of the protrusions are provided concentrically.
[0013]
In the present invention, since the protrusion is provided around the surface on which the plastic seal member such as the expanded graphite packing is interposed, when the plastic seal member is sandwiched between the first tube body and the second tube body, the protrusion is formed. Abutting against the plastic seal member, the tightening pressure of the first tube and the second tube is concentrated at the abutted portion, and a seal portion against gas leakage can be formed. Even if the sealing portion formed in this way is tightened with a lower tightening pressure corresponding to the material such as quartz glass forming the first tube body, the first tube body and the second tube than the conventional one. It is possible to improve the airtightness of the joining parts of the body, and as a result, it is possible to reduce the amount of leaked gas that has been heated to high temperature.
[0014]
Furthermore, by making contact as described above, a uniform seal portion can be formed regardless of the difference in surface roughness of the plastic seal member to ensure a certain hermeticity. The phenomenon that the leak amount fluctuates can be solved. In consideration of the balance of processability with respect to the formation of the protrusion and the degree of airtightness that can be ensured, the protrusion is preferably provided in the second tube body that reacts with the gas. Further, when the first tube body and the second tube body are tightened at a high numerical value within the range of the tightening pressure that can be accommodated by the first tube body, the first tube body and the second tube body so as to obtain higher airtightness. It is preferable to provide protrusions on both of the two tubular bodies. The plastic seal member can be applied in the form of a gasket other than the packing.
[0015]
In the present invention, by making the cross-sectional shape of the protrusion V-shaped, the form of contact between the tip of the protrusion and the plastic seal member becomes line contact, and the tightening pressure can be more concentrated on the contact point. As a result, the airtightness is improved and the amount of gas leakage can be reduced even with the same tightening pressure as compared with the conventional seal structure.
[0016]
In the present invention, by setting the height of the protrusion to 110 μm or more, even when the expanded graphite packing is used as the plastic seal member, the maximum height of 100 μm in the surface roughness of the packing surface can be exceeded. As a result, even when the expanded graphite packing is simply sandwiched between the first tube body and the second tube body, the tips of the protrusions can be brought into contact with the packing surface, which contributes to the formation of a highly airtight seal portion.
[0017]
In order to form a seal portion with higher airtightness, the height of the protrusion is preferably 150 μm or more. Further, in order to form a seal portion that can maintain higher airtightness, the height of the protrusion is preferably increased. The thickness is preferably 200 μm or more. In addition, the upper limit of the height of the protrusion is appropriate to be about a quarter of the thickness of the plastic seal member from the viewpoint of the limitation that airtightness can be secured in relation to the thickness of the plastic seal member.
[0018]
In the present invention, since the plurality of projections are provided concentrically, a seal portion that overlaps from the inside of the tube to the outside is formed, and higher airtightness can be secured. Further, such multiple projections may be formed on one of the seal surfaces of the first tube body and the second tube body, or may be formed on both seal surfaces.
[0019]
The plastic seal member has a recess with a bite shape because the projection comes into contact with it and is difficult to seal. Therefore, once the plastic seal member sandwiched between the first tube body and the second tube body is moved, the positional relationship between the protrusion and the recess is displaced, and there is a risk that gas leaks through the recess. It is preferable to provide means for positioning the member at a fixed location. In particular, in the case where protrusions are provided on the seal surfaces of both the first tube body and the second tube body, the recesses are formed on both surfaces of the plastic seal member, and there are many places where gas leakage may occur. It is important to perform the positioning of the position.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments thereof.
FIG. 1 shows a gas reaction apparatus 10 according to a first embodiment of the present invention. The gas reaction apparatus 10 heats a gas supply device 11 for supplying various gases and a gas supplied from the gas supply device 11. Thus, the heating furnace 12 is a reaction tube that is brought into contact with a catalyst that is a sample material. The gas reaction apparatus 10 is combined with an analyzer 21 for analyzing the composition of the gas flowing through the heating furnace 12 before and after the reaction with the catalyst, and an evaluation recorder 22 for performing analysis evaluation, recording, etc. A part of the specimen evaluation apparatus 20 for evaluating the specimen is configured. Note that the test material evaluation apparatus 20 can also evaluate the adsorbent by placing the adsorbent in the heating furnace 12 instead of the catalyst.
[0021]
The gas supply device 11 supplies various gases contained in the exhaust of an automobile in a required amount. The types of gases to be supplied include nitrogen, oxygen, carbon dioxide, carbon monoxide, hydrogen, nitrogen monoxide and There are hydrocarbons.
[0022]
The heating furnace 12 expands a first tube 13 made of quartz glass into which a gas from the gas supply device 11 flows and a second tube 14 made of metal in which a catalyst to be evaluated is disposed, which is a plastic seal member. In addition to the graphite packing 15 being joined, an infrared irradiator 16 is provided as a heating means on the outer periphery of the first tubular body 13.
[0023]
As shown in FIG. 2, the first tubular body 13 has a conical shape at the lower end of the reduced diameter pipe portion 13 b, and a conical shape at the lower end of the reduced diameter pipe portion 13 b. The diameter-expanded pipe portion 13c that expands in diameter is formed into a continuous shape. The peripheral edge of the lower end of the expanded diameter pipe portion 13c is thick to form an upper flange portion 13d, and the lower surface of the upper flange portion 13d is a flat upper seal surface 13e.
[0024]
On the other hand, as shown in FIG. 2, FIG. 3A and FIG. 3B, the second tubular body 14 has a lower flange portion 14a formed at the periphery of the upper end. A through-hole 14h through which the bolt 18 is inserted is provided. Further, a recess 14b is formed on the inner peripheral side of the lower flange portion 14a so that the upper flange portion 13d can be accommodated.
[0025]
The recess 14b has a bottom surface as a lower seal surface 14c with the expanded graphite packing 15 interposed therebetween, and the inner diameter is slightly larger than the outer diameter of the upper flange portion 13d so that the upper flange portion 13d can be smoothly accommodated in the recess 14b. At the same time, the escape allowance of the expanded graphite packing 15 for heating is ensured. A peripheral wall portion 14d into which the expanded graphite packing 15 is fitted is provided upright on the inner edge of the recess 14b.
[0026]
Further, the second tubular body 14 has a protrusion 14e provided around the lower seal surface 14c. Specifically, the protrusion 14e is formed so that the cross-sectional shape in the direction orthogonal to the circumferential direction is V-shaped in a state continuous in the circumferential direction of the second tubular body 14 at a substantially intermediate position in the normal direction of the lower seal surface 14c. The protrusion height is 200 μm.
[0027]
As shown in FIG. 2, the other portion of the second tubular body 14 is provided with a drum-shaped tube portion 14f below the lower flange portion 14a, and a trace gas addition tube 14g is disposed above the drum-shaped tube portion 14f. A plurality of gases of various components are added through the trace gas addition pipe 14g so that the engine can be reproduced (fuel rich) and stratified combustion (fuel lean). Further, the second tubular body 14 joins an extraction pipe for extracting the gas before the reaction below the drum-shaped tube portion 14f (not shown in FIG. 2), and a catalyst is disposed inside the drum-shaped tube portion 14f. An arrangement part to be arranged is provided.
[0028]
The expanded graphite packing 15 sandwiched between the upper and lower seal surfaces 13e and 14c of the first tube body 13 and the second tube body 14 is formed in a ring shape corresponding to the size of the seal surfaces 13e and 14c. Then, the thickness of 1.6 mm is applied. Further, for joining the first tube body 13 and the second tube body 14, a ring-shaped fastening member 17 having a screw hole 17 a is used.
[0029]
The process of joining the first tubular body 13 and the second tubular body 14 of the heating furnace 12 described above will be described below.
First, the expanded graphite packing 15 is placed on the lower seal surface 14 c of the second tubular body 14. In such a state, even if the surface roughness of the packing surface of the expanded graphite packing 15 is Rmax 100 μm, the height of the protrusion 14e is 200 μm. The tip of the protrusion 14e is in contact with the packing surface.
[0030]
In this state, the first tubular body 13 with the fastening member 17 covered on the upper flange portion 13d is placed on the packing surface on the upper surface side of the expanded graphite packing 15, and is inserted into the through hole 14h of the second tubular body 14. By fastening the bolt 18 with the screw hole 17a, the first tubular body 13 and the second tubular body 14 are tightened and joined. Further, the fastening pressure at the time of joining is set to a fastening pressure that does not damage the first tube body 13 made of quartz glass.
[0031]
By joining in this way, as shown in FIG. 4, the protrusion 14 e is inserted into the packing surface 15 a on the lower surface side of the expanded graphite packing 15, and the seal portion 19 where the surface of the packing surface 15 a and the protrusion 14 e is in pressure contact is formed. It is formed, and the airtightness in the joint location of the 1st pipe body 13 and the 2nd pipe body 14 is ensured.
[0032]
In order to confirm the degree of airtightness of the heating furnace 12 having such a configuration, an experiment was conducted to compare the airtightness of the conventional heating furnace and the heating furnace according to the present invention.
In this experiment, a conventional heating furnace having a structure in which the sealing surface for the expanded graphite packing of the first tube body and the second tube body has no flat protrusion is used, while the heating furnace according to the present invention has the heating described above. The thing which provided the processus | protrusion 14e in the lower seal surface 14c of the 2nd tubular body 14 similar to the furnace 12 was used.
[0033]
In addition, the experimental method is such that after each test furnace of the present invention and the present invention is filled with a test gas at a pressure of 40 kPa, the inlet of the first tube and the outlet of the second tube are sealed to have an internal volume. In this state, the decrease value of the internal pressure of the heating furnace at the time when 5 minutes have elapsed is measured.
[0034]
Further, the expanded graphite packing having a thickness of 1.6 mm is applied, and in consideration of the difference in surface roughness between the individual expanded graphite packings, two expanded graphite packings are conventionally used for each heating furnace of the present invention and the present invention. Was used to measure a total of four expanded graphite packings. Furthermore, in order to compare the airtightness when the packing surface pressure is different, the measurement for each expanded graphite packing is performed by changing the tightening pressure of the first tube body and the second tube body, 0.338 MPa, 0.677 MPa, 0.846 MPa). The experimental results are shown in Table 1 below.
[0035]
[Table 1]
Figure 0004383029
[0036]
From Table 1, in the case of the lowest packing surface pressure (0.338 MPa), the decrease value of the internal pressure in the conventional heating furnace is 3.10 kPa and 3.20 kPa for each expanded graphite packing (1) (2). The average value was 3.15 kPa. On the other hand, the decrease value of the internal pressure in the heating furnace of the present invention is 1.50 kPa and 1.40 kPa with respect to each expanded graphite packing (3) and (4), and is 1.45 kPa on average. However, it was found that the airtightness was improved by about 54%.
[0037]
When the packing surface pressure is 0.677 MPa, the decrease value of the internal pressure in the conventional heating furnace is 2.00 kPa and 1.70 kPa for each expanded graphite packing (1) and (2), which is 1 on average. It became .85 kPa. On the other hand, the decrease value of the internal pressure in the heating furnace of the present invention is 0.70 kPa and 0.70 kPa for each expanded graphite packing (3) and (4), and the average value is 0.70 kPa. The decrease value was reduced by about 62% compared to the conventional value, and it was found that the airtightness was improved. In particular, when the expanded graphite packing (1) is applied to the conventional heating furnace and the expanded graphite packing (3) (4) is applied to the heating furnace of the present invention, the reduction value of the internal pressure is about 65%. Also reduced.
[0038]
Further, when the packing surface pressure is 0.846 MPa, the decrease value of the internal pressure in the conventional heating furnace is 1.70 kPa and 1.50 kPa for each expanded graphite packing (1) (2), and on average It became 1.60 kPa. On the other hand, the decrease value of the internal pressure in the heating furnace of the present invention is 0.70 kPa and 0.70 kPa for each expanded graphite packing (3) and (4), and the average value is 0.70 kPa. However, it was found that the airtightness was improved by 56%.
[0039]
Furthermore, the difference between the expanded graphite packings (1) and (2) with respect to the decrease value of the internal pressure in the conventional heating furnace is 0.1 kPa when the packing surface pressure is 0.338 MPa and 0.3 kPa when the packing surface pressure is 0.677 MPa. When the pressure was 0.846 MPa, the pressure was 0.2 kPa, and the difference between the expanded graphite packings to be applied was large.
[0040]
On the other hand, the difference between the expanded graphite packings (3) and (4) with respect to the decrease value of the internal pressure in the heating furnace of the present invention is 0.1 kPa when the packing surface pressure is 0.338 MPa, 0 kPa when the packing surface pressure is 0.677 MPa, 0 It was 0 kPa at 846 MPa, and there was almost no difference between the expanded graphite packings to be applied. Therefore, it was confirmed that the heating furnace of the present invention was not affected by the applied expanded graphite packing and maintained stable airtightness.
[0041]
In addition, the heating furnace 12 in the gas reaction apparatus 10 which concerns on 1st Embodiment is not limited to the form mentioned above, A various deformation | transformation is possible. For example, the protrusion height of the protrusion 14 e is not limited to 200 μm, and it may be 110 μm or more depending on the surface roughness of the expanded graphite packing 15.
[0042]
Further, the cross-sectional shape of the protrusion 14e can be formed in various shapes other than the V-shape. For example, a U-shape such as the protrusion 140 shown in FIG. 5A, a semicircular shape as shown in the protrusion 141 in FIG. 5B, a rectangular shape as shown in the protrusion 142 in FIG. It may be formed in a substantially pentagonal shape as shown by a protrusion 143 in 5 (d), or in a right triangle shape as shown in a protrusion 144 in FIG. 5 (e).
[0043]
When the protrusion is formed in a U-shape and a semicircular shape, the contact width with respect to the expanded graphite packing 15 is wider than the protrusion 14e shown in FIG. This is suitable for the case where the thin expanded graphite packing 15 is applied. In the case where the protrusion is rectangular, the contact width with respect to the expanded graphite packing 15 is further increased, and the load for tightening the expanded graphite packing 15 can be reduced, and a wide seal portion can be formed. When the protrusion has a substantially pentagonal shape, the protrusion width in the vicinity of the root is wide, so that rigidity can be ensured even if the protrusion height is increased. In the case of the right triangle shape, since the tip can be sharper than the protrusion 14e of FIG. 4, the biting property to the expanded graphite packing can be improved.
[0044]
Further, as in the second tubular body 24 of the modified example shown in FIG. 6, double protrusions 241 and 242 may be provided around the lower seal surface 24c in a concentric manner. By providing double protrusions in this way, a double seal portion is formed with respect to the expanded graphite packing, and the airtightness can be further improved. In addition, the number of the protrusions provided concentrically can be double or more.
[0045]
FIG. 7 is a schematic cross-sectional view of a main part of a heating furnace 52 according to the second embodiment of the present invention. The heating furnace 52 of the second embodiment is provided with upper and lower protrusions 53f and 54e on both the upper seal surface 53e of the first tube 53 and the upper seal surface 54c of the second tube 54, respectively. This is different from the heating furnace 12 of the embodiment. Similar to the lower protrusion 54e of the second tubular body 54, the upper protrusion 53f of the first tubular body 53 has a V-shaped cross section and is provided around the upper seal surface 53e.
[0046]
The upper and lower protrusions 53f and 54e are inserted into the upper and lower packing surfaces of the expanded graphite packing 55 sandwiched between the upper and lower sealing surfaces 53f and 54e of the first tube body 53 and the second tube body 54, respectively. Forms and improves airtightness. Since the configuration other than the above-described portions is the same as that of the heating furnace 12 of the first embodiment, the description thereof is omitted.
[0047]
In order to confirm the degree of hermeticity for the heating furnace 52 having such a configuration, an experiment was performed under the same conditions as those described above. In this experiment, for each expanded graphite packing, the tightening pressures of the first tube and the second tube were changed twice for each of two types of packing surface pressures (0.677 MPa, 0.846 MPa). It was measured. The experimental results are shown in Table 2.
[0048]
[Table 2]
Figure 0004383029
[0049]
From Table 2, when the packing surface pressure is 0.677 MPa, the decrease value of the internal pressure is 0.70 kPa and 0.80 kPa for each expanded graphite packing (5) and (6), and the average is 0.75 kPa. It was. Comparing such a value with the conventional heating furnace of Table 1, it was found that the decrease value of the internal pressure was reduced by about 59%.
[0050]
Further, when the packing surface pressure is 0.846 MPa, the decrease value of the internal pressure is 0.60 kPa for each of the expanded graphite packings (5) and (6), compared with the conventional heating furnace shown in Table 1. Further, it was found that the decrease value of the internal pressure was reduced by about 62%, and the airtightness was improved, and it was also confirmed that the airtightness was improved even when there was a protrusion only on one side.
[0051]
Further, in the heating furnace 52, the difference between the reduced values of the internal pressure between the expanded graphite packings (5) and (6) is 0.1 kPa when the packing surface pressure is 0.677 MPa, and the packing surface pressure is 0.846 MPa. In some cases, 0 kPa hardly occurred, and it was found that stable airtightness could be maintained.
[0052]
Note that various modifications in the first embodiment can also be applied to the heating furnace 52 of the second embodiment. Further, in the heating furnace 52, since the seal portions 59 are formed on the upper and lower packing surfaces of the expanded graphite packing 55, the positioning of the expanded graphite packing is more important than the heating furnace 12 of the first embodiment, and the positioning of the expanded packing is performed. It is preferable to perform positioning accurately by providing a wall or the like. In addition, by performing accurate positioning in this manner, it is possible to ensure excellent airtightness as compared with the conventional case even if the packing surface pressure is lower than 0.677 MPa.
[0053]
【The invention's effect】
As described above in detail, in the present invention, since the protrusion is provided around the seal surface, the protrusion is inserted into the plastic seal member interposed between the first tube body and the second tube body, so that the seal portion. Thus, the airtightness of the gas flow path can be improved, and stable airtightness can be maintained without being affected by the surface roughness of the applied plastic seal member.
[0054]
In the present invention, by forming the protrusion in a V shape, the tightening pressure on the plastic seal member can be concentrated on the tip of the protrusion, and the gas tightness can be improved and the amount of gas leakage can be reduced.
[0055]
In the present invention, by setting the height of the protrusion to 110 μm or more, stable airtightness can be maintained without being affected by the surface roughness of the applied seal member.
In the present invention, by providing a plurality of protrusions concentrically, multiple seal portions can be formed, and the amount of gas leakage can be further reduced.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a gas reaction device and a specimen evaluation device according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a main part of the heating furnace according to the first embodiment.
3A is an enlarged cross-sectional view of a main part of a second tubular body, and FIG. 3B is a plan view of a main part of the second tubular body.
FIG. 4 is a schematic cross-sectional view showing a sealing structure of a heating furnace.
FIGS. 5A to 5D are schematic views showing end faces of cross sections showing the shapes of protrusions of various modifications. FIGS.
FIG. 6 is an enlarged cross-sectional view of a main part of a second tubular body according to another modified example.
FIG. 7 is a schematic cross-sectional view of a main part showing a sealing structure of a heating furnace according to a second embodiment.
8A is a schematic sectional view of a conventional heating furnace, and FIG. 8B is an enlarged sectional view showing a seal structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Gas reactor 11 Gas supply device 12 Heating furnace 13 1st pipe body 14 2nd pipe body 14e Protrusion 15 Expanded graphite packing 20 Test material evaluation apparatus 21 Analyzer 22 Evaluation recorder

Claims (4)

ガス供給器と、
該ガス供給器から供給されたガスが流入して赤外線照射器で加熱されるガラス製の第1管体及び加熱されたガスを内部に配置される供試材に接触反応させる金属製の第2管体を膨張黒鉛パッキンを介在させて継合してある反応管と
前記接触反応させる前後のガスを夫々分析する分析器と、
前記第1管体下端周縁に形成され、下面にて前記膨張黒鉛パッキン上面に載置された上フランジ部と、
前記第2管体上端周縁に形成され、前記膨張黒鉛パッキンを介在させて前記上フランジ部を収める下フランジ部と、
前記上フランジ部及び/または前記下フランジ部の前記膨張黒鉛パッキンを介在させる面に周設された突起と、
前記上フランジ部に被せられた締付部材と、
前記下フランジと前記締付部材とを締結するネジと
を備えることを特徴とする供試材評価装置。
A gas supply;
A first glass tube that is supplied with gas supplied from the gas supply device and heated by an infrared irradiator, and a second metal product that causes the heated gas to contact and react with a test material disposed therein. A reaction tube in which the tubular body is joined via an expanded graphite packing ;
An analyzer for analyzing the gas before and after the contact reaction;
An upper flange portion formed on the lower edge of the lower end of the first tubular body and placed on the upper surface of the expanded graphite packing at the lower surface;
A lower flange portion that is formed at a peripheral edge of the upper end of the second tubular body and receives the upper flange portion with the expanded graphite packing interposed therebetween;
A protrusion provided around a surface of the upper flange portion and / or the lower flange portion through which the expanded graphite packing is interposed;
A tightening member placed on the upper flange portion;
A screw for fastening the lower flange and the fastening member;
Test materials evaluation apparatus according to claim Rukoto equipped with.
前記突起は、周方向に直交する方向の断面がV字状をなす請求項1に記載の供試材評価装置The test material evaluation apparatus according to claim 1, wherein the protrusion has a V-shaped cross section in a direction orthogonal to the circumferential direction. 前記突起は、高さが110μm以上である請求項1又は請求項2に記載の供試材評価装置The test material evaluation apparatus according to claim 1, wherein the protrusion has a height of 110 μm or more. 前記突起は、同心的に複数設けてある請求項1乃至請求項3のいずれか一つに記載の供試材評価装置The test material evaluation apparatus according to any one of claims 1 to 3, wherein a plurality of the protrusions are provided concentrically.
JP2002242461A 2002-08-22 2002-08-22 Specimen evaluation device Expired - Fee Related JP4383029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002242461A JP4383029B2 (en) 2002-08-22 2002-08-22 Specimen evaluation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002242461A JP4383029B2 (en) 2002-08-22 2002-08-22 Specimen evaluation device

Publications (2)

Publication Number Publication Date
JP2004081898A JP2004081898A (en) 2004-03-18
JP4383029B2 true JP4383029B2 (en) 2009-12-16

Family

ID=32051539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002242461A Expired - Fee Related JP4383029B2 (en) 2002-08-22 2002-08-22 Specimen evaluation device

Country Status (1)

Country Link
JP (1) JP4383029B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010242712A (en) * 2009-04-09 2010-10-28 Otics Corp Fuel delivery pipe

Also Published As

Publication number Publication date
JP2004081898A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
KR102177904B1 (en) Special seal geometry for exhaust gas sensors for producing high leak tightness with respect to the measurement chamber
JP5237839B2 (en) Metal sawtooth gasket and combination gasket
US6123339A (en) Non-gasket sealing structure
GB1578199A (en) Gas concentration sensing device
JP4383029B2 (en) Specimen evaluation device
US7134345B2 (en) Pressure transducer with one-piece housing
JP4007610B2 (en) Corrosion thinning test apparatus and corrosion thinning test method
US6342141B1 (en) Sealed exhaust sensor utilizing a mat support system
US7484402B2 (en) Gas sensor
JP5087555B2 (en) Fluid coupling
JP4417170B2 (en) Gasket leakage measurement device
CN112135962B (en) Exhaust gas purification device
JP2007239537A (en) Exhaust pipe flange joint structure
JP2011123011A (en) Diaphragm-seal type differential-pressure measuring device
US20090315268A1 (en) Radial Crimp Seal
JP2007322134A (en) Gas sensor
WO2008118924A1 (en) Gas sensor housing for use in high temperature gas environments
JP2004053429A (en) Flow rate measurement system
JP3728135B2 (en) Fluid handling joint
CN217424461U (en) Gas flowmeter seal structure
JP3286790B2 (en) Gasket for high temperature
WO2022085577A1 (en) Metal gasket
EP4290102A1 (en) High-pressure hydrogen vessel
JP4681389B2 (en) Ceramic tube leak inspection system
KR20000063030A (en) Machine and Method for Preventing Flange Leakage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4383029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees