JP4382479B2 - W−cdamハンドオフ検索のための方法および装置 - Google Patents

W−cdamハンドオフ検索のための方法および装置 Download PDF

Info

Publication number
JP4382479B2
JP4382479B2 JP2003524144A JP2003524144A JP4382479B2 JP 4382479 B2 JP4382479 B2 JP 4382479B2 JP 2003524144 A JP2003524144 A JP 2003524144A JP 2003524144 A JP2003524144 A JP 2003524144A JP 4382479 B2 JP4382479 B2 JP 4382479B2
Authority
JP
Japan
Prior art keywords
code
pilot
slot
pilots
threshold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003524144A
Other languages
English (en)
Other versions
JP2005501467A (ja
JP2005501467A5 (ja
Inventor
シュ、ダ−シャン
サブラーマンヤ、パーバサナサン
ラオ、サブラマンヤ・ピー・エヌ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2005501467A publication Critical patent/JP2005501467A/ja
Publication of JP2005501467A5 publication Critical patent/JP2005501467A5/ja
Application granted granted Critical
Publication of JP4382479B2 publication Critical patent/JP4382479B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7073Synchronisation aspects
    • H04B1/7083Cell search, e.g. using a three-step approach
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70701Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation featuring pilot assisted reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2201/00Indexing scheme relating to details of transmission systems not covered by a single group of H04B3/00 - H04B13/00
    • H04B2201/69Orthogonal indexing scheme relating to spread spectrum techniques in general
    • H04B2201/707Orthogonal indexing scheme relating to spread spectrum techniques in general relating to direct sequence modulation
    • H04B2201/70702Intercell-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Description

本発明は一般的に通信に関し、より具体的には、W−CDMAハンドオフ検索(handoff searching)のための新規かつ改良された方法および装置に関する。
無線通信システムは広く用いられて、音声およびデータなどの種々のタイプの通信を提供している。これらのシステムは、符号分割多重アクセス(CDMA)、時分割多重アクセス(TDMA)、あるいは他の変調技術に基づいていてもよい。CDMAシステムは、システム容量の増大を含む、他のタイプのシステムに一定の利点を提供している。
CDMAシステムは、(1)「デュアルモード広帯域スペクトル拡散セルラーシステム用のTIA/EIA−95−B移動局−基地局互換基準」(IS-95基準)と、(2)「第3世代パートナーシッププロジェクト(3rd Generation Partnership Project)」(3GPP)と称されるコンソーシアムによって提供され、かつ文書番号3G TS 25.211、3G TS 25.212、3G TS 25.213、および3G TS 25.214を含む1セットの文書において具現化されている基準(W−CDMA基準)と、(3)「第3世代パートナーシッププロジェクト2」(3GPP2)と称されるコンソーシアムによって提供され、かつ「cdma2000スペクトル拡散システム用のC.S0002−A物理層基準(C.S0002-A Physical Layer Standard for cdma2000 Spread Spectrum Systems)」、「cdma2000スペクトル拡散システム用のC.S0005−A上層(層3)シグナリング基準(C.S0005-A Upper Layer(Layer 3)Signaling Standard for cdma2000 Spread Spectrum Systems)」、および「C.S0024 cdma2000高率パケットデータエアインタフェース仕様(C.S0024 cdma2000 High Rate Packet Data Air Interface Specification)」(cdma2000基準)と、(4)他の基準などの、1つ以上のCDMA基準をサポートするように設計されていてもよい。
擬似ランダム雑音(PN)シーケンスは一般的に、送信パイロット信号を含む送信データを拡散するためにCDMAシステムにおいて使用される。PNシーケンスの信号値を送信するのに必要な時間はチップとして知られており、チップが変化するレートはチップレートとして知られている。CDMA受信機は一般的にレーキ(RAKE)受信機を用いている。レーキ受信機は一般的に、1つ以上の基地局からの直接かつマルチパスのパイロットを位置決めする(locating)ための1つ以上のサーチャ(searchers)と、これらの基地局からの情報信号を受信および結合するための2つ以上のマルチパス復調器(フィンガ)とから成っている。
受信機がこれのPNシーケンスを基地局のものに調整しなければならないという要件は、直接シーケンスCDMAシステムの設計に固有である。例えば、IS−95において、各基地局/加入者ユニットは全く同一のPNシーケンスを使用する。基地局は、独特のタイムオフセットをこれのPNシーケンスの生成において挿入することによって他の基地局から自身を識別する(全基地局は64チップの整数倍でオフセットされる)。加入者ユニットは、少なくとも1つのフィンガを基地局に割り当てることによってその基地局と通信する。割り当てられたフィンガは、その基地局と通信するために、適切なオフセットをこれのPNシーケンスに挿入しなければならない。IS−95受信機は1つ以上のサーチャを使用してパイロット信号のオフセットを位置決めし、それによってそれらのオフセットを受信用フィンガの割当に使用する。IS−95システムは単一のセットの同相(I)および直交(Q)PNシーケンスを使用しているため、パイロット位置決めの1つの方法は、1つ以上のパイロット信号が位置決めされるまで、内部生成されたPNシーケンスを異なるオフセット仮説(hypotheses)によって相関すること(correlating)によってPN空間全体を単に検索することである。
W−CDMAシステムなどの他のシステムは、一次スクランブリングコード(scrambling code)として既知である独特のPNコードを各々に使用する基地局を差分する(differentiate)。W−CDMA基準はダウンリンク(downlink)をスクランブリングするための2つのゴールド(Gold)コードシーケンスを定義しており、1つは同相成分(I)用であり、もう1つは直交(Q)用である。IおよびQのPNシーケンスは共にデータ変調のないセルを介して放送されている。この放送は共通パイロットチャネル(CPICH)と称されている。生成されたPNシーケンスは38,400個のチップの長さに切られる。38,400個のチップの周期は無線フレームと称されている。各無線フレームはスロットと称される15個の等しいセクションに分割されている。
上記の、IS−95システムについて説明した方法でW−CDMA基地局を検索することが可能である。すなわち、PN空間全体は、512個の一次コードの各々につきオフセットごとに(それらのうちの38,400個)検索可能である。しかしながら、これは、このような検索が要する過剰な時間ゆえに実用的ではない。その代わり、W−CDMA基準は基地局に対して、2つの更なる同期チャネルと、一次および二次同期チャネルを送信するようにコールし、加入者ユニットの効率的な検索を支援する。結果として、W−CDMA検索は3ステップで実行可能であり、以下により完全に詳述する。
初期取得について、3ステップのW−CDMA検索は、検索時間の短縮に関して、多大な性能の増大を、スクランブリングコードごとにPN空間全体を検索するという非実用的な代替案に対して提供する。隣接する基地局の一次スクランブリングコードが既知である場合、2つの方法のいずれかを使用してハンドオフ検索を首尾よく実行することが可能であるが、各々は、以下により詳細に識別される、検索時間に関する一定の欠点を示している。
検索時間は、CDMAシステムの品質を判断する際に重要な判断基準である。検索時間の短縮は、検索をより頻繁に実行できることを意味している。従って、加入者ユニットは最良の使用可能セルをより頻繁に位置決めかつアクセスすることによって、基地局と加入者ユニットの双方によって低下した送信電力でしばしば良好な信号の送受信ができることになる。そしてこれは、(増加するユーザまたはより高い送信レートに対するサポートのいずれかに関して、または両方に関して)CDMAシステムの容量を増大させる。
短縮した検索時間はまた、加入者ユニットがアイドルモードである場合に好都合である。アイドルモードにおいて、加入者ユニットは音声やデータを積極的に送信または受信していないが、システムを定期的に監視している。アイドルモードにおいて、加入者ユニットは、監視していない場合には低電力状態のままでもよい。検索時間の短縮によって加入者ユニットは、監視時間を少なくし、低電力状態の時間を長くできるため、電力消費を減少させ、かつスタンバイ時間を増大させることができる。
検索時間の短縮の利点は明らかであり、ハンドオフ検索を含む、W−CDMAなどの非同期システムにおける検索と関連するいくつかの問題点が浮き彫りにされてきている。従って、ハンドオフ検索を含む、非同期システム用の改良された検索技術の必要性が当業界に存在している。
[概要]
ここに開示されている実施形態は、W−CDMAなどの非同期システムにおける改良されたハンドオフ検索の必要性を示している。一態様において、隣接コード(neighbor codes)のリストが既知である場合には2ステップの検索手順が使用される。第1のステップにおいて、1つ以上のパイロットとこれと関連するスロット境界とを位置決めするために、受信信号はスロットタイミングコードによって相関される。第2のステップにおいて、パイロットコードと各パイロットと関連するフレームタイミングとを識別するために、受信信号は第1のステップでパイロットによって識別されたスロット境界においてコードリストの各々によって相関される。本発明の他の種々の態様もまた示されている。これらの態様は、取得スピードの増大、より高品質の信号送信、データスループットの増大、電力低下、および改良された全システム容量をもたらす、検索時間の短縮という利点を有している。
本発明は、以下により詳細に説明されるような、本発明の種々の態様、実施形態、および特徴を実現する方法およびシステム要素を提供する。
本発明の特徴、性質、および利点は、図面と関連してなされる以下の詳細な説明からより明らかである。図面全体において同一の参照番号は同一部分を示している。
[詳細な説明]
図1は、多数のユーザをサポートし、かつ本発明の種々の態様を実現可能な無線通信システム100の図である。システム100は、1つ以上のCDMA基準および/または設計(例えば、W−CDMA基準、IS−95基準、Cdma2000基準、HDR仕様)をサポートするように設計されてもよい。簡潔に言うと、システム100は、2つの加入者ユニット106と通信している3つの基地局104を含むように示されている。基地局およびこれのカバレージエリアはしばしば「セル」と総称される。IS−95システムにおいて、セルは1つ以上のセクタを含んでいてもよい。W−CDMA仕様において、基地局の各セクタおよびセクタのカバレージエリアはセルと称される。ここで使用されているように、基地局という用語は、アクセスポイントという用語と交換可能に使用することができる。加入者ユニットという用語は、ユーザ機器(UE)、移動局、加入者局、アクセス端末、リモート端末という用語、または当業界で既知の他の対応する用語と交換可能に使用することができる。移動局という用語は固定無線アプリケーションを含有している。
実現されているCDMAシステムによると、各加入者ユニット106は所与のモーメントでフォワードリンク上で1つの(または可能ならば複数の)基地局104と通信してもよく、加入者ユニットがソフトハンドオフであるか否かによってリバースリンク上で1つ以上の基地局と通信してもよい。フォワードリンク(すなわちダウンリンク)は、基地局から加入者ユニットへの送信のことであり、リバースリンク(すなわちアップリンク)は、加入者ユニットから基地局への送信のことである。
明確に言うと、本発明を説明する際に使用される例は、基地局を信号の発信器として、加入者ユニットをそれらの信号、すなわちフォワードリンク上の信号の受信機および取得器としている。当業者は、基地局ならびに加入者ユニットがここに説明されているデータを送信するために提供され、かつ本発明の態様がこれらの状況にも適用することを理解するであろう。「例示的」という用語はここでは包括的に使用されて、「例、事例、または図示である」ことを意味している。「例示的」とここで説明されている任意の実施形態は必ずしも、他の実施形態に対して好ましく、または好都合のものと構成されているわけではない。
W−CDMA検索は3ステップの手順を使用して実行可能であることを想起しよう。ステップ1において、加入者ユニットは、一次同期チャネルの成分である、一次同期コード(PSC)を検索する。PSCは、各2,560チップスロットの最初の256個のチップ間に送信される固定の256チップシーケンスである。PSCはシステムのいずれのセルにおいても同じである。PSCは基地局の存在を検出するのに有用であり、一旦取得されると、スロットタイミングもまた取得される。
ステップ2において、加入者ユニットは、二次同期チャネルをなす二次同期コード(SSC)を検索する。16個の256チップSSCがある。基地局は、フレームあたり15個のSSCを送信する(各スロットにつき1つのSSC)。15個のSSCの64個の独特のシーケンスがあり、各シーケンスは、64個のスクランブリングコードグループの1つと関連している。各基地局は、各スロットの最初の256個のチップにおいて、PSCに伴って1つのSSCを送信する(16個のSSCの各々とPSCは直交である)。1セットの64個のSSCシーケンスはコンマフリー(comma free)に選択される、すなわち、いずれのシーケンスも、他のシーケンスのいずれかの循環シフト(cyclic shift)、またはそれ自体の任意の非自明な循環シフトに等しくはない。この性質によって、加入者ユニットが、任意の15個の連続スロットで送信されたSSCのシーケンスを判断すると、フレームタイミングと、64個のSSCシーケンスのいずれが送信されたのかの両方を判断することができ、基地局が属するスクランブリングコードグループを識別することができる。各スクランブリングコードグループには8個のコードがあるために、候補数は8個に削減される。
ステップ3において、ステップ2で識別された8個のスクランブリングコード候補が検索されて、どれが正しいコードであるかを判断しなければならない。これは、判断がなされるまで、IS−95について説明されたプロセスと同様のチップ単位の相関を実行し、複数のチップについてエネルギーを蓄積することによって実行される。
一旦3ステップの検索手順が完了し、基地局が取得されていても、検索タスクは依然として進行中である。例えば、隣接する基地局は定期的に検索されて、もしあるならば、いずれがハンドオフに適しているかを判断しなければならない。既に取得されている基地局は、隣接リストとして知られている、潜在的にアクセス可能な基地局のリストを提供することができる。さらに、隣接リストにある基地局の一次スクランブリングコードが識別可能である。すなわち、同期システムにおいて、IS−95やcdma2000などの、隣接検索を実行するシステムにおける基地局のフレームタイミングが同期されている基準は非常に高速である。これは、各基地局の既知のフレーム境界周辺の小さなウィンドウのみが検索される必要があるからである。しかしながら、W−CDMAなどの非同期システムにおいて、隣接リストおよび関連スクランブリングコードについての知識は、フレームタイミングが未知であるために十分ではない。検索は非同期の隣接基地局を見つけるために依然として実行されなければならない。1つ以上の基地局がすでに取得されている一方での、隣接基地局の検索は、このような検索の目的の1つがハンドオフを容易にすることであるために、ここではハンドオフ検索と称される。しかしながら、ハンドオフ検索という用語は、ハンドオフが実際に生じる状況に限定されない。
隣接基地局のフレームタイミングを取得するための2つの直通手順(straightforward procedures)は、上に称されたものを含んでいる。1つの手順は、各スクランブリングコードの38,400個のチップの空間全体を検索することである。仮説ごとに、加入者ユニットは、雑音の平均を下げる(average down)ことによって検出の可能性を増大させるために、一定数のチップを統合する必要がある。初期取得には非実用的であるが、この方法は、隣接リストに含まれているようなスクランブリングコード数が比較的少数である場合には有用である。
第2の方法は上記の3ステップの検索手順を実行することである。第1に、スロットタイミングはPSCの検索によって取得される。第2に、フレームタイミングは、8個の仮説のうちの最大1個にスクランブリングコードを絞り込むことはもちろんSSCの検索によって取得される。場合によっては、隣接リストは比較的小さく、それゆえに潜在的なスクランブリングコード数がスクランブリングコードの総数のサブセットであるために、SSCの学習は、いずれのスクランブリングコードが送信されているかを識別するために十分である。あるいは、少なくとも、1セットの仮説はSSCシーケンスによって識別された8個から削減されてもよい。第3に、各残存仮説について、加入者ユニットは、第2のステップで識別されたフレーム境界周辺の小さなウィンドウにおけるスクランブリングコードを検索する。各ステップの検索は加入者ユニットに対して、雑音の平均を下げ、かつ検出の可能性を増大させるために一定数のチップの統合を要している。
上記の2つの方法のいずれかを使用することにはある欠点があり、これはハンドオフ検索に必要な全検索時間に影響を及ぼす。第1の方法は38,400個の仮説を検索するがゆえに、雑音による誤検出の機会が増大する。上記の通り、これに対処するには、加入者ユニットは所望の可能性レベルを達成するために多数のチップを統合する。このタイプの統合は複数のフレームを含有する隣接検索を必要としてもよい。さらに、ハンドオフ検索においては、一般的に少数の最強隣接セルのみが望ましい。しかしながら、第1の方法の使用は、少数の最強セルを検出するために隣接リスト全体の検索を必要としている。すなわち、検索時間は、最強の隣接セル数ではなく、全隣接セル数によって線形にスケーリングされる。
第2の方法は、少数の強い候補を識別するために全隣接リスト検索を必要とするという欠点がない。これは、ステップ1で受信された最強PSCが最強候補に対応しているために、少数の強い候補のみが、後続のステップ2および3での検索を要するからである。しかしながら、PSCおよびSSCは、2,560チップスロットの最初の256個のチップ間でのみ送信されることを想起しよう。従って、ステップ1および2の双方において、多数のチップを統合するために、加入者ユニットは統合する256個のチップごとに、2560個のチップを待機しなければならない。さらに、一次および二次同期チャネルは一般的に一次スクランブリングコードよりの低い強度で送信され、それに直交ではない。これらの更なる要因は、所望の性能レベルを達成するために統合に必要な時間を増大させる。SSCを識別するステップ2は、ステップ1に戻って2つ以上のスロット仮説について反復される必要があり、それによって全ハンドオフ検索時間を増大させるために、統合時間の増大により影響しやすい。
本発明の種々の実施形態が上記の2つの検索方法の態様を組み合わせて、いずれかの方法のみを使用することの欠点を回避するハンドオフ検索を実行する。図2は、ハンドオフ検索を実行する1つのこのような実施形態の方法のフローチャートを示している。ブロック210において、加入者ユニットは隣接基地局の一次スクランブリングコードを受信する。次のブロック220および230は、加入者ユニットが如何にコードを知るのかに関係なく、既知の一次スクランブリングコードを検索するための2ステッププロセスを定義している。以下の実施形態はW−CDMAシステムに関して説明されているが、本発明の原理は、スロットタイミングを識別するためのコードと、そのフレームタイミングの開始がフレーム内のスロットのうちの1つに対応しているパイロットコードとを採用する任意の可能なシステムに等しく適用する。
ブロック220に示されている第1のステップは、上記の3ステップの検索プロセスのステップ1を実行することからなっている。PSCを検索することによって、少数の最強セルのスロットタイミングが取得可能である。プロセスにおいて、考慮するには非常に弱いそれらのセルは排除される。このステップの実行によって、少数の最強セルを含んでいるサブセットのみが所望されている場合に隣接リスト全体の完全な検索を実行する必要性が回避される。このステップの完了後に、加入者ユニットは、複数の候補基地局のパイロットのスロットタイミングを知ることになる。各フレームに15個のスロットがあるために、スロットタイミングを知ることによって、各パイロットの15個のフレーム仮説に対するフレームタイミングの不確定性が減少する。
ブロック230に示されている第2のステップは、隣接リスト内のコードの各々を使用して15個のスロットの各々をテストすることによって各パイロット仮説を検索することである。(弱いセル、または未受信のセルに対応する)他のコードもまたリストにある可能性があるが、隣接リストは、候補基地局のパイロットの一次スクランブリングコードを最も含みやすい。リスト内の各コードについて、フレーム境界が検出される(あるいは15個のスロットがテストされていて、コードがパイロットにおいて検出されなくなる)まで、小さなウィンドウが、第1のステップで識別された各スロット境界周辺で検索される。プロセスは、ステップ1で検出されたサブセットにおける全パイロット仮説(すなわち基地局候補)が一次スクランブリングコードと取得されたフレームタイミングとによって識別されるまで反復される。
ステップ1で検出された信号が隣接リスト(あるいは検索用の既知の基地局のリスト)にあるのではなく基地局からのものである場合には、加入者ユニットは多数のステップのうちの1つを採ることができる。加入者ユニットは、基地局はリストにないために、それを無視することができる。あるいは、基地局が識別されるまで、上記の3ステップの検索プロセスの最後の2つのステップによって継続してもよい。加入者ユニットは基地局にすでに通信中であるというメッセージを送信して、新たな候補によって隣接リストを更新してもよい。
図3は、図2において上記されているステップ220の実施形態を示している。ステップ220は、潜在的な隣接パイロットのリストとそれらの対応するコードが既知である場合に隣接パイロットを位置決めするための2ステップの検索プロセスの第1のステップであることを想起しよう。ステップ310において、(例えば、図6に示されており、以下に詳述されるブロック620などのRFダウンコンバートブロックから受信された)入IおよびQサンプルは期間Mの間PSCによって相関される。Mは任意の時間値として定義されてもよいが、便宜的な選択としてはM個のチップ、M個のスロット、またはM個のフレームであろう。検索されている種々のパイロットが非同期であるために、全最強候補を検出するためには、2560個のチップを含んでいる1つのスロット全体における各オフセットを検索することが望ましい。一般的に、検索はチップ整合の不確定性を説明するためにハーフチップインクリメントで実行され、スロットにおいてテストする全仮説数はチップ数の2倍、すなわち5,120個である。比較的大きな値のMを選択することによって、増大した検索時間のトレードオフによって種々の仮説のより正確なエネルギー測定がもたらされる。PSCなどのシーケンスを入IおよびQサンプルによって相関するための種々の手段は当業界において既知であり、図3に示されているステップによって動作可能な一実施形態は図7に関して以下に詳述される。検索時間を短縮するために複数の相関器を並行して用いるための技術もまた当業界において既知である。
ステップ320において、多数の最強パイロットJがステップ310の相関結果から位置決めされる。図2を参照して上述されているように、関連ハードウェアおよび検索時間を含む検索リソースを加入者ユニットに使用可能な最強パイロットに用いることは好都合である。1つの代替案は、Jを設定量に固定して、J個の最高パイロットのみを検出する(かつJ個未満のパイロットが位置決めされている場合は、全使用可能なパイロットを使用する)ために結果を分類することである。別の代替案は、最小のエネルギー閾値を使用して、その閾値を満たすか、それを越えるパイロットの総数を一致させるためにJを設定することである。さらに別の代替案は、実際に位置決めされているパイロットのエネルギーおよび/または数に従って最小閾値を変化させることである。位置決めされているJ個のパイロットは、上記の2ステップの検索プロセスの第2のステップであるステップ230において使用される。
図4は、図2に上述されているステップ230の実施形態を示している。ステップ230は、潜在的な隣接パイロットのリストおよびそれらの対応するコードが既知である場合に隣接パイロットを位置決めするための2ステップの検索プロセスの第2のステップであることを想起しよう。図4において、4つのステップ410、420、430、および440は4個の入れ子状に重なったループ(nested loops)に対応している。別のステップにおいて入れ子状に重なっているステップは、他のステップに対応する外側のボックス内に配置されているボックスとして示されている。
ステップ410において、2ステップの検索プロセスの第1のステップ230で決定されたJ個の最強パイロットの各パイロットjをテストして、隣接リスト内の基地局に対応するコードの1つ以上がパイロットjで送信されているか否かを判断する。一般的に、隣接基地局は非同期であるために、1つの基地局のみがパイロットjで検出される可能性がある。しかしながら、2つの隣接基地局が一時的に同期であってもよく、それによって実施形態の設計者が、位置決めされているパイロットjごとに2つ以上のパイロットコード検索を望んでもよい。あるいはまた、そのイベント発生の可能性が低い場合、一旦単一の基地局がパイロットjと関連すると、設計者はそれに対するテストを終了してもよい。上記の両方の代替案の詳細は、図5で説明されている実施形態において以下に提供される。
ステップ420はステップ410内に入れ子になっている。隣接リストのうちの最高K個の構成要素の各コードkについて、コードkがパイロットjに存在しているか否かを判断するためのテストが実行される。2個以上のパイロットが一時的に他の基地局と同期している状況を説明するために、全K個のテストが単一のパイロットjに対して実行されてもよい。この実施形態のいくらか強力な展開において、ステップ420は各パイロットj上の各コードkで適用可能である。しかしながら、コードkがすでにテストされたパイロットj上で存在していることが検出された場合、各基地局は独特のパイロットを送信するために、そのコードは後続のパイロットに対してテストする必要はない。展開においてこれを考慮すると、1つ以上のコードkは1つ以上のパイロットjと関連しているために、数字Kはステップ420の次のラウンドについては削減され、必要な検索時間を短縮する。
ステップ420の各ラウンドにおいて、コードkはパイロットjについてテストされる。K個の隣接コードのすべてのテスト後に、コードがパイロットjに位置決めされていない場合、パイロットは隣接リストのコードのうちの1つに対応していない。加入者ユニットは多数の方法でこの状況に対処可能である。1つの方法は、単にパイロットjを無視して、ステップ410における次のパイロットのテストに進むことである。あるいはまた、従来の3ステップのWCDMA検索を実行して、パイロットjがいずれの基地局に対応しているかを判断してもよく、またその情報はシステムに中継されて新たな基地局を隣接リストに追加してもよい。可能性に応じて、隣接リストに含まれていない隣接基地局へアクセスする加入者ユニットの特定のシステム展開において、上記の代替案のいずれかがシステム設計者によって選択されてもよい。
ステップ430はステップ420内に入れ子になっている。J個の最強パイロットの各パイロットjを位置決めすることもまた、そのパイロットのスロットタイミングを決定するということを想起しよう。ステップ430がサブステップであるステップ230において、フレームタイミングは、各パイロットと関連しているコードkとしても決定される。従って、最高15個のスロットの各スロットiはコードkごとにテストされなければならない。テストされた15個のスロットは必要最大数であることに注目すべきである。15個のスロットがテストされる前にコードkが位置決めされる場合、コードおよびフレームタイミングは既に決定されている。従って、一旦任意のスロットiがコードkによって識別されると特定のコードkについてステップ430を継続する必要はない。また、この実施形態のいくらか強力な展開はコードkごとに全15個のスロットをテストするであろうが、一旦フレームタイミングが決定されてステップ430がコードkについて終了する場合、検索時間は短縮される。全15個のスロットがテストされてもコードkが位置決めされない場合、パイロットjが、パイロットjを送信する基地局と関連していないと判断され、ステップ420における次のコードkがテストされる。
ステップ440はステップ430内の入れ子になっている。このステップにおいて、ステップ220でパイロットjによって識別されたスロット境界を囲むウィンドウが検索される。この検索は、検索ウィンドウの各仮説においてコードkを相関することによって実行される。一般的にウィンドウは、当業界で既知の相関技術を使用してハーフチップインクリメント(half-chip increments)で検索される。各仮説は期間Nの間相関される。また、Nは任意の時間測定であってもよいが、便宜的な選択としてはチップ、スロット、またはフレームである。比較的大きな値のNを選択することによって、増大した検索時間のトレードオフによって種々の仮説のより正確なエネルギー測定がもたらされる。コードkなどのシーケンスを入IおよびQサンプルで相関するための種々の手段は当業界において既知であり、図3に示されているステップによって動作可能な一実施形態は図7に関して以下に詳述される。検索時間を短縮するために複数の相関器を並行して用いるための技術もまた当業界において既知である。基地局によって送信されたパイロットが連続して送信され、コードkの検索はチップの連続ストリームからのエネルギーを蓄積可能である点に注目すべきである。従って、明確にするために並列サーチャはともかくとして、N=2,560個のチップを累算するという例は2,560チップ時間の期間を必要とする。反対に、PSCは各2,560チップスロットの最初の256個のチップにおいてのみ送信されるので、ステップ220においてM=2,560個のチップを累算するには25,600チップ時間を必要としている。フレーム対スロットの同一の10:1という比は上記のSSC検索について保持される。これは、SSCコードを検索するのに時間をかけることと比較して、コードkなどのパイロットコードを検索するのに時間をかけることの利点の1つであること(本発明で必要でないステップ)を想起しよう。本例に並列サーチャを追加することは、算出されたチップ時間を変更するが、相対的な利点は同じままである。
スロット境界周辺のウィンドウを検索するという利点は、ドップラーすなわちドリフトによるオフセットの変化、正確なスロットタイミングについての不確定性、および単一の基地局に対応するマルチパス信号の位置決めに対する緩和を含んでいる。しかしながら、ウィンドウサイズの増大は検索時間の増加となる。この実施形態はウィンドウィング(すなわち1のウィンドウサイズ)なしで展開可能であり、ステップ440は単一の相関ステップとなる。任意のウィンドウサイズが本発明の範囲内で用いられてもよい。
ステップ440は、ウィンドウ検索中いつでも、オフセットが十分なエネルギーで位置決めされる場合に終了可能である。検索の終了は当然検索時間を短縮する。一旦所定数のマルチパス信号が閾値より上で位置決めされるとウィンドウ検索を終了するなどの、他の種々の終了アルゴリズムが当業者に明らかであろう。あるいは、ウィンドウ全体が、パイロットが位置決めされているか否かの判断なしで検索されてもよい。ウィンドウ検索が完了した後、1つ以上のパイロットおよび関連マルチパス信号の検出についての決定が、ウィンドウ内の各仮説から算出されたエネルギーでのピーク検出および/または分類プロセスを使用してなされる。
図5は、上記の2ステップの検索プロセス230の第2のステップの実施形態を詳述するフローチャートを示している。破線のボックスは、上記のステップ410〜440に対応するフローチャートの部分を示している。ステップ440はステップ530〜544を含んでいる。ステップ430はその中に入れ子になっているステップ440ならびにステップ520〜524を有している。ステップ420はその中に入れ子になっているステップ430ならびにステップ510〜518を有している。ステップ410はその中に入れ子になっているステップ420ならびにステップ500〜506を有している。
プロセスはステップ500で開始し、ここでjをゼロに設定してパイロットループを開始する。判定ブロック502に進んで、jがJと等しいか否かをテストする。jがJに等しい場合、J個の最強パイロットの各々がテストされるとループは完了する。検索完了ブロック504に進む。jがJと等しくない場合、パイロットjをテストして、もしあれば、隣接リストのコードのうちのどれがパイロットjに対応しているかを判断しなければならない。ブロック510に進んで、入れ子になっているステップ420を開始してパイロットjをテストする。
ブロック510において、kをゼロに設定してコードループを開始する。判定ブロック512に進んでkがKに等しいか否かを判断する。等しければ、隣接リストにおいてテストされるために残っている全コードがパイロットjについてテストされている。判定ブロック514に進む。判定ブロック514において、隣接リストからの1つ以上のパイロットがパイロットjに位置決めされていた場合、パイロットおよびフレームタイミングが決定されて、ブロック506に進む。ブロック506において、jは1だけデインクリメントされて、フローはブロック502に進み、J個の最強パイロットのいずれかがテストされるために残っていればテストする。判定ブロック514において、テストされたK個のコードのうちのコードkがパイロットjに位置決めされていない場合、パイロットjは隣接リストに示されていない基地局からのものである。ブロック516に進んで、上記のような状況に適切な動作をする。一例は、3ステップのWCDMA検索を完了していずれのコードがパイロットjにあるかを判断することである。続いて、コードがシステムに折り返し報告されて、隣接リストに追加されてもよい。あるいはまた、パイロットjは隣接リストに含まれていない場合には無視してもよい。適切な動作がなされると、ブロック506に進んで、jをインクリメントし、いずれかの追加パイロットがブロック502においてテストを必要としているか否かをテストする。パイロットjが隣接リストのK個の構成要素のいずれにも対応しないと分かった時に何の動作もしないようシステムを設計する場合、ステップ514および516は削除してもよく、kがKと等しい場合には判定ブロック512からのフローは直接ブロック506に進む。
判定ブロック512において、kがKと等しくない場合、追加コードはパイロットjでのテストのために残存する。ブロック520に進んで、入れ子になっているステップ430を開始してコードkをテストする。ブロック520において、iをゼロに設定してスロットループを開始する。上記のように、15個のスロットの各スロットは、スロットが一致するか、全15個がなくなるまで、パイロットjでコードkによってテストされなければならない。判定ブロック522に進んで、iが15に等しいか否かを判断する。等しい場合、全15個のスロットはテストされており、コードkはパイロットjには位置決めされていない。ブロック518に進んで、kを1だけインクリメントする。ブロック518から判定ブロック512に進んで、追加コードがパイロットjについてテストが必要ならばテストする。
判定ブロック522において、iが15でない場合、ブロック530に進んで、入れ子になっているステップ440を開始して、スロットiをテストする。ブロック530において、wを−Wに設定してウィンドウループを開始する。このループにおいて、wはウィンドウのオフセットを表しており、−WからW−1の範囲となる。種々のウィンドウィングスキームが当業者に明らかであり、本発明の範囲内である。判定ブロック532に進んで、wがWに等しいか否かをテストする。等しい場合、ウィンドウは完了し、判定ブロック534に進む。判定ブロック534において、パイロットjのスロットiでのコードkに対応する1つ以上のパイロットが検出されたか否かをテストする。検出されていなければ、ブロック524に進んで、iを1だけインクリメントして、判定ブロック522に進んで、追加スロットがテストされるために残存しているか否かを判断する。
ブロック534において、1つ以上のパイロットが、パイロットjのスロットiでのコードkに対応するウィンドウにおいて検出された場合、フレームタイミングが15個のスロットのうちの1つと整合するにすぎないので、任意の追加スロットを検索する必要はない。従って、スロットループはコードkについて終了されてもよい。(この実施形態に対してわずかに簡潔であり、かつさらに強力な代替案は、たとえ1つのスロットが、フレームタイミングとコードを識別するために既に決定されていたとしても全スロットの検索を継続することである。概して、このような代替案を採用することは検索時間を増大させ、何ら性能利得はない。この代替案は図5には示されていない。)
さらに、1つのパイロットはマルチパス伝搬による多重オフセットで受信されてもよいが、その1つのパイロットのみがコードkを使用して送信される。残存しているJ個のパイロットのいずれかについてのテストにおいて、一旦位置決めされると、コードkの検索の必要性を排除するための種々の技術がある。結果として、後続の検索ステップはより少数のコード検索でよく、正味の検索時間は短縮される。
テストされるJ個のパイロットの各々が独特の基地局から入ってくる場合、コードkがパイロットjについて位置決めされる。後続のパイロットでのコードkを検索する必要はない。しかしながら、ステップ1で位置決めされている最強パイロットのうちの2つ以上が実際に、単一の送信パイロット信号のマルチパス成分であることが可能である。最初のこのようなパイロットjで検出されたコードkがこのようなパイロットの残りにおいて検索されない場合、それらの残存マルチパスパイロットに対するコードは識別されない。パイロットが隣接リストから排除されたコードkに対応することを調べるためだけに、時間のかかる3ステップのWCDMA検索を開始してもよい。1つの解決法は、コードkが最初に検出されたパイロットjのマルチパスプロファイルの外側にあるパイロットのみに関する事項からコードkを削除することである(すなわち、同一の送信パイロット信号のマルチパス成分である可能性がないほど、そのオフセットがパイロットjからかけ離れているパイロット)。
別の代替案は、伝搬環境に対して拡散された最大遅延をカバーするのに必要な全オフセットが含まれるように検索ウィンドウをサイズ設定することである。この代替案を使用して、コードkは1つのウィンドウ検索時に可能なマルチパスパイロット全てに対してテストされる。従って、実際にパイロットjのマルチパス成分である(したがってコードkも使用する)、テストされるために残存しているJ個のパイロットのいずれかがウィンドウ検索中に識別されて、コードkが後続の全検索から排除される。さらに、コードkが検索ウィンドウ内の別のオフセットに位置決めされ、そのオフセットが、テストされるために残存しているJ個のパイロットのうちの1つに対応する場合、そのパイロットは少なくとも1つのコードであるコードkと関連している。この場合、(図5には示されていない)オプションは、リストから後続のパイロットを排除し、Jを1だけインクリメントすることによって、全検索時間を短縮することである。このオプションは、上記のように、単一のパイロットに対応する複数のコードを検索することが望ましくない場合に用いられる。
さらに別の代替案において、コードkがステップ1で検出されたスロット境界、または(ステップ1での検索以後に導入された分散を説明するための)境界周辺の小さなウィンドウにおいて検出されない場合、上記のように、マルチパスプロファイルに対応するより大きなウィンドウを検索してはならない。第1の成分が検出される場合には、追加のマルチパス成分を検索することが必要となるにすぎない。このように変化するウィンドウサイズを使用することは、コードkに対する全マルチパス成分を素早く検出するという柔軟性を提供し、それによって各コード/スロット仮説に対するより大きなウィンドウを検索するという大きな負荷を加えることなく、コードkと残存しているJ個のパイロットのうちの1つ以上を排除することによって検索時間を短縮することができる。このオプションは図5には示されていない。
テストされているK個の隣接コードのリストからコードkを削除するために、ブロック536に進む。既存のスキームを用いてK個のコードのトラックを維持している場合、残存コードは1つにシフトダウンされるべきである。次いでKは1だけデクリメントされてもよい。残存コードはシフトされているために、もしあれば、テストする次のコードに既に示されているように、kをインクリメントする必要はない。当業界において既知の種々の他のループおよびインデックススキームが、本実施形態の例示的ループに代用されてもよい。これらの代用は本発明の範囲内である。ここでKは前より小さく、それに応じてステップ420の各後続の使用は、検索時間に関してより短縮されている。コードがパイロットと関連していると、残存パイロットの検索時間は短縮され続ける。(また、いくらか簡潔な、かつより強力な代替案は、追加パイロットjがコードkに対応しなくても、後続の全パイロットjのテストにおいて各コードを検索し、Kを不変に保つことである。上記のマルチパスパイロットに対処する技術を使用すると、このような代替案を用いることは検索時間を増加させ、なんら性能利得はない。この代替案は図5には示されていない。)
上記のように、この実施形態は、最初のコードkが単一のパイロットと関連しているとそれに対する追加コードを検索するように構成されてもよい。これは図5に示されており、フローがステップ536から判定ブロック512に進み、もしあれば、追加コードkがパイロットjでテストされる(パイロットは前のコードkと関連していると判断された)。(隣接リストが編集されて、Kがデクリメントされているためにkは更新されないことを想起しよう。このループでテストされたコードkはリストの最後である、すなわちkはk−1に等しく、ステップ536におけるKのデクリメントは、ステップ512が実行される際にkをKと等しくし、ループは終了する。)代替案はステップ536と506との間に破線で示されている。2つのコードが単一のパイロットjで非同期に存在するという可能性は非常に小さいと判断されるか、追加パイロットを無視することの効果は容認できると判断されると、一旦パイロットjが任意のコードkと関連すると、パイロットループは終了し、J個の最強パイロットの残りがテストされてもよい。従って、ステップ536と判定ブロック512間の実線は削除される。1つのパイロットが検出されると追加コードkをテストする必要はない。代わりに、ブロック506に進み。jを1だけインクリメントし、テストする残存パイロットがあるか否かを判断し、それに応じて進む。
判定ブロック532においてwがWと等しくない場合、ステップ538に進んでオフセットw、スロットi、コードk、およびパイロットjをテストする。これは、オフセットj+2560(i)+wを算出することによって決定されたオフセットでのコードkによって入IおよびQサンプルを相関することによって実行される。オフセットjは、この2ステップの検索手順の第1のステップ220で決定されたパイロットjに対応するオフセットである。相関は、任意の期間であってもよい期間Nの間に進むが、相関時間の便宜的な測定はチップ、スロット、あるいはフレームである。オフセットwに対する相関が算出されると、判定ブロック540に進み、コードkでのパイロットjが検出されているか否かを判断する。一例は、受信エネルギーを算出してそれを閾値と比較することである。パイロットが検出されれば、ステップ542に進み、関連パイロットとコードがそれによって識別可能な方法でこのオフセットを記憶する。算出されたエネルギーなどの他のパラメータもまた記憶されてもよい。ステップ542での記憶の後、あるいは判定ブロック540でパイロットが検出されなかった場合、ステップ544に進み、wを1だけインクリメントし、判定ブロック532に進み、ウィンドウにおける追加オフセットがテストするために残存しているか否かを判断する。上述したように、2つ以上のマルチパス信号を位置決めしたり、ステップ220で決定されたスロットタイミングにおけるドリフト、すなわち不確定性を補償したりするためには、受容信号が位置決めされたとしてもウィンドウ全体を検索することが望ましいであろう。あるいはまた、ウィンドウループは、十分な数の信号(単一の信号のみも含む)が受容エネルギーによって位置決めされていると、早期に終了されてもよい。ウィンドウループを早期に終了することの詳細は図5には示されていないが、当業者には明らかであろう。
ステップ540および542の代替案は、以下のように用いられてもよい(詳細は図5には示されていない)。各オフセットでのパイロットをテストするのではなく、ウィンドウ全体のエネルギーが算出されて記憶されてもよい。次いで、これらのエネルギーは、(当業界において既知の技術、または図7において以下に示されている実施形態を使用して)ピーク検出および分類されてもよい。もしあるならば、閾値を越える1つ以上のオフセットを使用して、コードkが位置決めされたこと、ならびにそれと関連するフレームタイミングを判断することができる。この技術はまた、当業界で既知である、介入なくウィンドウを検索するように設計された相関器、ならびに、一度に2つ以上のオフセットを相関するための並列サーチャの展開に寄与する。
パイロット検出判定をするさらに別の代替案は、コードkに対応する多数の検出マルチパス成分からのエネルギーを結合して、結合エネルギーを閾値と比較することである。結合エネルギーが閾値を超えている場合、マルチパスの信号成分が必要閾値を超えていなくてもパイロットが検出される。
図6は、上述されたような方法の実施形態との使用のために構成された、加入者ユニット106の実施形態を示している。加入者ユニットのコンポーネントのサブセットのみが示されている。信号がアンテナ610で受信されて、増幅、ダウンコンバージョン、およびサンプリングのためにRFダウンコンバートブロック620に送られる。CDMA信号をベースバンドにダウンコンバートするための種々の技術が当業界において既知である。RFダウンコンバートブロック620から、IおよびQサンプルがサーチャ630に送られる。サーチャ630はディジタル信号プロセッサ(DSP)640と通信している。DSPの採用に対する代替案は、別のタイプの汎用プロセッサ、またはDSPにおいて用いられてもよい、検索に関する種々のタスクを実行するように設計されている特殊ハードウェアを使用することを含んでいる。サーチャ630の機能に従って、DSP640は上記の方法において説明された種々のタスクを実行し、サーチャ630の残存タスクの性能を調整する。1つのサーチャ630のみが図6に示されているが、任意の数のサーチャが、本発明の原理に従って並列に実現可能である。サーチャ630はオフセットに対応するエネルギー値を最終的にはDSP640に送る。オフセットは、機能がサーチャ630に存在していれば、分類済みかつ検出済みピークとして送られてもよい。あるいは、最初のエネルギー値は、DSPでの更なる処理のために送られてもよい。
図7は、サーチャ630の実施形態を示している。この実施形態を採用して、2ステップの検索方法220のステップ1に必要なPSC検索、ならびに2ステップの検索方法230のステップ2に必要とされるようなPN検索を実行することができる。IおよびQサンプルはフロントエンド710に送られて、間引き、コードドップラー調整、および周波数回転などの種々の手順が用いられてもよい。調整されたIおよびQサンプルは相関器720に送られる。IおよびQシーケンスは、シーケンス生成器730から相関器720に送られたシーケンスによって相関される。シーケンスはステップ220(あるいは関連ステップ310)を実行するPSCシーケンス、またはステップ230(あるいは関連ステップ440または538)においてコードkと関連するPNシーケンスでありうる。シーケンス生成器730からのシーケンスによってIおよびQサンプルを逆拡散し、テスト済みオフセットごとに1つまたは多数のチップの逆拡散されたIおよびQの合計を生成する種々の相関器が当業界において既知である。結果はコヒーレント累算器740に送られて、相関器720からのIおよびQの合計は別個に累算される(従って累算はコヒーレントである)。複数のテスト済みオフセットに対応する複数の出力を生成する相関器について、コヒーレント累算器740は複数のコヒーレント累算を生成および記憶することができる。上記の相関期間MまたはNの一部は、用いられているシステムのパラメータによってコヒーレントに生じる可能性がある。次いでコヒーレントなIおよびQ累算は二乗器750において二乗され(I+Q)、中間エネルギー値を生成し、結果は非コヒーレント累算器760に送られる。非コヒーレント累算器760は、ステップ1またはステップ2がそれぞれ処理されているか否かに応じて、相関期間MまたはNが経過するまでエネルギー値を累算する。また、複数のオフセット仮説を同時に処理する相関器について、非コヒーレント累算器760は複数のエネルギー累算をこれらの仮説について記憶することができる。次いで、非コヒーレント累算器760において算出されたエネルギー値はピーク検出および分類ブロック770に送られ、エネルギーピークが位置決めされ、これらのピークは分類されて、それらの関連オフセットによって最高から最低に至るエネルギーのリストを生成する。そしてこれらのピーク/位置決め対は、例えばDSP640に送られてもよい。
種々のブロックがタイミングコントロールブロック780と通信しており、これは、コヒーレントおよび非コヒーレント累算のシーケンシングと、もし用いられていれば、複数のオフセット仮説テストに必要な他のコントロールとを提供する。他のサーチャの実施形態は、DSP640または上記のような特殊目的のハードウェアをなどのDSPにおいて実行された残存タスクを有する、図7についで説明されたブロックのサブセットを含んでいてもよい。種々の構成のサーチャが当業界では既知であり、かつ新たなサーチャが開発可能であり、これらのすべてを用いて、上記の実施形態において説明された結果を生成することができ、またこれらは本発明の範囲内にある。
上記の全実施形態において、方法ステップは、本発明の範囲から逸脱することなく交換可能であることに注目すべきである。
情報および信号は、種々の異なる技術および手法のいずれかを使用して表されてもよいことは当業者に理解されるであろう。例えば、上記の説明を通して参照されてもよいデータ、命令、コマンド、情報、信号、ビット、シンボル、およびチップは、電圧、電流、電磁波、磁場または粒子、光フィールドまたは粒子、あるいはこれらの組み合わせによって表されてもよい。
当業者はさらに、ここに開示されている実施形態と関連して説明されている種々の例示的論理ブロック、モジュール、回路、およびアルゴリズムステップは電子ハードウェア、コンピュータソフトウェア、あるいは両方の組み合わせとして実現されてもよいことを認識するであろう。ハードウェアおよびソフトウェアのこの互換性を明確に示すために、種々の例示的コンポーネント、ブロック、モジュール、回路、およびステップがそれらの機能性に関して概説されている。このような機能性がハードウェアおよびソフトウェアのいずれによって実現されるかはシステム全体に課される特定のアプリケーションおよび設計制約による。熟練者は上記の機能性を特定のアプリケーションごとに種々の方法で実現することができるが、このような実現の決定は、本発明の範囲からの逸脱をもたらすものとして解釈されるべきではない。
ここに開示されている実施形態と関連して説明されている種々の例示的論理ブロック、モジュール、および回路は、汎用プロセッサ、ディジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)または他のプログラマブル論理デバイス、離散ゲートまたはトランジスタ論理、離散ハードウェアコンポーネント、あるいはここに説明されている機能を実行するために設計されているこれらの組み合わせによって実現または実行されてもよい。汎用プロセッサはマイクロプロセッサであってもよいが、あるいはまた、プロセッサは任意の従来のプロセッサ、コントローラ、マイクロコントローラ、または状態機械であってもよい。プロセッサはまた、コンピュータデバイスの組み合わせ、例えばDSPとマイクロプロセッサの組み合わせ、複数のマイクロプロセッサ、DSPコアと関連する1つ以上のマイクロプロセッサ、あるいは他のこのような構成として実現されてもよい。
ここに開示されている実施形態と関連して説明されている方法またはアルゴリズムのステップは、ハードウェアにおいて、プロセッサによって実行されるソフトウェアモジュールにおいて、あるいはこれら2つの組み合わせにおいて直接実現されてもよい。ソフトウェアモジュールはRAMメモリ、フラッシュメモリ、ROMメモリ、EPROMメモリ、EEPROMメモリ、レジスタ、ハードディスク、リムーバブルディスク、CD−ROM、あるいは当業界において既知である他の形態の記憶媒体に存在してもよい。例示的記憶媒体はプロセッサに接続しており、プロセッサは記憶媒体に対して情報を読み取りかつ書き込むことができる。あるいはまた、記憶媒体はプロセッサと一体であってもよい。プロセッサおよび記憶媒体はASICに存在してもよい。ASICはユーザ端末に存在してもよい。あるいはまた、プロセッサおよび記憶媒体はユーザ端末の離散コンポーネントとして存在してもよい。
開示されている実施形態の上記の説明によって、当業者は本発明をなし、または使用することができる。これらの実施形態に対する種々の変更は当業者には容易に明らかであり、ここに定義されている一般原理は本発明の主旨または範囲から逸脱することなく他の実施形態に適用可能である。従って、本発明をここに示されている実施形態に制限する意図はなく、ここに開示されている原理および新規の特徴に矛盾しない最大範囲を許容するものである。
多数のユーザをサポート可能な無線通信システムの概略ブロック図である。 2ステップハンドオフ検索方法を示している。 2ステップハンドオフ検索方法の第1のステップの詳細な実施形態を示している。 2ステップハンドオフ検索方法の第2のステップの詳細な実施形態を示している。 さらに詳細なサブステップを備えている、2ステップハンドオフ検索方法の第2のステップの実施形態を示している。 本発明の例示的実施形態に従って構成された加入者ユニットの実施形態を示している。 本発明の例示的実施形態に従って構成されたサーチャの実施形態を示している。

Claims (6)

  1. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    隣接コードリストの隣接コードごとにコードテストを実行する、該コードテストは下記を具備する:
    所定数の最強のパイロットのそれぞれに対応するスロットごとにスロットテストを実行する、該スロットテストは、エネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって該受信信号を各隣接コードで相関することを具備する;
    各エネルギー値を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えてるエネルギーに対応する該各隣接コードを、復調用のスクランブリングコードとして使用する、及び
    該閾値を超えている該エネルギーに対応する該スロット境界を、該スクランブリングコード用の該フレーム境界として使用する。
  2. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    ここにおいて、該相関することは、該1つ以上のパイロットごとのパイロットエネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって相関することを更に備える;
    該各パイロットエネルギー値にしたがって所定数の最強のパイロットを位置決めする;
    所定数の最強のパイロットごとに、スロット境界の周辺のウィンドウをテストし、エネルギー値を生成する期間、隣接コードリストからの各隣接コードによって相関る;
    1つ以上のピークを位置決めするために、該パイロットのそれぞれに対応する該エネルギー値を検出する;
    該ピークの各々を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えるピークごとに、該対応する隣接コードを、復調用のスクランブリングコードとして使用する;及び
    該閾値を超えるピークごとに、該対応するスロット境界を、該スクランブリングコード用の該フレーム境界として使用する。
  3. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    ここにおいて、該相関することは、該1つ以上の各パイロットごとのパイロットエネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって相関することを更に備える;
    該各パイロットエネルギー値にしたがって所定数の最強のパイロットを位置決めする;
    所定数の最強のパイロットごとに、スロット境界の周辺のウィンドウをテストし、エネルギー値を生成する期間、隣接コードリストからの各隣接コードによって相関る;
    1つ以上のピークを位置決めするために、該各隣接コードに対応する該エネルギー値を検出する;
    該ピークの各々を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えるピークごとに、該対応する隣接コードを、復調用のスクランブリングコードとして使用する;
    該閾値を超えるピークごとに、該対応するスロット境界を、該スクランブリングコード用の該フレーム境界として使用する;
    所定数のピークが該閾値より上で検出される場合にテストする工程を終了する。
  4. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    ここにおいて、該相関することは、該1つ以上のパイロットごとのパイロットエネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって相関することを更に備える;
    該各パイロットエネルギー値にしたがって所定数の最強のパイロットを位置決めする;
    所定数の最強のパイロットごとに、スロット境界の周辺のウィンドウをテストし、エネルギー値を生成する期間、隣接コードリストからの各隣接コードによって相関る;
    1つ以上のピークを位置決めするために、該各隣接コードのそれぞれに対応する該エネルギー値を検出する;
    該ピークの各々を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えるピークごとに、該対応する隣接コードを、復調用のスクランブリングコードとして使用する;
    該閾値を超えるピークごとに、該対応するスロット境界を、該スクランブリングコード用の該フレーム境界として使用する;
    該スロットテスト中に1つ以上のピークが該閾値より上で検出される場合に、該パイロットに対する該コードテストを終了する。
  5. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    ここにおいて、該相関することは、該1つ以上のパイロットごとのパイロットエネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって相関することを備える;
    該各パイロットエネルギー値にしたがって所定数の最強のパイロットを位置決めする;
    所定数の最強のパイロットごとに、スロット境界の周辺のウィンドウをテストし、エネルギー値を生成する期間、隣接コードリストからの各隣接コードによって相関することを更に具備する;
    1つ以上のピークを位置決めするために、該各隣接コードのそれぞれに対応する該エネルギー値を検出する;
    該ピークの各々を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えるピークごとに、該対応する隣接コードを、復調用のスクランブリングコードとして使用する;
    該閾値を超えるピークごとに、該対応するスロット境界を、該スクランブリングコード用の該フレーム境界として使用する;
    該コードテスト中に1つ以上のピークが該閾値より上で検出される場合に、パイロットの該パイロットテストを終了する。
  6. 検索方法、該検索方法は下記を具備する:
    受信信号をスロットタイミングコードによって相関して、1つ以上のパイロットとそれに関連するスロット境界を位置決めする;
    ここにおいて、該相関することは該1つ以上のパイロットごとのパイロットエネルギー値を生成するために、該スロットに対応するオフセットでの期間にわたって相関することを備える;
    該各パイロットエネルギー値にしたがって所定数の最強のパイロットを位置決めする;
    所定数の最強のパイロットごとに、スロット境界の周辺のウィンドウをテストし、エネルギー値を生成する期間、隣接コードリストからの各隣接コードによって相関る;
    1つ以上のピークを位置決めするために、該各隣接コードのそれぞれに対応する該エネルギー値を検出する;
    該ピークの各々を閾値と比較して、該各隣接コードが該パイロットに対応しているか否かを判断する;
    該閾値を超えるピークごとに、該対応する隣接コードを、復調用のスクランブリングコードとして使用する;
    該閾値を超えるピークごとに、該対応するスロット境界を、該スクランブリングコード用の該フレーム境界として使用する;
    該コードテスト中に1つ以上のピークが該閾値より上で検出される場合に、後続のパイロットテスト用の該隣接コードリストから該各隣接コードを削除する。
JP2003524144A 2001-08-22 2002-08-20 W−cdamハンドオフ検索のための方法および装置 Expired - Fee Related JP4382479B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/935,505 US6744747B2 (en) 2001-08-22 2001-08-22 Method & apparatus for W-CDMA handoff searching
PCT/US2002/026450 WO2003019808A2 (en) 2001-08-22 2002-08-20 Method and apparatus for w-cdma handoff searching

Publications (3)

Publication Number Publication Date
JP2005501467A JP2005501467A (ja) 2005-01-13
JP2005501467A5 JP2005501467A5 (ja) 2006-01-12
JP4382479B2 true JP4382479B2 (ja) 2009-12-16

Family

ID=25467256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003524144A Expired - Fee Related JP4382479B2 (ja) 2001-08-22 2002-08-20 W−cdamハンドオフ検索のための方法および装置

Country Status (6)

Country Link
US (1) US6744747B2 (ja)
EP (1) EP1419586A2 (ja)
JP (1) JP4382479B2 (ja)
CA (1) CA2458271A1 (ja)
RU (1) RU2290757C2 (ja)
WO (1) WO2003019808A2 (ja)

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7224801B2 (en) * 2000-12-27 2007-05-29 Logitech Europe S.A. Wireless secure device
US7894508B2 (en) * 2001-08-27 2011-02-22 Broadcom Corporation WCDMA terminal baseband processing module having cell searcher module
US7206298B2 (en) * 2001-09-06 2007-04-17 Qualcomm, Incorporated Conducting searches amidst asynchronous cells of a communication system
KR100762602B1 (ko) * 2001-10-08 2007-10-01 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 기준 타이밍생성장치 및 방법
KR100557509B1 (ko) * 2001-10-27 2006-03-03 삼성전자주식회사 유엠티에스 시스템에서의 셀 탐색 방법
US7756085B2 (en) * 2001-11-20 2010-07-13 Qualcomm Incorporated Steps one and three W-CDMA and multi-mode searching
US7457624B2 (en) * 2001-11-29 2008-11-25 Denso Corporation Mobile station expediting location registry to base station
KR100775346B1 (ko) * 2001-12-26 2007-11-12 엘지전자 주식회사 인접 셀 탐색 장치
US20030179727A1 (en) * 2002-03-21 2003-09-25 Soong Anthony C.K. Forward link supervision for packet data users in a wireless communication network
US7075948B2 (en) * 2002-05-22 2006-07-11 Stmicroelectronics, Inc. Frequency offset estimator
FR2841407B1 (fr) * 2002-06-20 2004-08-13 Nec Technologies Uk Ltd Procede d'optimisation de la recherche de cellules dans un reseau de telecommunication mobile
US7197288B1 (en) * 2002-06-24 2007-03-27 Sprint Spectrum L.P. Method and system of spread spectrum modulation
US6873826B2 (en) * 2002-08-06 2005-03-29 Motorola, Inc. Method and mobile station for reporting multi-path signals based on minimum separation
US7499428B2 (en) 2002-11-07 2009-03-03 Qualcomm, Incorporated Method, apparatus, and system for receiving data on a first frequency band and observing a second frequency band
US7061966B2 (en) * 2003-02-27 2006-06-13 Motorola, Inc. Frame synchronization and scrambling code indentification in wireless communications systems and methods therefor
US7369534B2 (en) * 2003-08-27 2008-05-06 Qualcomm Incorporated Reducing search time using known scrambling code offsets
WO2005029802A1 (en) * 2003-09-22 2005-03-31 Nokia Corporation Method, system and receiver in receiving a multi-carrier transmission
KR101332993B1 (ko) 2003-12-01 2013-11-25 인터디지탈 테크날러지 코포레이션 사용자 개시 핸드오프에 기초한 세션 개시 프로토콜(sip)
US7953411B1 (en) * 2004-06-09 2011-05-31 Zte (Usa) Inc. Virtual soft hand over in OFDM and OFDMA wireless communication network
CN100382631C (zh) * 2004-09-21 2008-04-16 中兴通讯股份有限公司 一种在时分组网系统中进行邻区搜索的方法
US7110766B1 (en) 2005-05-31 2006-09-19 Motorola, Inc. Method of generating a handoff candidate list
JP4790018B2 (ja) * 2005-08-29 2011-10-12 ケイティーフリーテル カンパニー リミテッド 非同期式wcdma網における隣接リストの自動最適化方法及び装置
US8054803B2 (en) * 2005-08-29 2011-11-08 Ktfreetel Co., Ltd. Method and apparatus for optimizing neighbor list automatically in synchronous CDMA network
US8009745B2 (en) 2005-11-15 2011-08-30 Qualcomm Incorporated Time tracking for a receiver with guard interval correlation
US8649365B2 (en) * 2006-01-06 2014-02-11 Nokia Corporation Dedicated synchronization signal for OFDMA system
JP5067580B2 (ja) * 2006-03-01 2012-11-07 日本電気株式会社 移動通信システム、そのスクランブルコード割り当て方法、移動局、および基地局
KR101205631B1 (ko) 2006-03-21 2012-11-27 인터디지탈 테크날러지 코포레이션 멀티셀 무선 통신 시스템에서 전력 효율적인 셀 탐색을 수행하는 방법 및 장치
US8077759B2 (en) * 2006-04-07 2011-12-13 Broadcom Corporation Method and apparatus for new cell identification in a WCDMA network with a given neighbor set
US7689810B2 (en) * 2006-06-21 2010-03-30 Qualcomm Incorporated Processor generating control signals including detection duration for satellite positioning system ranging signal detection circuit
KR101036985B1 (ko) * 2006-09-28 2011-05-25 후지쯔 가부시끼가이샤 무선 통신 장치
EP2092660B1 (en) 2006-10-25 2012-08-08 LG Electronics Inc. Method for adjusting rach transmission against frequency offset
GB2458418B (en) 2006-12-19 2011-08-03 Lg Electronics Inc Sequence generating method for efficient detection and method for transmitting and receiving signals using the same
US7792212B2 (en) 2007-01-05 2010-09-07 Lg Electronics, Inc. Method for setting cyclic shift considering frequency offset
TWI487332B (zh) 2007-01-05 2015-06-01 Lg Electronics Inc 考量到頻率偏移下設定循環平移的方法
UA94309C2 (ru) 2007-01-10 2011-04-26 Квелкомм Инкорпорейтед Быстрый поиск сотовой ячейки
GB2446193B (en) * 2007-01-30 2009-03-11 Motorola Inc A code division multiple access cellular communication system
US8725157B2 (en) * 2007-05-31 2014-05-13 Telefonaktiebolaget L M Ericsson (Publ) Interference avoidance in a WCDMA system
US8675505B2 (en) * 2007-06-26 2014-03-18 Qualcomm Incorporated Methods and apparatus for efficient network information acquisition over a DVB network
KR100938756B1 (ko) 2007-07-06 2010-01-26 엘지전자 주식회사 무선통신 시스템에서 셀 탐색 과정을 수행하는 방법
US8355727B2 (en) * 2007-12-19 2013-01-15 Airvana, Corp. Proximity detection in a network
US8094702B2 (en) 2008-04-28 2012-01-10 Qualcomm Incorporated System and/or method for detecting multi-tone jamming
US8503517B2 (en) 2008-06-05 2013-08-06 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8958441B2 (en) 2008-06-05 2015-02-17 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8825480B2 (en) * 2008-06-05 2014-09-02 Qualcomm Incorporated Apparatus and method of obtaining non-speech data embedded in vocoder packet
US9083521B2 (en) * 2008-06-05 2015-07-14 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8725502B2 (en) * 2008-06-05 2014-05-13 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
RU2470464C2 (ru) * 2008-06-05 2012-12-20 Квэлкомм Инкорпорейтед Система и способ внутриполосного модема для передачи данных по цифровым беспроводным сетям связи
US8964788B2 (en) * 2008-06-05 2015-02-24 Qualcomm Incorporated System and method of an in-band modem for data communications over digital wireless communication networks
US8139542B2 (en) * 2008-09-26 2012-03-20 Qualcomm Incorporated Cell timing acquisition in a W-CDMA hard handover
US8687604B2 (en) * 2009-03-13 2014-04-01 Qualcomm Incorporated Method and apparatus for improved cell acquisition with reduced frequency error impact
US20100304744A1 (en) * 2009-05-29 2010-12-02 Qualcomm Incorporated Method and apparatus for performing searches with multiple receive diversity (rxd) search modes
US8855100B2 (en) 2009-06-16 2014-10-07 Qualcomm Incorporated System and method for supporting higher-layer protocol messaging in an in-band modem
US8743864B2 (en) * 2009-06-16 2014-06-03 Qualcomm Incorporated System and method for supporting higher-layer protocol messaging in an in-band modem
US9450640B2 (en) 2010-07-06 2016-09-20 Keysight Technologies Singapore (Holdings) Pte. Ltd. Apparatus and method for pilot detection
US8477665B2 (en) 2010-07-14 2013-07-02 Qualcomm Incorporated Method in a wireless repeater employing an antenna array for interference reduction
US8787248B2 (en) * 2010-07-14 2014-07-22 Qualcomm Incorporated Method in a wireless repeater employing an antenna array including vertical and horizontal feeds for interference reduction
US20130142057A1 (en) * 2011-12-01 2013-06-06 Broadcom Corporation Control Channel Acquisition
EP2713533A1 (en) * 2012-09-26 2014-04-02 ST-Ericsson SA Mobile telecommunication in a cellular network
US9432918B2 (en) * 2012-11-13 2016-08-30 Qualcomm Incorporated Apparatus and methods of receive diversity (RXD) full cell search

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5991330A (en) * 1997-06-27 1999-11-23 Telefonaktiebolaget L M Ericsson (Pub1) Mobile Station synchronization within a spread spectrum communication systems
US5930366A (en) * 1997-08-29 1999-07-27 Telefonaktiebolaget L M Ericsson Synchronization to a base station and code acquisition within a spread spectrum communication system
US6101175A (en) * 1997-10-31 2000-08-08 Motorola, Inc. Method and apparatus for handoff within a communication system
US6526039B1 (en) * 1998-02-12 2003-02-25 Telefonaktiebolaget Lm Ericsson Method and system for facilitating timing of base stations in an asynchronous CDMA mobile communications system
US6490454B1 (en) * 1998-08-07 2002-12-03 Telefonaktiebolaget Lm Ericsson (Publ) Downlink observed time difference measurements
FR2786966A1 (fr) 1998-12-08 2000-06-09 Koninkl Philips Electronics Nv Recepteur, systeme de telecommunications cdma et procede de synchronisation d'un recepteur avec une station d'emission d'un tel systeme
US6480558B1 (en) * 1999-03-17 2002-11-12 Ericsson Inc. Synchronization and cell search methods and apparatus for wireless communications
US6363060B1 (en) 1999-06-30 2002-03-26 Qualcomm Incorporated Method and apparatus for fast WCDMA acquisition

Also Published As

Publication number Publication date
JP2005501467A (ja) 2005-01-13
WO2003019808A2 (en) 2003-03-06
WO2003019808A3 (en) 2003-11-06
CA2458271A1 (en) 2003-03-06
EP1419586A2 (en) 2004-05-19
RU2290757C2 (ru) 2006-12-27
US6744747B2 (en) 2004-06-01
RU2004108138A (ru) 2005-04-20
US20030039228A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
JP4382479B2 (ja) W−cdamハンドオフ検索のための方法および装置
US8331330B2 (en) Steps one and three W-CDMA and multi-mode searching
JP4295102B2 (ja) ステップ2w−cdma検索のための方法および装置
EP1360775B1 (en) Method and apparatus for searching a gated pilot
JP5384500B2 (ja) 既知データを有する複数の直交チャネルのためのサーチャー−wcdmaステップ2サーチ
US7110376B2 (en) Method and apparatus for improved cell detection
US7369534B2 (en) Reducing search time using known scrambling code offsets
KR20050056931A (ko) 비동기 무선 네트워크에서의 통신
JP2010220232A (ja) 敏速なwcdma獲得のための方法及び装置
US20040161020A1 (en) Method and apparatus for code identification in wireless applications
US8355685B2 (en) Segmented CDMA searching
US20100054311A1 (en) WCDMA terminal baseband processing module having multi-path scanner module
US7352704B1 (en) Method and apparatus for multi-path delay spread detection in wideband CDMA systems
JP2004229305A (ja) Wcdmaシステムでのセル探索の方法および装置
KR20010073619A (ko) 광대역 직접 시퀀스 코드분할다중접속 수신신호에 대한코드획득수신기

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081001

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4382479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees