JP4381033B2 - Hydrogen production system - Google Patents

Hydrogen production system Download PDF

Info

Publication number
JP4381033B2
JP4381033B2 JP2003149117A JP2003149117A JP4381033B2 JP 4381033 B2 JP4381033 B2 JP 4381033B2 JP 2003149117 A JP2003149117 A JP 2003149117A JP 2003149117 A JP2003149117 A JP 2003149117A JP 4381033 B2 JP4381033 B2 JP 4381033B2
Authority
JP
Japan
Prior art keywords
gas
combustion
exhaust gas
reformer
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003149117A
Other languages
Japanese (ja)
Other versions
JP2004352528A (en
Inventor
晋也 立花
一登 小林
芳正 藤本
幸男 田中
勇 安田
義則 白崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Tokyo Gas Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2003149117A priority Critical patent/JP4381033B2/en
Publication of JP2004352528A publication Critical patent/JP2004352528A/en
Application granted granted Critical
Publication of JP4381033B2 publication Critical patent/JP4381033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Feeding And Controlling Fuel (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、本発明は水素製造システムに関し、特に水素分離型リフォーマが対流伝熱式の多管式反応器を有する場合に好適に用いられる水素製造システムに関する。
【0002】
【従来の技術】
水素分離型リフォーマを用いた水素製造装置では、メタンやメタノール等の炭化水素や含酸素炭化水素からなる原料ガスを、水蒸気改質反応とCOシフト反応によって主に水素と二酸化炭素に分解し、発生した水素をリフォーマに内蔵された水素分離膜を通して選択的に分離するようにしている。水素分離膜としては、例えばパラジウムやパラジウム合金等からなる膜が用いられる。
【0003】
従来の水素製造システムでは、リフォーマを出た燃焼排ガスは、原料ガスの予熱に使用した後、ベントにより排気させることが行われている(例えば、特許文献1参照)。
また、水素製造システムとして多重式円筒型のリフォーマも知られているが、輻射伝熱を主体とした加熱が行われる装置である(例えば、特許文献2)。
【0004】
【特許文献1】
特許第3035038号公報
【特許文献2】
特開平7−109104号公報
【0005】
多重円筒型のリフォーマでは、形状が大きくなるに従い内筒の板厚が厚くなるため入熱が期待できず、該リフォーマでは伝熱面積も広くとれない。
これに対して、多管式の反応管を用いたリフォーマも存在するが、このような従来のシステムに、対流伝熱式の多管式反応管を有するリフォーマを用いる場合、燃焼部からの高温の燃焼ガスが反応管の一部を局部的に加熱してしまい、燃焼部近傍の反応管が例えば700℃を越えてしまう場合がある。反応管の一部を構成している水素分離膜は、膜の耐久性から使用温度を600℃以下、好ましくは550℃以下に抑える必要があり、局部的に発生する加熱に耐えられない。
一方、燃焼部近傍の反応管温度を700℃以下に抑えるように燃焼させるとすると、反応管の一部でのみしか水蒸気改質反応が進行せず、反応効率が著しく低下してしまう。他方、高温の燃焼ガスについて燃焼に関与しない2次空気を用いて希釈するような場合には、温度は低下してもシステムの熱効率が低下してしまう。
【0006】
【発明が解決しようとする課題】
本発明者らは、上記問題点に鑑み、特に多管式反応管を有する水素製造システムにおいて、燃焼ガスによる反応管の加熱を均一に行い、リフォーマ内での温度分布を均一化して水蒸気改質反応を触媒層全体で安定的に実施できるとともに、システムの熱効率を向上させることのできる水素製造システムを開発すべく、鋭意検討した。
その結果、本発明者らは、燃焼排ガスをブロワ等を用いた循環ラインで再度リフォーマに導入することによって、上記問題点が解決されることを見出した。本発明は、かかる見地より完成されたものである。
【0007】
【課題を解決するための手段】
すなわち、本発明は、水素分離型リフォーマ、および、該水素分離型リフォーマから出る燃焼排ガスの一部をブロワを介して循環させて該燃焼排ガス導入口から当該リフォーマに戻す、燃焼排ガス循環ライン、を含む水素製造システムを提供するものである。本発明の水素分離型リフォーマは、改質触媒を充填した複数の反応管に水素分離膜で区切られた水素透過部が設けられており、該反応管を加熱するために燃焼ガス通路が備えられている、多管式反応部と、該多管式反応部を加熱する燃焼ガスを生成する、燃焼部と、該燃焼部近傍に燃焼排ガスを導入する、燃焼排ガス導入口と、該燃焼部から出る燃焼ガスが該多管式反応部に至る前段にて、該燃焼排ガス導入口から供給される燃焼排ガスと燃焼ガスとが混合される、燃焼排ガス混合部と、該燃焼排ガス混合部と該反応管とを仕切る、仕切板と、を備える。このリフォーマでは、燃焼部であるバーナの近傍に、燃焼排ガス導入口が設けられていることで、バーナ近傍の反応管の局部的な加熱を有効に防止することができる。そして本システムでは、リフォーマから出た燃焼排ガスの一部を、ブロアを用いてリフォーマにリサイクル循環することにより、リフォーマ内の温度分布を均一化させる。
【0008】
焼混合部は種々の形態が考えられるが、例えば燃焼排ガス混合装置を別途設置して、そこから反応部へ混合ガスを供給する態様、などが挙げられる。
【0009】
本発明の水素製造システムでは、加えて、水蒸気改質反応に用いる炭化水素ガスの一部を空気とともに導入して燃焼させ、水を加熱してスチームを製造する、ボイラをさらに含むことができる。ここで、ボイラで使用された加熱ガスは、燃焼排ガスの一部として前記燃焼排ガス循環ラインに加えることもできる。
また、本発明の水素製造システムでは、加えて、前記水素分離型リフォーマから出るオフガスを冷却した後、該オフガス中の水成分とガス成分とを分ける、気液分離器をさらに含むこともできる。
【0010】
さらに、本発明の水素製造システムでは、(1)前記燃焼部で燃焼させる空気を、前記水素分離型リフォーマから出るオフガスの熱で予熱する、熱交換器を含む態様、(2)前記炭化水素ガスおよびボイラで製造されたスチームを混合した混合ガスを、前記水素分離型リフォーマから出る燃焼排ガスの熱で予熱する、熱交換器を含む態様、(3)前記ボイラで燃焼させる空気を、前記水素分離型リフォーマから出る水素ガスの熱で予熱する、熱交換器を含む態様、あるいは、(4)前記ボイラで加熱する水を、前記水素分離型リフォーマから出る水素ガスの熱で予熱する、熱交換器を含む態様、などを用いることができる。
リフォーマから出るオフガス、燃焼排ガスおよび生成水素ガスの熱エネルギーは、リフォーマあるいはボイラへの供給成分の予熱に利用することで、水素製造システムの熱効率を向上させることができる。リフォーマから出る燃焼排ガス(約500℃)はプロセスガス(混合ガス)の予熱に用いること、リフォーマから出た製品水素ガス(約500℃)はボイラに供給する水および燃焼空気と熱交換して、予熱することが好ましい。
【0011】
本発明の水素製造システムによれば、多管式反応管を有するシステムにおいて、燃焼ガスによる反応管の加熱を均一に行い、リフォーマ内での温度分布を均一化して水蒸気改質反応を触媒層全体で安定的に実施することができる。そして、リフォーマ内にて局部的に温度が高くなるホットスポットがなくなり、リフォーマの装置寿命が延びる。
また、本システムでは、燃焼排ガスを循環させるシステムとすることにより、システム全体の熱効率を向上させることが可能であり、燃焼ガス量の増大によってガス流速が大きくなり、対流伝熱を促進できる利点もある。
【0012】
【発明の実施の形態】
以下、本発明の水素製造システムに関して、詳細に説明する。
本発明は、都市ガスなどの炭化水素と水蒸気を原料として、水蒸気改質反応によって水素を製造するとともに、水素のみを選択的に透過する水素分離膜を用いて、高純度の水素を製造する水素分離型リフォーマシステムを提供するものである。原料ガスとしては、都市ガス、メタン、プロパン、灯油、ジメチルエーテル等の炭化水素を原料とする。
本発明のシステムは、水素分離型リフォーマと、水素分離型リフォーマから出る燃焼排ガスの一部を、ブロワを介して循環させて当該リフォーマに戻す、燃焼排ガス循環ラインと、を組み合わせた水素製造システムである。
【0013】
図1に、本発明の水素製造システムを模式的に示す。
1は水素分離型リフォーマであり、多管式反応管部を構成する各反応管は、改質触媒層11および水素分離膜12を有する。リフォーマ1の原料である炭化水素には、スチームを混合して混合ガスとする。混合ガスは、熱交換器16で予熱されて反応温度付近まで加熱される。予熱した混合ガスは、プロセスガスとして水素分離型リフォーマ1の触媒層11に導入される。
【0014】
改質触媒層11では水蒸気改質反応によって、混合ガスから水素、一酸化炭素及び二酸化炭素が生成する。例えば、原料としてメタンを用いる場合には、以下の反応式によって、水蒸気改質反応が行われる。
CH4+H2O → 3H2+CO (吸熱反応) (1)
CO+H2O → CO2+H2(発熱反応) (2)
通常、この反応は500℃以上で行われ、水とメタンの炭素Cとのモル比であるS/C(steam/carbon比)が2以上のスチームリッチの条件で行われる。上記(1)の反応は吸熱反応であるため、温度が高い方が反応が促進する。
一方、上述したように水素分離膜12は、使用温度を600℃以下、好ましくは550℃以下に抑える必要がある。よって、通常500〜600℃の範囲内で触媒反応が行われる。
【0015】
リフォーマ1で生成したガスのうち、水素ガスだけはパラジウムやパラジウム合金等からなる水素分離膜12を通して透過部14に分離される。透過部14に貯まった水素ガスは、高純度の水素ガスとして系外に取り出される。
水素を取り出した残りの主に二酸化炭素からなるガスは、オフガスとして回収され、冷却水等で冷却されてから空気とともに燃焼部13に導入して燃焼させ、水素分離型リフォーマ1の燃料とする。燃焼部13より水素分離型リフォーマ1に導入される燃焼ガスは、反応管近傍の燃焼排ガス通路15を通って、触媒層11へ反応するための熱エネルギーを供給する。
【0016】
その後、燃焼排ガスはリフォーマ1から出た後に、一部が燃焼排ガスa循環ラインに送られ、残りの排ガスが熱交換器16を通してから排出される。循環ラインには、通常ブロワ17を設けることで燃焼排ガスを循環させる。循環ラインに送られる燃焼排ガスの割合は、運転条件に合わせて任意に定めることができるが、通常50容量%以上、好ましくは60容量%以上、さらに好ましくは70容量%以上であり、燃焼排ガスの割合を高くするほど後流の熱交換器16を経た燃焼排ガスの温度は低下する。
これによって、システムにおける熱循環の割合が増加して、システムの熱効率が向上する。燃焼ガスと燃焼排ガスの熱エネルギーによって、多管式反応部は通常500〜600℃の範囲に反応管の全体が加熱されることが好ましい。
【0017】
循環ラインに送られた燃焼排ガスは、リフォーマの導入口(導入ライン)から再びリフォーマ1に戻る。この際、リフォーマ1の燃焼部13から導入される燃焼ガスと、循環再利用する燃焼排ガスとの割合は、運転条件やシステムの構成によって任意に定めることができるが、燃焼部13の極めて近傍に排ガス導入口を設けている場合には、一次空気による燃焼ガス:燃焼排ガス=1:1〜10、好ましくは1:2〜8、例えば1:5で用いることができる。
本発明のシステムでは、燃焼部13であるバーナーで燃焼させた高温の燃焼ガスを、リフォーマ1を出た燃焼排ガスの一部を用いて希釈し、温度を下げてから多管式反応部(11、12)に供給するため、リフォーマ1内の温度分布が均一化して安定する。
【0018】
図2に、本発明の水素製造システムが好適に用いられる水素分離型リフォーマ1を示す。図2(a)は、側面からみた断面図であり、(b)は、同じリフォーマを前面からみた断面を示す図である。
本リフォーマ1では、複数の反応管20に、改質触媒が充填されるとともに水素分離膜で区切られた水素透過部が設けられており、多管式反応部を形成している。反応管20の近傍には、反応管を加熱するための燃焼ガス通路24が備えられている。リフォーマ1の下部に設けられたラインバーナ22(燃焼部)からは、その上部の多管式反応部内の反応管に燃焼ガスが送られる。同時に、リフォーマ1下部には、ラインバーナ22の近傍に、一列おきに燃焼排ガス導入口を有する二次空気導入ライン21が備えられている。なお、燃焼部13に設置するバーナはラインバーナに限定されるものではなく、例えば高流速バーナやフラットフレームバーナなどの各種バーナを使用することができる。
【0019】
図2のリフォーマでは、多管式反応部の下部に仕切板25が設けられている。この仕切板25の下部は、燃焼排ガス混合部となる。この燃焼排ガス混合部では、燃焼部(ラインバーナ)22から出る燃焼ガスが、多管式反応部に至る前に、燃焼排ガス導入口21から供給される燃焼排ガスと混合される。これによって、上部の反応管を通る混合ガス温度は均一化され、高温の燃焼ガスが直接反応管20に到達するのを確実に回避することができる。そして、触媒層を満遍なく、反応温度に加熱して、反応管20全体で反応を進行させることができる。
【0020】
図3および図4に、本発明が好適に用いられるシステムの一例を示す。
図3のシステムでは、スチーム用の供給水は、リフォーマ1で生成した水素ガスの熱で予熱してから、ボイラ2に送られる。熱交換器9の予熱によって、供給水はボイラの前段で加熱される。ボイラ2では、炭化水素ガスの一部と空気を燃焼させる熱によって、供給水を蒸発させて、スチームを製造する。スチームは加圧下高温となり、ボイラ出口でのスチームの温度は約185℃程度である。スチームは、混合ガス予熱器6(熱交換器)へ送られ、原料ガスである炭化水素とともに導入されて混合ガスとして、リフォーマ1から出る燃焼排ガスによって予熱される。
予熱された混合ガスは、プロセスガスとして水素分離型リフォーマ1の触媒層11に導入される。このように予熱するのは、リフォーマ1では、500〜600℃で改質反応を行う必要があるからである。
【0021】
本システムで用いられる水素分離型リフォーマ1は、反応管内に、炭化水素ガスおよびスチームを原料に水蒸気改質反応を行う改質触媒11が充填されている。この反応管には、水素分離膜12で区切られた水素透過部14が設けられている。反応管の外側、例えば下部や上部には、燃焼部13が備えられ、また燃焼ガス通路15が備えられている。
触媒層11での水蒸気改質反応によって生成した水素ガスについては、水素分離膜12を通して透過部14に抜き出される。透過部14に貯まった水素ガスは、高純度の水素ガスとしてリフォーマ1から排出される。この分離した水素ガスは500℃程度の高温なので、後段の熱交換器を通して冷却する。
この際、水素ガスは、ボイラ2で燃焼するための空気を予熱させるために、ボイラ用空気予熱器8(熱交換器)を通る。次いで、水素ガスは、上記したボイラへの供給水を予熱するために、水予熱器9(熱交換器)を通る。また水素ガスは、必要に応じて、製品である水素ガスの温度(例えば40〜50℃)を適切なものにするために、冷却水を通す冷却用熱交換器10を通す。
【0022】
一方、本実施の形態のシステムでは、オフガス回収工程にて、水素製造工程から出るオフガスを冷却した後、オフガス中の水成分とガス成分とを気液分離してから、ガス成分のみを水素製造工程における燃焼に用いることもできる。
具体的には、触媒層11を出たオフガス約500℃は、燃焼部13へ送られる一次空気をバーナ用空気予熱器3(熱交換器)にて予熱することによって、約100℃程度まで温度を下げる。このオフガスは、冷却水を通す冷却用熱交換器4を通してさらに70〜80℃程度に冷却する。次いで、気液分離器5にて約50℃程度にて、水とガス成分とに分離する。水成分はボイラへの給水もしくは排水となり、残りのガス成分はリフォーマ1を加熱する燃焼成分として、燃焼部13に送られる。
上記したような本実施の形態のシステムでは、システム内において発生する廃熱を有効に利用することで、システム全体の熱効率を高めることができる。
また、図4のシステムでは、ボイラ2からの排ガスもリフォーマ1の熱に利用することによって、熱効率を向上させることができる。
【0023】
【発明の効果】
本発明のシステムによれば、多管式反応管を有するシステムにおいて、燃焼ガスによる反応管の加熱を均一に行い、リフォーマ内での温度分布を均一化して水蒸気改質反応を触媒層全体で安定的に実施することができる。また、燃焼排ガスを循環させるシステムとすることにより、廃熱を有効に回収できるため、システム全体の熱効率が高い。
【図面の簡単な説明】
【図1】本発明の水素製造システムの構成を、模式的に示すシステム図である。
【図2】本発明のシステムに好適に用いられる、多管式反応部を有する水素分離型リフォーマの一例を示す構成図である。
【図3】本発明の水素製造システムの一例を、模式的に示す構成図である。
【図4】本発明の水素製造システムの他の一例を、模式的に示す構成図である。
【符号の説明】
1 水素分離型リフォーマ
2 ボイラ
3 バーナ用空気予熱器(熱交換器)
4 熱交換器
5 気液分離器
6 混合ガス予熱器(熱交換器)
7 熱交換器
8 ボイラ用空気予熱器(熱交換器)
9 水予熱器(熱交換器)
10 熱交換器
11 改質触媒層
12 水素分離膜
13 燃焼部(バーナ)
14 水素透過部
15 燃焼ガス通路
16 熱交換器
17 ブロワ
20 反応管
21 二次空気導入ライン(燃焼排ガス導入口)
22 ラインバーナ(燃焼部)
23 ガスライン
24 燃焼ガス通路
25 仕切板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen production system, and more particularly to a hydrogen production system suitably used when a hydrogen separation reformer has a convection heat transfer type multi-tubular reactor.
[0002]
[Prior art]
In a hydrogen production system using a hydrogen separation reformer, the raw material gas consisting of hydrocarbons such as methane and methanol and oxygen-containing hydrocarbons is decomposed into hydrogen and carbon dioxide mainly by steam reforming reaction and CO shift reaction. The separated hydrogen is selectively separated through a hydrogen separation membrane built in the reformer. As the hydrogen separation membrane, for example, a membrane made of palladium, palladium alloy or the like is used.
[0003]
In the conventional hydrogen production system, the flue gas discharged from the reformer is used for preheating the raw material gas and then exhausted by a vent (see, for example, Patent Document 1).
A multi-cylindrical reformer is also known as a hydrogen production system, but is an apparatus that performs heating mainly using radiant heat transfer (for example, Patent Document 2).
[0004]
[Patent Document 1]
Japanese Patent No. 3035038 [Patent Document 2]
Japanese Patent Application Laid-Open No. 7-109104
In the multi-cylindrical reformer, the thickness of the inner cylinder increases as the shape increases, so heat input cannot be expected, and the reformer cannot take a large heat transfer area.
On the other hand, there is a reformer using a multi-tube reaction tube. However, when a reformer having a convection heat transfer type multi-tube reaction tube is used in such a conventional system, a high temperature from the combustion section is used. In some cases, this combustion gas locally heats a part of the reaction tube, and the reaction tube in the vicinity of the combustion part exceeds 700 ° C., for example. The hydrogen separation membrane constituting a part of the reaction tube needs to be used at a temperature of 600 ° C. or lower, preferably 550 ° C. or lower because of the durability of the membrane, and cannot withstand locally generated heating.
On the other hand, if combustion is performed so that the reaction tube temperature in the vicinity of the combustion section is suppressed to 700 ° C. or lower, the steam reforming reaction proceeds only in a part of the reaction tube, and the reaction efficiency is significantly reduced. On the other hand, when diluting high-temperature combustion gas using secondary air that does not participate in combustion, the thermal efficiency of the system decreases even if the temperature decreases.
[0006]
[Problems to be solved by the invention]
In view of the above problems, the inventors of the present invention, particularly in a hydrogen production system having a multi-tube reaction tube, uniformly heats the reaction tube with the combustion gas, and uniformizes the temperature distribution in the reformer to perform steam reforming. In order to develop a hydrogen production system that can stably carry out the reaction in the entire catalyst layer and improve the thermal efficiency of the system, the present inventors have made extensive studies.
As a result, the present inventors have found that the above problem can be solved by introducing the combustion exhaust gas again into the reformer through a circulation line using a blower or the like. The present invention has been completed from such a viewpoint.
[0007]
[Means for Solving the Problems]
That is, the present invention provides a hydrogen separation reformer, and a combustion exhaust gas circulation line that circulates a part of the combustion exhaust gas emitted from the hydrogen separation reformer through the blower and returns it to the reformer from the combustion exhaust gas inlet. A hydrogen production system is provided. The hydrogen separation reformer of the present invention is provided with a hydrogen permeation section partitioned by a hydrogen separation membrane in a plurality of reaction tubes filled with a reforming catalyst, and a combustion gas passage is provided to heat the reaction tubes. A multi-tube reaction section, a combustion section that generates combustion gas for heating the multi-tube reaction section, a combustion exhaust section that introduces combustion exhaust gas in the vicinity of the combustion section, and a combustion exhaust section. The combustion exhaust gas mixed from the combustion exhaust gas supplied from the combustion exhaust gas inlet and the combustion gas are mixed before the combustion gas coming out reaches the multi-tube reaction unit, the combustion exhaust gas mixing unit, and the reaction A partition plate for partitioning the tube . In this reformer, the combustion exhaust gas inlet is provided in the vicinity of the burner that is the combustion section, so that local heating of the reaction tube in the vicinity of the burner can be effectively prevented. In this system, a part of the flue gas discharged from the reformer is recycled to the reformer using a blower, so that the temperature distribution in the reformer is made uniform.
[0008]
Although combustion mixing unit are conceivable various forms, separately installed combustion exhaust gas mixing device For example, embodiments for supplying mixed gas to the reaction part therefrom, and the like.
[0009]
In addition, the hydrogen production system of the present invention can further include a boiler that introduces and burns part of the hydrocarbon gas used for the steam reforming reaction together with air and heats the water to produce steam. Here, the heated gas used in the boiler can be added to the combustion exhaust gas circulation line as a part of the combustion exhaust gas.
In addition, the hydrogen production system of the present invention may further include a gas-liquid separator that separates a water component and a gas component in the offgas after cooling the offgas emitted from the hydrogen separation reformer.
[0010]
Further, in the hydrogen production system of the present invention, (1) an embodiment including a heat exchanger, wherein the air burned in the combustion section is preheated by the heat of off-gas emitted from the hydrogen separation reformer, (2) the hydrocarbon gas And a preheated mixed gas mixed with steam produced in the boiler with heat of combustion exhaust gas from the hydrogen separation reformer, including a heat exchanger, and (3) air burned in the boiler is separated by the hydrogen An embodiment including a heat exchanger that preheats with the heat of hydrogen gas exiting from the mold reformer, or (4) a heat exchanger that preheats water heated by the boiler with the heat of hydrogen gas exiting from the hydrogen separation reformer A mode including the above can be used.
The thermal energy of the off-gas, combustion exhaust gas, and generated hydrogen gas emitted from the reformer can be used for preheating the components supplied to the reformer or the boiler, thereby improving the thermal efficiency of the hydrogen production system. Combustion exhaust gas (approximately 500 ° C) emitted from the reformer is used for preheating the process gas (mixed gas), and product hydrogen gas (approximately 500 ° C) exiting the reformer is heat exchanged with water and combustion air supplied to the boiler, It is preferable to preheat.
[0011]
According to the hydrogen production system of the present invention, in a system having a multi-tubular reaction tube, the reaction tube is uniformly heated by the combustion gas, the temperature distribution in the reformer is made uniform, and the steam reforming reaction is performed on the entire catalyst layer. Can be carried out stably. And there is no hot spot where the temperature rises locally in the reformer, and the life of the reformer is extended.
In addition, in this system, it is possible to improve the thermal efficiency of the entire system by circulating the combustion exhaust gas, and the gas flow rate increases as the amount of combustion gas increases, and there is an advantage that convective heat transfer can be promoted. is there.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the hydrogen production system of the present invention will be described in detail.
The present invention produces hydrogen by a steam reforming reaction using hydrocarbons such as city gas and steam as raw materials, and also produces high-purity hydrogen using a hydrogen separation membrane that selectively permeates only hydrogen. A separate reformer system is provided. As the raw material gas, hydrocarbons such as city gas, methane, propane, kerosene and dimethyl ether are used as raw materials.
The system of the present invention is a hydrogen production system that combines a hydrogen separation reformer and a combustion exhaust gas circulation line that circulates part of the combustion exhaust gas emitted from the hydrogen separation reformer through the blower and returns it to the reformer. is there.
[0013]
FIG. 1 schematically shows the hydrogen production system of the present invention.
Reference numeral 1 denotes a hydrogen separation type reformer, and each reaction tube constituting the multi-tube reaction tube portion has a reforming catalyst layer 11 and a hydrogen separation membrane 12. The hydrocarbon that is the raw material of the reformer 1 is mixed with steam to form a mixed gas. The mixed gas is preheated by the heat exchanger 16 and heated to near the reaction temperature. The preheated mixed gas is introduced into the catalyst layer 11 of the hydrogen separation reformer 1 as a process gas.
[0014]
In the reforming catalyst layer 11, hydrogen, carbon monoxide, and carbon dioxide are generated from the mixed gas by a steam reforming reaction. For example, when methane is used as a raw material, a steam reforming reaction is performed according to the following reaction formula.
CH 4 + H 2 O → 3H 2 + CO (endothermic reaction) (1)
CO + H 2 O → CO 2 + H 2 (exothermic reaction) (2)
Usually, this reaction is performed at 500 ° C. or higher, and is performed under a steam rich condition where S / C (steam / carbon ratio), which is the molar ratio of water to carbon C of methane, is 2 or more. Since the reaction (1) is an endothermic reaction, the reaction is promoted at a higher temperature.
On the other hand, as described above, the use temperature of the hydrogen separation membrane 12 needs to be kept at 600 ° C. or lower, preferably 550 ° C. or lower. Therefore, a catalytic reaction is normally performed within the range of 500-600 degreeC.
[0015]
Of the gas generated by the reformer 1, only hydrogen gas is separated into the permeation section 14 through the hydrogen separation membrane 12 made of palladium, palladium alloy or the like. The hydrogen gas stored in the permeation unit 14 is taken out of the system as high-purity hydrogen gas.
The remaining gas mainly composed of carbon dioxide from which hydrogen has been taken out is recovered as off-gas, cooled with cooling water or the like, and then introduced into the combustion section 13 together with air to be burned, and used as a fuel for the hydrogen separation reformer 1. The combustion gas introduced into the hydrogen separation reformer 1 from the combustion unit 13 passes through the combustion exhaust gas passage 15 in the vicinity of the reaction tube and supplies thermal energy for reacting to the catalyst layer 11.
[0016]
Thereafter, after the combustion exhaust gas leaves the reformer 1, a part of the combustion exhaust gas is sent to the combustion exhaust gas a circulation line, and the remaining exhaust gas is discharged through the heat exchanger 16. The exhaust gas is normally circulated by providing a blower 17 in the circulation line. The ratio of the combustion exhaust gas sent to the circulation line can be arbitrarily determined according to the operating conditions, but is usually 50% by volume or more, preferably 60% by volume or more, more preferably 70% by volume or more. The higher the ratio, the lower the temperature of the combustion exhaust gas that has passed through the wake heat exchanger 16.
This increases the rate of heat circulation in the system and improves the thermal efficiency of the system. The entire reaction tube is preferably heated in the range of 500 to 600 ° C. by the heat energy of the combustion gas and the combustion exhaust gas.
[0017]
The combustion exhaust gas sent to the circulation line returns to the reformer 1 again from the reformer inlet (introduction line). At this time, the ratio between the combustion gas introduced from the combustion unit 13 of the reformer 1 and the combustion exhaust gas to be circulated and reused can be arbitrarily determined depending on the operating conditions and the configuration of the system. When the exhaust gas introduction port is provided, it can be used at a combustion gas of primary air: combustion exhaust gas = 1: 1 to 10, preferably 1: 2 to 8, for example 1: 5.
In the system of the present invention, the high-temperature combustion gas combusted by the burner that is the combustion unit 13 is diluted with a part of the combustion exhaust gas that has exited the reformer 1, the temperature is lowered, and then the multi-tube reaction unit (11 12), the temperature distribution in the reformer 1 becomes uniform and stable.
[0018]
FIG. 2 shows a hydrogen separation reformer 1 in which the hydrogen production system of the present invention is suitably used. 2A is a cross-sectional view seen from the side, and FIG. 2B is a view showing a cross-section of the same reformer seen from the front.
In the reformer 1, a plurality of reaction tubes 20 are provided with a hydrogen permeation section filled with a reforming catalyst and separated by a hydrogen separation membrane to form a multi-tube reaction section. In the vicinity of the reaction tube 20, a combustion gas passage 24 for heating the reaction tube is provided. Combustion gas is sent from the line burner 22 (combustion part) provided in the lower part of the reformer 1 to the reaction tube in the upper multi-tube reaction part. At the same time, a secondary air introduction line 21 having combustion exhaust gas introduction ports every other row is provided near the line burner 22 at the lower part of the reformer 1. In addition, the burner installed in the combustion part 13 is not limited to a line burner, For example, various burners, such as a high flow rate burner and a flat flame burner, can be used.
[0019]
In the reformer of FIG. 2, the partition plate 25 is provided in the lower part of the multi-tubular reaction section. The lower part of this partition plate 25 becomes a combustion exhaust gas mixing part. In this combustion exhaust gas mixing section, the combustion gas emitted from the combustion section (line burner) 22 is mixed with the combustion exhaust gas supplied from the combustion exhaust gas inlet 21 before reaching the multi-tube reaction section. As a result, the temperature of the mixed gas passing through the upper reaction tube is made uniform, and it is possible to reliably prevent the high-temperature combustion gas from reaching the reaction tube 20 directly. Then, the catalyst layer can be uniformly heated to the reaction temperature, and the reaction can be advanced in the entire reaction tube 20.
[0020]
3 and 4 show an example of a system in which the present invention is preferably used.
In the system of FIG. 3, the steam supply water is preheated with the heat of the hydrogen gas generated by the reformer 1 and then sent to the boiler 2. By the preheating of the heat exchanger 9, the feed water is heated at the front stage of the boiler. In the boiler 2, steam is produced by evaporating the feed water with heat that burns part of the hydrocarbon gas and air. The steam becomes high temperature under pressure, and the steam temperature at the boiler outlet is about 185 ° C. The steam is sent to the mixed gas preheater 6 (heat exchanger), is introduced together with the hydrocarbon which is the raw material gas, and is preheated by the combustion exhaust gas emitted from the reformer 1 as a mixed gas.
The preheated mixed gas is introduced into the catalyst layer 11 of the hydrogen separation reformer 1 as a process gas. The reason for such preheating is that the reformer 1 needs to perform a reforming reaction at 500 to 600 ° C.
[0021]
The hydrogen separation reformer 1 used in the present system is filled with a reforming catalyst 11 that performs a steam reforming reaction using hydrocarbon gas and steam as raw materials in a reaction tube. This reaction tube is provided with a hydrogen permeation section 14 partitioned by a hydrogen separation membrane 12. A combustion unit 13 and a combustion gas passage 15 are provided outside the reaction tube, for example, at the lower part and the upper part.
The hydrogen gas generated by the steam reforming reaction in the catalyst layer 11 is extracted to the permeation unit 14 through the hydrogen separation membrane 12. The hydrogen gas stored in the permeation unit 14 is discharged from the reformer 1 as high-purity hydrogen gas. Since the separated hydrogen gas has a high temperature of about 500 ° C., it is cooled through a subsequent heat exchanger.
At this time, the hydrogen gas passes through the boiler air preheater 8 (heat exchanger) in order to preheat the air for combustion in the boiler 2. Next, the hydrogen gas passes through the water preheater 9 (heat exchanger) in order to preheat the supply water to the boiler described above. Moreover, in order to make the temperature (for example, 40-50 degreeC) of the hydrogen gas which is a product suitable, hydrogen gas passes the cooling heat exchanger 10 which lets a cooling water pass as needed.
[0022]
On the other hand, in the system of the present embodiment, after the off-gas from the hydrogen production process is cooled in the off-gas recovery process, the water component and the gas component in the off-gas are separated into gas and liquid, and only the gas component is produced with hydrogen. It can also be used for combustion in the process.
Specifically, the off-gas of about 500 ° C. exiting the catalyst layer 11 is heated to about 100 ° C. by preheating the primary air sent to the combustion unit 13 with the burner air preheater 3 (heat exchanger). Lower. The off gas is further cooled to about 70 to 80 ° C. through the cooling heat exchanger 4 through which cooling water passes. Subsequently, it separates into water and gas components at about 50 ° C. in the gas-liquid separator 5. The water component serves as water supply or drainage to the boiler, and the remaining gas component is sent to the combustion unit 13 as a combustion component that heats the reformer 1.
In the system of the present embodiment as described above, the thermal efficiency of the entire system can be increased by effectively using the waste heat generated in the system.
In the system of FIG. 4, the exhaust gas from the boiler 2 is also used for the heat of the reformer 1, so that the thermal efficiency can be improved.
[0023]
【The invention's effect】
According to the system of the present invention, in a system having a multi-tube reaction tube, the reaction tube is uniformly heated by the combustion gas, the temperature distribution in the reformer is made uniform, and the steam reforming reaction is stabilized over the entire catalyst layer. Can be implemented automatically. Moreover, since the waste heat can be effectively recovered by using a system that circulates combustion exhaust gas, the thermal efficiency of the entire system is high.
[Brief description of the drawings]
FIG. 1 is a system diagram schematically showing the configuration of a hydrogen production system of the present invention.
FIG. 2 is a configuration diagram showing an example of a hydrogen separation reformer having a multitubular reaction section that is preferably used in the system of the present invention.
FIG. 3 is a configuration diagram schematically showing an example of the hydrogen production system of the present invention.
FIG. 4 is a configuration diagram schematically showing another example of the hydrogen production system of the present invention.
[Explanation of symbols]
1 Hydrogen separation reformer 2 Boiler 3 Burner air preheater (heat exchanger)
4 Heat exchanger 5 Gas-liquid separator 6 Mixed gas preheater (heat exchanger)
7 Heat exchanger 8 Boiler air preheater (heat exchanger)
9 Water preheater (heat exchanger)
DESCRIPTION OF SYMBOLS 10 Heat exchanger 11 Reforming catalyst layer 12 Hydrogen separation membrane 13 Combustion part (burner)
14 Hydrogen permeation section 15 Combustion gas passage 16 Heat exchanger 17 Blower 20 Reaction tube 21 Secondary air introduction line (combustion exhaust gas introduction port)
22 Line burner (combustion section)
23 Gas line 24 Combustion gas passage 25 Partition plate

Claims (3)

改質触媒を充填した複数の反応管に水素分離膜で区切られた水素透過部が設けられており、該反応管を加熱するために燃焼ガス通路が備えられている、多管式反応部と、該多管式反応部を加熱する燃焼ガスを生成する、燃焼部と、該燃焼部近傍に燃焼排ガスを導入する、燃焼排ガス導入口と、該燃焼部から出る燃焼ガスが該多管式反応部に至る前段にて、該燃焼排ガス導入口から供給される燃焼排ガスと燃焼ガスとが混合される、燃焼排ガス混合部と、該燃焼排ガス混合部と該反応管とを仕切る、仕切板と、を備える、水素分離型リフォーマ、および、
該水素分離型リフォーマから出る燃焼排ガスの一部を、ブロワを介して循環させて該燃焼排ガス導入口から当該リフォーマに戻す、燃焼排ガス循環ライン、
を含むことを特徴とする水素製造システム。
A plurality of reaction tubes filled with a reforming catalyst, provided with hydrogen permeation sections separated by a hydrogen separation membrane, and provided with a combustion gas passage for heating the reaction tubes; Generating a combustion gas for heating the multitubular reaction section; a combustion section; a combustion exhaust gas inlet for introducing a combustion exhaust gas in the vicinity of the combustion section; and a combustion gas exiting the combustion section A combustion exhaust gas mixing portion that is mixed with the combustion exhaust gas supplied from the combustion exhaust gas inlet and the combustion gas, and a partition plate that partitions the combustion exhaust gas mixing portion and the reaction tube; A hydrogen separation reformer, and
A combustion exhaust gas circulation line for circulating a part of the combustion exhaust gas coming out of the hydrogen separation type reformer through the blower and returning it to the reformer from the combustion exhaust gas inlet;
A hydrogen production system comprising:
さらに加えて、水蒸気改質反応に用いる炭化水素ガスの一部を空気とともに導入して燃焼させ、水を加熱してスチームを製造する、ボイラを含むことを特徴とする請求項に記載の水素製造システム。The hydrogen according to claim 1 , further comprising a boiler that introduces and burns a part of the hydrocarbon gas used in the steam reforming reaction together with air and heats the water to produce steam. Manufacturing system. さらに加えて、前記水素分離型リフォーマから出るオフガスを冷却した後、該オフガス中の水成分とガス成分とを分ける、気液分離器を含むことを特徴とする請求項1又は2に記載の水素製造システム。Furthermore, the hydrogen according to claim 1 or 2, further comprising a gas-liquid separator that separates a water component and a gas component in the off-gas after cooling off-gas emitted from the hydrogen separation reformer. Manufacturing system.
JP2003149117A 2003-05-27 2003-05-27 Hydrogen production system Expired - Fee Related JP4381033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149117A JP4381033B2 (en) 2003-05-27 2003-05-27 Hydrogen production system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149117A JP4381033B2 (en) 2003-05-27 2003-05-27 Hydrogen production system

Publications (2)

Publication Number Publication Date
JP2004352528A JP2004352528A (en) 2004-12-16
JP4381033B2 true JP4381033B2 (en) 2009-12-09

Family

ID=34045314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149117A Expired - Fee Related JP4381033B2 (en) 2003-05-27 2003-05-27 Hydrogen production system

Country Status (1)

Country Link
JP (1) JP4381033B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043880A (en) * 2016-10-20 2018-05-02 한국에너지기술연구원 The Oxy­fuel Furnace having oxygen supply function
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010240637A (en) * 2009-03-14 2010-10-28 Tokyo Gas Co Ltd HYDROGEN SEPARATING SYSTEM USING Nb MEMBRANE AND PERIODIC TABLE 5A GROUP METAL ALLOY MEMBRANE
US11999619B2 (en) 2020-06-18 2024-06-04 Saudi Arabian Oil Company Hydrogen production with membrane reactor
US11787759B2 (en) 2021-08-12 2023-10-17 Saudi Arabian Oil Company Dimethyl ether production via dry reforming and dimethyl ether synthesis in a vessel
CN115264380B (en) * 2022-05-26 2024-01-26 合肥通用机械研究院有限公司 Liquid hydrogen station with hidden high-pressure precooling/cold accumulation unit and operation method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180043880A (en) * 2016-10-20 2018-05-02 한국에너지기술연구원 The Oxy­fuel Furnace having oxygen supply function
KR101907396B1 (en) 2016-10-20 2018-10-18 한국에너지기술연구원 The Oxy­fuel Furnace having oxygen supply function
US11492255B2 (en) 2020-04-03 2022-11-08 Saudi Arabian Oil Company Steam methane reforming with steam regeneration
US11322766B2 (en) 2020-05-28 2022-05-03 Saudi Arabian Oil Company Direct hydrocarbon metal supported solid oxide fuel cell
US11639290B2 (en) 2020-06-04 2023-05-02 Saudi Arabian Oil Company Dry reforming of methane with carbon dioxide at elevated pressure
US11492254B2 (en) 2020-06-18 2022-11-08 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11583824B2 (en) 2020-06-18 2023-02-21 Saudi Arabian Oil Company Hydrogen production with membrane reformer
US11578016B1 (en) 2021-08-12 2023-02-14 Saudi Arabian Oil Company Olefin production via dry reforming and olefin synthesis in a vessel
US11718575B2 (en) 2021-08-12 2023-08-08 Saudi Arabian Oil Company Methanol production via dry reforming and methanol synthesis in a vessel
US11617981B1 (en) 2022-01-03 2023-04-04 Saudi Arabian Oil Company Method for capturing CO2 with assisted vapor compression

Also Published As

Publication number Publication date
JP2004352528A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP4336554B2 (en) Steam reforming method
US6835354B2 (en) Integrated reactor
JP4381033B2 (en) Hydrogen production system
US7481859B2 (en) Process for cooling an exothermic reaction zone and reactor unit
JP2010513834A (en) Heat transfer unit for steam generation and gas preheating
JP4427173B2 (en) Syngas production method
CN1714042A (en) Autooxidation internal heating type steam reforming system
JPH05147902A (en) Production of hydrogen
JP2000203802A (en) Reformer
US20090199475A1 (en) Reformer and Method of Startup
JP4043383B2 (en) Membrane reactor and synthesis gas production method using the same
KR20160045738A (en) Multitube reformer for a hydrocarbon- and alcohol-reforming system and hydrocarbon- and alcohol-reforming system comprising same, and associated method
JP2006097526A (en) Temperature increasing device for on-vehicle type hydrogen production system
JP4227801B2 (en) Hydrogen production apparatus and hydrogen production method
JP2004115320A (en) Reforming apparatus
JP3789677B2 (en) Fuel cell reformer
JP2002029705A (en) Reforming device
JP2004352527A (en) Hydrogen production system, and hydrogen production method
JP2006104007A (en) Warming apparatus for vehicle-loadable hydrogen production system and warming method
JP2004137116A (en) Reformer
JP5315801B2 (en) Reformer
KR101361698B1 (en) Reforming apparatus for fuel cell system with combustor
JP2004262691A (en) Reformer for fuel
JP2006143558A (en) Reforming apparatus
US20090136798A1 (en) Autothermic Reformer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4381033

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees