JP4380951B2 - Garlic fermentation composition - Google Patents

Garlic fermentation composition Download PDF

Info

Publication number
JP4380951B2
JP4380951B2 JP2001273468A JP2001273468A JP4380951B2 JP 4380951 B2 JP4380951 B2 JP 4380951B2 JP 2001273468 A JP2001273468 A JP 2001273468A JP 2001273468 A JP2001273468 A JP 2001273468A JP 4380951 B2 JP4380951 B2 JP 4380951B2
Authority
JP
Japan
Prior art keywords
garlic
activity
medium
composition
fermentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001273468A
Other languages
Japanese (ja)
Other versions
JP2002154981A (en
Inventor
雅範 柿本
あゆみ 鈴木
功 西本
澄廣 白石
洋一 板倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wakunaga Pharmaceutical Co Ltd
Original Assignee
Wakunaga Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wakunaga Pharmaceutical Co Ltd filed Critical Wakunaga Pharmaceutical Co Ltd
Priority to JP2001273468A priority Critical patent/JP4380951B2/en
Publication of JP2002154981A publication Critical patent/JP2002154981A/en
Application granted granted Critical
Publication of JP4380951B2 publication Critical patent/JP4380951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ニンニク発酵組成物を有効成分とする医薬に関する。
【0002】
【従来の技術】
ニンニクは、古来より調味料、香辛料として利用されているが、近年、その中に種々の生理活性成分が含まれていることが明らかとなり、健康食品及び医薬品として広く使用されている。
しかし、ニンニクにはアリシン、ジアリルジスルフィド等の臭気成分の前駆物質が含まれ、容易にこれらに変換されるため、嗜好が合わず敬遠する人も多い。そのため、熱処理して無臭化する方法(特開昭59−216565号公報、特開平4−12604号公報)等が開発されたが、服用後にニンニク臭が発生する等、依然問題が残されている。
また、ニンニクは、加工条件の違いにより、含有成分や生理活性に差が生じるため、ニンニクの加工法を定めることは重要である(望月恵美子:FOODS & FOOD INGREDIENTS JOURNAL OF JAPAN 164, 36-45, 1995)。
【0003】
一方、ニンニク以外に、従来から麹菌及び/又は紅麹菌を用いた発酵法があり、味噌、醤油及び酒等の製造に利用されている。この麹菌及び紅麹菌はいずれも長年にわたる食経験から安全性については既に実証されており、種々の生理活性を有することが報告されている(例えば、麹菌による抗酸化活性(山口直彦:日本食品工業学会誌 26, 71-75, 1979)、アンジオテンシンI変換酵素阻害活性(寺中毅頼他:日本農芸化学会誌 69, 1163-1169, 1995)又は紅麹菌によるコレステロール低下活性、降圧活性等が報告されている)。
【0004】
そこで、本発明者はニンニクを麹菌及び/又は紅麹菌で発酵処理すれば、ニンニク臭がなく、かつ医薬又は食品として有用な組成物が得られると考え、検討したが、ニンニクはそれ自体で抗菌作用を有するため、麹菌及び/又は紅麹菌で発酵を行うことはできなかった。またぶどう酒の製造過程で少量のニンニクを添加した例(特開昭48−52995号公報)や少量のニンニクに多量の糖を添加して発酵させた例(特開昭53−26361号公報)はあるが、ニンニクを主原料とした発酵例はない。
【0005】
【発明が解決しようとする課題】
従って、本発明の目的は、ニンニクを麹菌で発酵させることによりニンニク特有の臭気をなくし、医薬又は食品として有用な組成物を得ることにある。
【課題を解決するための手段】
【0006】
斯かる実状に鑑み本発明者らは鋭意研究を行った結果、ニンニクを予め酵素失活処理すれば、グルコース、デンプン等の栄養源を加えずニンニクのみでも麹菌で発酵できることを見出し、更に得られた発酵組成物はニンニク臭がなく、通常のニンニクに比べ抗酸化活性が約100倍強く、抗糖尿病作用、肝障害防護作用、抗癌作用、免疫増強作用、コレステロール低下作用等があり、糖尿病、肝臓病、癌、免疫疾患、高脂血症等の治療又は予防に有用であることも見出し、本発明を完成させるに至った。
【0007】
【発明の実施の形態】
すなわち本発明は、酵素失活処理したニンニクを麹菌で発酵させた組成物、あるいは酵素失活処理したニンニクに豆類及び/又は穀類を添加し、麹菌で発酵させた組成物を有効成分とする医薬を提供するものである。
【0008】
更に本発明は、酵素失活処理したニンニクを麹菌で発酵させた組成物、あるいは酵素失活処理したニンニクに豆類及び/又は穀類を添加し、麹菌で発酵させた組成物を有効成分とする糖尿病、肝臓病、癌、免疫疾患及び高脂血症から選ばれる疾患の予防・治療剤を提供するものである。
【0009】
本発明においてニンニクとはユリ科(Liliaceae)、アリウム(Allium)属に属するアリウム・サチバム・リンネ(Allium sativum L.)を示す。
ニンニクのうち発酵に用いる部分は、とりわけ鱗茎部が好ましく、酵素失活処理した鱗茎をそのまま又は任意の大きさにスライスするか、あるいは破砕して破砕汁にしたものを発酵に供することができる。また、必要に応じて、米、大豆、麦、ハトムギ等の豆類及び/又は穀類を添加してもよい。
【0010】
本発明のニンニク発酵組成物を製造するには、まずニンニクの酵素失活処理を行う。酵素失活処理は、ニンニクを熱、マイクロウエーブ、高圧処理、酵素、酸又はアルコールで処理することにより行うことができ、このうち熱処理が簡便であり好ましい。熱処理のための温度は、50〜200℃、1〜60分が好ましく、特に90〜121℃、10〜30分が好ましい。
【0011】
酵素失活処理したニンニクは、例えばAspergillus oryzae、Aspergillus sojae、Aspergillus kawachi、Aspergillus awamori等の麹菌及びMonascus pilosus、Monascus anka、Monascus paxii、Monascus pubigerus、Monascus purpures、Monascus ruber、Monascus vitreus、Monascus major等の紅麹菌から選ばれる一種又は二種以上の菌により発酵させれば、目的とするニンニク発酵組成物を得ることができる。
具体的なニンニク発酵組成物の調製法としては、例えば次の工程に従って行う方法が挙げられる。
【0012】
1)ニンニク培地/ニンニク含有培地の調製
ニンニクを水洗した後、等量の水を加え、20〜30分間煮沸し、必要に応じて、細断、破砕等の加工を行う(破砕する場合は、破砕汁のみを使用することもできる)。これに必要により、栄養源として適宜、米、大豆、麦、ハトムギ等の豆類及び/又は穀類を加えたり、補糖を行い、オートクレーブ等で滅菌(121℃、20分)する。なお、豆類及び/又は穀類を加えたり、補糖を行う場合は、これらが全体の90重量%(以下、単に「%」という)を超えないようにする。
【0013】
2)発酵菌の前培養
発酵菌としては、麹菌(Aspergillus oryzae、Aspergillus sojae、Aspergillus kawachi、Aspergillus awamori等)及び紅麹菌(Monascus 属の菌株:M.pilosus、M.anka、M.paxii、M.pubigerus、M.purpures、M.ruber、M.vitreus、M.major等)から選ばれる一種又は二種以上を用いることが好ましい。
菌株は2%酵母エキス添加ポテトデキストロース寒天培地で継代し、それを次の培地に接種し、10〜50℃で2〜14日、好ましくは20〜40℃で2〜4日間前培養する。
前培養用の培地は、サブロー培地(ペプトン1%、グルコース4%)、ポテトデキストロース培地(ジャガイモ煎汁(200g/l)グルコース2%)、グリセリン培地(グリセリン7%、グルコース3%、 Soybean meal 3%、ペプトン0.8%、硫酸マグネシウム0.1%、塩化ナトリウム0.2%)の他、任意の真菌用の培地を利用できるが、培地構成物としては食用可能な物が好ましい。
【0014】
3)ニンニクの発酵
工程1で調製したニンニク培地に、工程2で調製した前培養菌液を0.1〜50%、好ましくは0.5〜10%添加し、10〜50℃で7日〜60日間、更に好ましくは、20〜40℃で麹菌の場合は7日〜35日間、紅麹菌の場合は14日〜42日間、振盪培養若しくは静置培養を行うことにより、ニンニク発酵組成物を調製することができる。また、培地の水分を40〜60%に減少させ、個体培養の形式で静置培養を行ってもよい。
【0015】
4)ニンニク発酵組成物の処理
工程3の発酵が終了した段階で、発酵物を加熱滅菌した後、これを直接使用するか又は培養濾液と分離して別々に使用する。また、有効成分のみを抽出して使用することもできる。
【0016】
このようにして得られた本発明の組成物は、常法により食品としたり、薬学的に許容される担体とともに種々の剤型の医薬とすることができる。
このうち経口用固形製剤を調製する場合は、ニンニク発酵組成物に賦形剤、必要に応じて結合剤、崩壊剤、滑沢剤、着色剤、矯味剤、矯臭剤等を加えた後、常法により錠剤、被覆錠剤、顆粒剤、散剤、カプセル剤等を製造することができる。そのような添加剤としては、当該分野で一般的に使用されるものでよく、例えば、賦形剤としては、乳糖、白糖、塩化ナトリウム、ぶどう糖、デンプン、炭酸カルシウム、カオリン、微結晶セルロース、珪酸等を、結合剤としては、水、エタノール、プロパノール、単シロップ、ブドウ糖液、デンプン液、ゼラチン液、カルボキシメチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルスターチ、メチルセルロース、エチルセルロース、シェラック、リン酸カルシウム、ポリビニルピロリドン等を、崩壊剤としては乾燥デンプン、カルメロースカルシウム、アルギン酸ナトリウム、カンテン末、炭酸水素ナトリウム、炭酸カルシウム、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、乳糖等を、滑沢剤としては精製タルク、ステアリン酸塩、ホウ砂、ポリエチレングリコール等を、矯味剤としては白糖、橙皮、クエン酸、酒石酸等を例示できる。
【0017】
経口用液体製剤を調製する場合は、ニンニク発酵組成物に矯味剤、緩衝剤、安定化剤、矯臭剤等を加えて常法により内服液剤、シロップ剤、エリキシル剤等を製造することができる。この場合矯味剤としては上記に挙げられたもので良く、緩衝剤としてはクエン酸ナトリウム等が、安定化剤としてはトラガント、アラビアゴム、ゼラチン等が挙げられる。
【0018】
本発明の食品又は医薬は糖尿病、肝臓病、癌、免疫疾患、高脂血症等の治療又は予防の目的で使用することができる。
投与量及び投与方法は、年齢、体重、症状等により適宜決定することができるが、通常成人1日当たり、本発明組成物を0.5〜2gを1回又は数回に分けて投与することが好ましい。
【0019】
なお、本発明組成物は主成分であるニンニク、麹菌又は紅麹菌が通常食用に供されており、一般に低毒性である。また、本発明組成物を若齢ラットに、3週間にわたって3%混餌で与えたが、成長過程および、一般行動に何ら異常は認められず、安全性の高い物質であることが確認された。
【0020】
本発明のニンニク発酵組成物は、強い抗酸化活性を有し、抗癌作用、NK活性等の免疫増強作用、アセトアミノフェン肝障害に対する防護作用、アロキサン糖尿病モデルに対する防護作用、耐糖能の増強作用による抗糖尿病作用、コレステロール低下作用等が認められ、現代社会に蔓延する成人病の治療又は予防にきわめて有用である。
また、本発明組成物は安全性が高く、かつニンニク臭が殆どない(アリナーゼを失活することによって得られる無臭ニンニクとは異なり、口の中でニンニク臭が発生することはない)ので健康食品及び医薬品として広く用いることができる。
【0021】
【実施例】
次に実施例をあげて本発明を更に詳しく説明する。なお、本発明はこれによって限定されるものではない。また、本実施例で使用した麹菌及び紅麹菌株を表1に示す。
【0022】
【表1】

Figure 0004380951
【0023】
実施例1 麹菌を用いたニンニク発酵組成物の製造及びその抗酸化活性(発酵組成物(エキス)の調製)
ニンニクを水洗した後、等量の水を加え、30分間煮沸した後、破砕し、破砕汁を得た。破砕汁に等量の水、及びグルコース2%を添加し、オートクレーブで121℃、20分間滅菌した(ニンニク培地)。別に、麹菌(Aspergillus oryzae)を、サブロー培地(ペプトン1%、グルコース4%)で27℃、160rpm振盪の条件下で3日間前培養し、ニンニク培地にこの培養液を1%添加し27℃、160rpm 振盪の条件下で2日〜5週間培養し、300rpm10分間遠心分離した上清(エキス)を以下の試験に用いた。一方、米、大豆は、乾燥固形物としてニンニク培地と等しくなるように調製した。
【0024】
(スーパーオキシドアニオン消去能の測定法)
65mM KH2PO4−ほう酸緩衝液(pH8.2)200μl、5mMキサンチン水溶液200μl、10mMヒドロキシルアミン水溶液100μl、水200μlの混合液にサンプル100μl及び、キサンチンオキシダーゼ200μlを加え、37℃で15分間インキュベートした。インキュベート終了時に、反応停止及び発色の目的で、30μM N−ナフチルエチレンジアミン−3mMスルファニル酸−25%氷酢酸2mLを加えて室温で45分間放置し、550nmで吸光度を測定した。本測定は、2回行い、サンプル添加による吸光度の減少から活性酸素消去活性(%)を求めた。なお、キサンチンオキシダーゼ(キサンチンオキシダーゼ懸濁液:和光純薬)は、吸光度の変化が0.020〜0.025/分になるように調製した(15〜20mU/mL)。
結果を図1及び2に示す。
【0025】
(DPPHラジカル消去能の測定法)
サンプルを0.5M酢酸緩衝液(pH5.5)で希釈し、その0.5mLにエタノール0.5mLを加え、更に0.5mM DPPH(1,1−ジフェニル−1−2−ピクリルヒドラジル:和光純薬)エタノール溶液0.25mLを加えてよく混合し、520nmにおける吸光度を経時的に測定し、サンプル無添加の対照に対する%を求めた。結果を図3〜5に示す。
【0026】
(結果)
(1)ニンニク培地及び、ニンニク発酵エキスのスーパーオキシドアニオン消去能
ニンニク培地は、弱い消去活性を示したが、ニンニク発酵エキスは、発酵期間に応じて消去活性が増加した。また、グルコースの添加によって、ニンニク培地の活性は僅かに増加したが、発酵エキスは、ほとんど差が認められなかった(図1)。
ニンニク発酵エキスを希釈して、同様にスーパーオキシドアニオン消去能を測定した。ニンニク発酵エキスは、4週間発酵のサンプルで、100倍希釈したものと、ニンニク培地の活性が等しくなり、発酵によってスーパーオキシドアニオン消去活性は、100倍に増強された(図2)。
【0027】
(2)DPPHラジカル消去活性
100倍希釈液を用いてDPPHラジカル消去活性を測定した。ニンニク培地(BG)は、殆ど活性は認められなかったが、ニンニク発酵エキスは、何れの麹菌でも、発酵期間に応じてDPPHラジカル消去活性が増加した。特にA−1、A−6に強い活性が認められた(図3)。
【0028】
(3) A-1 A-6 のDPPHラジカル消去活性物質産生に及ぼす培地の影響
米培地、大豆培地は殆どDPPHラジカル消去活性を示さなかった。A−1は、米培地で若干のDPPHラジカル消去活性が認められ、大豆培地では更に弱いものであったが、ニンニク培地の発酵エキスでは、非常に強い活性が認められた。(図4)A−6では、ニンニク培地での特異性が、更に顕著に認められた。(図5)
【0029】
実施例2 紅麹菌を用いたニンニク発酵エキスの抗酸化活性
(発酵エキスの調製法)
ニンニクを水洗した後、等量の水を加え、30分間煮沸した後、破砕し、破砕汁を得た。破砕汁に等量の水、及びグルコース2%を添加し、オートクレーブで121℃、20分間滅菌した(ニンニク培地)。別に、紅麹菌(Monascus属)1白金耳を、グリセリン培地(グリセリン7%、グルコース3%、Soybean meal3%、ペプトン0.8%、硫酸マグネシウム0.1%、塩化ナトリウム0.2%)で培養し、ニンニク培地にこの培養液を1%添加し25℃、160rpm 振盪の条件下で2〜5週間培養し、300rpm 10分間遠心分離した上清を以下の試験に用いた。ニンニク培地の他、大豆を乾燥固形物としてニンニク培地と等しくなるように調製した大豆培地、ニンニクと大豆を混合した培地などを用いた。
【0030】
(DPPHラジカル消去能の測定法)
サンプルを0.5M酢酸緩衝液(pH5.5)で希釈し、その0.5mLにエタノール0.5mLを加え、更に0.5mM DPPH(1,1−ジフェニル−1−2−ピクリルヒドラジル:和光純薬)エタノール溶液0.25mLを加えてよく混合し、520nmにおける吸光度を経時的に測定し、サンプル無添加の対照に対する%を求めた。結果を図6及び7に示す。
【0031】
(結果)
(1)紅麹培溶液のDPPHラジカル消去能
ニンニク:大豆(2:2)の混合培地は、弱い消去活性を示したが、紅麹菌で発酵した、ニンニク発酵エキスは、発酵期間に応じて消去活性が増加した。特に、A−24、A−26に強い活性が認められた(図6)。
A−24株を用いて、ニンニクと大豆の混合比を変えて検討した。 大豆のみの培地(0:4)では、ラジカル消去活性は、弱いものであったが、ニンニクの配合比が高くなるにしたがって、活性の増加が認められた。特に、ニンニクを2倍の濃度にした培地(8:0)で最も強い活性が認められた(図7)。
【0032】
実施例3 ニンニク発酵組成物の抗腫瘍効果及び免疫増強作用
(ニンニク発酵組成物の調製法)
ニンニクを水洗した後、等量の水を加え、30分間煮沸した後、破砕し、破砕汁を得た。破砕汁に、等量の水及びグルコース2%を添加し、オートクレーブで121℃、20分間滅菌した(ニンニク培地)。別に、麹菌(Aspergillus oryzae)を、サブロー培地(ペプトン1%、グルコース4%)で27℃、160rpm振盪の条件下で3日間前培養し、ニンニク培地にこの培養液を1%添加し27℃、160rpm 振盪の条件下で2週間培養した。得られた発酵物は、100℃10分間加熱した後、凍結乾燥し、粉砕した。各種試験に際しては、ニンニク発酵組成物を水に懸濁して経口投与した。
【0033】
(実験方法)
ICR系雄性マウス(7週令:日本クレア)に、sarcoma-180 106cell/mouseを皮下移植し、翌日より被験物質を隔日で10回経口投与し、最終投与の翌日に、腫瘍の大きさ(3/4×短径×短径×長径mm3)を測定した。その後、無菌的に脾臓を摘出し、常法に従って細胞浮遊液を調製し、赤血球除去用トリス緩衝液(17mMトリスヒドロキシメチルアミノメタン0.747%、NH4Cl,pH7.65)で処理後、RPMI 1640で洗浄し、10%FCSを含むRPMI1640に懸濁した。
【0034】
YAC−1細胞、 Salcoma 180細胞の標識
10%FCSを含むRPMI 1640で2×106cell/0.1mLに調製したYAC−1細胞又は、salcom−180細胞に、Na2 51CrO4100μl(アマシャム、1μCi/μl in sterile0.9%NaCl)を加え、CO2インキュベータで2時間培養した。その後、10%FCSを含むRPMI 1640で4回洗浄し、3×105cell/mLに調製した。
【0035】
NK活性、キラー活性
脾臓細胞を3×107cell/mL(YAC−1細胞、Salcoma−180細胞の200倍)に調製し、NUNC96ウェルU底multi dishに100μl(3×106cell)を入れ、3×105cell/mLに調製した51Cr標識YAC−1細胞又は、Salcoma−180細胞50μl(1.5×104cell)を加えた(Exp)。これ以外に、最大遊離用として、51Cr標識YAC−1細胞又は、Salcoma−180細胞50μl(1.5×104cell)に1N HCl 100μlを加えたもの(Tmax)、自然遊離用として、51Cr標識YAC−1細胞又は、Salcoma−180細胞50μl(1.5×104cell)に10%FCSを含むRPMI 1640100μlを加えたもの(Tspon)を用意した。このmulti dishをCO2インキュベーターで24時間培養後、遠心分離した上清100μlをRIAチューブにとり、ガンマーカウンターで遊離した51Crを測定した。次の式より、細胞毒性(%)を算出しNK活性、キラー活性とした。
【0036】
細胞毒性(%)=((Exp-Tspon)/(Tmax-Tspon))×100
【0037】
統計処理
F検定の後、Student's-T testもしくは、Aspin-Welch法で検定し危険率5%未満を有意とし*印で示した。結果を以下に示す。
【0038】
(結果)
(1)抗腫瘍効果
ガン細胞移植3週間後の腫瘍体積は、コントロール群の393mm3に対し、A−1、A−6投与群では統計的に有意な増殖抑制作用が認められた。クレスチンでも同様に有意な作用が認められた。
【0039】
【表2】
Figure 0004380951
【0040】
(2)NK活性
ガン細胞移植3週間後の脾臓細胞を用いて、NK活性を測定した。NK活性は、コントロール群の4.6%に対し、A−1、A−6投与群では、17.8%、14.1%となり統計的に有意な、NK活性の増強作用が認められた。クレスチン投与群でも同様に有意な増強作用が認められた。
【0041】
【表3】
Figure 0004380951
【0042】
(3)キラー活性
ガン細胞移植3週間後の脾臓細胞を用いて、キラー活性を測定した。キラー活性は、NK活性と同様に、A−1、A−6投与群では、顕著かつ、統計的に有意な、活性の増強作用が認められた。
【0043】
【表4】
Figure 0004380951
【0044】
実施例4 アセトアミノフェン肝障害防護効果
(実験方法)
実施例3と同じニンニク発酵組成物を用いて検討した。6週令のddY系雄性マウス(日本SLC)を一夜絶食した。アセトアミノフェン投与の2時間前と30分前の2回被験物質を経口投与し、アセトアミノフェン(400mg/kg)を腹腔内投与した。6時間後に、腹部大静脈より、ヘパリン処理したシリンジを用いて採血し、血漿GPT活性を測定し、肝障害の指標とした。アセトアミノフェン(和光純薬)は、リン酸三カリウム水溶液(100mg/mL)でpH11に調製した生理食塩水に沸騰水浴中で溶解した。血漿中GPT活性は、GPT−UVテストワコー(和光純薬)を用いて測定した。結果を以下に示す。
【0045】
(結果)
アセトアミノフェンの投与により、コントロール群の血漿中GPT活性は、468IU/lに増加し激しい肝障害が惹起された。一方、A−1、A−6投与群のGPT活性は、146、68IU/lの増加に留まり、顕著な肝障害防護作用が認められた。
【0046】
【表5】
Figure 0004380951
【0047】
実施例5 抗糖尿病作用
(実験方法)
実施例3と同じニンニク発酵組成物を用いて検討した。6週令のddY系雄性マウス(日本SLC)を一夜絶食した。キヤピラリを用いて眼窩静脈叢より20μl採血した。被験物質4g/kgを経口投与し、1時間後にアロキサン(和光純薬)50mg/kgを静脈内投与し、1時間後及び6時間後に同様に採血した。絶食は、アロキサン投与直後に解除し、被験物質は、アロキサン投与の前日から、3日後まで1日1回経口投与し、採血は、1、2、4日後に同様に行った。採血後、直ちにヘマトクリット用遠心機で血漿を分離し、グルコースCII−テスト ワコー(和光純薬)を用いて血糖値を測定した。
統計処理は実施例3と同様に行った。結果を図8に示す。
【0048】
【表6】
Figure 0004380951
【0049】
(結果)
ノーマルで示した、正常状態のマウスの血糖値は200mg/dl程度であるが、アロキサンの投与により、コントロール群の血糖値は、1時間後で540mg/dlに激増し、その後も増加を続け、48時間後では、650mg/dlに達した。一方、ニンニク発酵組成物A−6投与群では、アロキサン投与1時間後の血糖値は、380mg/dlに留まり、コントロール群との間に、統計的に有意な血糖上昇の抑制作用が認められた。その後も、有意な低値が観察された。A−1も同様に有意な血糖上昇の抑制作用が認められた。しかし、発酵の原料として用いた、ボイルニンニク(ニンニク培地:BG)では、アロキサン投与による血糖の上昇の抑制作用は認められなかった(図8)。
【0050】
実施例6 血糖上昇抑制作用
(実験方法)
実施例3と同じニンニク発酵組成物を用いて検討した。8週令のddY系雄性マウス(日本SLC)を一夜絶食した後、キヤピラリを用いて眼窩静脈叢より20μl採血し、以後実験終了時まで絶水とした。被験物質及びスターチを同時に経口投与し、30、60、120分後に同様に採血した。採血後、直ちにヘマトクリット用遠心機で血漿を分離し、グルコースCII−テスト ワコー(和光純薬)を用いて血糖値を測定した。統計処理は実施例3と同様に行った。結果を図9に示す。
【0051】
【表7】
Figure 0004380951
【0052】
(結果)
スターチを経口投与したコントロール群の血糖値は、30分後で150mg/dl上昇したが、A−1投与群では、100mg/dlの上昇に留まり、コントロール群に対し有意な血糖上昇の抑制作用が認められた。その後の血糖値は、有意差は無いがコントロール群よりやや高値を推移し、血糖上昇の遅延が観察された。A−6投与群でも、A−1とほぼ同様の結果が得られた。一方、ボイルニンニク(ニンニク培地:BG)投与群は、コントロールと同様の血糖推移を示し、ニンニク発酵組成物とは明らかに異なる結果が得られた(図9)。
【0053】
実施例7 紅麹菌を用いたニンニク発酵エキスのコレステロール合成阻害活性
実施例2と同じニンニク発酵エキスを用いて検討した。
(酵素標本の調製法)
Wistar系雄性ラット(6.5週令)を明時17:00〜5:00の逆転照明下で、粉末のEC−2(日本クレア製)で6日間の馴致飼育の後、2%コレスチラミン8%コーン油を配合したCE−2で5日間飼育した。深夜に相当する、10:00にラットを脱血致死後肝臓を摘出し、氷冷下で2倍量のリン酸バッファーを加えて、テフロンホモジナイザーで、ホモジネートを作成した。以下、次の様にミクロゾーム画分を調製しタンパク量10mg/mLに調製後、−80℃で保存した。
【0054】
ラット肝ホモジネート
↓遠心分離(700g、5分)
遠心上清
↓遠心分離(12,000g、30分)
遠心上清
↓遠心分離(105,000g、60分)
沈渣(洗浄)
↓遠心分離(105,000g、60分)
沈渣(ミクロゾーム画分)
リン酸バッファーに懸濁(タンパク量10mg/mL)
【0055】
(HMG-CoA リダクターゼ阻害活性の測定法)
酵素反応液50μl中、次の試薬を含むように調製し、37℃、30分反応させた。反応の開始は酵素液の添加、反応の停止は2N塩酸20μlの添加により行い、塩酸添加後、更に37℃、15分間インキュベートした。次に、陽イオン交換樹脂(Bio Rex 5:Bio Rad 社製)の懸濁液(1g/10mL)450μlを加え、1時間振盪後、上清400μlを液体シンチレーター(ACS II:Amersham社製)10mLに加えCoAより乖離した14Cをカウントした。
被験物質(実施例2に記載の方法により得た発酵エキス)は、反応液50μl中に10μl添加とし、無添加時の酵素反応に対し、50%阻害を挟む3点以上のデータからLitchfild-Wilcoxon法によりIC50値を算出した。
【0056】
酵素反応液の組成
0.11mM dl[3−14C]HMG−CoA(2.25Ci/mol)
100mM リン酸カリウムバッファー(pH7.4)
10mM EDTA
10mM ジチオスレイトール
5mM NADPH
30〜40μg ミクロゾーム蛋白(反応液50μl中)
【0057】
(結果)
図10に各培養液のHMG−CoAリダクターゼ阻害活性(IC50の逆数で表示)を示した。紅麹菌(A−24株)を大豆培地、ニンニク:大豆(1:1)の混合培地、ニンニク培地を用いて13〜34日間培養した。大豆培地では検討期間中殆ど阻害活性は認められなかったが、ニンニク:大豆の混合培地ではIC50値0.03〜0.02mL/mLの阻害活性が認められた。更にニンニク培地では培養期間に依存した強い阻害活性(IC50値0.02〜0.007mL/mL)が認められた(図10)。
【0058】
この結果から、酵素失活処理ニンニクは、紅麹菌においてHMG-CoA reductase阻害活性物質を効率よく産生することが確認された。
【0059】
実施例8 製剤例/錠剤
実施例3で調製したニンニク発酵組成物に乳糖、コーンスターチ、結晶セルロース、カルメロースカルシウム及びステアリン酸マグネシウムを下記の処方量で加え、ボーレコンテナミキサー(コトブキ技研工業製)で10分間混合した。この混合末を打錠機(コレクト19K、菊水製作所製)で圧縮成形し、径8mm、重量180mgの錠剤を製した。本錠剤は硬度及び胃内崩壊性に優れていた。
【0060】
【表8】
Figure 0004380951
【0061】
実施例9 製剤例/顆粒剤
実施例3で調製したニンニク発酵組成物にコーンスターチ、結晶セルロース、ヒドロキシプロピルセルロース及びカルメロースカルシウムを下記の処方量で加え混合した後、水を加えて練合した。この練合物を押し出し造粒機(DOME GRAN、不二パウダル製)で径0.8mmの柱状造粒物とし、整粒、乾燥、篩過した後、顆粒剤を製した。本顆粒は胃内崩壊性に優れ、分包等の包装形態で提供することができる。
【0062】
【表9】
Figure 0004380951
【0063】
実施例10 製剤例/ドリンク剤
実施例2で得られたニンニク発酵組成物に下記の処方で甘味剤、酸味剤、香料、水を加えて滅菌した後、ガラス瓶に充填してドリンク剤を製した。
【0064】
【表10】
Figure 0004380951
【0065】
【発明の効果】
本発明の組成物は臭気がなく、糖尿病、肝臓病、癌、免疫疾患、高脂血症等の予防・治療剤として有用である。
【図面の簡単な説明】
【図1】活性酸素消去活性を示す図である。
【図2】活性酸素消去活性を示す図である。
【図3】DPPHラジカル消去活性を示す図である。
【図4】DPPHラジカル消去活性を示す図である。
【図5】DPPHラジカル消去活性を示す図である。
【図6】DPPHラジカル消去活性を示す図である。
【図7】DPPHラジカル消去活性を示す図である。
【図8】抗アロキサン糖尿病作用を示す図である。
【図9】耐糖能を示す図である。
【図10】HMG−CoAリダクターゼ阻害活性を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a medicament comprising a garlic fermentation composition as an active ingredient.
[0002]
[Prior art]
Garlic has been used as a seasoning and spice since ancient times, but in recent years, it has become clear that various physiologically active ingredients are contained therein, and is widely used as health foods and pharmaceuticals.
However, garlic contains precursors of odorous components such as allicin and diallyl disulfide, and is easily converted into these, so many people do not like their preferences and refrain. For this reason, methods have been developed in which heat treatment is performed to eliminate bromide (Japanese Patent Laid-Open Publication Nos. 59-216565 and 4-12644), but problems still remain, such as the occurrence of garlic odor after taking the medicine. .
In addition, it is important to determine the processing method of garlic because garlic has different components and physiological activities due to differences in processing conditions (Emiko Mochizuki: FOODS & FOOD INGREDIENTS JOURNAL OF JAPAN)164, 36-45, 1995).
[0003]
On the other hand, in addition to garlic, there is a conventional fermentation method using koji mold and / or koji mold, which has been used for producing miso, soy sauce, sake and the like. Both these koji molds and koji molds have already been proven to be safe from many years of dietary experience and have been reported to have various physiological activities (for example, antioxidant activity by koji molds (Naoko Yamaguchi: Japan Food Industry) Journal26, 71-75, 1979), Angiotensin I-converting enzyme inhibitory activity (Sayuri Teranaka et al .: Journal of Japanese Society for Agricultural Chemistry)69, 1163-1169, 1995) or cholesterol-lowering activity, antihypertensive activity, etc. due to red yeast.
[0004]
Therefore, the present inventor considered that if garlic was fermented with koji mold and / or koji mold, a composition having no garlic odor and useful as a medicine or food could be obtained. Since it has an effect | action, it was not able to ferment with a koji mold and / or a koji mold. Examples of adding a small amount of garlic in the process of producing wine (Japanese Patent Laid-Open No. 48-52995) and examples of adding a large amount of sugar to a small amount of garlic and fermenting (Japanese Patent Laid-Open No. 53-26361) There is no example of fermentation using garlic as the main raw material.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to eliminate odors peculiar to garlic by fermenting garlic with koji molds and to obtain a composition useful as a medicine or food.
[Means for Solving the Problems]
[0006]
In view of such a situation, the present inventors have conducted intensive research and found that if garlic is previously subjected to enzyme inactivation treatment, it can be fermented with gonococcus alone without adding nutrient sources such as glucose and starch, and further obtained. The fermented composition has no garlic odor, has an antioxidant activity about 100 times stronger than ordinary garlic, has anti-diabetic action, liver damage protection action, anti-cancer action, immune enhancement action, cholesterol lowering action, etc. It was also found useful for the treatment or prevention of liver disease, cancer, immune disease, hyperlipidemia, etc., and the present invention was completed.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
That is, the present invention is a pharmaceutical composition comprising an enzyme-deactivated garlic fermented with koji mold, or a composition obtained by adding beans and / or cereals to enzyme-deactivated garlic and fermented with koji mold. Is to provide.
[0008]
Furthermore, the present invention provides a composition in which enzyme-deactivated garlic is fermented with koji mold, or a composition obtained by adding beans and / or cereals to enzyme-deactivated garlic and fermented with koji mold as an active ingredient The present invention provides a preventive / therapeutic agent for a disease selected from liver disease, cancer, immune disease and hyperlipidemia.
[0009]
In the present invention, garlic means Allium sativum L. belonging to the genus Liliaceae and Allium.
The portion of garlic used for fermentation is particularly preferably a bulb portion, and the enzyme-deactivated bulb can be sliced as it is or in an arbitrary size, or crushed into a crushed juice can be used for fermentation. Moreover, you may add beans and / or cereals, such as rice, soybeans, wheat, and barley, as needed.
[0010]
In order to produce the garlic fermentation composition of the present invention, first, garlic enzyme inactivation treatment is performed. The enzyme deactivation treatment can be performed by treating garlic with heat, microwave, high pressure treatment, enzyme, acid or alcohol, and among these, heat treatment is simple and preferable. The temperature for the heat treatment is preferably 50 to 200 ° C. and 1 to 60 minutes, particularly preferably 90 to 121 ° C. and 10 to 30 minutes.
[0011]
Enzyme-inactivated garlic is, for example, Aspergillus oryzae, Aspergillus sojae, Aspergillus kawachi, Aspergillus awamori and other gonococci, Monascus pilosus, Monascus anka, Monascus paxii, Monascus pubigerus, Monascus rupur, Monascus If fermented with one or more bacteria selected from Aspergillus, the desired garlic fermentation composition can be obtained.
As a specific method for preparing the garlic fermentation composition, for example, a method performed according to the following steps may be mentioned.
[0012]
1) Preparation of garlic medium / garlic-containing medium
After washing the garlic with water, add an equal amount of water and boil for 20 to 30 minutes. If necessary, process chopping, crushing, etc. (If crushing, only crushing juice can be used) . If necessary, beans and / or cereals such as rice, soybeans, wheat and pearl barley are added as necessary as nutrients, supplemented with sugar, and sterilized (121 ° C., 20 minutes) with an autoclave or the like. In addition, when adding beans and / or cereals or performing sugar supplementation, these should not exceed 90% by weight (hereinafter simply referred to as “%”).
[0013]
2) Pre-culture of fermenting bacteria
Fermentative bacteria include Aspergillus (Aspergillus oryzae, Aspergillus sojae, Aspergillus kawachi, Aspergillus awamori, etc.) and Aspergillus (Monascus spp .: M.pilosus, M.anka, M.paxii, M.pubigerus, M.purpures, M. .ruber, M.vitreus, M.major, etc.) are preferably used.
The strain is subcultured on a potato dextrose agar medium supplemented with 2% yeast extract, inoculated into the following medium, and precultured at 10 to 50 ° C. for 2 to 14 days, preferably at 20 to 40 ° C. for 2 to 4 days.
The medium for pre-culture is Sabouraud medium (1% peptone, 4% glucose), potato dextrose medium (potato ginseng (200 g / l) glucose 2%), glycerin medium (glycerin 7%, glucose 3%, soybean meal 3 %, Peptone 0.8%, magnesium sulfate 0.1%, sodium chloride 0.2%) and any fungal medium can be used, but edible substances are preferred as the medium composition.
[0014]
3) Fermentation of garlic
0.1 to 50%, preferably 0.5 to 10% of the precultured bacterial solution prepared in Step 2 is added to the garlic medium prepared in Step 1, and more preferably 7 to 60 days at 10 to 50 ° C. The garlic fermentation composition can be prepared by performing shaking culture or stationary culture at 20 to 40 ° C. for 7 to 35 days in the case of Aspergillus or 14 to 42 days in the case of Aspergillus. Moreover, the water | moisture content of a culture medium may be reduced to 40 to 60%, and static culture may be performed in the form of a solid culture.
[0015]
4) Treatment of garlic fermentation composition
At the stage where the fermentation in step 3 is completed, the fermented product is heat sterilized and then used directly or separated from the culture filtrate and used separately. Moreover, only an active ingredient can be extracted and used.
[0016]
The composition of the present invention thus obtained can be made into a food by a conventional method, or it can be made into various dosage forms with a pharmaceutically acceptable carrier.
Among these, when preparing an oral solid preparation, after adding an excipient, a binder, a disintegrant, a lubricant, a coloring agent, a corrigent, a corrigent, etc. to the garlic fermentation composition, Tablets, coated tablets, granules, powders, capsules and the like can be produced by the method. Such additives may be those commonly used in the art. For example, excipients include lactose, sucrose, sodium chloride, glucose, starch, calcium carbonate, kaolin, microcrystalline cellulose, silicic acid As a binder, water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, hydroxypropylcellulose, hydroxypropyl starch, methylcellulose, ethylcellulose, shellac, calcium phosphate, polyvinylpyrrolidone, etc. As disintegrants, dried starch, carmellose calcium, sodium alginate, agar powder, sodium bicarbonate, calcium carbonate, sodium lauryl sulfate, stearic acid monoglyceride, lactose, etc. are purified as lubricants. Torque, stearate, borax, polyethylene glycol, sucrose as a flavoring agent, orange peel, citric acid, can be exemplified tartaric acid.
[0017]
When preparing an oral liquid preparation, a liquid preparation, a syrup, an elixir, etc. can be manufactured by a conventional method by adding a flavoring agent, a buffer, a stabilizer, a flavoring agent and the like to the garlic fermentation composition. In this case, the flavoring agents may be those listed above, examples of the buffer include sodium citrate, and examples of the stabilizer include tragacanth, gum arabic, and gelatin.
[0018]
The food or medicament of the present invention can be used for the purpose of treatment or prevention of diabetes, liver disease, cancer, immune disease, hyperlipidemia and the like.
The dosage and administration method can be appropriately determined depending on the age, body weight, symptoms, etc. Usually, 0.5 to 2 g of the composition of the present invention can be administered once or several times per day for an adult. preferable.
[0019]
In the composition of the present invention, garlic, koji mold or koji mold, which are main components, are usually used for food, and generally have low toxicity. Moreover, although the composition of the present invention was given to young rats with a 3% diet for 3 weeks, no abnormalities were observed in the growth process and general behavior, and it was confirmed that the composition was a highly safe substance.
[0020]
The garlic fermentation composition of the present invention has a strong antioxidant activity, an anticancer effect, an immune enhancing action such as NK activity, a protective action against acetaminophen liver injury, a protective action against an alloxan diabetes model, and an enhanced glucose tolerance action The anti-diabetic action, cholesterol lowering action, etc. are recognized, and it is extremely useful for the treatment or prevention of adult diseases prevalent in modern society.
In addition, the composition of the present invention is highly safe and has almost no garlic odor (unlike odorless garlic obtained by deactivating allinase, garlic odor is not generated in the mouth). And can be widely used as pharmaceuticals.
[0021]
【Example】
Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not limited by this. Table 1 shows the koji mold and the koji mold used in this example.
[0022]
[Table 1]
Figure 0004380951
[0023]
Example 1 Production of garlic fermentation composition using Aspergillus and its antioxidant activity (Preparation of fermentation composition (extract))
After garlic was washed with water, an equal amount of water was added, boiled for 30 minutes, and then crushed to obtain a crushed juice. An equal amount of water and 2% glucose were added to the crushed juice, and sterilized in an autoclave at 121 ° C. for 20 minutes (garlic medium). Separately, Aspergillus oryzae was pre-cultured in Sabouraud medium (1% peptone, 4% glucose) at 27 ° C. under shaking at 160 rpm for 3 days, and 1% of this culture solution was added to garlic medium at 27 ° C. The supernatant (extract) cultured for 2 days to 5 weeks under the condition of shaking at 160 rpm and centrifuged at 300 rpm for 10 minutes was used for the following test. On the other hand, rice and soybeans were prepared to be equal to the garlic medium as dry solids.
[0024]
(Measurement of superoxide anion scavenging ability)
65mM KH2POFour-Borate buffer (pH 8.2) 200 μl, 5 mM xanthine aqueous solution 200 μl, 10 mM hydroxylamine aqueous solution 100 μl, water 200 μl, 100 μl sample and 200 μl xanthine oxidase were added and incubated at 37 ° C. for 15 minutes. At the end of the incubation, for the purpose of stopping the reaction and coloring, 2 mL of 30 μM N-naphthylethylenediamine-3 mM sulfanilic acid-25% glacial acetic acid was added and left at room temperature for 45 minutes, and the absorbance was measured at 550 nm. This measurement was performed twice, and the active oxygen scavenging activity (%) was determined from the decrease in absorbance due to the addition of the sample. Xanthine oxidase (xanthine oxidase suspension: Wako Pure Chemical Industries, Ltd.) was prepared so that the change in absorbance was 0.020 to 0.025 / min (15 to 20 mU / mL).
The results are shown in FIGS.
[0025]
(Measurement method of DPPH radical scavenging ability)
The sample is diluted with 0.5 M acetate buffer (pH 5.5), 0.5 mL of ethanol is added to 0.5 mL thereof, and 0.5 mM DPPH (1,1-diphenyl-1-picrylhydrazyl: Wako Pure Chemical Industries, Ltd.) 0.25 mL of ethanol solution was added and mixed well, and the absorbance at 520 nm was measured over time, and the percentage relative to the control with no sample added was determined. The results are shown in FIGS.
[0026]
(result)
(1) Superoxide anion scavenging ability of garlic medium and garlic fermentation extract
The garlic medium showed weak scavenging activity, but the garlic fermented extract increased scavenging activity depending on the fermentation period. Moreover, although the activity of the garlic medium increased slightly by addition of glucose, the fermentation extract showed almost no difference (FIG. 1).
The garlic fermentation extract was diluted and the superoxide anion scavenging ability was measured in the same manner. The garlic fermented extract was a 4-week fermentation sample, which was 100-fold diluted, and the activity of the garlic medium became equal. Fermentation enhanced the superoxide anion scavenging activity 100-fold (FIG. 2).
[0027]
(2) DPPH radical scavenging activity
DPPH radical scavenging activity was measured using a 100-fold diluted solution. The garlic medium (BG) showed almost no activity, but the garlic fermentation extract increased DPPH radical scavenging activity depending on the fermentation period in any koji mold. In particular, strong activity was observed in A-1 and A-6 (FIG. 3).
[0028]
(3) A-1 , A-6 Of Medium on Production of DPPH Radical Scavenging Active Substance in Rice
The rice medium and soybean medium hardly showed DPPH radical scavenging activity. A-1 showed some DPPH radical scavenging activity in the rice medium and was weaker in the soybean medium, but very strong activity was observed in the fermented extract of the garlic medium. (FIG. 4) In A-6, the specificity in the garlic medium was more remarkably recognized. (Fig. 5)
[0029]
Example 2 Antioxidant activity of fermented garlic extract using red koji mold
(Method for preparing fermented extract)
After garlic was washed with water, an equal amount of water was added, boiled for 30 minutes, and then crushed to obtain a crushed juice. An equal amount of water and 2% glucose were added to the crushed juice, and sterilized in an autoclave at 121 ° C. for 20 minutes (garlic medium). Separately, 1 platinum ear of Monascus was cultured in glycerol medium (glycerol 7%, glucose 3%, soybean meal 3%, peptone 0.8%, magnesium sulfate 0.1%, sodium chloride 0.2%). Then, 1% of this culture solution was added to garlic medium, cultured for 2 to 5 weeks under conditions of shaking at 25 ° C. and 160 rpm, and the supernatant obtained by centrifugation at 300 rpm for 10 minutes was used for the following tests. In addition to the garlic medium, a soybean medium prepared by using soybean as a dry solid so as to be equal to the garlic medium, a medium in which garlic and soybean were mixed, and the like were used.
[0030]
(Measurement method of DPPH radical scavenging ability)
The sample is diluted with 0.5 M acetate buffer (pH 5.5), 0.5 mL of ethanol is added to 0.5 mL thereof, and 0.5 mM DPPH (1,1-diphenyl-1-picrylhydrazyl: Wako Pure Chemical Industries, Ltd.) 0.25 mL of ethanol solution was added and mixed well, and the absorbance at 520 nm was measured over time, and the percentage relative to the control with no sample added was determined. The results are shown in FIGS.
[0031]
(result)
(1) DPPH radical scavenging ability of red koji culture solution
The mixed medium of garlic: soybean (2: 2) showed a weak erasing activity, but the garlic fermented extract fermented with koji mold increased the erasing activity according to the fermentation period. In particular, strong activity was observed in A-24 and A-26 (FIG. 6).
Using the A-24 strain, the mixing ratio of garlic and soybean was changed and examined. In the soybean-only medium (0: 4), the radical scavenging activity was weak, but as the garlic compounding ratio increased, the activity increased. In particular, the strongest activity was observed in a medium (8: 0) in which garlic was doubled (FIG. 7).
[0032]
Example 3 Antitumor effect and immune enhancement effect of garlic fermentation composition
(Preparation method of garlic fermentation composition)
After garlic was washed with water, an equal amount of water was added, boiled for 30 minutes, and then crushed to obtain a crushed juice. An equal amount of water and 2% glucose were added to the crushed juice, and sterilized in an autoclave at 121 ° C. for 20 minutes (garlic medium). Separately, Aspergillus oryzae was pre-cultured in Sabouraud medium (1% peptone, 4% glucose) at 27 ° C. under shaking at 160 rpm for 3 days, and 1% of this culture solution was added to garlic medium at 27 ° C. The cells were cultured for 2 weeks under the condition of shaking at 160 rpm. The obtained fermented product was heated at 100 ° C. for 10 minutes, freeze-dried and pulverized. In various tests, the garlic fermentation composition was suspended in water and administered orally.
[0033]
(experimental method)
Sarcoma-180 10 to ICR male mice (7 weeks old: CLEA JAPAN)6Cell / mouse is transplanted subcutaneously, and the test substance is orally administered 10 times every other day from the next day. The size of the tumor (3/4 × minor axis × minor axis × major axis mm)Three) Was measured. Thereafter, the spleen was aseptically removed, and a cell suspension was prepared according to a conventional method. Tris buffer solution for removing red blood cells (17 mM Trishydroxymethylaminomethane 0.747%, NHFourCl, pH 7.65), washed with RPMI 1640, and suspended in RPMI 1640 containing 10% FCS.
[0034]
YAC-1 cells, Salcoma 180 cell labeling
2 x 10 with RPMI 1640 with 10% FCS6To YAC-1 cells or salcom-180 cells prepared to cell / 0.1 mL, Na2 51CrOFourAdd 100 μl (Amersham, 1 μCi / μl in sterile 0.9% NaCl) and add CO2The cells were cultured for 2 hours in an incubator. After that, it was washed 4 times with RPMI 1640 containing 10% FCS and 3 × 10FivePrepared to cell / mL.
[0035]
NK activity, killer activity
3 x 10 spleen cells7cell / mL (200 times that of YAC-1 cells and Salcoma-180 cells), and 100 μl (3 × 10 6) in a NUNC 96-well U-bottom multi dish.6cell) 3 × 10Fiveprepared to cell / mL51Cr-labeled YAC-1 cells or Salcoma-180 cells 50 μl (1.5 × 10 5Fourcell) was added (Exp). Besides this, for maximum liberation,51Cr-labeled YAC-1 cells or Salcoma-180 cells 50 μl (1.5 × 10 5Fourcell) to which 100 μl of 1N HCl is added (Tmax)51Cr-labeled YAC-1 cells or Salcoma-180 cells 50 μl (1.5 × 10 5Fourcell) to which 100 μl of RPMI 1640 containing 10% FCS was added (Tspon) was prepared. CO in this multi dish2After culturing for 24 hours in an incubator, 100 μl of the centrifuged supernatant was placed in an RIA tube and released with a gamma counter.51Cr was measured. Cytotoxicity (%) was calculated from the following formula, and defined as NK activity and killer activity.
[0036]
Cytotoxicity (%) = ((Exp-Tspon) / (Tmax-Tspon)) x 100
[0037]
Statistical processing
After F test, it was tested by Student's-T test or Aspin-Welch method, and a risk rate of less than 5% was regarded as significant and indicated by *. The results are shown below.
[0038]
(result)
(1) Anti-tumor effect
The tumor volume 3 weeks after cancer cell transplantation was 393 mm of the control group.ThreeOn the other hand, a statistically significant growth inhibitory action was observed in the A-1 and A-6 administration groups. A similar effect was observed with krestin as well.
[0039]
[Table 2]
Figure 0004380951
[0040]
(2) NK activity
NK activity was measured using spleen cells 3 weeks after transplantation of cancer cells. The NK activity was 17.8% and 14.1% in the A-1 and A-6 administration groups compared to 4.6% in the control group, and a statistically significant enhancement effect of NK activity was observed. . A significant potentiating effect was also observed in the krestin administration group.
[0041]
[Table 3]
Figure 0004380951
[0042]
(3) Killer activity
Killer activity was measured using spleen cells 3 weeks after transplantation of cancer cells. Similar to the NK activity, the killer activity showed a significant and statistically significant activity enhancing action in the A-1 and A-6 administration groups.
[0043]
[Table 4]
Figure 0004380951
[0044]
Example 4 Acetaminophen liver injury protective effect
(experimental method)
The same garlic fermentation composition as in Example 3 was used. Six-week-old ddY male mice (Japan SLC) were fasted overnight. The test substance was orally administered twice 2 hours before and 30 minutes before acetaminophen administration, and acetaminophen (400 mg / kg) was intraperitoneally administered. Six hours later, blood was collected from the abdominal vena cava using a heparin-treated syringe, the plasma GPT activity was measured, and used as an indicator of liver damage. Acetaminophen (Wako Pure Chemical Industries, Ltd.) was dissolved in a physiological saline adjusted to pH 11 with tripotassium phosphate aqueous solution (100 mg / mL) in a boiling water bath. Plasma GPT activity was measured using GPT-UV Test Wako (Wako Pure Chemical Industries). The results are shown below.
[0045]
(result)
By administration of acetaminophen, the plasma GPT activity in the control group increased to 468 IU / l, and severe liver damage was induced. On the other hand, the GPT activity in the A-1 and A-6 administration groups was only increased by 146 and 68 IU / l, and a remarkable protective action against liver damage was observed.
[0046]
[Table 5]
Figure 0004380951
[0047]
Example 5 Antidiabetic action
(experimental method)
The same garlic fermentation composition as in Example 3 was used. Six-week-old ddY male mice (Japan SLC) were fasted overnight. 20 μl of blood was collected from the orbital venous plexus using a capillary. A test substance of 4 g / kg was orally administered, 1 hour later, alloxan (Wako Pure Chemical Industries) 50 mg / kg was intravenously administered, and blood was collected similarly after 1 hour and 6 hours. Fasting was released immediately after alloxan administration, the test substance was orally administered once a day from the day before alloxan administration to 3 days later, and blood sampling was performed in the same manner after 1, 2, 4 days. Immediately after blood collection, plasma was separated using a hematocrit centrifuge, and the blood glucose level was measured using Glucose CII-Test Wako (Wako Pure Chemical Industries).
Statistical processing was performed in the same manner as in Example 3. The results are shown in FIG.
[0048]
[Table 6]
Figure 0004380951
[0049]
(result)
The blood glucose level of a normal mouse, which is shown as normal, is about 200 mg / dl, but with the administration of alloxan, the blood glucose level of the control group increased dramatically to 540 mg / dl after 1 hour, and continued to increase thereafter. After 48 hours, it reached 650 mg / dl. On the other hand, in the garlic fermentation composition A-6 administration group, the blood glucose level at 1 hour after alloxan administration remained at 380 mg / dl, and a statistically significant inhibitory effect on the increase in blood glucose was observed with the control group. . Thereafter, a significant low value was observed. A-1 also showed a significant inhibitory effect on blood sugar rise. However, boiled garlic (garlic medium: BG) used as a raw material for fermentation did not show an inhibitory effect on the increase in blood glucose by alloxan administration (FIG. 8).
[0050]
Example 6 Suppressing effect on blood glucose rise
(experimental method)
The same garlic fermentation composition as in Example 3 was used. After 8-week old ddY male mice (Japan SLC) were fasted overnight, 20 μl of blood was collected from the orbital venous plexus using capillaries, and then water was kept until the end of the experiment. The test substance and starch were orally administered simultaneously, and blood was similarly collected after 30, 60, and 120 minutes. Immediately after blood collection, plasma was separated using a hematocrit centrifuge, and the blood glucose level was measured using Glucose CII-Test Wako (Wako Pure Chemical Industries). Statistical processing was performed in the same manner as in Example 3. The results are shown in FIG.
[0051]
[Table 7]
Figure 0004380951
[0052]
(result)
The blood glucose level of the control group to which starch was orally administered increased by 150 mg / dl after 30 minutes. However, in the A-1 administration group, the blood glucose level remained at an increase of 100 mg / dl, and the blood glucose level had a significant inhibitory effect on the increase in blood glucose relative to the control group. Admitted. The subsequent blood glucose level was slightly higher than that of the control group although there was no significant difference, and a delay in the increase in blood glucose was observed. In the A-6 administration group, almost the same result as A-1 was obtained. On the other hand, the boiled garlic (garlic medium: BG) administration group showed the same blood glucose transition as the control, and clearly different results from the garlic fermentation composition (FIG. 9).
[0053]
Example 7 Cholesterol synthesis inhibitory activity of garlic fermentation extract using red koji mold
The same garlic fermentation extract as in Example 2 was used.
(Preparation method of enzyme specimen)
Wistar male rats (6.5 weeks old) were bred for 6 days with powdered EC-2 (manufactured by CLEA Japan, Inc.) under reverse illumination from 17:00 to 5:00 pm tomorrow. 2% cholestyramine The mice were bred for 5 days in CE-2 containing 8% corn oil. At 10:00, which corresponds to midnight, the rats were bled and lethal, and then the liver was removed. A two-fold amount of phosphate buffer was added under ice cooling, and a homogenate was prepared with a Teflon homogenizer. Hereinafter, the microsomal fraction was prepared as follows, and the protein amount was adjusted to 10 mg / mL and then stored at −80 ° C.
[0054]
Rat liver homogenate
↓ Centrifugation (700g, 5 minutes)
Centrifugal supernatant
↓ Centrifugation (12,000g, 30 minutes)
Centrifugal supernatant
↓ Centrifugation (105,000g, 60 minutes)
Sediment (cleaning)
↓ Centrifugation (105,000g, 60 minutes)
Sediment (microsome fraction)
Suspended in phosphate buffer (protein amount 10mg / mL)
[0055]
(Method for measuring HMG-CoA reductase inhibitory activity)
It prepared so that the following reagents might be contained in 50 microliters of enzyme reaction liquid, and it was made to react at 37 degreeC for 30 minutes. The reaction was started by adding an enzyme solution and stopped by adding 20 μl of 2N hydrochloric acid. After addition of hydrochloric acid, the mixture was further incubated at 37 ° C. for 15 minutes. Next, 450 μl of a suspension (1 g / 10 mL) of a cation exchange resin (Bio Rex 5: manufactured by Bio Rad) was added, and after shaking for 1 hour, 400 μl of the supernatant was added to 10 mL of a liquid scintillator (ACS II: manufactured by Amersham). In addition to CoA14C was counted.
The test substance (fermented extract obtained by the method described in Example 2) was added at 10 μl in 50 μl of the reaction solution, and Litchfild-Wilcoxon was obtained from 3 or more points of data interposing 50% inhibition with respect to the enzyme reaction without addition. IC by law50The value was calculated.
[0056]
Composition of enzyme reaction solution
0.11 mM dl [3-14C] HMG-CoA (2.25 Ci / mol)
100 mM potassium phosphate buffer (pH 7.4)
10 mM EDTA
10 mM dithiothreitol
5mM NADPH
30-40 μg microsomal protein (in 50 μl of reaction solution)
[0057]
(result)
FIG. 10 shows the HMG-CoA reductase inhibitory activity (IC50(Represented by the inverse of). Red koji mold (A-24 strain) was cultured for 13 to 34 days using a soybean medium, a mixed medium of garlic: soybean (1: 1), and a garlic medium. In the soy medium, almost no inhibitory activity was observed during the study period.50An inhibitory activity of values 0.03 to 0.02 mL / mL was observed. Furthermore, garlic medium has a strong inhibitory activity (IC50Value 0.02-0.007 mL / mL) was observed (FIG. 10).
[0058]
From these results, it was confirmed that the enzyme-inactivated garlic efficiently produced an HMG-CoA reductase inhibitory active substance in the koji mold.
[0059]
Example 8 Formulation Example / Tablet
Lactose, corn starch, crystalline cellulose, carmellose calcium and magnesium stearate were added to the garlic fermentation composition prepared in Example 3 in the following amounts, and mixed for 10 minutes with a Bole container mixer (manufactured by Kotobuki Giken Kogyo). This mixed powder was compression-molded with a tableting machine (collect 19K, manufactured by Kikusui Seisakusho) to produce a tablet having a diameter of 8 mm and a weight of 180 mg. This tablet was excellent in hardness and gastric disintegration.
[0060]
[Table 8]
Figure 0004380951
[0061]
Example 9 Formulation Example / Granule
To the garlic fermentation composition prepared in Example 3, corn starch, crystalline cellulose, hydroxypropyl cellulose and carmellose calcium were added and mixed in the following amounts, and then water was added and kneaded. This kneaded product was formed into a columnar granulated product having a diameter of 0.8 mm by an extrusion granulator (DOME GRAN, manufactured by Fuji Powder), granulated, dried, sieved, and then granulated. This granule is excellent in gastric disintegration and can be provided in a packaging form such as a sachet.
[0062]
[Table 9]
Figure 0004380951
[0063]
Example 10 Formulation Example / Drink
The garlic fermentation composition obtained in Example 2 was sterilized by adding a sweetener, a sour agent, a fragrance, and water according to the following formulation, and then filled into a glass bottle to prepare a drink.
[0064]
[Table 10]
Figure 0004380951
[0065]
【The invention's effect】
The composition of the present invention has no odor and is useful as a preventive / therapeutic agent for diabetes, liver disease, cancer, immune disease, hyperlipidemia and the like.
[Brief description of the drawings]
FIG. 1 is a diagram showing active oxygen scavenging activity.
FIG. 2 is a diagram showing active oxygen scavenging activity.
FIG. 3 is a diagram showing DPPH radical scavenging activity.
FIG. 4 is a diagram showing DPPH radical scavenging activity.
FIG. 5 is a graph showing DPPH radical scavenging activity.
FIG. 6 is a diagram showing DPPH radical scavenging activity.
FIG. 7 is a graph showing DPPH radical scavenging activity.
FIG. 8 is a diagram showing an antialloxan diabetic action.
FIG. 9 is a diagram showing glucose tolerance.
FIG. 10 is a graph showing HMG-CoA reductase inhibitory activity.

Claims (1)

酵素失活処理したニンニクを麹菌で発酵させた組成物、あるいは酵素失活処理したニンニクに豆類及び/又は穀類を添加し、麹菌で発酵させた組成物を有効成分とする抗酸化剤。  An antioxidant comprising as an active ingredient a composition obtained by fermenting enzyme-deactivated garlic with koji mold, or a composition obtained by adding beans and / or cereals to enzyme-deactivated garlic and fermenting with koji mold.
JP2001273468A 1996-12-10 2001-09-10 Garlic fermentation composition Expired - Lifetime JP4380951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001273468A JP4380951B2 (en) 1996-12-10 2001-09-10 Garlic fermentation composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-329727 1996-12-10
JP32972796 1996-12-10
JP2001273468A JP4380951B2 (en) 1996-12-10 2001-09-10 Garlic fermentation composition

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52646998A Division JP3313120B2 (en) 1996-12-10 1997-11-27 Garlic fermentation composition

Publications (2)

Publication Number Publication Date
JP2002154981A JP2002154981A (en) 2002-05-28
JP4380951B2 true JP4380951B2 (en) 2009-12-09

Family

ID=26573315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001273468A Expired - Lifetime JP4380951B2 (en) 1996-12-10 2001-09-10 Garlic fermentation composition

Country Status (1)

Country Link
JP (1) JP4380951B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193570A (en) * 2014-03-31 2015-11-05 ユニチカ株式会社 Testosterone production promoter

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166613A (en) * 2002-11-21 2004-06-17 Kahoru Yoshioka Unprocessed food product improved in active ingredient and absorption without changing shape by fermentation
JP2006075003A (en) * 2004-09-07 2006-03-23 Gunze Ltd Soybean ang-khak and food and beverage containing the same
JP5249817B2 (en) 2009-02-27 2013-07-31 富士産業株式会社 Immunostimulated fermented food from fructan-containing food
KR101146857B1 (en) * 2010-02-25 2012-05-16 인제대학교 산학협력단 Composition comprising the dried powder of aged black garlic or the extract thereof for preventing and treating hepatic disease
KR101609918B1 (en) * 2014-04-22 2016-04-07 천현수 Manufacturing method of fermented garlic composition and the fermented garlic composition thereof
JP6901317B2 (en) * 2017-05-18 2021-07-14 株式会社ファンケル Powder of soybean aspergillus fermentation composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193570A (en) * 2014-03-31 2015-11-05 ユニチカ株式会社 Testosterone production promoter

Also Published As

Publication number Publication date
JP2002154981A (en) 2002-05-28

Similar Documents

Publication Publication Date Title
JP3313120B2 (en) Garlic fermentation composition
JP4990297B2 (en) Grape peel / seed lactic acid bacteria fermented product and medicine using the same
KR100988072B1 (en) Fermented dendropanax morbifera lev. products and a pharmaceutical composition comprising the same
JP2005000161A (en) Fermentation composition of cayenne pepper or capsaicinoid-containing plant
EP1827136B1 (en) Formulation for oral administration having a health-promoting effect on the cardiovascular system
JP4380951B2 (en) Garlic fermentation composition
JP2019180364A (en) Food composition for cognitive function improvement, cognitive function improver, and method for producing the same
KR101729003B1 (en) Composition For Preventing or Treating Gout Containing Extracts or Fermentation Metabolites of Dendropanax morbiferus
EP3970511A1 (en) Strain showing liver function improving activity, and use thereof
JP2010100663A (en) Enzyme inhibitor containing fermentation product of allium cepa l
KR20190015886A (en) Method for preparing food or pharmaceutical composition comprising fermented extract of garlic sprout as an effective ingredient
JP2009196949A (en) Angiotensin converting enzyme-inhibiting peptide
JP2006342134A (en) Medicine given by using ank-khak and method for producing the same
JPWO2004077963A1 (en) Processed plant and method for producing the same
JP2003342188A (en) Anticancer agent
KR20150097442A (en) Composition comprising extracts of Codonopsis lanceolata or compounds isolated therefrom for preventing, improving or treating obesity or obesity-related disease
JP5635222B2 (en) Antioxidant with medicinal properties
KR20090043758A (en) Composition for improvement of fatty liver
JP2008074734A (en) Ameliorating agent for insulin resistance
JP2006256969A (en) Blood flow ameliorant
JP2021024858A (en) Hypotensive composition
KR101935861B1 (en) Functional food composition for removing hangover and improving liver function and manufacturing method for thereof
JP2006016340A (en) Blood uric acid level reduction agent having extract of punica granatum l. as active ingredient
KR100416650B1 (en) Extract Polygonatum and composition caontaining the same with hypocholesterolemic and hypoglycemic activities
JPH0759539A (en) Alpha-amylase inhibitory matter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040916

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150