JP4378840B2 - Manufacturing method of steel plate for cans - Google Patents

Manufacturing method of steel plate for cans Download PDF

Info

Publication number
JP4378840B2
JP4378840B2 JP2000122651A JP2000122651A JP4378840B2 JP 4378840 B2 JP4378840 B2 JP 4378840B2 JP 2000122651 A JP2000122651 A JP 2000122651A JP 2000122651 A JP2000122651 A JP 2000122651A JP 4378840 B2 JP4378840 B2 JP 4378840B2
Authority
JP
Japan
Prior art keywords
less
rolling
value
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000122651A
Other languages
Japanese (ja)
Other versions
JP2001303181A (en
Inventor
金晴 奥田
章男 登坂
修 古君
誠 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000122651A priority Critical patent/JP4378840B2/en
Publication of JP2001303181A publication Critical patent/JP2001303181A/en
Application granted granted Critical
Publication of JP4378840B2 publication Critical patent/JP4378840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、飲料缶の用途、特に絞り加工の行われる2ピース缶に使用して好適なr値の面内異方性の小さい缶用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
絞り用途の缶用鋼板については、従来から種々の製造方法が提案されている。
例えば、特開昭62−161919号公報には、低炭素アルミキルド鋼の製造工程中、特に巻取り温度と冷延圧下率、再結晶焼鈍温度を調整することによって、r値の面内異方性の小さい絞り加工性に優れる缶用鋼板の製造法が開示されている。
【0003】
上記したような絞り用途の缶用鋼板において、r値の面内異方性が大きいすなわちΔrの絶対値が大きいと、絞り加工後にイヤリングと呼ばれるカップ高さの不均一が生じ、歩留りが低下するだけでなく、用途によっては、印刷がゆがむ不都合が生じたり、その後のフランジ加工において欠陥を誘発する原因となるため、この種鋼板では、r値の面内異方性を小さくすることが特に重要とされる。
【0004】
なお、ここでΔrとは、次式で定義される値であり、正値あるいは0あるいは負値をとる。r値の面内異方性が小さいとは、Δrが0に近いすなわちΔrの絶対値が小さいことを意味する。
Δr=(r0 +r90−2r45)/2
ここで、r0 :圧延方向のr値
90:圧延方向と90°の傾きをなす方向のr値
45:圧延方向と45°の傾きをなす方向のr値
【0005】
面内異方性に影響を与える因子としては、種々考えられるけれども、その中でも、冷延圧下率と二次圧延率の影響が大きいとされ、「鉄と鋼Vol.86(2000)No.1P.32〜37)や特開平9−184018号公報に開示されているように、製品板厚に応じて熱延仕上げ厚みを調整する必要があった。
【0006】
また、缶用鋼板は、コイルの長手方向および幅方向にわたって、安定した機械的性質を有することも必要とされる。
このため、特開平9−104919号公報では、熱延板の板厚については記載されていないものの、0.0050mass%以下の極低炭素鋼板において、一旦コイルに巻き取り、ついで巻き戻されたシートバーのエッジを加熱すること、ならびに摩擦係数が0.15以下の潤滑圧延を行うことが推奨されている。
しかしながら、上記したような極低炭素鋼板では、結晶粒が粗大化し易く、最終的に微細な結晶組織が得られないので、絞り加工後に肌荒れが生じる不利があった。
【0007】
さらに、缶用鋼板では、最近、コストダウンのために、素材の薄肉化が進み、これに伴って従来にない高い冷延圧下率、二次圧延率が要求されているが、このような状況下でも面内異方性が小さいことが望まれている。
上記の要請に応えるものとして、特開平10−237592号公報には、炭素量が0.02mass%以下の鋼種について、板厚が 1.8mm以下の熱延板としたのち、冷間圧下率:75%以下で一次圧延を行い、焼鈍後、20%以下の圧下率で二次圧延を施す技術が開示されている。
しかしながら、この技術にしても、炭素量が極低炭の領域では上記と同様に、結晶粒が粗大化して肌荒れが生じ易いという問題があり、また0.01〜0.02mass%の低炭素域では、固溶Cの制御が極めて難しいため、製造条件のわずかなバラツキによっても炭化物の析出状態が変化し、それに伴い強度のバラツキが生じ易いという問題があった。
【0008】
【発明が解決しようとする課題】
この発明は、上記の問題を有利に解決するもので、絞り加工後に肌荒れが生じることがなく、また素材を薄肉化した場合であっても特性にバラツキが生じることのない、r値の面内異方性の小さい缶用鋼板の有利な製造方法を提案することを目的とする。
【0009】
【課題を解決するための手段】
さて、発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、結晶粒を微細化して、絞り加工後の肌荒れを防止するには、ある程度炭素を含有させた方が有利であること、また薄肉化しても面内異方性の劣化を防止するためには、熱延仕上げ厚みを 1.5mm以下にする必要があることの知見を得た。
【0010】
また、さらに研究を進めた結果、このような薄物の圧延においては、フェライト域だけでなくオーステナイト域においても潤滑圧延を活用しないと、表層に異常な集合組織が発達して、r値およびその面内異方性が劣化することの知見を得た。
なお、潤滑圧延については、前述した特開平9−l04919号公報にも開示されているが、同公報では、鋼種がC≦0.005 mass%の極低炭素鋼板に限定されており、またその目的は、r値などのコイル長手方向および幅方向にわたるバラツキを小さくすることであった。
また、潤滑圧延については、特開平10−237592号公報にも開示されているが、この技術もC量は0.02mass%以下と、炭素含有量が比較的低い鋼種に関する技術である。
【0011】
しかしながら、上記のような潤滑圧延を施すと、コイル内でのばらつき以外に、特にこの発明のように炭素をある程度含有させて微細化を図った材料では、r値とその面内異方性の絶対値が、炭素が低い場合から予測されるよりも大きく変動することが判明した。
そして、かかる場合に、Δrを制御するためには、熱延板の板厚および摩擦係数をはじめとして、種々の製造条件を所定の範囲に制御する必要があることが究明されたのである。
この発明は、上記の知見に立脚するものである。
【0012】
すなわち、この発明は、質量百分率で、
C:0.020 〜0.050 %、
Si:0.04%以下、
Mn:0.6 %以下、
Al:0.005 〜0.1 %、
P:0.02%以下、
S:0.02%以下、
N:0.0005〜0.010 %
を含み、残部はFeおよび不可避的不純物の組成になる鋼スラブを、仕上げ圧延温度:Ar3〜(Ar3+100 ℃)、少なくとも仕上げ最終3スタンドにおける圧延ロールと鋼板の摩擦係数:0.20以下の条件で熱間圧延して 0.8〜1.5 mm厚の熱延板としたのち、 500〜750 ℃の温度でコイルに巻き取り、酸洗後、圧下率:80〜88.3%で冷間圧延し、ついで再結晶温度以上で焼鈍を施したのち、9.8%以下の圧下率で二次圧延を施すことによって缶用鋼板を製造するものとし、その際、炭素量をC(mass%)、熱延板の板厚をt(mm)、熱間仕上げ圧延最終3スタンドにおける摩擦係数の最大値をμ、巻取り温度をCT(℃)、冷延圧下率をCR(%)、二次圧延圧下率をDR(%)とするとき、これらの関係式として次式(1)
A=7.882 −3.5 C−0.088 CR−0.014 DR
+0.005(CT−700)−4μ(1.6−t)2 --- (1)
で示されるAの絶対値が0.30以下となるように、上記の各製造条件を調整することを特徴とする面内異方性の小さい缶用鋼板の製造方法である。
【0013】
【発明の実施の形態】
以下、この発明を具体的に説明する。
まず、この発明において、素材の成分組成を上記の範囲に限定した理由について説明する。なお、各元素の含有量の表示に用いた「%」は、特に断わりがない限り質量百分率(mass%)を表すものとする。
C:0.020 〜0.050 %
Cは、組織の微細化や鋼の強化に有効な元素であるが、含有量が 0.020%未満では、固溶炭素の制御が難しく、炭化物の析出状態が熱延条件の影響を受け易くなって材質バラツキが生じ易くなる。また、結晶粒を微細化して、絞り加工後の肌荒れを抑制し、表面外観を向上させるためにも、C量は 0.020%以上とする必要がある。
さらに、この発明の主要な点である、オーステナイト域での極薄の熱間圧延において、潤滑圧延による面内異方性とr値の改善効果という点からも、 0.020%以上より好ましくは 0.025%以上のC含有下で潤滑圧延を施すことが重要である。
とはいえ、C量が 0.050%を超えると、炭化物が多くなりすぎて成形性が低下するので、C量は 0.020〜0.050 %の範囲に限定した。
【0014】
Si:0.04%以下
Siは、多量に含有されるとスケール欠陥などを誘発し、また材質を極端に硬質化して冷延圧延性が損なわれるので、Si量は0.04%以下、より好ましくは0.02%以下に限定した。
【0015】
Mn:0.6 %以下
Mnは、SをMnSとして固定する働きがあるため、0.05%以上含有させることが好ましいが、0.6 %を超えると材質が硬化して、冷間圧延性が悪化したり、伸びやr値の低下を招くので、Mn量は 0.6%以下に限定した。
【0016】
Al:0.005 〜0.1 %
Alは、溶製段階で脱酸剤として有効に寄与するだけでなく、固溶NをAlNとして固定する上でも有用な元素である。このためには、少なくとも 0.005%の含有を必要とするが、 0.1%を超えるとその効果は飽和に達するだけでなく、伸びの低下を招くので、Alは 0.005〜0.1 %の範囲で含有させるものとした。
【0017】
P:0.02%以下
Pは、鋼の硬質化や加工性の低下を招くので、その混入は極力低減することが好ましいが、0.02%以下であれば許容される。
【0018】
S:0.02%以下
S量が0.02%を超えると熱間割れなどを誘発するだけでなく、伸び等の低下を招くので、S量は0.02%以下に限定した。
【0019】
N:0.0005〜0.010 %
成形性を確保するためには、N量は 0.010%以下まで低減する必要がある。しかしながら、現状の溶製技術では0.0005%を下回る値まで低減することは極めて難しいので、N量は0.0005〜0.010 %の範囲に限定した。
【0020】
次に、この発明の製造条件について説明する。
まず、スラブの製造方法としては、連続鋳造法が有利に適合するが、造塊−分塊法であってもかまわないのはいうまでもない。
スラブ加熱温度も、同様に、特に限定されることはないが、1000〜1250℃程度が好適である。
【0021】
上記のスラブ加熱後、熱間圧延を施すが、この熱間圧延においては、仕上げ厚み、仕上げ圧延温度および仕上げ最終3スタンドにおける圧延ロールと鋼板との摩擦係数が重要である。
1) 熱間圧延の仕上げ厚み:0.8 〜1.5 mm
缶用鋼板は、素材の薄肉化が進み、最終製品のΔrを制御するためには、板厚が 1.5mm以下の熱延板とする必要がある。 また、この発明で制御項目とした、オーステナイト域での潤滑圧延において、潤滑不良によりr値の面内異方性が大きく変化するのが、1.5 mm以下であり、それ以上の板厚では、従来より予測されるΔrの制御で十分であることも、仕上げ厚みを 1.5mm以下にした理由である。
しかしながら、0.8 mmを下回る厚みまで仕上げるのは、現状の設備では極めて難しいので、熱間圧延における仕上げ厚みは 0.8〜1.5 mmの範囲に限定した。
なお、コイル長手方向および幅方向の材質の均質化のために、粗圧延後のシートバーを一旦コイルに巻き取り、これを巻き戻す際に、先行のシートバーと後行のシートバーを接合する方法、またシートバーをエッジを含めて加熱する方法等を、必要に応じて組み合わせることができるのはいうまでもない。
【0022】
2) 仕上げ圧延温度:Ar3〜(Ar3+100 ℃)
仕上げ圧延温度がAr3変態点未満では、表層に粗大粒が形成され、肌荒れやr値の面内異方性が大きくなる原因となり、一方(Ar3+100 ℃)を超えると、スケール欠陥が多発するので、仕上げ圧延温度はAr3〜(Ar3+100 ℃)の範囲に限定した。
【0023】
3) 少なくとも仕上げ最終3スタンドにおける圧延ロールと鋼板との摩擦係数:0.20以下
熱間圧延における仕上げ厚みが、上記1) に示したように薄くなると、γ域においても、圧延ロールと鋼板の摩擦係数が重要となり、特に板厚が薄くなる少なくとも仕上げ圧延の最終3スタンドについては、各スタンドにおける摩擦係数を0.20以下とする必要がある。
というのは、少なくとも最終3スタンドの摩擦係数が0.20を超えると、熱延板表層に異常な集合組織が形成され、板厚が薄いが故にこの集合組織が鋼板の主要な集合組織となるからである。 この集合組織は、冷延−再結晶焼鈍後も残存し、r値の面内異方性を変化させ、Δr値を負値とする傾向にあるだけでなく、平均r値を下げるために好ましくない。
【0024】
また、この効果は、前述したような、C量が0.02%以上の低炭素鋼板で顕著である。
すなわち、C量が 0.020%以下、特に0.0050%以下の極低炭素域は、元々r値が高く、かような成分系では特に潤滑圧延を行わなくても、缶用鋼板の絞り性に十分なr値を得ることができ、また焼鈍後のΔr値は正値であり、二次圧延によりΔrは負値の方向に変化することから、Δrをゼロにすることも、一次圧延率と二次圧延率の調整で、それほど困難ではなかった。 これに対し、C量が0.02%以上になると、本来、平均r値が低く、またΔrも負値になり易いので、薄物のγ域での潤滑圧延が非常に有効であることが判明した。
この場合、熱延板の板厚tと摩擦係数μのΔrへの寄与について種々検討した結果、次式で示される関数
4μ(1.6−t)2
ただし、μ:最終3スタンドの摩擦係数の最大値
t:熱延板の板厚(mm)
として表されることが見出された。
【0025】
4) 巻取り温度:500 〜750 ℃
巻取り温度が、500 ℃未満では、巻き取り後、固溶炭素が残り易いため、面内異方性が大幅に低下するおそれがあり、一方 750℃を超えると、低炭素鋼板では特に表層に粗大粒の形成が懸念されるので、巻取り温度は 500〜750 ℃の範囲に限定した。
【0026】
ついで、酸洗後、冷延圧延を行う。
5) 冷延圧下率:80〜88.3
缶用鋼板の場合、製品板厚を薄くする必要があり、熱延仕上げ厚みとの兼ね合いで少なくとも80%の冷間圧延率を必要とする。しかしながら、冷延圧下率が88.3%を超えるとΔr値が負値でしかも大きな値となり、イヤリングが大きくなって歩留りの低下を招くので、冷延圧下率は80〜88.3%の範囲に限定した。
【0027】
6) 焼鈍温度:再結晶温度以上
焼鈍温度は、鋼板の再結晶温度以上とする必要がある。とはいえ、800 ℃を超えると結晶粒が粗大化し、製品を成形した場合に肌荒れの原因となるので、焼鈍温度の上限は 800℃程度とすることが好ましい。なお、焼鈍が連続焼鈍とすることが好ましい。
【0028】
7) 二次圧延圧下率:9.8%以下
この二次圧延(調質圧延ともいう)は、所定の硬さに調整する目的で行われる。しかしながら、二次圧延圧下率が9.8%を超えると、加工性が低下し、プレス成形に耐えなくなるだけでなく、r値の面内異方性が大きくなり、イヤリングが大きくなって歩留りの低下を招くので、二次圧延圧下率は9.8%以下に制限した。
【0029】
以上、Δrに影響を及ぼす種々の製造条件について、その適正範囲を説明したが、これらのΔrへの寄与を考慮して、Δrを総合的に判断できる指標を見出すべく、鋭意検討を重ねた結果、炭素量をC(mass%)、熱延板の板厚をt(mm)、熱間圧延における仕上げ最終3スタンドの摩擦係数のうちの最大の摩擦係数をμ、巻取り温度をCT(℃)、冷延圧下率をCR(%)、二次圧延圧下率をDR(%)とするとき、次式(1)
A=7.882 −3.5 C−0.088 CR−0.014 DR
+0.005(CT−700)−4μ(1.6−t)2 --- (1)
で示されるAを指標として、μを0.20以下、かつ仕上げ圧延温度をAr3〜(Ar3+100 ℃)とした場合に、このAの絶対値が0.30以下となるように各製造条件を調整すれば、Δrの絶対値が0.30以下と良好な面内異方性を確保できることが究明された。
そして、絞り用途となる2ピース缶では、r値の面内異方性すなわちΔrが特に重要であるが、このA値の絶対値で0.30以下に制御してやれば, 極めて良好な結果を得ることができるのである。
【0030】
【実施例】
表1に示す成分組成になる鋼スラブを、表2に示す条件で処理することにより、缶用鋼板を製造した。表2中、水準a 〜fは熱延条件の影響を、水準g〜nは二次圧延の影響を、水準o〜sはC量の影響を、それぞれ調査したものである。なお、表2の摩擦係数μは、仕上げ最終3スタンドの摩擦係数のうち、最大の摩擦係数である。
かくして得られた缶用鋼板について、引張特性、平均r値、Δrおよびカップ成形後に肌荒れの有無(目視)について調査した結果を表2に併記する。
【0031】
ここで、平均r値は、次式で定義される値である。
平均r値=(r0 +r90+2r45)/4
また、表2における平均r値およびΔrは、Contorol products 社(USA)の Module Drawability testerを用いて求めた。この方法は、Steel Met. Ind.,50 (1973), 328に示されるように、r値とヤング率の間に相関関係があることから、ヤング率を「磁歪振動方式」により求め、測定したヤング率から平均r値およびΔrを求めるものである。
さらに、肌荒れ有無を評価する際のカップ形式は、打ち抜き径:150 mm、絞り比(打ち抜き径/成形後のカップ径):2として行った。
【0032】
【表1】

Figure 0004378840
【0033】
【表2】
Figure 0004378840
【0034】
表2中、水準a 〜gは、鋼記号Aの鋼種を用い、主に熱延時の摩擦係数を変化させた時の特性を調査したものであるが、水準d,eのように熱延時の摩擦係数が0.20を超えた場合には、平均r値が 1.0以下と低いか、あるいはΔrが−0.30を超える負で大きな値となった。 また、水準fは、フェライト域での圧延であったため、熱延板の結晶粒が大きくなり、肌荒れの発生が見られた。さらに、水準gは、A値の絶対値が0.30を超え、Δrが−0.30を超える負で大きな値となった。
水準h〜oは、同じく鋼記号Aの鋼種を用い、主に二次圧延率を変化させた場合であるが、水準l〜oのように摩擦係数が0.20を超えた場合は、摩擦係数の小さい水準h〜に比べて、全体的に平均r値が低く、またΔrも負で大きな値となった。
水準p〜tは、鋼記号A〜Eの鋼種を用い、主にC量の影響を見たものであるが、水準sに示したように使用鋼スラブの炭素量が高い場合には、潤滑性がよくてもr値が低く、またΔrも負で大きくなっている。 一方、水準tのように使用鋼スラブの炭素量が低すぎる場合には、平均r値が低く、またΔrも負で大きな値となっている。
【0035】
【発明の効果】
かくして、この発明によれば、平均r値が 1.0以上と高く、しかもその面内異方性すなわちΔrの絶対値が0.30と小さく、従って特性のバラツキが小さく、さらに絞り加工後に肌荒れが生じることなく、美麗な外観を呈する缶用鋼板を安定して得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel plate for a can having a small in-plane anisotropy having an r value suitable for use in a beverage can, particularly a two-piece can subjected to drawing.
[0002]
[Prior art]
Conventionally, various manufacturing methods have been proposed for steel plates for cans used for drawing.
For example, Japanese Patent Laid-Open No. Sho 62-161919 discloses an in-plane anisotropy of r value by adjusting a coiling temperature, a cold rolling reduction ratio, and a recrystallization annealing temperature during the production process of a low carbon aluminum killed steel. The manufacturing method of the steel plate for cans which is excellent in the small drawability of this is disclosed.
[0003]
In the steel sheet for cans for drawing as described above, if the in-plane anisotropy of r value is large, that is, the absolute value of Δr is large, non-uniform cup height called an earring occurs after drawing and the yield decreases. Not only that, but depending on the application, printing may be distorted and defects may be induced in the subsequent flange processing. Therefore, it is particularly important to reduce the in-plane anisotropy of the r value in this type of steel sheet. It is said.
[0004]
Here, Δr is a value defined by the following equation and takes a positive value, 0, or a negative value. The fact that the in-plane anisotropy of the r value is small means that Δr is close to 0, that is, the absolute value of Δr is small.
Δr = (r 0 + r 90 −2r 45 ) / 2
Here, r 0 : r value in the rolling direction r 90 : r value in the direction making an inclination of 90 ° with the rolling direction r 45 : r value in the direction making an inclination of 45 ° with the rolling direction
There are various factors that affect the in-plane anisotropy, but among them, the effects of cold rolling reduction and secondary rolling reduction are considered to be significant. "Iron and Steel Vol.86 (2000) No.1P .32-37) and JP-A-9-184018, it was necessary to adjust the hot rolled finish thickness according to the product plate thickness.
[0006]
Moreover, the steel plate for cans is required to have stable mechanical properties over the longitudinal direction and the width direction of the coil.
For this reason, in JP-A-9-104919, although the thickness of the hot-rolled sheet is not described, in an ultra-low carbon steel sheet of 0.0050 mass% or less, the sheet bar is once wound around a coil and then rewound. It is recommended to heat the edges of the steel and to perform lubrication rolling with a friction coefficient of 0.15 or less.
However, the ultra-low carbon steel sheet as described above has a disadvantage that roughening occurs after drawing because crystal grains are likely to be coarsened and a fine crystal structure cannot be finally obtained.
[0007]
Furthermore, in steel sheets for cans, the material has recently been made thinner in order to reduce costs, and as a result, unprecedented high cold rolling reduction and secondary rolling reduction have been required. It is desired that the in-plane anisotropy is small even below.
As a response to the above request, Japanese Patent Application Laid-Open No. 10-223792 discloses a hot rolled sheet having a thickness of 1.8 mm or less for a steel type having a carbon content of 0.02 mass% or less, and a cold reduction ratio of 75%. A technique of performing primary rolling below and performing secondary rolling at a rolling reduction of 20% or less after annealing is disclosed.
However, even with this technique, in the region where the carbon content is extremely low, there is a problem that the crystal grains are coarsened and the skin is likely to be rough, as described above. In the low carbon region of 0.01 to 0.02 mass%, Since it is extremely difficult to control the melt C, there is a problem that the precipitation state of the carbide is changed by a slight variation in the manufacturing conditions, and the strength is likely to vary accordingly.
[0008]
[Problems to be solved by the invention]
The present invention advantageously solves the above-described problem, and does not cause roughening after drawing, and does not cause variations in characteristics even when the material is thinned. It aims at proposing the advantageous manufacturing method of the steel plate for cans with small anisotropy.
[0009]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have made it advantageous to contain carbon to some extent in order to refine crystal grains and prevent roughening after drawing. In addition, in order to prevent the deterioration of the in-plane anisotropy even when the thickness is reduced, it was found that the hot rolled finish thickness must be 1.5 mm or less.
[0010]
In addition, as a result of further research, in rolling such thin objects, if lubrication rolling is not used not only in the ferrite region but also in the austenite region, an abnormal texture develops in the surface layer, and the r value and its surface The knowledge that internal anisotropy deteriorates was obtained.
The lubrication rolling is also disclosed in the above-mentioned Japanese Patent Laid-Open No. 9-104919. However, in this publication, the steel type is limited to an ultra-low carbon steel sheet having C ≦ 0.005 mass%, and the purpose thereof is as follows. The variation in the longitudinal direction and the width direction of the coil, such as the r value, was reduced.
Further, although lubrication rolling is also disclosed in Japanese Patent Application Laid-Open No. 10-223792, this technique is also a technique related to a steel type having a relatively low carbon content of 0.02 mass% or less.
[0011]
However, when the above-described lubrication rolling is performed, in addition to the variation in the coil, the r value and the in-plane anisotropy of the r value and its in-plane anisotropy are obtained particularly in the material that is made fine by containing carbon to some extent as in the present invention. It was found that the absolute value fluctuated more than expected from when carbon was low.
In such a case, in order to control Δr, it has been determined that various manufacturing conditions including the thickness of the hot-rolled sheet and the friction coefficient need to be controlled within a predetermined range.
The present invention is based on the above findings.
[0012]
That is, the present invention is a mass percentage,
C: 0.020 to 0.050%,
Si: 0.04% or less,
Mn: 0.6% or less,
Al: 0.005 to 0.1%,
P: 0.02% or less,
S: 0.02% or less,
N: 0.0005 to 0.010%
Steel slab with a composition of Fe and unavoidable impurities in the balance, finish rolling temperature: Ar 3 to (Ar 3 + 100 ° C.), and at least the final 3 stands of the friction coefficient between the rolling roll and the steel plate: 0.20 or less After hot rolling at 0.8 to 1.5 mm thickness, it is wound into a coil at a temperature of 500 to 750 ° C, pickled, cold rolled at a reduction ratio of 80 to 88.3 %, and then re-rolled. After annealing at the crystal temperature or higher, the steel sheet for cans is manufactured by secondary rolling at a reduction rate of 9.8 % or less. At that time, the carbon content is C (mass%), and the sheet of hot-rolled sheet Thickness is t (mm), maximum value of friction coefficient in the last 3 stands of hot finish rolling is μ, winding temperature is CT (° C), cold rolling reduction ratio is CR (%), secondary rolling reduction ratio is DR ( %)), The following formula (1)
A = 7.882 −3.5 C−0.088 CR−0.014 DR
+0.005 (CT-700) -4μ (1.6-t) 2 --- (1)
Each of the above production conditions is adjusted so that the absolute value of A represented by the formula is 0.30 or less. This is a method for producing a steel plate for cans with small in-plane anisotropy.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be specifically described below.
First, the reason why the component composition of the material is limited to the above range in the present invention will be described. In addition, "%" used for display of content of each element shall represent mass percentage (mass%) unless there is particular notice.
C: 0.020 to 0.050%
C is an effective element for refining the structure and strengthening the steel. However, if the content is less than 0.020%, it is difficult to control the solute carbon, and the precipitation state of carbide is easily affected by hot rolling conditions. Material variations are likely to occur. Further, in order to refine crystal grains, suppress roughening after drawing, and improve the surface appearance, the C content needs to be 0.020% or more.
Further, in the ultra-thin hot rolling in the austenite region, which is the main point of the present invention, 0.020% or more, more preferably 0.025%, more preferably from the viewpoint of the effect of improving the in-plane anisotropy and the r value by lubrication rolling. It is important to perform lubrication rolling under the above C content.
However, if the amount of C exceeds 0.050%, the amount of carbide is excessive and the moldability is lowered, so the amount of C is limited to the range of 0.020 to 0.050%.
[0014]
Si: 0.04% or less
If Si is contained in a large amount, it induces scale defects and the like, and the material becomes extremely hard and cold rolling performance is impaired. Therefore, the Si content is limited to 0.04% or less, more preferably 0.02% or less.
[0015]
Mn: 0.6% or less
Mn has a function of fixing S as MnS, so it is preferable to contain 0.05% or more. However, if it exceeds 0.6%, the material is hardened, the cold rolling property deteriorates, and the elongation and the r value decrease. Therefore, the Mn content is limited to 0.6% or less.
[0016]
Al: 0.005 to 0.1%
Al not only contributes effectively as a deoxidizer in the melting stage, but is also an element useful for fixing solid solution N as AlN. For this purpose, it is necessary to contain at least 0.005%. However, if it exceeds 0.1%, the effect not only reaches saturation, but also causes a decrease in elongation. Therefore, Al is contained in the range of 0.005 to 0.1%. It was.
[0017]
P: 0.02% or less P causes hardening of the steel and a decrease in workability. Therefore, its mixing is preferably reduced as much as possible, but 0.02% or less is acceptable.
[0018]
S: 0.02% or less When the S amount exceeds 0.02%, not only hot cracking is induced, but also elongation and the like are reduced. Therefore, the S amount is limited to 0.02% or less.
[0019]
N: 0.0005 to 0.010%
In order to ensure moldability, the N content needs to be reduced to 0.010% or less. However, since it is extremely difficult to reduce it to a value lower than 0.0005% with the current melting technology, the amount of N is limited to a range of 0.0005 to 0.010%.
[0020]
Next, the manufacturing conditions of the present invention will be described.
First, as a method for producing a slab, a continuous casting method is advantageously adapted, but it is needless to say that an ingot-splitting method may be used.
Similarly, the slab heating temperature is not particularly limited, but is preferably about 1000 to 1250 ° C.
[0021]
After the above slab heating, hot rolling is performed. In this hot rolling, the finish thickness, the finish rolling temperature, and the friction coefficient between the rolling roll and the steel plate in the final three stands are important.
1) Finishing thickness of hot rolling: 0.8 to 1.5 mm
Steel sheets for cans need to be hot-rolled sheets with a thickness of 1.5 mm or less in order to control the Δr of the final product as the material becomes thinner. In addition, in lubrication rolling in the austenite region, which is a control item in the present invention, the in-plane anisotropy of the r value greatly changes due to poor lubrication, which is 1.5 mm or less. The reason why the more expected control of Δr is sufficient is the reason why the finished thickness is 1.5 mm or less.
However, finishing to a thickness of less than 0.8 mm is extremely difficult with current equipment, so the finishing thickness in hot rolling is limited to the range of 0.8 to 1.5 mm.
In order to homogenize the material in the coil longitudinal direction and width direction, the sheet bar after rough rolling is temporarily wound around the coil, and when the sheet bar is rewound, the preceding sheet bar and the succeeding sheet bar are joined. It goes without saying that the method, the method of heating the sheet bar including the edge, and the like can be combined as necessary.
[0022]
2) Finishing rolling temperature: Ar 3 to (Ar 3 + 100 ° C)
If the finish rolling temperature is lower than the Ar 3 transformation point, coarse grains are formed on the surface layer, which causes rough skin and increased in-plane anisotropy of the r value. On the other hand, if it exceeds (Ar 3 + 100 ° C), scale defects occur frequently. Therefore, the finish rolling temperature is limited to a range of Ar 3 to (Ar 3 + 100 ° C.).
[0023]
3) Coefficient of friction between rolling roll and steel plate in at least 3 final finishing stands: 0.20 or less Friction coefficient between rolling roll and steel plate even in the γ region when the finishing thickness in hot rolling becomes thin as shown in 1) above. In particular, at least for the final three stands of finish rolling where the plate thickness is reduced, the coefficient of friction in each stand needs to be 0.20 or less.
This is because when the friction coefficient of at least the final three stands exceeds 0.20, an abnormal texture is formed on the surface of the hot-rolled sheet, and this texture becomes the main texture of the steel sheet because the sheet thickness is thin. is there. This texture remains even after cold rolling-recrystallization annealing, and it is preferable not only to change the in-plane anisotropy of the r value and make the Δr value negative, but also to lower the average r value. Absent.
[0024]
Further, this effect is remarkable in the low carbon steel sheet having the C content of 0.02% or more as described above.
That is, an extremely low carbon region having a C content of 0.020% or less, particularly 0.0050% or less originally has a high r value, and such a component system has sufficient drawability of a steel plate for cans even without lubrication rolling. r value can be obtained, and Δr value after annealing is a positive value, and Δr changes in the negative value direction by secondary rolling. Therefore, Δr can be set to zero, primary rolling rate and secondary It was not so difficult to adjust the rolling rate. On the other hand, when the C content is 0.02% or more, the average r value is inherently low and Δr tends to be a negative value. Therefore, it has been found that lubricating rolling in a γ region of a thin material is very effective.
In this case, as a result of various studies on the contribution of the thickness t of the hot-rolled sheet and the friction coefficient μ to Δr, a function 4 μ (1.6−t) 2 expressed by the following equation is obtained.
Where μ is the maximum friction coefficient of the last three stands t is the thickness of the hot-rolled sheet (mm)
Was found to be expressed as:
[0025]
4) Winding temperature: 500-750 ° C
If the coiling temperature is less than 500 ° C, solute carbon tends to remain after winding, so that the in-plane anisotropy may be significantly reduced. Since the formation of coarse particles is a concern, the winding temperature is limited to a range of 500 to 750 ° C.
[0026]
Then, after pickling, cold rolling is performed.
5) Cold rolling reduction: 80 ~ 88.3 %
In the case of steel plates for cans, it is necessary to reduce the product plate thickness, and a cold rolling rate of at least 80% is required in consideration of the hot-rolled finish thickness. However, if the cold rolling reduction ratio exceeds 88.3 %, the Δr value becomes a negative value and a large value, and the earring becomes large, resulting in a decrease in yield. Therefore, the cold rolling reduction ratio is limited to a range of 80 to 88.3 %.
[0027]
6) Annealing temperature: above the recrystallization temperature The annealing temperature needs to be above the recrystallization temperature of the steel sheet. However, if the temperature exceeds 800 ° C., the crystal grains become coarse and cause rough skin when the product is molded. Therefore, the upper limit of the annealing temperature is preferably about 800 ° C. The annealing is preferably continuous annealing.
[0028]
7) Secondary rolling reduction ratio: 9.8 % or less This secondary rolling (also referred to as temper rolling) is performed for the purpose of adjusting to a predetermined hardness. However, when the rolling reduction ratio of the secondary rolling exceeds 9.8 %, not only the workability deteriorates and the press forming becomes unbearable, but also the in-plane anisotropy of the r value becomes large, the earrings become large and the yield decreases. Therefore, the secondary rolling reduction is limited to 9.8 % or less.
[0029]
As mentioned above, although the appropriate range was demonstrated about various manufacturing conditions which influence (DELTA) r, considering the contribution to these (DELTA) r, the result of repeating earnest examination in order to find the parameter | index which can judge (DELTA) r comprehensively The carbon content is C (mass%), the thickness of the hot-rolled sheet is t (mm), the maximum friction coefficient of the final three stands in hot rolling is μ, and the coiling temperature is CT (° C) ), When the cold rolling reduction ratio is CR (%) and the secondary rolling reduction ratio is DR (%), the following formula (1)
A = 7.882 −3.5 C−0.088 CR−0.014 DR
+0.005 (CT-700) -4μ (1.6-t) 2 --- (1)
Each production condition is adjusted so that the absolute value of A is 0.30 or less, with A as an index, μ being 0.20 or less, and the finishing rolling temperature being Ar 3 to (Ar 3 + 100 ° C.). For example, it has been found that the absolute value of Δr is 0.30 or less and a good in-plane anisotropy can be secured.
In the two-piece can used for drawing, the in-plane anisotropy of the r value, that is, Δr is particularly important. If the absolute value of the A value is controlled to 0.30 or less, extremely good results can be obtained. It can be done.
[0030]
【Example】
The steel plate for cans was manufactured by processing the steel slab which becomes a component composition shown in Table 1 on the conditions shown in Table 2. In Table 2, levels a to f are the effects of hot rolling conditions, levels g to n are the effects of secondary rolling, and levels os are the effects of the C amount. In addition, the friction coefficient μ in Table 2 is the maximum friction coefficient among the friction coefficients of the final three stands.
With respect to the steel sheet for cans thus obtained, Table 2 shows the tensile characteristics, average r value, Δr, and the results of investigating the presence or absence (visual observation) of rough skin after cup forming.
[0031]
Here, the average r value is a value defined by the following equation.
Average r value = (r 0 + r 90 + 2r 45 ) / 4
Further, the average r value and Δr in Table 2 were determined using a Module Drawability tester of Controlol products (USA). In this method, as shown in Steel Met. Ind., 50 (1973), 328, since there is a correlation between the r value and the Young's modulus, the Young's modulus was determined by the “magnetostrictive vibration method” and measured. The average r value and Δr are obtained from the Young's modulus.
Furthermore, the cup type for evaluating the presence or absence of rough skin was as follows: punching diameter: 150 mm, drawing ratio (punching diameter / molded cup diameter): 2.
[0032]
[Table 1]
Figure 0004378840
[0033]
[Table 2]
Figure 0004378840
[0034]
In Table 2, levels a to g are obtained by investigating the characteristics when the friction coefficient during hot rolling is changed mainly using the steel type A steel grade. When the friction coefficient exceeded 0.20, the average r value was as low as 1.0 or less, or Δr exceeded −0.30 and became a large negative value. Moreover, since the level f was rolling in the ferrite region, the crystal grains of the hot-rolled sheet became large, and the occurrence of rough skin was observed. Furthermore, the level g was a large negative value with an absolute value of A exceeding 0.30 and Δr exceeding −0.30.
Levels h to o are the same when steel grade A is used, and the secondary rolling rate is mainly changed. However, when the friction coefficient exceeds 0.20 as in levels l to o, the friction coefficient Compared to the small levels h to j , the average r value was low overall, and Δr was negative and large.
Levels p to t are steel grades A to E, and mainly look at the effect of the C amount. As shown in the level s, when the carbon content of the steel slab used is high, lubrication is required. Even if the property is good, the r value is low, and Δr is negative and large. On the other hand, when the carbon content of the steel slab used is too low as in the level t, the average r value is low, and Δr is negative and large.
[0035]
【The invention's effect】
Thus, according to the present invention, the average r value is as high as 1.0 or more, and the in-plane anisotropy, that is, the absolute value of Δr is as small as 0.30. A steel plate for cans that exhibits a beautiful appearance can be stably obtained.

Claims (1)

質量百分率で、
C:0.020〜0.050 %、
Si:0.04%以下、
Mn:0.6 %以下、
Al:0.005〜0.1 %、
P:0.02%以下、
S:0.02%以下、
N:0.0005〜0.010 %
を含み、残部はFeおよび不可避的不純物の組成になる鋼スラブを、仕上げ圧延温度:Ar3〜(Ar3+100 ℃)、少なくとも仕上げ最終3スタンドにおける圧延ロールと鋼板の摩擦係数:0.20以下の条件で熱間圧延して 0.8〜1.5 mm厚の熱延板としたのち、 500〜750 ℃の温度でコイルに巻き取り、酸洗後、圧下率:80〜88.3%で冷間圧延し、ついで再結晶温度以上で焼鈍を施したのち、9.8%以下の圧下率で二次圧延を施すことによって缶用鋼板を製造するものとし、その際、炭素量をC(mass%)、熱延板の板厚をt(mm)、熱間仕上げ圧延最終3スタンドにおける摩擦係数の最大値をμ、巻取り温度をCT(℃)、冷延圧下率をCR(%)、二次圧延圧下率をDR(%)とするとき、これらの関係式として次式(1)
A=7.882 −3.5 C−0.088 CR−0.014 DR
+0.005(CT−700)−4μ(1.6−t)2 --- (1)
で示されるAの絶対値が0.30以下となるように、上記の各製造条件を調整することを特徴とする缶用鋼板の製造方法。
In mass percentage,
C: 0.020 to 0.050%,
Si: 0.04% or less,
Mn: 0.6% or less,
Al: 0.005 to 0.1%,
P: 0.02% or less,
S: 0.02% or less,
N: 0.0005 to 0.010%
Steel slab with a composition of Fe and unavoidable impurities in the balance, finish rolling temperature: Ar 3 to (Ar 3 + 100 ° C.), and at least the final 3 stands of the friction coefficient between the rolling roll and the steel plate: 0.20 or less After hot rolling at 0.8 to 1.5 mm thickness, it is wound into a coil at a temperature of 500 to 750 ° C, pickled, cold rolled at a reduction ratio of 80 to 88.3 %, and then re-rolled. After annealing at the crystal temperature or higher, the steel sheet for cans is manufactured by secondary rolling at a reduction rate of 9.8 % or less. At that time, the carbon content is C (mass%), and the sheet of hot-rolled sheet Thickness is t (mm), maximum value of friction coefficient in the last 3 stands of hot finish rolling is μ, winding temperature is CT (° C), cold rolling reduction ratio is CR (%), secondary rolling reduction ratio is DR ( %)), The following formula (1)
A = 7.882 −3.5 C−0.088 CR−0.014 DR
+0.005 (CT-700) -4μ (1.6-t) 2 --- (1)
A method for producing a steel plate for cans, characterized in that the production conditions described above are adjusted so that the absolute value of A indicated by the formula is 0.30 or less.
JP2000122651A 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans Expired - Fee Related JP4378840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122651A JP4378840B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122651A JP4378840B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans

Publications (2)

Publication Number Publication Date
JP2001303181A JP2001303181A (en) 2001-10-31
JP4378840B2 true JP4378840B2 (en) 2009-12-09

Family

ID=18633103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122651A Expired - Fee Related JP4378840B2 (en) 2000-04-24 2000-04-24 Manufacturing method of steel plate for cans

Country Status (1)

Country Link
JP (1) JP4378840B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4559918B2 (en) 2004-06-18 2010-10-13 新日本製鐵株式会社 Steel plate for tin and tin free steel excellent in workability and method for producing the same

Also Published As

Publication number Publication date
JP2001303181A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
JP4065579B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and excellent ridging resistance and method for producing the same
JP2020510135A (en) Ferritic stainless steel excellent in ridging property and surface quality and manufacturing method thereof
JP4403038B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties in the 45 ° direction from the rolling direction and method for producing the same
JP2001089815A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3713804B2 (en) Thin hot-rolled steel sheet with excellent formability
JP4378840B2 (en) Manufacturing method of steel plate for cans
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JPH07268485A (en) Production of ferritic stainless steel strip excellent in workability, corrosion resistance, and surface characteristic
JP2001098328A (en) Method of producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
KR101938588B1 (en) Manufacturing method of ferritic stainless steel having excellent ridging property
JP3373983B2 (en) Method for producing ferritic stainless steel strip excellent in press formability, ridging resistance and surface properties
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JPH11302739A (en) Production of ferritic stainless steel excellent in surface property and small in anisotropy
JP3379826B2 (en) Ferritic stainless steel sheet with small in-plane anisotropy and method for producing the same
JPH0759734B2 (en) Low carbon aluminum killed cold-rolled steel sheet excellent in workability, surface roughening property and earring property, and method for producing the same
JP2001089814A (en) Method of manufacturing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP2001098327A (en) Method of producing ferritic stainless steel excellent in ductility, workability and ridging resistance
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3690023B2 (en) Surface-treated cold-rolled steel sheet, hot-rolled steel sheet used therefor, and production method thereof
JPH01116031A (en) Manufacture of hot rolled high si-high carbon steel sheet having superior toughness
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JPH0668129B2 (en) Method for producing hot rolled steel sheet with excellent deep drawability
JPH1046293A (en) Ferritic stainless steel sheet excellent in ductility and ridging property
JP2634543B2 (en) Hot rolled steel sheet excellent in workability and secondary work cracking resistance, and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4378840

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees