JP4378602B2 - Imaging apparatus and imaging method - Google Patents

Imaging apparatus and imaging method Download PDF

Info

Publication number
JP4378602B2
JP4378602B2 JP2003274615A JP2003274615A JP4378602B2 JP 4378602 B2 JP4378602 B2 JP 4378602B2 JP 2003274615 A JP2003274615 A JP 2003274615A JP 2003274615 A JP2003274615 A JP 2003274615A JP 4378602 B2 JP4378602 B2 JP 4378602B2
Authority
JP
Japan
Prior art keywords
camera shake
image
shake correction
interpolation coefficient
image signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003274615A
Other languages
Japanese (ja)
Other versions
JP2005039532A5 (en
JP2005039532A (en
Inventor
博文 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003274615A priority Critical patent/JP4378602B2/en
Publication of JP2005039532A publication Critical patent/JP2005039532A/en
Publication of JP2005039532A5 publication Critical patent/JP2005039532A5/ja
Application granted granted Critical
Publication of JP4378602B2 publication Critical patent/JP4378602B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、撮像装置に関するものである。詳しくは、手振れ補正された画像信号のうち、画質(解像度)を劣化するような画像信号の累積加算を防止する撮像装置に関するものである。   The present invention relates to an imaging apparatus. More specifically, the present invention relates to an imaging apparatus that prevents cumulative addition of image signals that degrade image quality (resolution) among image signals that have undergone camera shake correction.

従来技術において、デジタルスチルカメラやビデオカメラなど、画像を撮影、記録することができる撮像装置では、撮影者の手振れによる振動によって撮影する画像がブレたり、記録した画像が劣化(滲んだり、ずれたり)することを防ぐための手振れ防止技術が種々考案されている。   In an imaging apparatus that can capture and record images such as a digital still camera and a video camera in the prior art, an image captured due to vibration caused by a camera shake of a photographer may be blurred or the recorded image may be deteriorated (bleeded or shifted). In order to prevent this, various image stabilization techniques have been devised.

例えば、所定期間もしくは所定回数の間に取り込んだ画像(静止画)から撮影時のぶれ量を検出し、ぶれ量が最も小さい画像(静止画)を記録する撮像装置などが考案されている(例えば、特許文献1)。
特開平11−317904号公報(第11−12頁、図1、図26)
For example, an imaging device that detects the amount of blur at the time of shooting from an image (still image) captured during a predetermined period or a predetermined number of times and records an image (still image) with the smallest amount of blur has been devised (for example, Patent Document 1).
Japanese Patent Laid-Open No. 11-317904 (page 11-12, FIGS. 1 and 26)

しかしながら、通常の手振れの補正処理では、画素単位の補正では粗いために、画素間の補正(整数画素未満の補正)を行う必要があるが、画像信号をサンプリングする最小単位が1画素単位であるため、画素間の補間処理が必要となる。   However, in a normal camera shake correction process, correction in units of pixels is rough, so correction between pixels (correction less than an integer pixel) must be performed, but the minimum unit for sampling an image signal is in units of one pixel. Therefore, interpolation processing between pixels is necessary.

この補間処理には線形補間処理やCUBIC補間処理等の方法があるが、補間処理するときに、ナイキスト周波数以上の成分を含む画像信号は劣化(滲んだり、ずれたり)してしまうという問題がある。   This interpolation processing includes methods such as linear interpolation processing and CUBIC interpolation processing. However, there is a problem that an image signal including a component having a frequency equal to or higher than the Nyquist frequency deteriorates (bleeds or shifts) during the interpolation processing. .

そのため、撮影した画像信号を累積加算してメモリに記憶する撮像装置において、補間処理を施して手振れ補正をした画像信号を累積加算する、例えば、図7に示すように、大きさが−1〜+1の範囲をとる補正ベクトル・データで手振れ補正された画像信号の全てを時間軸方向に累積加算してメモリに記憶すると、記憶した画像信号の画質(解像度)が劣化しまうという欠点を有している。   Therefore, in an imaging device that cumulatively adds captured image signals and stores them in a memory, the image signals that have undergone interpolation processing and subjected to camera shake correction are cumulatively added. For example, as shown in FIG. If all the image signals that have undergone camera shake correction with correction vector data that takes a range of +1 are cumulatively added in the time axis direction and stored in the memory, the image quality (resolution) of the stored image signal is deteriorated. Yes.

従って、撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置において、手振れ補正された画像信号のうち、画質(解像度)を劣化するような画像信号の累積加算を防止できるようにすることに解決しなければならない課題を有する。   Therefore, in an imaging apparatus having means for accumulating and storing captured image signals in a memory, it is possible to prevent accumulation of image signals that degrade image quality (resolution) among image signals that have undergone camera shake correction. Having problems that must be solved.

前記課題を解決するため、本発明に係る撮像装置及び撮像方法は次のような構成にすることである。 In order to solve the above problems, an imaging apparatus and an imaging method according to the present invention are configured as follows.

(1)撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出手段と、前記手振れ検出手段から出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量と前記補間係数算出手段で算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正手段と、前記補間係数算出手段で算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別手段と、前記画像判別手段に従って前記手振れ補正手段で補正した画像信号の累積加算処理を制御する累積加算制御手段と、を具備していることを特徴とする撮像装置。 (1) An imaging apparatus having means for accumulating and storing in a memory the image signals captured by the imaging unit, and detecting a vibration amount due to camera shake of the imaging unit, and according to the detected camera shake vibration amount A camera shake detection unit that outputs a camera shake signal, a camera shake correction amount calculation unit that calculates a camera shake correction amount for correcting the image signal based on the camera shake signal output from the camera shake detection unit, and the camera shake correction amount calculation unit Interpolation coefficient calculation means for calculating an interpolation coefficient value for interpolating between pixels of the image signal photographed by the imaging unit based on the camera shake correction quantity calculated in step 1, and the camera shake correction quantity calculated by the camera shake correction quantity calculation means Based on the interpolation coefficient value calculated by the interpolation coefficient calculation means, and a camera shake correction means for performing camera shake correction by performing an interpolation process on the image signal captured by the imaging unit, and the interpolation coefficient calculation Compared with a predetermined threshold value which is set in advance as the interpolation coefficient value calculated in step, cumulative addition or the interpolation coefficient value is a good image even when accumulating the image signal when a value of the predetermined range An image discriminating unit that performs an image signal discriminating process for accumulating and adding only an image that may be cumulatively added to the memory after discriminating that the image may not be an image, and the image stabilization unit according to the image discriminating unit And an accumulative addition control means for controlling the accumulative addition processing of the image signal corrected in step (b).

(2)撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出手段と、前記手振れ検出手段から出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出手段と、前記手振れ補正量算出手段で算出した手振れ補正量と前記補間係数算出手段で算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正手段と、前記補間係数算出手段で算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別手段と、前記画像判別手段に従って前記手振れ補正手段で補正した画像信号の累積加算処理を制御する累積加算制御手段と、前記累積加算制御手段による累積加算処理の回数に応じて算出した係数値と前記メモリに累積加算して記憶してある画像信号とを乗算処理して出力する画像出力手段と、を具備していることを特徴とする撮像装置。
(3)撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出ステップ、前記手振れ検出ステップで出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出ステップ、前記手振れ補正量算出ステップで算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出ステップ、前記手振れ補正量算出ステップで算出した手振れ補正量と前記補間係数算出ステップで算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正ステップ、前記補間係数算出ステップで算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別ステップ、前記画像判別ステップに従って前記手振れ補正ステップで補正した画像信号の累積加算処理を制御する累積加算制御ステップ、からなることを特徴とする撮像方法。
(2) An image pickup apparatus having means for accumulatively adding image signals taken by the image pickup unit and storing them in a memory, wherein the vibration amount due to camera shake of the image pickup unit is detected, and according to the detected amount of camera shake vibration A camera shake detection unit that outputs a camera shake signal, a camera shake correction amount calculation unit that calculates a camera shake correction amount for correcting the image signal based on the camera shake signal output from the camera shake detection unit, and the camera shake correction amount calculation unit Interpolation coefficient calculation means for calculating an interpolation coefficient value for interpolating between pixels of the image signal photographed by the imaging unit based on the camera shake correction quantity calculated in step 1, and the camera shake correction quantity calculated by the camera shake correction quantity calculation means Based on the interpolation coefficient value calculated by the interpolation coefficient calculation means, and a camera shake correction means for performing camera shake correction by performing an interpolation process on the image signal captured by the imaging unit, and the interpolation coefficient calculation Compared with a predetermined threshold value which is set in advance as the interpolation coefficient value calculated in step, cumulative addition or the interpolation coefficient value is a good image even when accumulating the image signal when a value of the predetermined range An image discriminating unit that performs an image signal discriminating process for accumulating and adding only an image that may be cumulatively added to the memory after discriminating that the image may not be an image, and the image stabilization unit according to the image discriminating unit The cumulative addition control means for controlling the cumulative addition processing of the image signal corrected in step (i), the coefficient value calculated according to the number of times of cumulative addition processing by the cumulative addition control means, and the image signal cumulatively added and stored in the memory And an image output means for outputting the result of multiplication.
(3) An imaging apparatus including means for accumulatively adding image signals photographed by the imaging unit and storing them in a memory, wherein an amount of vibration due to camera shake of the imaging unit is detected, and according to the detected amount of camera shake vibration A camera shake detection step for outputting a camera shake signal, a camera shake correction amount calculation step for calculating a camera shake correction amount for correcting the image signal based on the camera shake signal output in the camera shake detection step, and a camera shake correction amount calculation step. An interpolation coefficient calculating step for calculating an interpolation coefficient value for interpolating between pixels of the image signal captured by the imaging unit based on the image stabilization amount, and the image stabilization amount calculated in the image stabilization amount calculating step and the interpolation Based on the interpolation coefficient value calculated in the coefficient calculation step, a camera shake correction step for performing camera shake correction by performing interpolation processing of the image signal captured by the imaging unit. Flop, wherein comparing the interpolation coefficient calculation step predetermined threshold calculated interpolation coefficient value is set in advance in, the image signal when the interpolation coefficient value is a value of the predetermined range may be cumulatively added An image determination step for performing an image signal determination process in which only an image that may be cumulatively added is cumulatively added to the memory after determining whether the image is an image or an image that may be cumulatively added. And a cumulative addition control step for controlling the cumulative addition processing of the image signals corrected in the camera shake correction step.

このような構成の撮像装置により、補間係数算出手段で算出した補間係数値と予め設定してある所定の閾値とを比較して、手振れ補正手段で補正した画像信号の累積加算処理を制御するので、補間処理して手振れ補正された画像信号のうち、補間処理によって解像度が劣化した画像信号の累積加算を防止することができる。   The image pickup apparatus having such a configuration controls the cumulative addition processing of the image signal corrected by the camera shake correction unit by comparing the interpolation coefficient value calculated by the interpolation coefficient calculation unit with a predetermined threshold value set in advance. Further, it is possible to prevent the cumulative addition of the image signals whose resolution is deteriorated by the interpolation process among the image signals subjected to the camera shake correction by the interpolation process.

補間処理のために算出される補間係数値と予め設定した所定の閾値とを比較し、所定範囲内の補間係数値で補間処理して手振れ補正が為された画像信号のみを累積加算してメモリに記憶するので、補間処理のときに解像度が劣化するような画像信号は累積加算されず、手振れ補正の処理精度を保ちつつ、メモリに記憶する画像信号の画質が向上するという優れた効果を得ることができる。   The interpolation coefficient value calculated for the interpolation process is compared with a predetermined threshold value, and only the image signal that has been subjected to the interpolation process with the interpolation coefficient value within the predetermined range and subjected to camera shake correction is accumulated and stored. Therefore, an image signal whose resolution is deteriorated during the interpolation process is not cumulatively added, and an excellent effect of improving the image quality of the image signal stored in the memory while maintaining the camera shake correction processing accuracy is obtained. be able to.

また、上述したメモリに記憶してある画像信号を累積加算の回数に応じた係数値で乗算処理して出力するので、画質(S/N比)のよい画像信号(静止画像)を記録媒体や記録装置に記録することができる。   In addition, since the image signal stored in the above-described memory is multiplied and output by a coefficient value corresponding to the number of cumulative additions, an image signal (still image) with a good image quality (S / N ratio) is output to a recording medium, It can be recorded on a recording device.

次に、本発明の撮像装置及び撮像方法による実施の形態について図面を参照して説明する。但し、図面は専ら解説のためのものであって、本発明の技術的範囲を限定するものではない。 Next, embodiments of the imaging apparatus and imaging method of the present invention will be described with reference to the drawings. However, the drawings are only for explanation, and do not limit the technical scope of the present invention.

図1は、本発明の撮像装置において主要となる構成部を簡略化して示したブロック図であり、撮像部110、補正回路120、累積加算回路130、乗算器140、記録部150、マイコン160、手振れ検出部170などから構成される。   FIG. 1 is a block diagram schematically illustrating main components in an imaging apparatus according to the present invention. The imaging unit 110, a correction circuit 120, a cumulative addition circuit 130, a multiplier 140, a recording unit 150, a microcomputer 160, It includes a camera shake detection unit 170 and the like.

撮像部110は、レンズ及びCCD(Charge Coupled Device)などの撮像素子、信号処理回路などを備えており、レンズを介して入力される被写体からの光を撮像素子で画像信号に変換し、信号処理回路でこの画像信号に所定の信号処理を施して補正回路120に送出する。   The imaging unit 110 includes an imaging element such as a lens and a CCD (Charge Coupled Device), a signal processing circuit, and the like, converts light from a subject input via the lens into an image signal by the imaging element, and performs signal processing. The circuit performs predetermined signal processing on the image signal and sends it to the correction circuit 120.

補正回路120は、マイコン160から指定された補正ベクトル・データに基づいて撮像部110から送られてくる画像信号を補正し、累積加算回路130に送る。 The correction circuit 120 corrects the image signal sent from the imaging unit 110 based on the correction vector data specified from the microcomputer 160 and sends the corrected image signal to the cumulative addition circuit 130 .

累積加算回路130は、マイコン160の制御に従い、キャプチャを行うたびに、補正回路120から送られてくる画像信号を時間軸方向に累積加算してメモリに記憶する。   The accumulative addition circuit 130 accumulatively adds the image signals sent from the correction circuit 120 in the time axis direction and stores them in the memory every time capture is performed under the control of the microcomputer 160.

乗算器140は、マイコン160の制御に従い、累積加算回路130から出力される画像信号をマイコン160で指定された係数値に基づいて乗算処理して記録部150に出力する。   The multiplier 140 multiplies the image signal output from the cumulative addition circuit 130 based on the coefficient value designated by the microcomputer 160 and outputs the image signal to the recording unit 150 under the control of the microcomputer 160.

記録部150は、マイコン160の制御に従い、乗算器140から出力された画像信号を記録する。例えば、ハードディスク装置やメモリカード、磁気テープ、光ディスクなどの記録媒体に画像信号を記録する。   The recording unit 150 records the image signal output from the multiplier 140 under the control of the microcomputer 160. For example, an image signal is recorded on a recording medium such as a hard disk device, a memory card, a magnetic tape, or an optical disk.

マイコン160は、予め記憶してあるプログラムやデータなどに基づいて撮像装置内の各部、各回路の制御を行う。   The microcomputer 160 controls each unit and each circuit in the imaging apparatus based on a program or data stored in advance.

例えば、手振れ検出部170で検出された手振れ信号に基づいて手振れを補正するための手振れ補正量や補正ベクトル・データを算出したり、画素間の手振れを補正するための補間処理を行うための補間係数値を算出して補正回路120に送出する。   For example, an interpolation for calculating a camera shake correction amount and correction vector data for correcting camera shake based on a camera shake signal detected by the camera shake detection unit 170, or performing an interpolation process for correcting camera shake between pixels. The coefficient value is calculated and sent to the correction circuit 120.

また、算出した補間係数値に基づいて画像信号の解像度の劣化度合を判定して累積加算回路130を制御したり、乗算器140に対する係数値を算出して送出したり、画像信号を記録部150に記録するときのタイミングの制御なども行う。   Further, the degree of resolution degradation of the image signal is determined based on the calculated interpolation coefficient value to control the cumulative addition circuit 130, the coefficient value to the multiplier 140 is calculated and transmitted, and the image signal is recorded in the recording unit 150. It also controls the timing when recording data.

手振れ検出部170は、撮像部110の手振れによる振動量を検出し、検出した振動量を手振れ信号としてマイコン160に送る。なお、手振れ信号の検出は、ジャイロセンサや画像認識技術などを利用して行われ、画像信号をキャプチャする(取り込む)毎に手振れによる振動量を積分した値を手振れ信号として検出し、マイコン180に送出する。   The camera shake detection unit 170 detects the vibration amount due to the camera shake of the imaging unit 110 and sends the detected vibration amount to the microcomputer 160 as a camera shake signal. The camera shake signal is detected by using a gyro sensor or an image recognition technology, and a value obtained by integrating the vibration amount due to the camera shake is detected as a camera shake signal every time the image signal is captured (captured). Send it out.

例えば、図2に示すような完全積分を表す積分器において、入力信号X(z)、出力信号Y(z)とした場合、手振れ信号は、次式で表すことができる。   For example, in an integrator representing complete integration as shown in FIG. 2, when the input signal X (z) and the output signal Y (z) are used, the camera shake signal can be expressed by the following equation.

Y(z) = 1/{(1−Z−1)・X(z)} Y (z) = 1 / {(1-Z −1 ) · X (z)}

ここで、画像信号において、画素間の手振れを補正するための補間処理を行うとき、線形補間によって画素間の補正量(整数画素未満の補正量)を得る方法を説明する。   Here, a method of obtaining a correction amount between pixels (correction amount less than an integer pixel) by linear interpolation when performing an interpolation process for correcting a camera shake between pixels in an image signal will be described.

例えば、図3に示すように、静止画像において画素1と画素2との間の補正を行う場合、画像1の座標を”x”、画素2の座標を”x+1”、画素1と画素2との間の距離(ベクトル)を1とし、また、このときの補正量(補正ベクトル)の小数点以下の値をa、座標xにおける画像1の信号レベルをg(x)とした場合、画素1と画素2の補間処理によって生成される画素Aの補正量(信号レベル)は次式で表すことができる。   For example, as shown in FIG. 3, when correction is performed between the pixel 1 and the pixel 2 in the still image, the coordinates of the image 1 are “x”, the coordinates of the pixel 2 are “x + 1”, the pixels 1 and 2 are If the distance (vector) is 1 and the value after the decimal point of the correction amount (correction vector) is a and the signal level of image 1 at coordinate x is g (x), The correction amount (signal level) of the pixel A generated by the interpolation processing of the pixel 2 can be expressed by the following equation.

g(x+a)=(1−a)×g(x) + a×g(x+1) ;xは整数   g (x + a) = (1-a) * g (x) + a * g (x + 1); x is an integer

上述した式において、xは整数、(1−a)が補間係数であり、この補間係数の値に基づいて解像度の劣化度合を判別する。   In the above formula, x is an integer, and (1-a) is an interpolation coefficient, and the degree of resolution degradation is determined based on the value of this interpolation coefficient.

次に、補間係数によって画像信号の解像度を判別する方法について説明する。   Next, a method for determining the resolution of the image signal based on the interpolation coefficient will be described.

図4は、補間係数と解像度との関係を表したものであり、空間周波数領域における補間係数と利得(画素の信号レベル)の関係を略示的に示したグラフである。   FIG. 4 shows the relationship between the interpolation coefficient and the resolution, and is a graph schematically showing the relationship between the interpolation coefficient and the gain (pixel signal level) in the spatial frequency domain.

図4のグラフのように、補間係数は0〜1の間の値をとる場合、補間係数の値が0.5に近いほど利得(画素の信号レベル)が低下する。基本的には、画像の空間周波数が高いほど利得(画素の信号レベル)の低下は顕著になる。このため、利得(画素の信号レベル)の低下は解像度の劣化を招くことになる。つまり、補間係数の値が0.5に近づく(画素と画素との間の中間点に近づく)につれて解像度が劣化するものである。   As shown in the graph of FIG. 4, when the interpolation coefficient takes a value between 0 and 1, the gain (pixel signal level) decreases as the interpolation coefficient value approaches 0.5. Basically, the higher the spatial frequency of the image, the more the gain (pixel signal level) decreases. For this reason, a decrease in gain (pixel signal level) causes degradation in resolution. That is, the resolution deteriorates as the value of the interpolation coefficient approaches 0.5 (approaches an intermediate point between pixels).

一般的に、補間係数の変化によって解像度の変化が著しくなるような場合、画像に不自然さをもたらすため、解像度が劣化するような補間係数を避ける必要があり、その対策として補正精度と解像度を保つように、補間係数を最も近い整数値に修正をする(最も近い画素の信号レベル)に修正する方法等がある。   Generally, when the change in resolution becomes significant due to a change in the interpolation coefficient, it will cause unnaturalness in the image. Therefore, it is necessary to avoid an interpolation coefficient that degrades the resolution. In order to maintain, there is a method of correcting the interpolation coefficient to the nearest integer value (the signal level of the nearest pixel).

本発明の撮像装置では、画像信号を時間軸方向に累積加算する処理を行うため、補間係数の値を変更することによって手振れ補正処理を行うと、累積加算された画像が二重に見える等の不自然さが生じるため、図4に示すような所定の閾値Aを設定して補間係数を判別することにより、解像度劣化が生じる補間係数によって手振れ補正された画像信号の累積加算を防止する。   In the imaging apparatus of the present invention, since the image signal is cumulatively added in the time axis direction, when the camera shake correction processing is performed by changing the value of the interpolation coefficient, the cumulatively added image looks double or the like. Since unnaturalness occurs, by setting a predetermined threshold A as shown in FIG. 4 and discriminating the interpolation coefficient, cumulative addition of image signals that have undergone camera shake correction by the interpolation coefficient that causes resolution degradation is prevented.

このような構成の撮像装置における動作フローを図5のフローチャートを参照しながら説明する。   An operation flow in the imaging apparatus having such a configuration will be described with reference to the flowchart of FIG.

撮影を開始すると、まず、マイコン160は、キャプチャした画像信号の数(以下、キャプチャ数)をカウントするキャプチャカウンタ(以下、CCという)の値が「0」であるか否かを判定する(ST110)。   When shooting starts, first, the microcomputer 160 determines whether or not the value of a capture counter (hereinafter referred to as CC) that counts the number of captured image signals (hereinafter referred to as capture number) is “0” (ST110). ).

CCが「0」のとき、マイコン160は、補正回路120に対する補正量を「0」にクリアする(ST111)。   When CC is “0”, the microcomputer 160 clears the correction amount for the correction circuit 120 to “0” (ST111).

続いて、累積加算回路130は、撮像部110で撮影した画像信号をキャプチャしてメモリ132に累積加算する(ST112)。   Subsequently, the cumulative addition circuit 130 captures the image signal photographed by the imaging unit 110 and cumulatively adds it to the memory 132 (ST112).

これにより、まず、基準となる最初の画像信号が累積加算回路130のメモリに記憶される。これは、最初の画像信号の補正量は「0」にクリアされており、最大補正量を超えることがなく、これ以降にキャプチャされる画像信号において、手振れの補正量が常に最大補正量を超えているような場合に、画像信号が全くキャプチャされないことを防止する。   As a result, the first reference image signal is first stored in the memory of the cumulative addition circuit 130. This is because the correction amount of the first image signal is cleared to “0” and does not exceed the maximum correction amount. In the image signal captured thereafter, the correction amount of camera shake always exceeds the maximum correction amount. In such a case, the image signal is prevented from being captured at all.

そして、マイコン160は、CCの値を1つ増加させ、更に、タイムカウンタ(以下、TCという)の値を1つ増加させて処理を終了する(ST113、ST114→エンド)。   Then, the microcomputer 160 increments the value of CC by one, further increments the value of the time counter (hereinafter referred to as TC) by one, and ends the processing (ST113, ST114 → end).

一方、CCが「0」でないとき、累積加算回路130にはキャプチャされた画像信号が累積加算されている状態にあり、マイコン160は、次に、CCの値が予め設定されたキャプチャ数の最大値(以下、CCmax)以上であるか否かを判別する(ST110→ST120)。   On the other hand, when CC is not “0”, the captured image signal is cumulatively added to the cumulative addition circuit 130, and the microcomputer 160 then sets the CC value to the maximum number of captures set in advance. It is determined whether or not the value is equal to or greater than a value (hereinafter referred to as CCmax) (ST110 → ST120).

ここで、CCの値が最大値CCmax以上(CC≧CCmax)のときは、画像信号を記録部150へ記録するための処理へ移行する(ST120→ST130→・・・)。   Here, when the CC value is equal to or greater than the maximum value CCmax (CC ≧ CCmax), the process proceeds to processing for recording the image signal in the recording unit 150 (ST120 → ST130 →...).

一方、CCの値が最大値CCmaxより小さい(CC<CCmax)とき、マイコン160は、TCの値が所定の設定時間(以下、TCmax)以上であるか否かを判別する(ST120→ST121)。   On the other hand, when the CC value is smaller than the maximum value CCmax (CC <CCmax), the microcomputer 160 determines whether or not the TC value is equal to or longer than a predetermined set time (hereinafter, TCmax) (ST120 → ST121).

ここで、TCの値が設定時間TCmax以上(TC≧TCmax)のときは、画像信号を記録部150へ記録するための処理へ移行する(ST121→ST130→・・・)。   Here, when the value of TC is equal to or longer than the set time TCmax (TC ≧ TCmax), the process proceeds to processing for recording the image signal on the recording unit 150 (ST121 → ST130 →...).

一方、TCの値が設定時間TCmaxより小さい(TC<TCmax)のとき、マイコン160は、手振れ検出部170からの手振れ信号に基づいて手振れ補正量や補正ベクトル・データを算出したり、画素間の手振れを補正するための補間処理を行うための補間係数値を算出して補正回路120に送り、補正回路120では、この補正ベクトル・データや補間係数値に基づいて撮像部110から送られてくる画像信号の補間処理や手振れの補正を行う(ST121→ST122)。   On the other hand, when the value of TC is smaller than the set time TCmax (TC <TCmax), the microcomputer 160 calculates a camera shake correction amount and correction vector data based on a camera shake signal from the camera shake detection unit 170, or between pixels. An interpolation coefficient value for performing an interpolation process for correcting camera shake is calculated and sent to the correction circuit 120, and the correction circuit 120 sends it from the imaging unit 110 based on the correction vector data and the interpolation coefficient value. Image signal interpolation processing and camera shake correction are performed (ST121 → ST122).

続いて、マイコン160は、画素間の補間処理を行うために算出した補間係数値が所定範囲の値であるか否かを判定する(ST122→ST123)。   Subsequently, the microcomputer 160 determines whether or not the interpolation coefficient value calculated for performing the inter-pixel interpolation processing is within a predetermined range (ST122 → ST123).

ここで、所定範囲内の補正係数値であるか否かの判定は、例えば、補正ベクトル・データの絶対値における小数点以下の値(ベクトル成分)を「a」、補正係数の基準値を「0.5」とし、所定の画素間距離を「b」としたとき、算出した補間係数値が、「0≦a<(0.5−b)」且つ「(0.5+b)<a<1」という条件を満たしている範囲であるか否かを判定することによって行う。このとき、「b」が大きいほど解像度劣化は軽減される。   Here, the determination of whether or not the correction coefficient value is within a predetermined range is, for example, “a” for the value (vector component) below the decimal point in the absolute value of the correction vector data, and “0” for the reference value of the correction coefficient. .5 ”and the predetermined inter-pixel distance is“ b ”, the calculated interpolation coefficient values are“ 0 ≦ a <(0.5−b) ”and“ (0.5 + b) <a <1 ”. This is done by determining whether or not the range satisfies the condition. At this time, the resolution deterioration is reduced as “b” increases.

補間係数値が所定範囲の値である場合、累積加算回路130は、補正回路120からの画像信号を累積加算してメモリに記憶する(ST123→ST112)。   When the interpolation coefficient value is within a predetermined range, the cumulative addition circuit 130 cumulatively adds the image signals from the correction circuit 120 and stores them in the memory (ST123 → ST112).

次に、マイコン160は、CCの値を1つ増加させ、更に、タイムカウンタ(以下、TCという)の値を1つ増加させて処理を終了する(ST113、ST114→エンド)。   Next, the microcomputer 160 increments the value of CC by one, further increments the value of a time counter (hereinafter referred to as TC) by one, and ends the process (ST113, ST114 → end).

一方、補間係数値が所定範囲の値を超えている場合、TCの値を1つ増加させて処理を終了する(ST123→ST114→エンド)。   On the other hand, when the interpolation coefficient value exceeds the predetermined range, the value of TC is incremented by 1 and the process is terminated (ST123 → ST114 → End).

また、上述のステップ120において、CCの値がCCmax以上(CC≧CCmax)のとき、又は、上述のステップ121で、TCの値がTCmax以上(TC≧TCmax)のとき、累積加算回路130に記憶してある画像信号を記録部150へ記録するための処理を開始する。   Further, when the CC value is equal to or greater than CCmax (CC ≧ CCmax) in step 120 described above, or when the TC value is equal to or greater than TCmax (TC ≧ TCmax) in step 121 described above, the value is stored in the cumulative addition circuit 130. Then, processing for recording the image signal in the recording unit 150 is started.

まず、マイコン160は、CCの値の逆数を所定の係数値として乗算器140に与える(ST120→ST130、又は、ST121→ST130)。   First, the microcomputer 160 gives the inverse of the CC value to the multiplier 140 as a predetermined coefficient value (ST120 → ST130 or ST121 → ST130).

次に、乗算器140は、マイコン160から与えられた所定の係数値と累積加算回路130に累積加算されている画像信号とを乗算処理して記録部150に出力し、記録部150は乗算器140から出力された画像信号を所定の記録媒体(記録装置)に記録する(ST131)。   Next, the multiplier 140 multiplies the predetermined coefficient value given from the microcomputer 160 and the image signal cumulatively added to the cumulative addition circuit 130 and outputs the result to the recording unit 150. The recording unit 150 is a multiplier. The image signal output from 140 is recorded on a predetermined recording medium (recording apparatus) (ST131).

マイコン160は、記録部150に画像信号が記録されると、CCの値をクリアし、続いて、TCの値をクリアし、処理を終了する(ST132→ST133→エンド)。   When the image signal is recorded in the recording unit 150, the microcomputer 160 clears the CC value, then clears the TC value, and ends the process (ST132 → ST133 → end).

図6は、上述した図5の動作フローに従って動作する撮像装置において、手振れ信号に基づいて算出した補正ベクトル・データと累積加算する画像信号との関係を略示的に示したグラフである。   FIG. 6 is a graph schematically showing a relationship between correction vector data calculated based on a camera shake signal and an image signal to be cumulatively added in the imaging apparatus operating according to the operation flow of FIG. 5 described above.

図6のグラフにおいて、補間係数値が所定範囲内の値であるときの画像信号が実線、それ以外の画像信号が点線に対応しており、図7のように補正した画像信号を全て累積加算せず、手振れ補正された画像信号のうち、補間係数値が所定範囲内である画像信号、即ち、補間処理によって解像度の劣化していない画像信号のみが累積加算されてメモリに記憶されることになる。   In the graph of FIG. 6, the image signal when the interpolation coefficient value is within a predetermined range corresponds to the solid line, and the other image signals correspond to the dotted line, and all the corrected image signals as shown in FIG. 7 are cumulatively added. Without image stabilization, only image signals whose interpolation coefficient values are within a predetermined range among image signals that have undergone camera shake correction, that is, image signals whose resolution has not deteriorated due to interpolation processing, are cumulatively added and stored in the memory. Become.

本発明に係る撮像装置において主要となる構成部を簡略化して示したブロック図示した図である。It is the figure which showed the block diagram which simplified and showed the main structural part in the imaging device which concerns on this invention. 図1に示す撮像装置における手振れ検出部の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the camera shake detection part in the imaging device shown in FIG. 線形補間処理を説明するための説明図である。It is explanatory drawing for demonstrating a linear interpolation process. 線形補間処理における補間係数と利得(信号レベル)との関係を説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the interpolation factor in a linear interpolation process, and a gain (signal level). 図1に示す撮像装置の動作フローチャートである。3 is an operation flowchart of the imaging apparatus shown in FIG. 1. 図1に示す撮像装置において、画像信号に対する補正ベクトル・データと累積加算する画像信号との関係を説明するための説明図である。FIG. 2 is an explanatory diagram for explaining a relationship between correction vector data for an image signal and an image signal to be cumulatively added in the imaging apparatus shown in FIG. 1. 従来の撮像装置において、画像信号に対する補正ベクトル・データと累積加算する画像信号との関係を説明するための説明図である。In the conventional imaging device, it is explanatory drawing for demonstrating the relationship between the correction vector data with respect to an image signal, and the image signal which carries out cumulative addition.

符号の説明Explanation of symbols

110;撮像部
120;補正回路
130;累積加算回路
131;加算器
132;メモリ
133;スイッチ
140;乗算器
150;記録部
160;マイコン
170;手振れ検出部
110; Imaging unit 120; Correction circuit 130; Cumulative addition circuit 131; Adder 132; Memory 133; Switch 140; Multiplier 150; Recording unit 160;

Claims (3)

撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、
前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出手段と、
前記手振れ検出手段から出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量と前記補間係数算出手段で算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正手段と、
前記補間係数算出手段で算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別手段と、
前記画像判別手段に従って前記手振れ補正手段で補正した画像信号の累積加算処理を制御する累積加算制御手段と、
を具備していることを特徴とする撮像装置。
An image pickup apparatus comprising means for accumulating and storing image signals taken by an image pickup unit in a memory,
Camera shake detection means for detecting a vibration amount due to camera shake of the imaging unit and outputting a camera shake signal corresponding to the detected camera shake vibration amount;
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the image signal based on the camera shake signal output from the camera shake detecting unit;
Interpolation coefficient calculating means for calculating an interpolation coefficient value for performing interpolation processing between pixels of the image signal captured by the imaging unit based on the camera shake correction amount calculated by the camera shake correction amount calculating means;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit and the interpolation coefficient value calculated by the interpolation coefficient calculation unit, the camera shake correction unit that performs the camera shake correction by performing interpolation processing of the image signal captured by the imaging unit;
An image in which the interpolation coefficient value calculated by the interpolation coefficient calculation means is compared with a predetermined threshold value set in advance, and the image signal may be cumulatively added when the interpolation coefficient value is within a predetermined range. Image discriminating means for performing discriminating processing of an image signal for accumulating and adding only the images that may be cumulatively added to the memory after discriminating that there is an image that may or may not be cumulatively added;
Cumulative addition control means for controlling the cumulative addition processing of the image signal corrected by the camera shake correction means according to the image discrimination means;
An image pickup apparatus comprising:
撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、
前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出手段と、
前記手振れ検出手段から出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出手段と、
前記手振れ補正量算出手段で算出した手振れ補正量と前記補間係数算出手段で算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正手段と、
前記補間係数算出手段で算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別手段と、
前記画像判別手段に従って前記手振れ補正手段で補正した画像信号の累積加算処理を制御する累積加算制御手段と、
前記累積加算制御手段による累積加算処理の回数に応じて算出した係数値と前記メモリに累積加算して記憶してある画像信号とを乗算処理して出力する画像出力手段と、
を具備していることを特徴とする撮像装置。
An image pickup apparatus comprising means for accumulating and storing image signals taken by an image pickup unit in a memory,
Camera shake detection means for detecting a vibration amount due to camera shake of the imaging unit and outputting a camera shake signal corresponding to the detected camera shake vibration amount;
A camera shake correction amount calculating unit that calculates a camera shake correction amount for correcting the image signal based on the camera shake signal output from the camera shake detecting unit;
Interpolation coefficient calculating means for calculating an interpolation coefficient value for performing interpolation processing between pixels of the image signal captured by the imaging unit based on the camera shake correction amount calculated by the camera shake correction amount calculating means;
Based on the camera shake correction amount calculated by the camera shake correction amount calculation unit and the interpolation coefficient value calculated by the interpolation coefficient calculation unit, the camera shake correction unit that performs the camera shake correction by performing interpolation processing of the image signal captured by the imaging unit;
An image in which the interpolation coefficient value calculated by the interpolation coefficient calculation means is compared with a predetermined threshold value set in advance, and the image signal may be cumulatively added when the interpolation coefficient value is within a predetermined range. Image discriminating means for performing discriminating processing of an image signal for accumulating and adding only the images that may be cumulatively added to the memory after discriminating that there is an image that may or may not be cumulatively added;
Cumulative addition control means for controlling the cumulative addition processing of the image signal corrected by the camera shake correction means according to the image discrimination means;
Image output means for multiplying and outputting a coefficient value calculated according to the number of times of cumulative addition processing by the cumulative addition control means and an image signal accumulated and stored in the memory; and
An image pickup apparatus comprising:
撮像部で撮影した画像信号を累積加算してメモリに記憶する手段を備えた撮像装置であって、
前記撮像部の手振れによる振動量を検出し、該検出した手振れ振動量に応じた手振れ信号を出力する手振れ検出ステップ、
前記手振れ検出ステップで出力された手振れ信号に基づいて前記画像信号を補正するための手振れ補正量を算出する手振れ補正量算出ステップ、
前記手振れ補正量算出ステップで算出した手振れ補正量に基づいて前記撮像部で撮影した画像信号の画素間を補間処理するための補間係数値を算出する補間係数算出ステップ、
前記手振れ補正量算出ステップで算出した手振れ補正量と前記補間係数算出ステップで算出した補間係数値に基づき、前記撮像部で撮影した画像信号の補間処理して手振れ補正を行う手振れ補正ステップ、
前記補間係数算出ステップで算出した補間係数値と予め設定してある所定の閾値とを比較し、前記補間係数値が所定範囲の値である場合に前記画像信号を累積加算してもよい画像であるか累積加算してもよい画像ではないとの判別をした後に、累積加算してもよい画像のみを前記メモリに累積加算する画像信号の判別処理を行う画像判別ステップ、
前記画像判別ステップに従って前記手振れ補正ステップで補正した画像信号の累積加算処理を制御する累積加算制御ステップ、
からなることを特徴とする撮像方法。
An image pickup apparatus comprising means for accumulating and storing image signals taken by an image pickup unit in a memory,
A camera shake detection step of detecting a vibration amount due to camera shake of the imaging unit and outputting a camera shake signal corresponding to the detected camera shake vibration amount;
A camera shake correction amount calculating step for calculating a camera shake correction amount for correcting the image signal based on the camera shake signal output in the camera shake detection step;
An interpolation coefficient calculation step for calculating an interpolation coefficient value for performing interpolation processing between pixels of the image signal captured by the imaging unit based on the camera shake correction amount calculated in the camera shake correction amount calculation step;
Based on the camera shake correction amount calculated in the camera shake correction amount calculation step and the interpolation coefficient value calculated in the interpolation coefficient calculation step, a camera shake correction step for performing camera shake correction by performing interpolation processing of the image signal captured by the imaging unit,
An image in which the interpolation coefficient value calculated in the interpolation coefficient calculation step is compared with a predetermined threshold value set in advance, and the image signal may be cumulatively added when the interpolation coefficient value is within a predetermined range. An image determination step for performing an image signal determination process in which only an image that may be cumulatively added is cumulatively added to the memory after determining that the image is not an image that may be cumulatively added;
A cumulative addition control step for controlling a cumulative addition process of the image signal corrected in the camera shake correction step according to the image determination step;
An imaging method comprising:
JP2003274615A 2003-07-15 2003-07-15 Imaging apparatus and imaging method Expired - Lifetime JP4378602B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003274615A JP4378602B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003274615A JP4378602B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Publications (3)

Publication Number Publication Date
JP2005039532A JP2005039532A (en) 2005-02-10
JP2005039532A5 JP2005039532A5 (en) 2006-08-24
JP4378602B2 true JP4378602B2 (en) 2009-12-09

Family

ID=34211524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003274615A Expired - Lifetime JP4378602B2 (en) 2003-07-15 2003-07-15 Imaging apparatus and imaging method

Country Status (1)

Country Link
JP (1) JP4378602B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008187750A (en) * 2008-05-07 2008-08-14 Casio Comput Co Ltd Imaging apparatus and program therefor

Also Published As

Publication number Publication date
JP2005039532A (en) 2005-02-10

Similar Documents

Publication Publication Date Title
KR101371775B1 (en) Method and apparatus for image stabilization on camera
US7454131B2 (en) Image sensing apparatus with camera shake correction function
US9560276B2 (en) Video recording method of recording output video sequence for image capture module and related video recording apparatus thereof
US7509039B2 (en) Image sensing apparatus with camera shake correction function
JP4956401B2 (en) Imaging apparatus, control method thereof, and program
KR101426095B1 (en) Image processing device, image picking-up device, and image processing method
US20160180508A1 (en) Image processing device, endoscope apparatus, image processing method, and program
JP4636887B2 (en) Optical equipment
KR100793284B1 (en) Apparatus for digital image stabilizing, method using the same and computer readable medium stored thereon computer executable instruction for performing the method
JP5525592B2 (en) Video signal processing device
JP2007114466A (en) Photographing device incorporating camera shake correcting function
US8319841B2 (en) Video processing apparatus, video processing system, video processing method, and program
JP5003657B2 (en) Image stabilization device
JP3867691B2 (en) Imaging device
JP2007134788A (en) Image processing apparatus and program
JP4378602B2 (en) Imaging apparatus and imaging method
JP4453290B2 (en) Imaging device
WO2011033675A1 (en) Image processing apparatus and image display apparatus
JP4606976B2 (en) Image processing device
JPWO2007026452A1 (en) Image processing apparatus and image processing method
JP4449777B2 (en) Imaging apparatus, image processing apparatus and method, recording medium, and program
JP5506374B2 (en) Imaging apparatus and control method thereof
JP4389509B2 (en) Imaging apparatus and imaging method
JP4853746B2 (en) Imaging apparatus, image processing apparatus and method, recording medium, and program
JP3697050B2 (en) Imaging method and apparatus, and storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3