JP4376190B2 - Structure shape design system - Google Patents

Structure shape design system Download PDF

Info

Publication number
JP4376190B2
JP4376190B2 JP2004571067A JP2004571067A JP4376190B2 JP 4376190 B2 JP4376190 B2 JP 4376190B2 JP 2004571067 A JP2004571067 A JP 2004571067A JP 2004571067 A JP2004571067 A JP 2004571067A JP 4376190 B2 JP4376190 B2 JP 4376190B2
Authority
JP
Japan
Prior art keywords
cad
shape
cae
data
design
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004571067A
Other languages
Japanese (ja)
Other versions
JPWO2004095320A1 (en
Inventor
貴徳 佐々木
敏治 山本
義人 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Publication of JPWO2004095320A1 publication Critical patent/JPWO2004095320A1/en
Application granted granted Critical
Publication of JP4376190B2 publication Critical patent/JP4376190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Description

本発明は、構造物形の設計システムに関するものである。 The present invention relates to a structure shape of the design system.

従来、構造物形状の設計においては、構造物各部の寸法や形状関数を設計変数とし、その設計変数を変えてCAE(Computer Aided Engineering)構造解析を行って構造物形状を探索する設計方法が採られている。 Conventionally, in a structure shape of the design, the design method of the dimensions and shape function of the structure each part as a design variable, to explore the structure shape by performing a CAE (Computer Aided Engineering) structural analysis by changing the design variable It is taken.

この従来の設計方法においては、当該設計変数はCAEデータに含まれる節点の座標で定義され、当該節点座標を移動させることにより構造物形状を求める手法が採られている。 In this conventional design method, the design variable is defined by the coordinates of the nodes included in the CAE data, and a method of obtaining the structure shape by moving the node coordinates is adopted.

従来の構造物設計方法としては、設計領域を入力することで構造物形状が得られ、リブやボス等の追加/削除によるトポロジ(位相・形態)変化を伴う構造物の形状を短時間に設計出来るもの(例えば、特許文献1参照)や、構造物の設計仕様、初期形状、設計パラメータの適用範囲、境界条件を入力することで設計仕様を満足する最適モデルを設計するもの(例えば、特許文献2参照)が提案されている。 Conventional structure design method, the structure shape is obtained by inputting the design area, a short time the shape of the topology (phase-form) structure with the change due to addition / deletion of such rib or boss Designing an optimal model that satisfies design specifications by inputting design specifications (for example, see Patent Document 1), structure design specifications, initial shape, application range of design parameters, and boundary conditions (for example, patents) Document 2) has been proposed.

また、緩衝包装における緩衝材の設計では、板状緩衝材の緩衝性能データを参考にした設計者の勘や経験に頼った設計方法が一般的であり、CAD(Computer Aided Design)は用いているもののCAE構造解析を併用し、且つ成型可否及び製作コストを含めた設計を行える構造物形状の設計システムは存在しない。 Moreover, in the design of the cushioning material in the buffer packaging, a design method that relies on the intuition and experience of the designer referring to the cushioning performance data of the plate cushioning material is common, and CAD (Computer Aided Design) is used. However, there is no structural shape design system that can be used in combination with CAE structural analysis and can be designed including the possibility of molding and manufacturing costs.

特開2001−297118号公報JP 2001-297118 A 特開平3−224063号公報Japanese Patent Laid-Open No. 3-224063

しかしながら、前述の従来技術のように、強度といった力学的な諸量を制約条件にして構造物の体積或いは重量を最小にする構造物形状の設計は様々な分野で行われているが、成型性の可否及び製作コストを同時に扱った構造物形状の設計システムは無く、力学的な構造物形状を求めてから成型性やコストを評価し、妥当かどうかを判断する手法が一般的であり、必要に応じて形状の制約条件を再度見直し、再度設計計算を行う場合があった。 However, as in the prior art described above, the design of the structure shape that minimizes the volume or weight of the structure with the mechanical quantities such as strength as constraints is performed in various fields. There is no structural shape design system that handles the availability and manufacturing cost at the same time, and it is common and necessary to evaluate the formability and cost after determining the dynamic structural shape and determine whether it is appropriate. In some cases, the shape constraints were reviewed again and design calculations were performed again.

本発明は前記課題を解決するものであり、その目的とするところは、構造物形状を容易且つ的確に成型可否及び製作コストまで考慮して設計することが可能な構造物形状の設計システムを提供せんとするものである。 The present invention is made to solve the above problems, it is an object of the structure shape design system that can be designed in consideration of the structure shape to easily and accurately molded availability and manufacturing costs It is to be provided.

発明に係る構造物形状の設計システムの代表的な構成は、構造物の設計データを入力する入力手段と、前記入力手段により入力された構造物の設計データに基づいて構造物形状を定義するCAD手段と、前記CAD手段により定義された構造物のCADデータをCAEデータに変換するCAD/CAE変換手段と、前記CAEデータに変換された構造物形状について力学的応答量を検出するCAE構造解析手段と、前記CAD手段により定義された構造物形状について製作可否を判断する製作可否判断手段と、前記CAD手段により定義された構造物のCADデータと、前記CAE構造解析手段により検出された力学的応答量と、前記製作可否判断手段により判断された製作可否情報との相関関係を検出し、該相関関係に基づいて前記力学的応答量が前記構造物の設計条件を満足し、且つ製作可能となるように前記構造物形状が検出されるまで前記構造物のCADデータを変更し、その変更した前記構造物のCADデータに基づいて該構造物のCADデータと、前記力学的応答量と、前記製作可否との相関関係を更新し、その更新された相関関係に基づいて前記力学的応答量が前記構造物の設計条件を満足し、且つ製作可能となるように前記構造物形状を検出する制御手段と、前記制御手段により検出された前記構造物形状を出力表示するための表示手段とを有し、前記構造物は成形金型を用いて製作される物品であって、前記製作可否判断手段は該物品と成形金型とを離型する際に抜き方向に対して垂直な複数の平面で分割される各断面の断面形状の外周が該抜き方向から投影して交差しないことで製作可能を判断することを特徴とする。 Typical construction of a structure shape design system according to the present invention includes an input means for inputting design data structure defines the structure shape based on the design data of the input structure by said input means CAD means, CAD / CAE conversion means for converting CAD data of a structure defined by the CAD means into CAE data, and CAE structure analysis for detecting a mechanical response amount for the structure shape converted to the CAE data Means for determining whether or not the structure shape defined by the CAD means can be manufactured, CAD data of the structure defined by the CAD means, and the dynamics detected by the CAE structure analyzing means A correlation between the response amount and the production availability information determined by the production availability determination means is detected, and the dynamics are detected based on the correlation. Amount response satisfies the design conditions of the structure and to the structure shape is detected so as to be manufactured by changing the CAD data of the structure, the CAD data of the structure was the change Based on the CAD data of the structure, the mechanical response amount, and the fabrication availability, the mechanical response amount determines the design condition of the structure based on the updated correlation. happy, and possess a that control means detect the production so that it becomes the structure shape, and display means for outputting and displaying the detected by previous SL control means the structure shape The structure is an article manufactured using a molding die, and the manufacturing possibility determination unit divides the article and the molding die into a plurality of planes perpendicular to the drawing direction when releasing the mold. The outer circumference of the cross-sectional shape of each cross-section projected from the drawing direction Characterized by determining the probability produced by not intersect Te.

本発明は、上述の如く構成したので、入力手段により入力された構造物のCADデータと、CAD/CAE変換手段によりCADデータからCAEデータに変換された構造物形状についてCAE構造解析手段により検出された力学的応答量と、製作可否判断手段により判断された製作可否情報との相関関係を検出し、その相関関係に基づいて力学的応答量が構造物の設計条件を満足し、且つ製作可能となるように構造物形状が検出されるまで構造物のCADデータを変更し、その変更した構造物のCADデータに基づいて該構造物のCADデータと、力学的応答量と、製作可否との相関関係を更新し、その更新された相関関係に基づいて力学的応答量が構造物の設計条件を満足し、且つ製作可能となるように制御手段が構造物形状を検出し、表示手段により、その構造物形状を出力表示することが出来る。これにより、構造物形状を容易且つ的確に設計することが出来る。 Since the present invention is configured as described above, the CAD data of the structure inputted by the input means and the shape of the structure converted from CAD data to CAE data by the CAD / CAE conversion means are detected by the CAE structure analysis means. The correlation between the mechanical response quantity and the production availability information judged by the production availability judgment means is detected, and based on the correlation, the mechanical response quantity satisfies the design condition of the structure and can be produced. so as to change the CAD data of the structure until the structure shape is detected, and the CAD data of said structure on the basis of the CAD data of the changed structure, the mechanical response amount, and fabrication propriety update the correlation, mechanical response amount satisfies the design conditions of the structure on the basis of the updated correlation, and fabricated so that it becomes the control means detects a structure shape, The shown means, can be output displays the structure shape. This makes it possible to design a structure shape easily and accurately.

発明に係る構造物形状の設計システムの概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the structure shape design system which concerns on this invention. 構造物形状検出時の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence at the time of structure shape detection. 緩衝物と、その被緩衝物を包装する緩衝材の設計初期段階での形状をCADデータで示した図である。And the cushioning material, the shape of the early design stage of the cushioning material for packaging the object to be buffered thereof illustrates in CAD data. 3に示すCADデータをCAEデータに変換した様子を示す図である。It is a figure which shows a mode that the CAD data shown in FIG. 3 were converted into CAE data. 造物のCADデータと、力学的応答量と、製作可否と、製作コストとの相関関係を示す図である。And CAD data structure creation illustrates the mechanical response amount, and fabrication possibility, the correlation between the manufacturing cost. 構造物形状を求める過程において設計条件を満足しない緩衝材の形状の一例をCADデータで示した図である。It is the figure which showed an example of the shape of the shock absorbing material which does not satisfy design conditions in the process of calculating | requiring a structure shape by CAD data. 衝材の構造物形状の一例をCADデータで示した図である。An example of a structure shape of loose衝材illustrates in CAD data. 衝材の設計初期段階での他の形状をCADデータで示した図である。Other shapes of a gentle衝材initial design stage of a diagram showing the CAD data.

図により本発明に係る構造物形状の設計システムの一例として緩衝包装に使用する緩衝材形の設計システムに適用した場合の一実施形態を具体的に説明する。 Specifically described an embodiment of applying the buffer material shape of design systems for use in cushioning packing as an example of a design system of a structure shape according to the present invention with reference to FIG.

図1において、1は設計対象の構造物として、成形金型を用いて製作される物品であって緩衝包装に使用する緩衝材4を設計するために必要とする設計データを入力するための入力手段としての入力装置であって、パーソナルコンピュータ等に設けられたキーボードやマウス或いはインターネット等の通信回線を介して設計データを入力可能な入力装置である。   In FIG. 1, reference numeral 1 denotes an input for inputting design data required for designing a cushioning material 4 used for cushioning packaging, which is an article manufactured using a molding die as a structure to be designed. An input device as means for inputting design data via a communication line such as a keyboard, a mouse, or the Internet provided in a personal computer or the like.

2は入力装置1により入力された設計データに基づいて所定の演算処理を行って構造物である緩衝材4の形状を演算する演算処理装置であり、3は演算処理装置2で演算された緩衝材4の形状を出力表示するための表示手段となるCRT(ブラウン管)或いはプリンタ等の表示装置であって、この表示装置3はデータベース・ファイル等に格納された設計結果を読み込んで出力表示する機能も備えている。 2 is an arithmetic processing unit for calculating a structure in which shape of the cushioning material 4 performs predetermined arithmetic processing based on the design data input by the input device 1, 3 is calculated by the processing unit 2 a display device such as a CRT (cathode ray tube) or a printer serving as a display means for outputting and displaying the shape of the buffer material 4, the display device 3 the output load and display design result stored in the database file, etc. It also has a function to do.

演算処理装置2は、その演算処理部で行う演算処理を制御し、構造物である緩衝材4の形状を検出する制御手段となる制御部2aと、入力装置1により入力された構造物となる緩衝材4の設計データに基づいて該緩衝材4の構造物形状を定義するCAD手段となるCAD部2bと、このCAD部2bで定義された構造物となる緩衝材4のCADデータをCAEデータに変換するCAD/CAE変換手段となるCAD/CAE変換部2cと、このCAEデータに変換された緩衝材4の構造物形状についてCAE構造解析により力学的応答量を検出するCAE構造解析手段となるCAE構造解析部2dと、CAD部2bで定義された緩衝材4の構造物形状について製作可否を判断する製作可否判断手段となる製作可否判断部2eと、CAD部2bで定義された緩衝材4の構造物形状について製作コストを検出するコスト算出手段となるコスト算出部2f等を有して構成されている。 Processor 2 controls the calculation process performed by the arithmetic processing unit, that system and control unit 2a Do the detection to that control means shape the cushioning material 4 is structure, is input by the input device 1 The CAD part 2b, which is a CAD means for defining the structure of the cushioning material 4 based on the design data of the cushioning material 4 serving as the structure, and the cushioning material 4 serving as the structure defined by the CAD part 2b A CAD / CAE conversion unit 2c serving as a CAD / CAE conversion means for converting CAD data into CAE data, and a CAE for detecting the mechanical response amount by CAE structural analysis of the structure of the buffer material 4 converted into the CAE data. The CAE structure analysis unit 2d serving as a structure analysis unit, the production availability determination unit 2e serving as a production availability determination unit that determines whether or not the structure of the buffer material 4 defined by the CAD unit 2b is manufactured, and the CAD unit 2b A cost calculation unit 2f such as a cost calculation means for detecting the production cost for the construction shape defined by a buffer material 4 is constituted.

御部2aでは、図5に示して後述するように、CAD部2bで構造物となる緩衝材4の設計データに基づいて作成されたCADデータと、CAE構造解析部2dで検出された力学的応答量と、製作可否判断部2eで判断された製作可否情報と、コスト算出部2fで検出された製作コスト情報との相関関係を検出すると共に、この相関関係に基づいて製作可能で且つ力学的応答量が緩衝材4の設計条件を満足し、且つ最小製作コストとなるような緩衝材4の形状が検出されるまで該緩衝材4のCADデータを変更し、その変更したCADデータに基づいて、該CADデータと、CAE構造解析部2dで新たに検出された力学的応答量と、製作可否判断部2eで再度判断された製作可否情報と、コスト算出部2fで新たに検出された製作コスト情報とに基づいて先の相関関係を更新し、その更新された相関関係に基づいて力学的応答量が緩衝材4の設計条件を満足し、且つ製作可能で、且つ最小製作コストとなるように構造物である緩衝材4の形状を検出する演算処理を行う。 In control section 2a, as will be described later with reference to FIG 5, a CAD data created on the basis of the design data of the cushioning material 4 made of a structure in a CAD unit 2b, detected by the CAE structure analysis unit 2d Mechanics The correlation between the response amount, the production availability information determined by the production availability determination unit 2e, and the production cost information detected by the cost calculation unit 2f is detected, and the production can be performed based on the correlation. basis weight response satisfies the design conditions of the buffer material 4, and change the CAD data of the buffer material 4 to a minimum manufacturing cost and so as a buffer material 4 shape is detected, to the modified CAD data Based on the CAD data, the mechanical response amount newly detected by the CAE structure analysis unit 2d, the production availability information judged again by the production availability judgment unit 2e, and newly detected by the cost calculation unit 2f Production cost Based on the information, the previous correlation is updated, and based on the updated correlation, the mechanical response amount satisfies the design condition of the cushioning material 4 and can be manufactured, and the minimum manufacturing cost is achieved. performing arithmetic processing you detect structure in which shape of the buffer material 4.

本実施形態では、製作可否判断部2eにより製作可能を判断する場合、緩衝材4と成形金型とを離型する際に図3、図6及び図7に示す抜き方向aに対して垂直な複数の平面で分割される各断面の断面形状の外周が該抜き方向aから投影して交差しないことで製作可能を判断している。   In the present embodiment, when it is determined that the manufacture is possible by the manufacture possibility determination unit 2e, when the cushioning material 4 and the molding die are released, they are perpendicular to the drawing direction a shown in FIGS. Production is determined by projecting the outer periphery of the cross-sectional shape of each cross-section divided by a plurality of planes from the drawing direction a so as not to intersect.

また、CAE構造解析部2dにより検出する力学的応答量の一例として、本実施形態では、落下衝撃時に緩衝材4により包装される被緩衝物5に生じる最大減速度、最大変位及び緩衝材4の長期使用時に生じるクリープ変位のうちの少なくとも1つを検出するように設定している。   Further, as an example of the mechanical response amount detected by the CAE structure analysis unit 2d, in the present embodiment, the maximum deceleration, the maximum displacement, and the buffer material 4 that are generated in the buffered material 5 that is packaged by the buffer material 4 at the time of a drop impact. It is set to detect at least one of creep displacements that occur during long-term use.

次に、図2を用いて、本発明に係る構造物形状の設計システムにより構造物となる緩衝材4の形状が検出されるまでの処理手順の一例について説明する。先ず、ステップS1において、入力装置1としてキーボード或いはインターネット等の通信回線等を経由して、設計対象の構造物となる緩衝材4の設計データを入力する。 Next, with reference to FIG. 2, illustrating an example of the process procedure of the structural shape design system according to the present invention to form shaped cushioning member 4 serving as a structure is detected. First, in step S1, design data of the cushioning material 4 serving as a structure to be designed is input as the input device 1 via a keyboard or a communication line such as the Internet.

例えば、緩衝包装用の緩衝材4の形状を設計する場合には、設計データとして、被緩衝物5の形状、重量、落下高さ、落下方向、設計許容値(例えば、被緩衝物5に生じる最大減速度、底付き或いは緩衝材4からの脱落を判定するための被緩衝物5の最大変位、長期使用時の緩衝材4のへたりを判定するための緩衝材4のクリープ変位、被緩衝物5に生じる最大応力、被緩衝物5に生じる最大歪み、緩衝材4に生じる最大応力、緩衝材4に生じる最大歪み、及び緩衝材4の反発係数等の機械的応答量の許容値等)、被緩衝物(包装される物品)5、外箱及び緩衝材4に使用する素材の機械的物性値(例えば、応力・歪み曲線、ポアソン比、密度等)を入力する。また、段ボール箱等の外箱の寸法、外箱に収める被緩衝物5の位置等も必要に応じて設計条件として入力する。 For example, when designing the shape of the cushioning material 4 for cushioning packaging, as the design data, the shape of the buffer material 5, by weight, drop height, dropping direction, design tolerances (e.g., in the buffer material 5 Maximum deceleration that occurs, maximum displacement of the buffered object 5 for determining bottoming or falling off from the buffer material 4, creep displacement of the buffer material 4 for determining sag of the buffer material 4 during long-term use, Maximum stress generated in the buffer 5, maximum strain generated in the buffered object 5, maximum stress generated in the buffer material 4, maximum strain generated in the buffer material 4, allowable values of mechanical response such as the coefficient of restitution of the buffer material 4, etc. ), Mechanical property values (for example, stress / strain curve, Poisson's ratio, density, etc.) of materials used for the object to be buffered (article to be packaged) 5, the outer box and the buffer material 4. Further, the dimensions of the outer box such as a cardboard box, the position of the buffered object 5 to be stored in the outer box, and the like are input as design conditions as necessary.

尚、被緩衝物5、外箱、緩衝材4に使用する素材の機械的物性値は、それ等の各種データを格納した記憶装置或いはデータベース・ファイルを用意しておき、ここから、用いる素材に応じて機械的物性値を検索し、これを利用するようにしても良い。   The mechanical properties of the materials used for the buffered object 5, the outer box, and the cushioning material 4 are prepared as a storage device or a database file storing such various data. Accordingly, the mechanical property value may be retrieved and used.

演算処理装置2ではこれ等の設計データが入力されると、ステップS2に移行し、緩衝材4の設計初期形状をCAD部2bを用いて、例えば、図3に示すようなCADデータM1を作成する。このときに、設計変数となる形状データ(例えば、寸法、角度、リブや穴の有無等)を定義しておく。   When these design data are input to the arithmetic processing unit 2, the process proceeds to step S2, and the CAD unit 2b is used to create the CAD data M1 as shown in FIG. To do. At this time, shape data (for example, dimensions, angles, presence / absence of ribs and holes) serving as design variables are defined.

尚、この設計初期形状は新たに作成する方法以外に、先に設計した事例のCADデータMをデータベース等から選択して使用しても良い。このとき、更にデータベースに格納されている図3及び図8に示すような異なる緩衝材4の設計初期形状を複数選択し、複数選択された緩衝材4の設計初期形状と各々の設計初期形状に含まれる前記形状データを設計変数として定義するようにしても良い。   In addition to the method of newly creating the initial design shape, the CAD data M of the previously designed case may be selected from a database or the like and used. At this time, a plurality of design initial shapes of different cushioning materials 4 as shown in FIG. 3 and FIG. 8 stored in the database are further selected, and a plurality of design initial shapes of the cushioning materials 4 and respective design initial shapes are selected. The shape data included may be defined as a design variable.

ステップS2において、緩衝材4と被緩衝物5とを組み合わせた際に被緩衝物5に突起部5aや曲面部がある場合のために、CAD/CAE変換手段となるCAD/CAE変換部2cは緩衝材4(例えば、体積集合A)と被緩衝物5(例えば、体積集合B)との干渉を調べ、互いに干渉している場合(A∩B≧0)には、緩衝材4側から被緩衝物5との干渉部分(A∩B)を引き算処理{A−(A∩B)}する。緩衝材4の凹部4aは、該緩衝材4側から干渉部分となる被緩衝物5の突起部5aを引き算処理して形成される。   In step S2, when the cushioning material 4 and the buffered object 5 are combined, the CAD / CAE converting unit 2c serving as the CAD / CAE converting unit is provided for the case where the buffered object 5 has a protrusion 5a or a curved surface part. The interference between the buffer material 4 (for example, the volume set A) and the buffered object 5 (for example, the volume set B) is examined. A subtraction process {A- (A∩B)} is performed on the interference portion (A∩B) with the buffer 5. The recess 4a of the cushioning material 4 is formed by subtracting the protrusion 5a of the buffered material 5 that becomes an interference portion from the cushioning material 4 side.

この際、CAE構造解析手段となるCAE構造解析部2dでの緩衝材4と被緩衝物5との間の接触計算が可能となるように該緩衝材4と被緩衝物5との境界に1mm程度の隙間を設ける。   At this time, 1 mm is provided at the boundary between the buffer material 4 and the buffered object 5 so that the calculation of contact between the buffer material 4 and the buffered object 5 in the CAE structure analyzing unit 2d serving as the CAE structure analyzing means can be performed. Provide a gap of a certain degree.

次いで、ステップS3、ステップS6及びステップS7に移行し、ステップS1で入力された設計データ及びステップS2で定義したCADデータMについて以下の処理を夫々のステップS3,S6,S7で行う。   Subsequently, the process proceeds to step S3, step S6, and step S7, and the following processing is performed in steps S3, S6, and S7 for the design data input in step S1 and the CAD data M defined in step S2.

先ず、ステップS3では、CAD/CAE変換部2cによりステップS2で定義したCADデータMをステップS1で入力された設計データを含めてCAE構造解析に用いるCAEデータNに変換する。これにより、例えば、図4に示すCAEデータNが得られる。 First, in step S3, the CAD / CAE converter 2c converts the CAD data M defined in step S2 into CAE data N used for CAE structure analysis including the design data input in step S1. Thus, for example, the CAE data N 1 shown in FIG. 4 is obtained.

CAD/CAE変換部2cに設けられるCADデータMをCAEデータNに変換するプログラムには、例えば、Simulation Works,Inc.製のKUBRIX(商品名)といった汎用自動要素分割プログラムが適用される。   For example, a general-purpose automatic element division program such as KUBRIX (trade name) manufactured by Simulation Works, Inc. is applied to the program for converting the CAD data M provided in the CAD / CAE conversion unit 2c into the CAE data N.

次いで、ステップS4に移行し、CAE構造解析部2dにおいてステップS3で作成されたCAEデータNに対して落下衝撃解析を実行する。この落下衝撃解析には、例えば、Hibbitt,Karlsson&Sorensen,Inc.製のABAQUS(商品名)、MECALOG S.A.R.L.製のRADIOSS(商品名)、Livermore Software Technology Corporation製のLS-DYNA(商品名)、Engineering Systems International S.A. 製のPAM-CRASH(商品名)といった汎用CAEプログラムが適用される。   Next, the process proceeds to step S4, and the drop impact analysis is performed on the CAE data N created in step S3 in the CAE structure analysis unit 2d. For this drop impact analysis, for example, ABAQUS (trade name) from Hibbitt, Karlsson & Sorensen, Inc., RADIOSS (trade name) from MECALOG SARL, LS-DYNA (trade name) from Livermore Software Technology Corporation, Engineering Systems International General-purpose CAE programs such as PAM-CRASH (trade name) manufactured by SA are applied.

次いで、ステップS5に移行し、前記ステップS4で実行された落下衝撃解析の結果から被緩衝物5に生じる最大減速度等といった設計許容値との大小を比較する力学的応答量を算出する。この力学的応答量の算出には、上記汎用CAEプログラムに備わっているポストプロセッサを適用したり、解析結果をテキストデータで出力させ当該データを編集するプログラムを作成して使用しても良い。   Next, the process proceeds to step S5, and a mechanical response amount for comparing the magnitude with a design allowable value such as the maximum deceleration generated in the buffered object 5 is calculated from the result of the drop impact analysis executed in step S4. For calculating the mechanical response amount, a post-processor provided in the general-purpose CAE program may be applied, or a program for outputting the analysis result as text data and editing the data may be used.

一方、ステップS6では、製作可否判断部2eにおいて、前記ステップS2で定義したCADデータMに対し、成形金型を用いて製作される場合の離型のための抜き勾配が適切に施されているか否かを判断することにより製作可否を判断する。   On the other hand, in step S6, whether or not the manufacturability determination unit 2e appropriately applies a draft for releasing when the CAD data M defined in step S2 is manufactured using a molding die. Whether or not production is possible is judged by judging whether or not.

この成形可否判断は抜き方向aと垂直な複数の平面で分割した緩衝材4の各々の断面が該抜き方向aに対して、その断面積が徐々に小さくなり且つ断面の外周或いは内周が抜き方向aから見たときに他の断面の外周或いは内周と交差していないことを調べるプログラムを用いたり、或いは一部のCADソフト(例えば、Solid Works Corporation製のSolid Works;商品名)に備わっている抜き勾配確認機能を適用しても良い。   The determination of whether or not molding is possible is that each of the cross-sections of the cushioning material 4 divided by a plurality of planes perpendicular to the drawing direction a gradually decreases in cross-section with respect to the drawing direction a and the outer periphery or inner periphery of the cross-section is extracted. Use a program to check that it does not intersect with the outer or inner circumference of another cross section when viewed from the direction a, or some CAD software (for example, Solid Works made by Solid Works Corporation) You may apply the draft check function.

また、ステップS7では、コスト算出部2fにおいて、前記ステップS2で定義したCADデータMに対して製作コストを算出する。例えば、緩衝材4としてビーズ発泡成型品を使用する場合には、材料費として素材使用量に相当するCADデータMの体積に素材単価を乗じた値、加工費として成形機のランニングコスト等が適用され、製作コストが算出される。   In step S7, the cost calculation unit 2f calculates the production cost for the CAD data M defined in step S2. For example, when a bead foam molded product is used as the buffer material 4, a value obtained by multiplying the volume of CAD data M corresponding to the material usage amount by the material unit price as the material cost, and a running cost of the molding machine, etc. are applied as the processing cost. The production cost is calculated.

また、緩衝材4として押出発泡品を使用する場合には、材料費として原反単価を板取りを考慮した原反取数で割った値、加工費としてカット費、熱貼加工費、抜き型代等が適用され、製作コストが算出される。   In addition, when an extruded foam product is used as the cushioning material 4, the raw material unit price divided by the number of raw fabrics taking into account plate cutting as the material cost, the cutting cost, the heat pasting cost, the die cutting Fees are applied and the production cost is calculated.

そして、ステップS8に移行し、ステップS5、ステップS6及びステップS7で算出された力学的応答量、製作可否情報、製作コスト情報を用いて、図3に示すCADデータMの設計変数と力学的応答量、製作可否及び製作コストとの相関関係を、例えば、図5に示すグラフのように導き、この相関関係に基づいて製作可能で且つ力学的応答量が設計対象の緩衝材4の設計許容値を満足し、且つ製作コストが最小となる緩衝材4の形状を求める。 Then, the process proceeds to step S8, the mechanical response amount calculated in step S5, step S6 and step S7, the fabrication compliance information using the manufacturing cost information, mechanical and design variables CAD data M 1 shown in FIG. 3 Correlation between the response amount, production availability and production cost is derived, for example, as shown in the graph of FIG. 5, and the design allowance of the shock absorbing material 4 that can be produced based on this correlation and the mechanical response amount is the design object. satisfies the value, and the manufacturing cost can determine the shape of the cushioning material 4 is minimized.

設計対象の緩衝材4の形状を求める過程において、例えば、図5及び図6に示すCADデータMのように設計条件を満足しない(製作不可能、力学的応答量が設計許容値を超える)、或いは製作コストがより安価になる緩衝材形状が存在し得る場合には最終的な緩衝材4の形状が求まるまでステップS8から前記ステップS2に移行し、図5に示すように、CADデータMを変更して力学的応答量、製作可否及び製作コストとの相関関係を更新し、最終的な緩衝材4の形状を求める。 In the process of obtaining the shape of a design target of the cushioning material 4, for example, it does not satisfy the design conditions as CAD data M 2 shown in FIGS. 5 and 6 (manufactured impossible, mechanical response amount exceeds the design tolerances ), Or if there is a buffer material shape that can be manufactured at a lower cost, the process proceeds from step S8 to step S2 until the final shape of the buffer material 4 is obtained. As shown in FIG. M is changed to update the correlation between the mechanical response amount, production availability and production cost, and the final shape of the cushioning material 4 is obtained.

図5は図3に示すCADデータM1から開始して、順次、CADデータM,M,…,Mと変更し、9回目に、例えば、図7に示すような緩衝材4の形状のCADデータMoptが得られた様子を示す。設計対象の緩衝材4の形状を求める制御部2aには、例えば、Engineous Software Inc.製のiSight(商品名)といった汎用設計プログラムが適用される。 FIG. 5 starts from the CAD data M1 shown in FIG. 3, and sequentially changes to CAD data M 2 , M 3 ,..., M 8, and for the ninth time, for example, the shape of the cushioning material 4 as shown in FIG. A state in which the CAD data Mopt in the form of a circle is obtained is shown. To shape the determined Ru control section 2a of the cushioning material 4 to be designed, for example, a general-purpose design program is applied such Engineous Software Inc. manufactured iSight (trade name).

図8は緩衝材の設計初期段階での他の形状をCADデータで示した図である。図8中、4bは緩衝材4の4隅に穿設される孔であり、4cは該孔4bから緩衝材4の開口部まで延長されたスリットである。このように、データベースに格納されている前述した図3及び図8に示すような異なる緩衝材4の設計初期形状を複数選択し、複数選択された緩衝材4の設計初期形状と各々の設計初期形状に含まれる前記形状データを設計変数として定義するようにしても良い。   FIG. 8 is a diagram showing another shape of the cushioning material in the initial design stage as CAD data. In FIG. 8, 4 b is a hole drilled in the four corners of the buffer material 4, and 4 c is a slit extending from the hole 4 b to the opening of the buffer material 4. As described above, a plurality of design initial shapes of different cushioning materials 4 as shown in FIG. 3 and FIG. 8 described above stored in the database are selected, and the design initial shapes of the plurality of selected cushioning materials 4 and the initial design of each are selected. The shape data included in the shape may be defined as a design variable.

本実施形態では、設計変数としてCADデータMを用いているため、求められた構造物形状に対して、その図面や機械加工用のNCデータを作成する作業が容易となる。 In the present embodiment, since CAD data M is used as a design variable, it is easy to create a drawing or NC data for machining with respect to the obtained structure shape.

また、形状が変更される度にCADデータMについて要素分割を行うため、歪んだ要素が発生し難く、CAE構造解析における解析精度が悪化する可能性が低く、リブや穴を増やすといった複雑な形状変更にも容易に対応出来る。   Further, since the element division is performed on the CAD data M every time the shape is changed, a distorted element is hardly generated, the analysis accuracy in the CAE structural analysis is unlikely to deteriorate, and a complicated shape such as an increase in ribs and holes is provided. Can easily handle changes.

更に、力学的応答量だけではなく、製作可否や製作コストも設計の条件に加えているため、加工性、経済性も含めたより生産性の高い構造物形状を得ることが出来る。 Furthermore, since not only the mechanical response amount but also the production availability and production cost are added to the design conditions, it is possible to obtain a structure shape with higher productivity including workability and economy.

尚、前記実施形態では、構造物として緩衝材4を適用した場合について説明したが、本発明はこれに限るものではなく、他の種々の構造物であっても適用することが出来る。この場合には設計対象とする構造物に応じて、CAE構造解析部2dに用いる汎用のCAEプログラムを変更し、評価対象の力学的応答量と製作コスト算出方法等を変更すれば良い。   In addition, although the said embodiment demonstrated the case where the buffer material 4 was applied as a structure, this invention is not limited to this, It can apply also to other various structures. In this case, the general-purpose CAE program used for the CAE structure analysis unit 2d may be changed in accordance with the structure to be designed, and the mechanical response amount to be evaluated, the production cost calculation method, and the like may be changed.

本発明の活用例として、構造物形状の設計システムに適用できる As an application example of the present invention, the present invention can be applied to a structure shape design system .

1…入力装置1 ... Input device
2…演算処理装置2 ... Arithmetic processing device
2a…制御部2a: Control unit
2b…CAD部2b ... CAD part
2c…CAD/CAE変換部2c: CAD / CAE converter
2d…CAE構造解析部2d ... CAE structure analysis part
2e…製作可否判断部2e ... Production availability judgment part
2f…コスト算出部2f ... Cost calculation unit
3…表示装置3. Display device
4…緩衝材4 ... cushioning material
4a…凹部4a ... recess
4b…孔4b ... hole
4c…スリット4c ... Slit
5…被緩衝物5 ... Buffered object
5a…突起部5a ... Projection
M,MM, M 1 〜M~ M 8 ,Mopt…CADデータ, Mopt ... CAD data
N,NN, N 1 …CAEデータ... CAE data

Claims (3)

構造物の設計データを入力する入力手段と、
前記入力手段により入力された構造物の設計データに基づいて構造物形状を定義するCAD手段と、
前記CAD手段により定義された構造物のCADデータをCAEデータに変換するCAD/CAE変換手段と、
前記CAEデータに変換された構造物形状について力学的応答量を検出するCAE構造解析手段と、
前記CAD手段により定義された構造物形状について製作可否を判断する製作可否判断手段と、
前記CAD手段により定義された構造物形状について製作コストを検出するコスト算出手段と、
前記CAD手段により定義された構造物のCADデータと、前記CAE構造解析手段により検出された力学的応答量と、前記製作可否判断手段により判断された製作可否情報と、前記コスト算出手段により検出された製作コスト情報との相関関係を検出し、該相関関係に基づいて前記力学的応答量が前記構造物の設計条件を満足し、且つ製作可能で、且つ最小製作コストとなるように前記構造物形状が検出されるまで前記構造物のCADデータを変更し、その変更した前記構造物のCADデータに基づいて該構造物のCADデータと、前記力学的応答量と、前記製作可否及び前記製作コストとの相関関係を更新し、その更新された相関関係に基づいて前記力学的応答量が前記構造物の設計条件を満足し、且つ製作可能で、且つ最小製作コストとなるように前記構造物形状を検出する制御手段と、
記制御手段により検出された前記構造物形状を出力表示するための表示手段と、
を有
前記構造物は成形金型を用いて製作される物品であって、前記製作可否判断手段は該物品と成形金型とを離型する際に抜き方向に対して垂直な複数の平面で分割される各断面の断面形状の外周が該抜き方向から投影して交差しないことで製作可能を判断することを特徴とする構造物形状の設計システム。
An input means for inputting the design data of the structure;
CAD means for defining the structure shape based on the design data of the structure input by the input means;
CAD / CAE conversion means for converting CAD data of a structure defined by the CAD means into CAE data;
CAE structure analysis means for detecting a mechanical response amount for the structure shape converted into the CAE data;
Production feasibility judgment means for judging production feasibility for the structure shape defined by the CAD means;
A cost calculating means for detecting a manufacturing cost for the structure shape defined by the CAD means;
The CAD data of the structure defined by the CAD means, the mechanical response amount detected by the CAE structure analyzing means, the production availability information judged by the production availability judgment means, and the cost calculation means The structure is detected so that the mechanical response amount satisfies the design condition of the structure, can be manufactured, and can be manufactured at the minimum manufacturing cost based on the correlation . change the CAD data of the structure until the shape is detected, and the CAD data of said structure on the basis of the CAD data of the structure was the change, and the mechanical response amount, the production possibility and the production The correlation with the cost is updated, and based on the updated correlation, the mechanical response amount satisfies the design condition of the structure and can be manufactured, and the minimum manufacturing cost And that control means detect the structure shape such that,
Display means for outputting and displaying the detected said structure shape by previous SL control means,
I have a,
The structure is an article manufactured using a molding die, and the manufacturing availability determination means is divided into a plurality of planes perpendicular to the drawing direction when releasing the article and the molding die. The structure shape design system is characterized in that it can be manufactured by projecting the outer periphery of the cross-sectional shape of each cross-section from the drawing direction so as not to intersect .
前記構造物は緩衝包装に使用する緩衝材であって、前記CAE構造解析手段は被緩衝物に生じる最大減速度、最大変位及び前記緩衝材の長期使用時に生じるクリープ変位のうちの少なくとも1つを前記力学的応答量として検出することを特徴とする請求項1に記載の構造物形状の設計システム。The structure is a cushioning material used for cushioning packaging, and the CAE structural analysis means calculates at least one of maximum deceleration, maximum displacement, and creep displacement that occurs when the cushioning material is used for a long time. 2. The structure shape design system according to claim 1 , wherein the system is detected as the mechanical response amount. 前記構造物は緩衝包装に使用する緩衝材であって、前記CAD/CAE変換手段は、前記緩衝材と前記被緩衝物との干渉を調べ、互いに干渉している場合は前記緩衝材側から前記被緩衝物との干渉部分を引き算処理することを特徴とする請求項1に記載の構造物形状の設計システム。The structure is a cushioning material used for cushioning packaging, and the CAD / CAE conversion means investigates interference between the cushioning material and the buffered object, and when they interfere with each other, the cushioning material side 2. The structure shape design system according to claim 1 , wherein an interference portion with the buffered object is subtracted.
JP2004571067A 2003-04-18 2003-04-18 Structure shape design system Expired - Lifetime JP4376190B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/005005 WO2004095320A1 (en) 2003-04-18 2003-04-18 Designing method and designing system of optimal shape

Publications (2)

Publication Number Publication Date
JPWO2004095320A1 JPWO2004095320A1 (en) 2006-10-26
JP4376190B2 true JP4376190B2 (en) 2009-12-02

Family

ID=33307201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004571067A Expired - Lifetime JP4376190B2 (en) 2003-04-18 2003-04-18 Structure shape design system

Country Status (3)

Country Link
JP (1) JP4376190B2 (en)
AU (1) AU2003235273A1 (en)
WO (1) WO2004095320A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150127301A1 (en) * 2013-11-05 2015-05-07 Spatial Corporation Updating A CAD Model To Reflect Global Or Local Shape Changes
US11449651B2 (en) 2019-11-05 2022-09-20 Ford Global Technologies, Llc Enhanced component dimensioning

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000331035A (en) * 1999-05-06 2000-11-30 General Electric Co <Ge> Method for designing product
JP2002007487A (en) * 2000-06-27 2002-01-11 Asahi Kasei Corp Optimal shape designing method and optimal shape designing system using the same

Also Published As

Publication number Publication date
JPWO2004095320A1 (en) 2006-10-26
AU2003235273A1 (en) 2004-11-19
WO2004095320A1 (en) 2004-11-04

Similar Documents

Publication Publication Date Title
JP4633625B2 (en) Determination of the geometry model at the metal sheet forming stage
AU773165B2 (en) Apparatus and method for structural analysis
US20090259329A1 (en) Processing device and method for structure data representing a physical structure
Zhao et al. Domain independent shell for DfM and its application to sheet metal forming and injection molding
CN111222221A (en) Method of manufacturing at least a portion of a sports article
JP4781107B2 (en) Buffer material shape design method and design system
JP4851252B2 (en) Structure evaluation program
JP5911466B2 (en) Method and system for determining draw model in press molding
JP5800655B2 (en) Method for improving deformation of resin molded body and method for reducing weight of resin molded body
JP4376190B2 (en) Structure shape design system
JP5378171B2 (en) Optimization model analysis apparatus, optimization model analysis method, and optimization model analysis program
JP2003223480A (en) Optimal shape design method and system
JP5294487B2 (en) Panel member rigidity evaluation method
CN115544746A (en) Multi-attribute target-driven aluminum auxiliary frame optimization design method and system
CN112380727A (en) Mechanism model library in industrial software framework and calling method thereof
JP4826374B2 (en) Mold design apparatus and program for mold design apparatus
JP2002007487A (en) Optimal shape designing method and optimal shape designing system using the same
JP5427134B2 (en) Hit analysis method, program, storage medium, and hit analysis device
JP4483515B2 (en) Product surface shape design system and mold manufacturing method
JP2002052560A (en) System for supporting determination of injection-molded article production parameter
US20220277117A1 (en) Resin behavior analysis apparatus, resin behavior analysis method and resin behavior analysis program
JP4457663B2 (en) Stiffness analysis method and program thereof
Mehl et al. Design for Injection Molding: Using Dimensional Analysis to Assess Fillability
JP2003117617A (en) Simulation method for press formation
JP3951802B2 (en) 3D simulation method of shearing process and method of creating finite element model

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051122

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060413

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20070402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090908

R150 Certificate of patent or registration of utility model

Ref document number: 4376190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term