JP4375806B2 - Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner. - Google Patents

Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner. Download PDF

Info

Publication number
JP4375806B2
JP4375806B2 JP2007031738A JP2007031738A JP4375806B2 JP 4375806 B2 JP4375806 B2 JP 4375806B2 JP 2007031738 A JP2007031738 A JP 2007031738A JP 2007031738 A JP2007031738 A JP 2007031738A JP 4375806 B2 JP4375806 B2 JP 4375806B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
combustible
concrete
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007031738A
Other languages
Japanese (ja)
Other versions
JP2008196188A (en
Inventor
征吉 丹
高光 櫻庭
Original Assignee
株式会社テスク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テスク filed Critical 株式会社テスク
Priority to JP2007031738A priority Critical patent/JP4375806B2/en
Publication of JP2008196188A publication Critical patent/JP2008196188A/en
Application granted granted Critical
Publication of JP4375806B2 publication Critical patent/JP4375806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Building Environments (AREA)

Description

本発明は、鉄筋コンクリート造外断熱建物に、バルコニー、庇、外廊下などの水平形態で突出付設するコンクリート構築物や、バルコニー袖壁、ポーチ袖壁、外壁から突出する化粧壁などの垂直形態で突出付設するコンクリート構築物等(以下、突出構築物と称する)を、コンクリート躯体の外壁から、片持ち支持形態で、且つ、熱的に遮断して支持するための、支持連結筋(以下、Z筋と称する)を備えた不燃支持ブロックに関するものであり、建築の技術分野に属するものである。   The present invention provides a concrete structure that protrudes and attaches to a reinforced concrete external heat insulating building in a horizontal form such as a balcony, a fence, and an outer corridor, and a vertical structure such as a balcony sleeve wall, a pouch sleeve wall, and a decorative wall that protrudes from the outer wall. Support connecting bars (hereinafter referred to as Z bars) for supporting concrete structures, etc. (hereinafter referred to as projecting structures) to be supported in a cantilevered form from the outer wall of the concrete frame in a cantilevered manner. It is related to the non-combustible support block provided with, and belongs to the technical field of architecture.

鉄筋コンクリート造の外断熱建物は、コンクリート躯体の外側を断熱材で被覆するため、太陽日射によるコンクリート躯体への熱応力が微小となって、コンクリート躯体のひび割れが抑制出来ること、コンクリート躯体が空気に接触しないために、コンクリートの中性化が抑制出来、鉄筋棒鋼の腐蝕が抑制出来て建物の耐久性が向上すること、更には、建物内の温度環境が維持出来ると共に、内部結露が少なくて、カビ、ダニの発生が抑制出来、健康面でも優れた住環境が維持出来るため、近年、省エネルギーの高性能建物として評価されている。   Reinforced concrete exterior thermal insulation buildings cover the outside of the concrete frame with a heat insulating material, so that the thermal stress on the concrete frame due to solar radiation is reduced, and cracking of the concrete frame can be suppressed, and the concrete frame is in contact with the air. Therefore, the neutralization of concrete can be suppressed, the corrosion of reinforcing steel bars can be suppressed, the durability of the building can be improved, the temperature environment in the building can be maintained, the internal condensation can be reduced, and the mold In recent years, it has been evaluated as an energy-saving high-performance building because it can suppress the generation of ticks and maintain an excellent living environment in terms of health.

しかし、建物外壁より、突出付設するバルコニー、外廊下などの鉄筋コンクリート床スラブの水平突出構築物や、バルコニーや外廊下に、火災時の延燃防止、プライバシー保護等で配置する鉄筋コンクリート造袖壁等の垂直突出構築物は、鉄筋コンクリート躯体への熱橋となり易く、外断熱コンクリート造建物にあっては、鉄筋コンクリートのバルコニー床スラブや、鉄筋コンクリートの袖壁等、鉄筋コンクリートの突出構築物のコンクリート躯体への熱橋作用の抑制は、強く望まれており、該問題を解決する手段としては、既に、図8(A),(B)に示す従来例1、図8(C),(D)に示す従来例2、図9に示す従来例3及び図10に示す従来例4の手法がある。   However, from the outer wall of the building, the protruding structure of reinforced concrete floor slabs such as balconies and outer corridors, and reinforced concrete sleeve walls placed on the balconies and outer corridors to prevent the spread of fire and protect privacy Protruding structures tend to be thermal bridges to reinforced concrete frames, and in the case of external thermal insulation concrete buildings, the suppression of thermal bridges to reinforced concrete protruding structures such as reinforced concrete balcony floor slabs and reinforced concrete sleeve walls. As means for solving this problem, the conventional example 1 shown in FIGS. 8A and 8B, the conventional example 2 shown in FIGS. 8C and 8D, and FIG. There is a technique of Conventional Example 3 shown in FIG. 9 and Conventional Example 4 shown in FIG.

図8は、バルコニー床スラブ(水平突出構築物)及び袖壁(垂直突出構築物)からの熱橋抑制手段であって、非特許文献1に挙げられたものであり、図8(A)は、従来例1の横断面図、図8(B)は、従来例1の縦断面図、図8(C)は、従来例2の横断面図、図8(D)は、従来例2の縦断面図である。
即ち、図8(A),(B)の従来例1にあっては、コンクリート建物から水平に突出した、鉄筋コンクリートバルコニー床スラブ、及び垂直に突出した鉄筋コンクリート袖壁の全外周を、コンクリート外壁同様に、断熱被覆用の複合パネル及び断熱材で被覆するものである。
FIG. 8 is a thermal bridge suppression means from a balcony floor slab (horizontal protruding structure) and a sleeve wall (vertical protruding structure), which is listed in Non-Patent Document 1, and FIG. 8B is a longitudinal sectional view of Conventional Example 1, FIG. 8C is a transverse sectional view of Conventional Example 2, and FIG. 8D is a longitudinal cross section of Conventional Example 2. FIG. FIG.
That is, in the conventional example 1 shown in FIGS. 8A and 8B, the entire outer periphery of the reinforced concrete balcony floor slab projecting horizontally from the concrete building and the reinforced concrete sleeve wall projecting vertically is the same as the concrete outer wall. In this case, the composite panel for heat insulation coating and the heat insulating material are used.

また、図8(C),(D)の従来例2にあっては、コンクリート外壁は複合パネルで外断熱被覆するが、コンクリート外壁から突出した、バルコニー床スラブや袖壁の突出構築物は、外断熱被覆することなく、コンクリート躯体内側、即ち外壁内側、の突出構築物からの熱橋作用を受ける部位に、断熱材を貼着して、建物内面から断熱機能を補強するものである。   8 (C) and 8 (D), the concrete outer wall is covered with a composite panel for heat insulation, but the protruding structure of the balcony floor slab and the sleeve wall protruding from the concrete outer wall is outside. Without heat insulation coating, a heat insulating material is stuck to a part that receives a thermal bridge action from the protruding structure inside the concrete frame, that is, inside the outer wall, thereby reinforcing the heat insulating function from the inner surface of the building.

また、図9に示す従来例3は、バルコニー床スラブ(水平突出構築物)の熱橋抑制手段であって、特許文献1中で従来例として挙げられたものであり、(A)はバルコニー縦断面図、(B)は鉄筋ユニット正面図、(C)は鉄筋ユニット平面図である。
即ち、従来例3は、図9(B),(C)に示す如く、断熱材上部に、多数の長尺連結鉄筋群を串刺し形態で並列配置し、断熱材下部では、各長尺連結鉄筋間に圧縮用鉄筋を配置して、各圧縮用鉄筋の両端の支圧板を断熱材から突出させると共に、各ラチス筋を圧縮用鉄筋の近傍に配置し、且つラチス筋の両端延長部を断熱材上部の長尺連結鉄筋間に並列延出して熱橋低減用鉄筋ユニットとし、該鉄筋ユニットを、図9(A)に示す如く、バルコニー用型枠と住戸躯体用型枠とに差し渡し状に配置してコンクリート打設し、コンクリートバルコニーを熱橋低減ユニットで片持ち支持形態で支持するものである。
Further, Conventional Example 3 shown in FIG. 9 is a thermal bridge suppressing means for a balcony floor slab (horizontal projecting structure), which is cited as a conventional example in Patent Document 1, and (A) is a longitudinal sectional view of a balcony. FIG. 4B is a front view of the reinforcing bar unit, and FIG.
That is, in Conventional Example 3, as shown in FIGS. 9B and 9C, a large number of long connected reinforcing bars are arranged side by side in a skewered form on the upper part of the heat insulating material, and each long connected reinforcing bar is arranged below the heat insulating material. Compressive reinforcing bars are placed between them, the bearing plates at both ends of each compressing reinforcing bar protrude from the heat insulating material, and each lattice bar is placed in the vicinity of the compressing reinforcing bar, and both ends of the lattice bars are heat insulating materials. A rebar unit for reducing the thermal bridge is formed by extending in parallel between the upper long connecting rebars, and the rebar units are arranged in a spanning manner on the balcony form and the housing frame as shown in FIG. 9A. Then, concrete is placed and the concrete balcony is supported in a cantilevered support form by the thermal bridge reduction unit.

また、図10に示す従来例4は、特許文献1で対象とする発明であって、バルコニー床スラブ(水平突出構築物)の熱橋抑制手段であり、従来例3の鉄筋ユニットが、住戸躯体用型枠内への配置に際し、住戸躯体側に配置された鉄筋が邪魔になって連結鉄筋の配置が出来ない問題を解決したものであり、図10(C)に示す如く、断熱材に、上部切欠溝群と下部切欠溝群とを配置しておき、図10(B)に示す如く、バルコニー用型枠の基端部に断熱材を配置し、断熱材の上部切欠溝群を介して、連結鉄筋群をバルコニー型枠から住戸躯体用型枠へ差し渡し状に配置し、両端に支圧板を備えた筒体の鉄筋取付用治具群を断熱材の下部切欠溝に嵌入し、且つ、鉄筋取付用治具群には、住戸躯体用型枠内に配置した配筋の間から連結鉄筋群を挿入して鉄筋取付用治具にネジ固定し、図10(A)に示す如く、バルコニー用型枠と住戸躯体用型枠にコンクリート打設するものである。   In addition, Conventional Example 4 shown in FIG. 10 is an invention that is the subject of Patent Document 1, and is a thermal bridge suppression means for a balcony floor slab (horizontal protruding structure). The reinforcing bar unit of Conventional Example 3 is for a dwelling housing. In the placement in the formwork, the problem is that the reinforcing bars placed on the side of the dwelling unit are in the way and the connecting reinforcing bars cannot be placed. As shown in FIG. The cutout groove group and the lower cutout groove group are arranged, and as shown in FIG. 10 (B), the heat insulating material is arranged at the base end of the balcony formwork, and the heat insulating material through the upper cutout groove group, The connecting reinforcing bar group is placed in a manner extending from the balcony mold to the housing frame, and a cylindrical reinforcing bar mounting jig group having bearing plates at both ends is inserted into the lower notch groove of the heat insulating material, and the reinforcing bar Connected reinforcing bar group is inserted into the mounting jig group from between the bar arrangements placed in the formwork for the housing frame. Screws to secure the reinforcing bar mounting jig Te, as shown in FIG. 10 (A), is to set concrete balcony mold frame and the dwelling unit building frame-body mold.

北海道外断熱協議会発行「2003年版、RC造外断熱工法ハンドブック」第40〜47頁:「熱損失係数の計算」の項Published by Hokkaido Outside Insulation Council, “2003 edition, RC exterior insulation method handbook” pages 40-47: “Calculation of heat loss coefficient” 特開2005−188036号公報JP 2005-188036 A

従来例1の、鉄筋コンクリートの、水平突出構築物(バルコニー床スラブ)及び垂直突出構築物(袖壁)の構築手段にあっては、図8(A),(B)に示す如く、バルコニー床スラブの上下両面及び先端面、袖壁の両側面及び先端面、即ち、バルコニー床スラブ及び袖壁の全外周面、を断熱材(複合パネル)で被覆するため、バルコニー床スラブ(水平突出構築物)及び袖壁(垂直突出構築物)は、外壁同様の外断熱構造とはなるが、バルコニー床スラブ及び袖壁の厚さが、被覆断熱材によって厚くなる欠陥があり、しかも、複合パネルの、バルコニー床スラブ及び袖壁の形態に対応した貼着、特に、先端面への貼着、及びバルコニー床スラブ上面への断熱材貼着、の作業性が悪く、複合パネル及び断熱材の貼着施工はコスト高となる。   As shown in FIGS. 8 (A) and 8 (B), the reinforced concrete horizontal protruding structure (balcony floor slab) and the vertical protruding structure (sleeve wall) of Conventional Example 1 are arranged at the top and bottom of the balcony floor slab. Balcony floor slab (horizontal projecting structure) and sleeve wall for covering both sides and tip surfaces, both sides and tip surfaces of sleeve walls, ie, all outer peripheral surfaces of balcony floor slabs and sleeve walls with thermal insulation (composite panel) The (vertical projecting structure) has the same outer heat insulation structure as the outer wall, but has a defect that the thickness of the balcony floor slab and the sleeve wall is increased by the covering insulation, and the balcony floor slab and sleeve of the composite panel. Adhesion corresponding to the form of the wall, especially the adhesion to the tip surface and the insulation material adhesion to the upper surface of the balcony floor slab, is poor in workability, and the application of the composite panel and the insulation material is expensive. .

また、従来例2の、鉄筋コンクリートの、水平突出構築物(バルコニー床スラブ)及び垂直突出構築物(袖壁)の構築手段にあっては、図8(C),(D)に示す如く、バルコニー床スラブ及び袖壁は、複合パネルで被覆しないために、従来例1の如き、厚さの増大の問題は生じないが、バルコニー床スラブ及び袖壁のコンクリートは、コンクリート躯体(コンクリート外壁)と一体連続しているため、熱橋作用を生じる。
従って、突出構築物(バルコニー、袖壁)からの熱橋作用を低減するために、コンクリート躯体内面に断熱補強材を貼着することとなるが、コンクリート躯体内側での断熱補強は、熱橋の低減効果が75%程度しか期待出来ず、従来例1より熱橋低減効果が低い。
しかも、従来例2にあっては、図8(C),(D)に示す如く、コンクリート躯体内面に、断熱補強材による段差が生じ、内装仕上げに際しては、断熱補強材の段差を解消するための、内装材貼着用の下地の施工も必要となり、内装仕上げ面での施工数、及びコストが増大する。
Further, in the construction means for the horizontally projecting structure (balcony floor slab) and the vertically projecting structure (sleeve wall) of reinforced concrete in Conventional Example 2, as shown in FIGS. 8 (C) and 8 (D), the balcony floor slab Since the sleeve wall and the sleeve wall are not covered with the composite panel, the problem of increase in thickness does not occur as in the conventional example 1, but the concrete of the balcony floor slab and the sleeve wall is integrally continuous with the concrete frame (concrete outer wall). As a result, thermal bridge action occurs.
Therefore, in order to reduce the thermal bridge action from protruding structures (balconies, sleeve walls), heat insulation reinforcement material will be stuck to the inner surface of the concrete frame, but heat insulation reinforcement inside the concrete frame reduces heat bridges. The effect can be expected only about 75%, and the effect of reducing the thermal bridge is lower than that of Conventional Example 1.
Moreover, in the conventional example 2, as shown in FIGS. 8C and 8D, a step due to the heat insulating reinforcing material is generated on the inner surface of the concrete frame, and the step of the heat insulating reinforcing material is eliminated when finishing the interior. Therefore, it is necessary to construct a base for attaching the interior material, which increases the number of constructions on the interior finish surface and the cost.

また、従来例3の、鉄筋コンクリートの、水平突出構築物(バルコニー床スラブ)の構築手段にあっては、断熱材自体に多くの連結鉄筋、圧縮用鉄筋を並列配置しているため、熱橋低減用鉄筋ユニット自体が、嵩張った複雑な形状であるため、鉄筋ユニットの効率的な運搬及び保管が困難である。
また、バルコニー等の、水平突出構築物は、大きさ、形状が様々であって、全てに対応する鉄筋ユニットの準備が煩雑、且つ困難である。
そして、型枠組み時には、連結用鉄筋が密集並列しているため、特に、住戸躯体側に配筋された鉄筋が邪魔になって、熱橋低減用鉄筋ユニットの配置、及び配筋固定が困難であり、バルコニー型枠及び住戸躯体型枠内で、配筋組立てが煩雑、且つ困難な作業となる。
また、バルコニー床スラブと住戸躯体との境界面に熱橋低減用鉄筋ユニットを配置してコンクリート躯体を構築後に、コンクリート外壁に断熱材を貼着する、後貼り工法、の外断熱建物となるため、施工性が悪く汎用性が無い。
しかも、従来例3の熱橋低減工法は、袖壁等の垂直突出構築物の構築には適用出来ない。
Moreover, in the construction means of the reinforced concrete horizontal protrusion structure (balcony floor slab) of the conventional example 3, since many connecting rebars and compression rebars are arranged in parallel in the heat insulating material itself, it is for heat bridge reduction. Since the reinforcing bar unit itself has a bulky and complicated shape, it is difficult to efficiently transport and store the reinforcing bar unit.
In addition, horizontal protruding structures such as balconies have various sizes and shapes, and preparation of reinforcing bar units corresponding to all of them is complicated and difficult.
And at the time of formwork, since the connecting reinforcing bars are closely arranged in parallel, the reinforcing bars placed on the side of the housing unit are in the way, and it is difficult to arrange the thermal bridge reducing reinforcing bar unit and fix the reinforcing bars. In addition, the assembly of the bar arrangements is complicated and difficult in the balcony mold and the housing frame.
In addition, after constructing a concrete frame by placing a thermal bridge reducing rebar unit on the boundary surface between the balcony floor slab and the dwelling unit frame, it becomes an external heat insulation building with a post-paste construction method in which heat insulating material is adhered to the concrete outer wall. The workability is poor and there is no versatility.
Moreover, the thermal bridge reduction method of Conventional Example 3 cannot be applied to the construction of a vertically projecting structure such as a sleeve wall.

また、従来例4の、鉄筋コンクリートの、水平突出構築物(バルコニー床スラブ)の構築手段にあっては、断熱材の上部切欠溝群に、バルコニー床スラブと住戸用躯体とを連結する連結鉄筋群を配置するが、個々独立の上部連結鉄筋は、バルコニーの重力による引張り応力に対抗するため、多数本の高密度並列配置が必要であって、バルコニー床スラブ配筋に上部連結鉄筋を必要数配置すると、バルコニー床スラブ筋より多数配筋する住戸部配筋への上部連結鉄筋の配筋は、住戸部で、強度上、過剰配筋となるばかりか、配筋が干渉して作業も煩雑となる。
また、図10(B)に示す如く、バルコニー下端筋に干渉しないように、鉄筋取付用治具をバルコニー下端筋の上方に配置する必要があるため、上方連結鉄筋と下方連結鉄筋との応力中心距離が小さくなり、バルコニーの抗力が小さくなる危険があるため、必要強度保持のため、バルコニー床スラブの厚さの増大を招く。
Moreover, in the construction means of the reinforced concrete horizontal projecting structure (balcony floor slab) of Conventional Example 4, a connecting reinforcing bar group for connecting the balcony floor slab and the housing for the dwelling unit to the upper notch groove group of the heat insulating material. However, since the individual upper connecting rebars resist the tensile stress caused by the gravity of the balcony, multiple high-density parallel arrangements are required, and the required number of upper connecting reinforcing bars are placed on the balcony floor slab bar arrangement. In addition, the upper connecting reinforcing bars in the dwelling unit that have a larger number of bars than the balcony floor slabs are not only excessive in terms of strength in the dwelling unit, but also the interference of the bar arrangements makes the work complicated. .
Further, as shown in FIG. 10B, since the reinforcing bar mounting jig needs to be arranged above the balcony bottom bar so as not to interfere with the balcony bottom bar, the stress center between the upper connecting bar and the lower connecting bar is used. Since there is a danger that the distance and the drag of the balcony are reduced, the thickness of the balcony floor slab is increased in order to maintain the necessary strength.

また、下方連結鉄筋は、住戸躯体用型枠内での配筋間からの鉄筋取付用治具への嵌入ネジ螺着であるため、作業が煩雑で、作業性が悪い。
また、断熱材の、上部切欠溝群及び下部切欠溝群は、各連結鉄筋群及び各鉄筋取付用治具を嵌入した部位に空隙の生ずる恐れがあり、該断熱材の切欠溝群での空隙は、打設コンクリートが充填されて、バルコニーとコンクリート躯体とを打設コンクリートが連続し、外断熱コンクリート躯体としての断熱機能の低下を招来する危険がある。
そして、該従来例4も、従来例3同様、バルコニー床スラブと住戸躯体との境界面に連結鉄筋を備えた断熱材を配置し、コンクリート躯体構築後に、コンクリート外壁に断熱材を張着する、後貼り工法、の外断熱建物であって、汎用性が低い。
しかも、従来例4も、従来例3同様、袖壁等の垂直突出構築物の構築には適用出来ない。
Further, since the lower connecting reinforcing bars are screwed into the reinforcing bar mounting jig from between the reinforcing bars in the housing frame, the work is complicated and the workability is poor.
In addition, the upper notch groove group and the lower notch groove group of the heat insulating material may cause a gap in a portion where each connecting reinforcing bar group and each reinforcing bar mounting jig are inserted, and the gap in the notched groove group of the heat insulating material. The cast concrete is filled, and the cast concrete continues between the balcony and the concrete frame, and there is a risk that the heat insulation function of the outer heat insulating concrete frame is deteriorated.
And this prior art example 4 also arranges the heat insulating material provided with the connection reinforcing bar in the boundary surface of a balcony floor slab and a dwelling unit frame like conventional example 3, and after the concrete frame construction, the heat insulating material is stuck on the concrete outer wall. It is a heat insulating building with a post-pasting method, and its versatility is low.
Moreover, the conventional example 4 cannot be applied to the construction of a vertically projecting structure such as a sleeve wall like the conventional example 3.

本発明は、これら従来例1乃至4の問題点を解決、又は改善するものであって、連結用鉄筋としての強力な支持力を備えたZ筋を不燃断熱材片に貫通一体化した、新規な不燃支持ブロックを、工場製品の小型の単体として提供し、従来例3、従来例4の如く、鉄筋コンクリート造の突出構築物(バルコニー等)をコンクリート外壁と、断熱層で熱的に遮断して構築する工法を採用する際には、該遮断断熱層に、本発明の不燃支持ブロックを嵌入固着するだけで、水平突出構築物(バルコニー等)のみならず、垂直突出構築物(袖壁等)の施工にも、合理的に適用出来、コンクリート外壁からのコンクリート造突出構築物を、コンクリート外壁と熱的に遮断した片持ち支持形態で、施工性良く、且つ、安全性の保証された状態で構築可能とするものである。   The present invention solves or improves the problems of the conventional examples 1 to 4, and a Z-bar having a strong supporting force as a connecting reinforcing bar is integrated with a non-combustible heat insulating material piece. Non-combustible support blocks are provided as small single units of factory products, and as in Conventional Example 3 and Conventional Example 4, reinforced concrete projecting structures (such as balconies) are thermally blocked with a concrete outer wall and a heat insulating layer. When adopting the construction method, the non-combustible support block of the present invention is inserted into and fixed to the insulation barrier layer, so that not only horizontal projecting structures (balconies etc.) but also vertical projecting structures (sleeve walls etc.) can be constructed. However, it can be applied reasonably, and a concrete projecting structure from the concrete outer wall can be constructed in a cantilevered support form that is thermally shielded from the concrete outer wall with good workability and safety. Than is.

本発明の不燃支持ブロックは、鉄筋コンクリート造外断熱建物のコンクリート外壁Wから、鉄筋コンクリート造の突出構築物SB,5を、断熱層2B,3Bで熱的に遮断して、片持ち支持形態で支持するための不燃支持ブロックであって、例えば図1に示す如く、不燃支持ブロック4は、コンクリート外壁Wを外断熱被覆する断熱層2B,3Bの嵌入用孔H1(図3、図5)に嵌着するための、左右幅X4、前後厚さY4及び高さZ4を備えた不燃断熱材4Bと、不燃断熱材4Bを貫通して、不燃断熱材4Bで保持された連結用の1本のZ筋1とを含み、Z筋1は、Z上端筋1UとZ下端筋1Dとを、上下方向に応力中心距離L15を保ってZトラス筋1Mで一体化固着したものであり、不燃断熱材4BがZ筋1を空密的に保持しているものである。
The non-combustible support block of the present invention is for supporting the reinforced concrete projecting structures SB, 5 from the concrete outer wall W of the reinforced concrete external heat insulating building by the heat insulating layers 2B, 3B in a cantilevered support form. For example, as shown in FIG. 1, the non-combustible support block 4 is fitted into the insertion holes H1 (FIGS. 3 and 5) of the heat insulating layers 2B and 3B that cover the outer wall W of the concrete . Incombustible heat insulating material 4B having left and right width X4, front and rear thickness Y4, and height Z4, and one Z line 1 for connection that passes through incombustible heat insulating material 4B and is held by noncombustible heat insulating material 4B wherein the door, Z muscle 1, and Z upper muscle 1U and Z bottom muscle 1D, der those integrated fixed with Z truss muscle 1M keep the stress center distance L15 vertically is, noncombustible insulation material 4B is the Z muscle 1 is also sky-tight hold of A.

この場合、断熱層2B,3Bは、コンクリート突出構築物をコンクリート外壁と熱的に遮断するものであって、バルコニー床スラブ、即ち水平突出構築物にあっては、図3に示す如く、コンクリート外壁Wを熱的に遮断する複合パネル2の断熱層2Bであり、袖壁、即ち垂直突出構築物にあっては、図6に示す如く、袖壁5の基端に配置する断熱支持パネル3の断熱層3Bであり、断熱層2B,3Bは、好適には、JISA9511のプラスチック系発泡断熱板であり、典型的には、75mm厚の押出法ポリスチレンフォーム板である。
また、嵌入用孔H1は、図3(A)に示す、複合パネル2の上端の切込み形態の嵌入用孔H1、及び図5に示す、断熱支持パネル3の挿入用の嵌入用孔H1を含むものであり、断熱層2B,3Bに於いて、不燃支持ブロック4の不燃断熱材4Bが嵌め込めて固着出来る孔であれば良い。
In this case, the heat insulating layers 2B and 3B thermally shield the concrete projecting structure from the concrete outer wall. In a balcony floor slab, that is, a horizontal projecting structure, the concrete outer wall W is formed as shown in FIG. A heat insulating layer 2B of the composite panel 2 that is thermally shielded. In the case of a sleeve wall, ie, a vertically projecting structure, as shown in FIG. 6, the heat insulating layer 3B of the heat insulating support panel 3 disposed at the base end of the sleeve wall 5 The heat insulating layers 2B and 3B are preferably plastic foam heat insulating plates of JIS A9511, typically 75 mm thick extruded polystyrene foam plates.
The insertion hole H1 includes an insertion hole H1 having a cut shape at the upper end of the composite panel 2 shown in FIG. 3A, and an insertion hole H1 for insertion of the heat insulating support panel 3 shown in FIG. In the heat insulating layers 2B and 3B, any hole can be used as long as the nonflammable heat insulating material 4B of the nonflammable support block 4 can be fitted and fixed.

また、不燃断熱材4Bは、貫通Z筋1を保持し、且つ、断熱層2B,3Bの嵌入用孔H1に嵌着すれば、断熱層2B,3Bの一部として、断熱層2B,3Bと略同一の断熱機能を発揮する、保形性を備えた塊形態であって、厚さY4が断熱層2B,3Bの厚さと実質上同一のもので良く、典型的には、炭酸カルシウム系発泡材(熱伝導率:0.032kcal/mh℃、透湿抵抗:26.3mhmmHg/g)を採用する。
そして、押出法ポリスチレンフォーム板(熱伝導率:0.024〜0.037kcal/mh℃、透湿抵抗:25〜7.1mhmmHg/g)の断熱層2B,3B内に炭酸カルシウム系発泡材の不燃断熱材4Bを嵌入一体化すれば、不燃断熱材4Bは、あたかも断熱層2B,3Bの一部となる。
In addition, if the non-combustible heat insulating material 4B holds the penetrating Z-strand 1 and fits in the insertion holes H1 of the heat insulating layers 2B and 3B, the heat insulating layers 2B and 3B are part of the heat insulating layers 2B and 3B. It is a lump shape with shape retention that exhibits substantially the same heat insulation function, and the thickness Y4 may be substantially the same as the thickness of the heat insulation layers 2B and 3B. Typically, calcium carbonate foam A material (thermal conductivity: 0.032 kcal / mh ° C., moisture permeability resistance: 26.3 m 2 hmmHg / g) is employed.
And it is a calcium carbonate type foaming material in the heat insulation layers 2B and 3B of the extrusion method polystyrene foam board (thermal conductivity: 0.024-0.037 kcal / mh ° C., moisture permeability resistance: 25-7.1 m 2 hmmHg / g). If the non-combustible heat insulating material 4B is fitted and integrated, the non-combustible heat insulating material 4B will be part of the heat insulating layers 2B and 3B.

そして、不燃支持ブロック4は、単体部品として準備、保管する関係上、不燃断熱材4Bは小さい方が好ましいが、不燃断熱材4Bの幅X4、厚さY4、高さZ4のサイズは、Z筋1の確保機能、Z筋1の耐火保護機能、断熱層嵌入用孔H1への嵌合固着作業性、不燃支持ブロック4の保管及び搬送面から決定すれば良く、厚さY4は、断熱層2B,3Bが断熱欠損を生じないためにも、少なくとも、断熱層2B,3Bの厚さT3と同厚とすべきであり、断熱層2B,3Bの、幅W4が60mm、厚さT3が75mm、高さ4hが205mmの標準の嵌入用孔H1に対し、不燃断熱材4Bの標準は、幅X4が50mm、厚さY4が75mm、高さZ4が200mmとすれば良い。   The non-combustible support block 4 is preferably prepared and stored as a single part. The non-combustible heat insulating material 4B is preferably small, but the width X4, the thickness Y4, and the height Z4 of the non-combustible heat insulating material 4B are Z lines. 1 function, fire protection protection function of the Z-strip 1, fitting and fixing workability to the heat insulation layer insertion hole H1, storage and transport surface of the non-combustible support block 4, the thickness Y4 is the heat insulation layer 2B , 3B should not be at least as thick as the thickness T3 of the heat insulation layers 2B, 3B, and the width W4 of the heat insulation layers 2B, 3B is 60 mm, the thickness T3 is 75 mm, The standard of the non-combustible heat insulating material 4B may be 50 mm in width X4, 75 mm in thickness Y4, and 200 mm in height Z4 with respect to the standard insertion hole H1 having a height 4h of 205 mm.

また、Z筋1は、鉄筋コンクリートの、水平突出構築物(バルコニー床スラブ)及び垂直突出構築物(袖壁)の負荷応力を、安全に支承すれば良く、強力な支持力を発揮するように、Z上端筋1UとZ下端筋1Dとを、応力中心距離L15を保って、Zトラス筋1Mで一体化したものであれば良く、構造計算によって、Z筋1の配置本数、配置間隔から、使用棒鋼径、Zトラス筋1Mによるトラス機能付与形態を決定すれば良いが、汎用性に配慮して、標準Z筋1は、典型的には、図2(A)に示す如く、Z上端筋1Uは、長さL10が1200mmで、22mm径の異形棒鋼、Z下端筋1Dは、長さL12が760mmで、22mm径の異形棒鋼、Zトラス筋1Mは16mmの異形棒鋼で、Z上端筋1U下面とZ下端筋1D上面との間隔L14を70mmで一体化し、応力中心距離(Z上端筋1Uの中心とZ下端筋1Dの中心との間隔)L15は、92mmのものである。
そして、Z筋1の不燃断熱材4Bからの、一方の突出部APは、コンクリート躯体内で、他方の突出部BPは、突出構築物内で、打設コンクリートと一体化するものであるが、コンクリート躯体内固着用の突出部APは、対応コンクリート躯体に対処して、全長が直線形態でも、先端部が屈曲したものでも良い。
また、不燃断熱材4BがZ筋1を空密的に保持していることも必須条件である
この場合、Z筋1の不燃断熱材4Bによる空密保持は、Z筋1を金型に入れて炭酸カルシウム系樹脂の注入発泡で一体化しても良く、或いは、図1(B)の如く、Z筋1の所定部位に、隙間追従シート12Aを巻いて、不燃断熱材片(炭酸カルシウム系発泡板片)4B´で両側から挟着固定しても、不燃断熱材片4B´の嵌合溝H2,H2´,H3とZ筋1との隙間は、隙間追従シート12Aの経時膨張で空密保持となる
或いは、図1(B)の如く、2分割した不燃断熱材片4B´の各嵌合溝H2,H2´,H3を、各嵌合鉄筋径より若干(標準:3mm)大きくしておき、嵌合溝に耐火シーリング13(コニシ(株)製、耐火目地用シーラント120(商品名))を充填し、対称内面にも、耐火シーリング13を塗布して、Z筋1を嵌合溝H2,H2´,H3に挟着して、分割不燃断熱材片4B´を、耐火シーリング13の接着作用で一体化しても良い
In addition, the Z-strip 1 is only required to safely support the load stresses of reinforced concrete horizontal projecting structures (balcony floor slabs) and vertical projecting structures (sleeve walls), so that strong support can be exerted. The bar 1U and the Z lower bar 1D need only be integrated with the Z truss bar 1M while maintaining the stress center distance L15. From the number and arrangement interval of the Z bars 1 by structural calculation, The truss function imparting form by the Z truss muscle 1M may be determined. In consideration of versatility, the standard Z muscle 1 typically has the Z upper muscle 1U as shown in FIG. Length L10 is 1200mm, deformed steel bar with 22mm diameter, Z bottom bar 1D is a length L12 with 760mm, 22mm diameter deformed bar, Z truss bar 1M is a 16mm deformed bar, Z top bar 1U lower surface and Z The distance L14 from the upper surface of the bottom stripe 1D is 70 mm. Embody, L15 (distance between centers of Z bottom muscle 1D of Z upper muscle 1U) stress center distance is of 92 mm.
And one protrusion part AP from the non-combustible heat insulating material 4B of the Z-strand 1 is integrated with the cast concrete in the protruding structure, while the other protrusion part BP is integrated in the concrete. The protrusion AP for fixing the housing may correspond to the corresponding concrete housing, and the entire length may be linear or the tip may be bent.
It is also an essential condition that the non-combustible heat insulating material 4B holds the Z-strip 1 in an airtight manner .
In this case, the airtightness holding of the Z-strip 1 by the non-combustible heat insulating material 4B may be integrated by injecting and foaming the calcium carbonate resin by putting the Z-strip 1 into a mold, or as shown in FIG. Even if the gap follower sheet 12A is wound around a predetermined portion of the Z-strip 1 and is sandwiched and fixed from both sides by a non-combustible heat insulating piece (calcium carbonate-based foam plate piece) 4B ', the fitting groove of the non-combustible heat insulating piece 4B' The gaps between H2, H2 ′, H3 and the Z stripe 1 are kept airtight due to the time-dependent expansion of the gap following sheet 12A .
Alternatively, as shown in FIG. 1B, each fitting groove H2, H2 ', H3 of the non-combustible heat insulating material piece 4B' divided into two is slightly larger (standard: 3 mm) than the fitting rebar diameter, and fitted. The joint groove is filled with a fireproof seal 13 (manufactured by Konishi Co., Ltd., fireproof joint sealant 120 (trade name)), the fireproof sealant 13 is also applied to the symmetrical inner surface, and the Z-strip 1 is fitted into the fitting grooves H2, H2. The divided non-combustible heat insulating material pieces 4B ′ may be integrated by the adhesive action of the fireproof sealing 13 by being sandwiched between 'and H3 .

従って、本発明の不燃支持ブロック4は、バルコニー床スラブ等の鉄筋コンクリート水平突出構築物の構築に際しては、図3の如く、コンクリート外壁被覆用の複合パネル2の、水平突出構築物の突出基端部位の断熱層2Bに嵌入用孔H1を切開しておき、該嵌入用孔H1に、不燃支持ブロック4の不燃断熱材4Bを、図1(A)に示す如く、側面に隙間追従シート12Aを貼着して嵌入すれば、隙間追従シート12Aが経時膨張して、不燃断熱材4Bは断熱層2Bの嵌入用孔H1内に、空密的に固着し、Z筋1の、一方の突出部APは、コンクリート躯体型枠内に、他方の突出部BPは、水平突出構築物(バルコニー床スラブ)の型枠内に延出し、断熱層2Bの両側の型枠にコンクリート打設すれば、図4に示す如く、不燃支持ブロック4のZ筋1が、水平突出構築物をコンクリート躯体に対して、片持ち支持した形態に、水平突出構築物を構築することが出来る。   Therefore, the non-combustible support block 4 of the present invention, when building a reinforced concrete horizontal protruding structure such as a balcony floor slab, as shown in FIG. 3, insulates the protruding proximal end portion of the horizontal protruding structure of the composite panel 2 for covering a concrete outer wall. An insertion hole H1 is cut out in the layer 2B, and a non-combustible heat insulating material 4B of the non-combustible support block 4 is attached to the insertion hole H1, and a gap following sheet 12A is attached to the side surface as shown in FIG. If inserted, the gap following sheet 12A expands with time, the non-combustible heat insulating material 4B is fixed in an airtight manner in the insertion hole H1 of the heat insulating layer 2B, and one protrusion AP of the Z line 1 is In the concrete frame formwork, the other projecting portion BP extends into the formwork of the horizontal projecting structure (balcony floor slab) and is placed on the formwork on both sides of the heat insulating layer 2B, as shown in FIG. Incombustible support block 4 Z muscle 1, the horizontal protrusion construct against concrete skeleton, a cantilevered form, it is possible to construct a horizontally projecting construct.

また、コンクリート外壁Wから、袖壁5等の垂直突出構築物を突出付設する場合は、図5に示す如く、突出構築物(袖壁)の基端をコンクリート外壁Wと熱的に遮断するための、断熱支持パネル3の嵌入用孔H1に、不燃断熱材4Bの側面に隙間追従シート12Aを貼着した不燃支持ブロック4を、図5(A)の如く、嵌入固着し、該断熱支持パネル3を、図6の如く、突出構築物(袖壁)の基端の全高に配置して、コンクリート躯体及び袖壁の型枠を構築し、コンクリート打設すれば、図7の如く、Z筋1の、一半の突出部APがコンクリート躯体内に、他半の突出部BPが突出構築物(袖壁)内に固着して、突出構築物は、断熱支持パネル3の断熱層3Bでコンクリート躯体CFと熱的に遮断されて、Z筋1による片持ち支持物となる。   Further, when a vertically projecting structure such as a sleeve wall 5 is provided projecting from the concrete outer wall W, as shown in FIG. 5, the base end of the projecting structure (sleeve wall) is thermally insulated from the concrete outer wall W. The incombustible support block 4 in which the gap follower sheet 12A is adhered to the side surface of the incombustible heat insulating material 4B is fitted and fixed to the insertion hole H1 of the heat insulating support panel 3 as shown in FIG. As shown in FIG. 6, when the concrete frame and the sleeve wall formwork are constructed by placing them at the full height of the base end of the protruding structure (sleeve wall) and placing the concrete, One half of the protrusion AP is fixed in the concrete frame and the other half of the protrusion BP is fixed in the protruding structure (sleeve wall), and the protruding structure is thermally contacted with the concrete frame CF by the heat insulating layer 3B of the heat insulating support panel 3. It is interrupted and becomes a cantilever support by the Z-strip 1.

また、突出構築物の設計に対応して、Z筋1の、コンクリート躯体内固定用の突出部APを屈曲して不燃支持ブロック4を適用すれば、Z筋1の突出部APをコンクリート外壁W内に固定することにより、バルコニー床スラブSBを居住部床スラブSAと段差を保って突出することも、袖壁5を建物仕切り壁の位置の制約を受けずに突出することも可能である。
そして、得られる鉄筋コンクリートのバルコニー床スラブや袖壁の突出構築物は、コンクリート躯体側と断熱層2B,3Bで熱的に遮断されるため、突出構築物から建物躯体への熱橋作用は、突出構築物→Z筋→コンクリート躯体、のルートのみとなり、従来例2の突出構築物(バルコニー床スラブ、袖壁)のコンクリート→建物躯体のコンクリート、のコンクリートを介した熱橋作用が無くなる。
In addition, if the non-combustible support block 4 is applied by bending the protrusion AP for fixing the concrete body of the Z reinforcement 1 corresponding to the design of the protrusion structure, the protrusion AP of the Z reinforcement 1 is placed in the concrete outer wall W. It is possible to protrude the balcony floor slab SB while maintaining a level difference from the living part floor slab SA, or to protrude the sleeve wall 5 without being restricted by the position of the building partition wall.
And since the reinforced concrete balcony floor slab and the protruding structure of the sleeve walls are thermally blocked by the concrete frame side and the heat insulating layers 2B and 3B, the thermal bridge action from the protruding structure to the building frame is a protruding structure → Only the route of Z-strip → concrete frame is provided, and the thermal bridge action through the concrete of the projecting structure (balcony floor slab, sleeve wall) of conventional example 2 → concrete of the building frame is eliminated.

しかも、Z筋1は、強い支持力を有し、大間隔(標準:バルコニー床スラブSBでは450mm間隔、袖壁では900mm間隔)配置となるため、従来例3,4の連結鉄筋群より、使用断面積が遥かに低減出来、従来例3,4と比べて、熱橋作用が遥かに低減出来ると共に、構築時の配筋、型枠組みの作業性が遥かに向上する。
そして、不燃支持ブロック4自体は、工場生産品の小型部材であるため、均質で支持力の保証された建築用部品として準備出来、保守管理、搬送が容易であって、各施工現場への展開も容易である。
Moreover, the Z-strip 1 has a strong support force and has a large spacing (standard: 450 mm spacing for the balcony floor slab SB and 900 mm spacing for the sleeve walls), so it is used more than the conventional reinforcing steel bars in Examples 3 and 4. Compared with the conventional examples 3 and 4, the cross-sectional area can be greatly reduced, and the thermal bridge action can be greatly reduced, and the reinforcement of the construction and the workability of the formwork can be greatly improved.
And since the non-combustible support block 4 itself is a small member of a factory-produced product, it can be prepared as a building component with a uniform and guaranteed support force, and can be easily maintained, transported, and deployed to each construction site. Is also easy.

しかも、Z筋1を確保している不燃断熱材4Bは、耐火性であるため、火災による断熱層2B,3Bの燃焼時にも、Z筋1の火災劣下が防止出来、本発明の、不燃支持ブロック4で片持ち支持した鉄筋コンクリート突出構築物は耐火性となる。
また、不燃支持ブロック4の、断熱層2B,3Bへの嵌合固着は、不燃断熱材4Bの側面に隙間追従シート12Aを貼着しての、不燃断熱材4Bと嵌入用孔H1との隙間の密閉された嵌着となって、隙間の空気は空気断熱層として機能するため、断熱層2B,3Bは、不燃断熱材4Bを嵌合しても、断熱機能の低下は生じない。
その上、不燃断熱材4BがZ筋1を空密的に保持しているため、不燃断熱材4Bと貫通Z筋1との隙間の空気流通は存在しなくなり、不燃断熱材4BとZ筋1との界面からの空気流通に起因する断熱機能損失も生じない
In addition, since the non-combustible heat insulating material 4B that secures the Z-strip 1 is fire-resistant, it is possible to prevent the Z-strip 1 from being deteriorated by fire even when the heat-insulating layers 2B and 3B are burned by a fire. The reinforced concrete projecting structure that is cantilevered by the support block 4 becomes fire resistant.
In addition, the non-combustible support block 4 is fitted and fixed to the heat insulating layers 2B and 3B. The gap between the non-combustible heat insulating material 4B and the insertion hole H1 is obtained by sticking the gap following sheet 12A to the side surface of the non-combustible heat insulating material 4B. Since the air in the gap functions as an air heat insulating layer, the heat insulating layers 2B and 3B do not deteriorate the heat insulating function even when the non-combustible heat insulating material 4B is fitted.
In addition, since the non-combustible heat insulating material 4B holds the Z line 1 in an airtight manner, there is no air flow in the gap between the non-combustible heat insulating material 4B and the penetrating Z line 1 and the non-combustible heat insulating material 4B and the Z line 1 There is no loss of heat insulation function due to air flow from the interface .

また、Z筋1は、図2に示す如く、Z上端筋1UとZ下端筋1Dとを、台形状に屈曲して水平上辺部1U´、両側の等傾斜の中間傾斜部1S、及び両側の水平下辺部1D´を備えたZトラス筋1Mで一体化固着するのが好ましい。
この場合、Z上端筋1U、Z下端筋1Dの径、長さは、適用するコンクリート突出構築物の構造計算によって決定すれば良いが、Z上端筋1UとZ下端筋1Dとは、コンクリートとの固着力の観点から、即ち、構造計算上の観点、から同径の異形棒鋼とするのが好ましく、Z下端筋1Dは、圧縮応力負担であるため、引張応力負担のZ上端筋1Uより短寸と出来、標準バルコニー床スラブ(奥行き1500mm、厚さ180mm)及び標準袖壁(奥行き1500mm、厚さ180mm)に適用可能な標準Z筋1にあっては、Z上端筋1Uの長さL10は1200mm、Z下端筋1Dの長さL12は760mmであって、共に22mm径の異形棒鋼であり、応力中心距離L15は92mmである。
Further, as shown in FIG. 2, the Z line 1 is formed by bending the Z upper end line 1U and the Z lower end line 1D into a trapezoidal shape, the horizontal upper side part 1U ′, the intermediate inclined part 1S having equal inclinations on both sides, It is preferable that the Z truss reinforcement 1M provided with the horizontal lower side 1D ′ is integrally fixed.
In this case, the diameters and lengths of the Z upper bar 1U and the Z lower bar 1D may be determined by the structural calculation of the concrete protruding structure to be applied. However, the Z upper bar 1U and the Z lower bar 1D are fixed to concrete. From the viewpoint of adhesion, that is, from the viewpoint of structural calculation, it is preferable to use a deformed steel bar having the same diameter, and since the Z lower bar 1D is a compressive stress load, it is shorter than the Z upper bar 1U of the tensile stress load. In the standard Z floor 1 applicable to the standard balcony floor slab (depth 1500 mm, thickness 180 mm) and standard sleeve wall (depth 1500 mm, thickness 180 mm), the length L10 of the Z upper end 1U is 1200 mm, The length L12 of the Z lower bar 1D is 760 mm, both are 22 mm diameter deformed steel bars, and the stress center distance L15 is 92 mm.

そして、Zトラス筋1Mの、両側の等傾斜の中間傾斜部1Sは、Z筋1に、突出構築物の負荷から生ずる、引張応力、圧縮応力及び剪断応力にも対抗出来、台形状に屈曲したZトラス筋1Mで一体化したトラス構造のZ筋は強大な支持力を発揮し、上下に中心間距離L15を保ったZ上端筋1UとZ下端筋1Dは、従来例3,4の如く、連結用の、引張り用鉄筋と圧縮用鉄筋とを別個独立で備えたものより遥かに強大(構造計算上:3.64倍)な支持力を発揮する。
しかも、Zトラス筋1Mは等角の傾斜部1Sを両側に備えた左右対称形態であるため、図2(A)の如く、標準仕様の、Z筋1の突出部AP,BPが同一形態のものにあっては、使用時には、左右の識別判断が不要であり、小物の建築用部材としての保管、搬送、使用が簡便である。
The intermediate inclined portion 1S of the Z truss muscle 1M with equal inclination on both sides can counter the tensile stress, the compressive stress and the shear stress caused by the load of the projecting structure on the Z muscle 1 and bends in a trapezoidal shape. The Z-strut of the truss structure integrated with the truss muscle 1M exhibits a strong support force, and the Z upper-end muscle 1U and the Z-lower end muscle 1D maintaining the center distance L15 in the vertical direction are connected as in the conventional examples 3 and 4. For example, it has a much stronger support force (in terms of structural calculation: 3.64 times) than that provided with a tension reinforcing bar and a compression reinforcing bar separately.
Moreover, since the Z truss muscle 1M has a left-right symmetric configuration with equiangular inclined portions 1S on both sides, the standard specification projections AP and BP of the Z-strand 1 have the same configuration as shown in FIG. In the case of a thing, the right and left identification judgment is unnecessary at the time of use, and storage, conveyance, and use as a small building member are simple.

また、Zトラス筋1Mが、中央の水平上辺部1U´でZ上端筋1Uの下面と、両側の水平下辺部1D´でZ下端筋1Dの上面と固着一体化し、両側の中間傾斜部1Sが、それぞれ、Z下端筋1Dに対して挟角θが45°であるのが好ましい。
この場合、Zトラス筋1Mの、Z上端筋1U及びZ下端筋1Dとの固着一体化は、当接して両側から溶接固着すれば良い。
トラス構造のZ筋1にあっては、Z上端筋1Uは、主として、引張り応力に対抗し、Z下端筋1Dは圧縮応力に対抗するが、Zトラス筋1Mは傾斜角(挟角)θが45°であるため、引張り応力と圧縮応力との作用界面の45°の剪断応力作用に好適に対抗するものとなる。
従って、Z筋1は、突出構築物の基端での、引張り応力対抗部は、Z上端筋1UとZトラス筋1Mの水平上辺部1U´が一体となり、圧縮応力対抗部は、Z下端筋1DとZトラス筋1Mの水平下辺部1D´が一体となり、十分な応力中心距離L15を保つことにより強大な支持力を発揮し、突出構築物の荷重負荷応力による変位を極小(標準:バルコニー基端0.3mm、袖壁基端0.001mm)に保つことが出来る。
Further, the Z truss bar 1M is fixed and integrated with the lower surface of the Z upper bar 1U at the central horizontal upper side 1U ′ and the upper surface of the Z lower bar 1D at the horizontal lower side 1D ′ on both sides, and the intermediate inclined parts 1S on both sides are integrated. In each case, it is preferable that the included angle θ is 45 ° with respect to the Z lower stripe 1D.
In this case, the Z truss bar 1M may be fixedly integrated with the Z upper bar 1U and the Z lower bar 1D by abutting and welding and fixing from both sides.
In the Z-strut 1 of the truss structure, the Z upper-end muscle 1U mainly resists tensile stress, and the Z-lower end muscle 1D counters compressive stress, but the Z-truss 1M has an inclination angle (slipping angle) θ. Since it is 45 degrees, it will counteract the 45-degree shear stress action of the action interface of a tensile stress and a compressive stress suitably.
Accordingly, the Z-stress 1 is the base end of the projecting structure, and the tensile stress counter part is the Z upper end 1U and the horizontal upper side 1U 'of the Z truss 1M, and the compressive stress counter part is the Z lower end 1D. And the horizontal lower side 1D 'of the Z truss bar 1M are united to maintain a sufficient stress center distance L15 and exert a strong support force, and the displacement due to the load stress of the protruding structure is minimized (standard: balcony base 0 3 mm, sleeve wall base end 0.001 mm).

また、Z筋1は、図2(A)に示す如く、不燃断熱材4B内では耐火塗料1Aを塗布し、突出部AP,BPでは錆止め塗料1Bを塗布しておくのが好ましい。
この場合、Z筋1には、全長に亘って、防蝕断熱性のエポキシ樹脂塗料の耐火コート下塗材((株)エスケー化研、商品名)を、断熱性錆止め塗料1Bとして下塗りし、不燃断熱材4B対応部位には、更に、SK耐火コート上塗材((株)エスケー化研、商品名)を耐火塗料1Aとして上塗りすれば良く、耐火コート下塗材により、Z筋1は、コンクリート内での腐蝕が抑制され、断熱性、耐久性が向上する。
従って、本発明の不燃支持ブロック4で片持ち支持した鉄筋コンクリート突出構築物は、火災時に、コンクリート外壁Wを外断熱被覆した断熱層2B,3Bが燃焼しても、Z筋1は、不燃断熱材4Bと耐火塗料1Aとの二段防御によって保護されて、火災による強度劣下が抑制出来るものとなり、不燃支持ブロック4は、耐火性の突出構築物の構築を可能とする。
Further, as shown in FIG. 2 (A), it is preferable to apply the fire resistant paint 1A in the non-combustible heat insulating material 4B and the rust preventive paint 1B in the projecting portions AP and BP.
In this case, over the entire length of the Z-strand 1, a fireproof coat primer (corresponding to SK Kaken Co., Ltd., product name) of a corrosion-resistant and heat-insulating epoxy resin paint is primed as a heat-resistant rust-preventive paint 1B, and incombustible heat insulation In addition, the SK fire-resistant coat top coat (SK Co., Ltd., trade name) may be overcoated as a fire-resistant paint 1A on the part corresponding to the material 4B. Corrosion is suppressed, and heat insulation and durability are improved.
Therefore, the reinforced concrete projecting structure cantilevered by the non-combustible support block 4 of the present invention is not affected by the non-combustible heat insulating material 4B even if the heat insulating layers 2B and 3B covering the outer wall W of the concrete are burned. And the fireproof paint 1A are protected by the two-stage defense, and the deterioration of strength due to fire can be suppressed, and the nonflammable support block 4 enables the construction of a fireproof protruding structure.

また、本発明の不燃支持ブロック4は、図1に示す如く、幅X4の不燃断熱材4Bを半幅X2の不燃断熱材片4B´に2分割し、両断熱材片4B´の対称内面4Dに配置した嵌合溝H2,H2´,H3に、隙間追従シート12Aを巻き付けたZ筋1を嵌合して、対称内面4Dを接着一体化したものが好ましい。
この場合、不燃断熱材4Bとしては、炭酸カルシウム系発泡板のロックセルボード(フジ化成工業(株)、商品名)を採用すれば、切断加工が容易であり、図4(B)に示す如く、Z上端筋1U用の嵌合溝H2、Zトラス筋1Mの水平上辺部1U´用の嵌合溝H2´、及びZ下端筋1D用の嵌合溝H3は、慣用のテーブル式発泡スチロールカッターで、きれいに切削加工出来る。
Further, as shown in FIG. 1, the incombustible support block 4 of the present invention divides the incombustible heat insulating material 4B having a width X4 into two incombustible heat insulating material pieces 4B 'having a half width X2, and the symmetrical inner surface 4D of both heat insulating material pieces 4B'. It is preferable that the Z-stripes 1 around which the gap follow-up sheet 12A is wound are fitted to the arranged fitting grooves H2, H2 ′, H3, and the symmetrical inner surface 4D is bonded and integrated.
In this case, as the non-combustible heat insulating material 4B, if a lock cell board (Fuji Kasei Kogyo Co., Ltd., trade name) of a calcium carbonate foam plate is employed, cutting processing is easy, as shown in FIG. 4 (B). The fitting groove H2 for the Z upper bar 1U, the fitting groove H2 'for the horizontal upper side 1U' of the Z truss bar 1M, and the fitting groove H3 for the Z lower bar 1D are conventional table type styrofoam cutters. It can be cut neatly.

この場合、不燃断熱材片4B´の各嵌合溝H2,H2´,H3は、対応棒鋼(Z上端筋1U、Zトラス筋1M、Z下端筋1D)の径より若干(標準:6mm)大径に形成しておき、Z筋1には、慣用の2mm厚の隙間追従シート12A(積水化学工業(株)、ソフトロン(商品名))を巻き付けてZ筋1を嵌合溝H2,H2´,H3に嵌めて、両側の不燃断熱材片4B´を接着一体化すれば、隙間追従シート12Aの経時膨張によって、Z筋1は不燃断熱材4Bに空密的に保持される。
従って、Z筋1に型枠成形で不燃断熱材4Bを一体化する、量産品の不燃支持ブロック4と、同等のZ筋1の空密保持が得られる上、各需要者(施工業者)の注文に応じた小ロット製作も可能となり、バルコニー床スラブや袖壁等の突出構築物の自由な設計にも自在に対処出来る不燃支持ブロック4の提供が可能となる。
In this case, each fitting groove H2, H2 ', H3 of the non-combustible heat insulating material piece 4B' is slightly larger (standard: 6 mm) than the diameter of the corresponding steel bar (Z upper bar 1U, Z truss bar 1M, Z lower bar 1D). It is formed in a diameter, and a conventional 2 mm-thick gap follow-up sheet 12A (Sekisui Chemical Co., Ltd., Softlon (trade name)) is wound around the Z stripe 1 to fit the Z stripe 1 into the fitting grooves H2, H2. If the incombustible heat insulating material pieces 4B 'on both sides are bonded and integrated by being fitted to', H3, the Z-strand 1 is airtightly held by the incombustible heat insulating material 4B due to the time-dependent expansion of the gap following sheet 12A.
Accordingly, the non-combustible heat insulating material 4B is integrated into the Z-strip 1 by molding, and the mass-produced non-combustible support block 4 and the same airtight maintenance of the Z-strip 1 are obtained, and each customer (constructor) Small lot production according to orders is also possible, and it is possible to provide a non-combustible support block 4 that can freely cope with the free design of protruding structures such as balcony floor slabs and sleeve walls.

また、Z筋1に対する隙間追従シート12Aは、図1(B)に示す如く、不燃断熱材片4B´の端面位置LF−LFより若干d12入り込んだ位置で巻き付けて不燃断熱材片4B´を一体化し、不燃断熱材4Bの端面4Fから隙間追従シート12Aに到る空隙に耐火シーリング13を充填するのが好ましい。
この場合、若干d12の寸法は、10mm程度確保すれば充分である。
従って、不燃支持ブロック4は、Z筋1が隙間追従シート12Aの経時膨張によって不燃断熱材4Bに空密保持されるため、前後の隙間追従シート12A間の隙間の空気は空気断熱層として機能すると共に、不燃断熱材4Bの前後面4Fから隙間追従シート12Aに到るZ筋1外周の空隙が耐火シーリング13で充填されるため、隙間追従シート12A及び隙間追従シート12Aの前部と後部のZ筋1も耐火保護されて、不燃支持ブロック4は、不燃断熱材片4B´を挟着一体化したものでありながら、Z筋1に型成形で不燃断熱材4Bを一体化したものと同等の耐火性を具備したものとなる。
Further, as shown in FIG. 1B, the gap follow-up sheet 12A for the Z-strip 1 is wound at a position slightly entering d12 from the end surface position LF-LF of the non-combustible heat insulating material piece 4B ', and the non-combustible heat insulating material piece 4B' is integrated. It is preferable to fill the gap extending from the end face 4F of the non-combustible heat insulating material 4B to the gap following sheet 12A with the fireproof sealing 13.
In this case, it is sufficient that the dimension of d12 is about 10 mm.
Therefore, in the non-combustible support block 4, the Z-strip 1 is airtightly held in the non-combustible heat insulating material 4B due to the time-dependent expansion of the gap follow-up sheet 12A, so that the air in the gap between the front and rear gap follow-up sheets 12A functions as an air insulation layer. At the same time, since the space around the Z-strip 1 extending from the front and rear surfaces 4F of the non-combustible heat insulating material 4B to the gap following sheet 12A is filled with the fireproof sealing 13, the front and rear Z of the gap following sheet 12A and the gap following sheet 12A The streak 1 is also protected against fire, and the incombustible support block 4 is the same as the one in which the incombustible heat insulating material 4B is integrated with the Z streak 1 by molding the incombustible heat insulating material piece 4B ′. It has fire resistance.

本発明の不燃支持ブロック4は、鉄筋コンクリート造建物の外壁を、断熱層を備えた複合パネルや、断熱層で外断熱被覆する外断熱建物にあって、外壁を被覆する断熱層に嵌入用孔H1を開設し、該嵌入用孔H1内に、不燃支持ブロック4の不燃断熱材4Bを嵌合すれば、不燃支持ブロック4が被覆断熱層と嵌着一体化出来、且つ、強力な支持力を発揮するZ筋の、一方の突出部APを、コンクリート躯体(外壁)内に、他方の突出部BPを突出構築物(バルコニー床スラブ、袖壁等)内に固着することにより、強力な片持ち支持力が発揮出来る。   The incombustible support block 4 of the present invention is a composite panel provided with a heat insulating layer on the outer wall of a reinforced concrete building, or an outer heat insulating building with an outer heat insulating layer covered with a heat insulating layer, and is fitted into the heat insulating layer covering the outer wall. If the non-combustible heat insulating material 4B of the non-combustible support block 4 is fitted in the insertion hole H1, the non-combustible support block 4 can be fitted and integrated with the covering heat insulating layer and exhibits a strong support force. Strong cantilever support by fixing one protrusion AP of the Z-strip in the concrete frame (outer wall) and the other protrusion BP in the protruding structure (balcony floor slab, sleeve wall, etc.) Can be demonstrated.

従って、不燃支持ブロック4は、設計強度を備えた小物の単品として、工場生産で均質製品として準備出来るために、鉄筋コンクリートのバルコニー床スラブ等の水平突出構築物や、鉄筋コンクリート袖壁等の垂直突出構築物の自在な設計の下での施工に際しても、安全性の保証された、汎用性の極めて高い支持部材として、迅速に供給出来る。
しかも、不燃支持ブロック4の、断熱層嵌入用孔H1への嵌着部は不燃断熱材4Bであるため、コンクリート外壁Wを被覆する断熱層は、不燃断熱材4Bの嵌入止着によっても断熱機能の損失が無く、火災時の断熱層の燃焼時にも、片持ち支持Z筋1の火災劣下は抑制出来、該不燃支持ブロック4を採用した鉄筋コンクリート突出構築物は、熱橋作用が抑制されて、支持力が保証されて、耐火性に富むものとなる。
Therefore, the non-combustible support block 4 can be prepared as a single product with design strength as a homogenous product in factory production, so that a horizontal protruding structure such as a reinforced concrete balcony floor slab or a vertical protruding structure such as a reinforced concrete sleeve wall can be used. Even when installing under a flexible design, it can be quickly supplied as a highly versatile support member with guaranteed safety.
In addition, since the non-combustible support block 4 is fitted with the non-combustible heat insulating material 4B in the heat-insulating layer insertion hole H1, the heat-insulating layer covering the concrete outer wall W is also insulated by the non-combustible heat insulating material 4B. There is no loss, and even when the heat insulation layer burns at the time of fire, the fire deterioration of the cantilevered support Z reinforcement 1 can be suppressed, and the reinforced concrete projecting structure using the non-combustible support block 4 suppresses the thermal bridge action, Supporting power is guaranteed, and it becomes rich in fire resistance.

また、本発明の不燃支持ブロック4は、充分な支持力を備えたZ筋1の1本を貫通したものであるため、鉄筋コンクリートの突出構築物への配置は大間隔となり、型枠組み時の、コンクリート躯体型枠内へのZ筋突出部APの配置及び固定作業は、コンクリート躯体型枠内の配筋に干渉されずに施工出来、従来例3(図9)や従来例4(図10)の連結鉄筋の配筋作業より、遥かに作業性が良い。
しかも、コンクリート躯体型枠内へ突出させるZ筋1の突出部APは、突出構築物の形態に応じて屈曲して、コンクリート外壁W内への固定と出来るため、バルコニー床スラブSBの居住部床スラブSAに対する上下段差突出も、袖壁5のコンクリート躯体側の壁からの左右にずらした突出構築も可能となり、鉄筋コンクリート突出構築物の設計の自由度が向上する。
In addition, since the non-combustible support block 4 of the present invention penetrates through one of the Z bars 1 having sufficient supporting force, the arrangement of the reinforced concrete on the protruding structure becomes a large interval, and the concrete at the time of the formwork The arrangement and fixing work of the Z-strip protrusion AP in the frame formwork can be performed without interfering with the bar arrangement in the concrete frame formwork, and the conventional example 3 (FIG. 9) and the conventional example 4 (FIG. 10) can be used. Workability is far better than the work of bar connection.
Moreover, since the protrusion AP of the Z-strip 1 that protrudes into the concrete frame form can be bent according to the form of the protruding structure and fixed into the concrete outer wall W, the floor slab of the living part of the balcony floor slab SB The vertical step projection with respect to SA can also be constructed by shifting the sleeve wall 5 from the wall on the concrete frame side to the left and right, and the degree of freedom in designing the reinforced concrete projecting structure is improved.

〔不燃支持ブロックの構造(図1)〕
不燃支持ブロック4は、図1(A)に示す如く、Z上端筋1UとZ下端筋1DとをZトラス筋1Mで中心間距離L15を保って、上下に、トラス構造に一体化したZ筋1の中央部を、幅X4、厚さY4、高さZ4の不燃断熱材4Bで一体化被覆したものであり、不燃断熱材4Bは、コンクリート外壁Wを外断熱被覆する断熱層、即ち、バルコニー床スラブSBにあっては、図4に示す如く、コンクリート外壁Wを被覆する複合パネル2の断熱層2B、袖壁5にあっては、図7の如く、袖壁5の基端を熱的に遮断する断熱支持パネル3の断熱層3B、に配置する嵌入用孔H1に嵌合固定するものであり、Z筋1は、鉄筋コンクリートの、水平突出構築物としてのバルコニー床スラブSBや、垂直突出構築物としての袖壁5を、片持ち支持する強度を備えたものである。
そして、本実施例の不燃支持ブロック4は、バルコニー床スラブSBにあっては、厚さTBが180mm、奥行きLBが1500mm、袖壁5にあっては、壁厚T5が180mm、奥行きLBが1500mmのものに適用可能とする。
[Structure of non-combustible support block (Fig. 1)]
As shown in FIG. 1 (A), the non-combustible support block 4 has a Z truss structure in which the Z upper end muscle 1U and the Z lower end muscle 1D are vertically integrated with the truss structure while maintaining a center-to-center distance L15. 1 is integrally coated with a non-combustible heat insulating material 4B having a width X4, a thickness Y4, and a height Z4. The non-combustible heat insulating material 4B is a heat insulating layer that covers the concrete outer wall W as a heat insulating layer, that is, a balcony. In the floor slab SB, as shown in FIG. 4, in the heat insulating layer 2B of the composite panel 2 covering the concrete outer wall W and in the sleeve wall 5, the base end of the sleeve wall 5 is thermally applied as shown in FIG. Are fitted and fixed in the heat-insulating layer 3B of the heat-insulating support panel 3 to be cut off, and the Z-bar 1 is a reinforced concrete balcony floor slab SB as a horizontally projecting structure or a vertically projecting structure. Strength to support the sleeve wall 5 as a cantilever It is those with a.
The incombustible support block 4 of this embodiment has a thickness TB of 180 mm and a depth LB of 1500 mm for the balcony floor slab SB, and a wall thickness T5 of 180 mm and a depth LB of 1500 mm for the sleeve wall 5. Applicable to

〔Z筋(図2)〕
図2(A)は、Z筋1の正面図であり、図2(B)はZ筋の要部拡大図である。
Z筋1は、図2(A)に示す如く、コンクリート突出構築物の、引張応力負担用のZ上端筋1Uと、圧縮応力負担用のZ下端筋1Dとを、中央の水平上辺部1U´、該水平上辺部1U´から45°で降下する両側の中間傾斜部1S、及び中間傾斜部1S下端から両側に延出する水平下辺部1D´を備えたZトラス筋1Mで、上下に応力中心距離L15を保って溶接一体化固定したものである。
Z筋1は、鉄筋コンクリートの、バルコニー床スラブSBや袖壁5を片持ち支持形態で支持する強度が必要であり、バルコニー床スラブSB等の水平突出構築物にあっては、固定荷重に積載荷重を加味し、袖壁5等の垂直突出構築物にあっては、固定荷重に風圧を加味して、Z筋1の各構成棒鋼の径、長さを決定する必要があり、曲げモーメントMの一般式:M=at×ft×jに基づいて決定すれば良い。
ここで、atは、引張鉄筋の断面積、ftは、鉄筋棒鋼の許容引張応力度、jは、曲げ材の応力中心距離である。
[Z-strip (Fig. 2)]
2A is a front view of the Z line 1 and FIG. 2B is an enlarged view of a main part of the Z line.
As shown in FIG. 2 (A), the Z bar 1 is composed of a Z-upper bar 1U for tensile stress load and a Z-lower bar bar 1D for load of compressive stress of a concrete projecting structure. Stress center distance in the vertical direction with Z truss reinforcement 1M provided with an intermediate inclined portion 1S on both sides descending at 45 ° from the horizontal upper side portion 1U 'and a horizontal lower side portion 1D' extending from the lower end of the intermediate inclined portion 1S to both sides. L15 is maintained and welded and fixed.
The Z bar 1 must be strong enough to support the balcony floor slab SB and the sleeve wall 5 in a cantilevered form made of reinforced concrete. For horizontal protruding structures such as the balcony floor slab SB, the loading load is fixed to the fixed load. In addition, in the case of a vertically projecting structure such as the sleeve wall 5, it is necessary to determine the diameter and length of each steel bar of the Z reinforcement 1 by adding wind pressure to the fixed load. : It may be determined based on M = at × ft × j.
Here, at is the cross-sectional area of the tensile reinforcement, ft is the allowable tensile stress of the reinforcing bar, and j is the stress center distance of the bending material.

上記一般式から明らかな如く、同一径の鉄筋棒鋼を採用しても、棒鋼の応力中心距離を保つのが支持力向上に極めて重要であるため、本発明にあっては、図2(A)の如く、Zトラス筋1Mで応力中心距離(Z上端筋1UとZ下端筋1Dとの軸心間距離)L15を確保する。
そして、応力中心距離L15は、Zトラス筋1Mの水平上辺部1U´が不燃断熱材4B厚さY4全域に亘る条件、不燃断熱材4B、断熱層3B、複合パネル断熱層2Bの各厚さが75mmの等厚である条件、及びZトラス筋1Mの両側の中間傾斜部1Sが45°傾斜の条件の下で決定出来、Z上端筋1Uと水平上辺部1U´との固着部ZUの長さが80mmであれば、厚さY4が75mmの不燃断熱材4B内に、Z上端筋1UとZトラス筋の水平上辺部1U´との固着部ZUが厚さY4の全域に亘った配置と出来る。
As is apparent from the above general formula, even if a reinforcing bar with the same diameter is used, maintaining the stress center distance of the steel bar is extremely important for improving the supporting force. Therefore, in the present invention, FIG. As described above, the stress center distance (distance between the center axes of the Z upper end 1U and the Z lower end 1D) L15 is secured by the Z truss 1M.
The stress center distance L15 is such that the horizontal upper side portion 1U 'of the Z truss bar 1M extends over the entire area of the incombustible heat insulating material 4B thickness Y4, the thickness of the incombustible heat insulating material 4B, the heat insulating layer 3B, and the composite panel heat insulating layer 2B. The length of the fixing portion ZU between the Z upper end 1U and the horizontal upper side 1U ′ can be determined under the condition that the thickness is equal to 75 mm and the intermediate inclined portion 1S on both sides of the Z truss 1M is 45 °. Is 80 mm, in the non-combustible heat insulating material 4B having a thickness Y4 of 75 mm, the fixing portion ZU between the Z upper end 1U and the horizontal upper side 1U 'of the Z truss bar can be disposed over the entire thickness Y4. .

また、Z筋1を構成する各鉄筋棒鋼の径、長さは、適用するバルコニー床スラブSBやコンクリート袖壁5に対する性能と、コスト面、及び、バルコニー床スラブの奥行き寸法LB(標準:1500mm)、袖壁の奥行き寸法LBから決定すれば良く、例えば、図4の、奥行きLBが1500mm、厚さTBが180mmのバルコニー床スラブSB、及び図7の、奥行きLBが1500mm、厚さT5が180mmの袖壁5に、同径のZ上端筋1UとZ下端筋1Dとを、間隔L14が75mmで、径16mmのZトラス筋1Mの両側の中間傾斜部1Sが45°傾斜に一体化して、応力中心距離L15を92mm保持したZ筋1を、バルコニー床スラブSBにあっては、450mm間隔にZ筋1本(900mm幅の、1枚の複合パネル2内にZ筋2本)、袖壁5にあっては、900mmの間隔(3h)にZ筋1本配置(標準階高2700mmに等間隔に3本配置)の場合、Z上端筋1U及びZ下端筋1Dとして、鉄筋径22mmの採用の場合より、鉄筋径25mmの採用の方が、Z上端筋1U及びZ下端筋1Dは短縮出来るが、重量は増加し、材料コストが高くなる。   In addition, the diameter and length of each reinforcing bar constituting the Z bar 1 are the performance, cost, and depth dimension LB of the balcony floor slab (standard: 1500 mm) for the balcony floor slab SB and concrete sleeve wall 5 to be applied. 4, for example, a balcony floor slab SB having a depth LB of 1500 mm and a thickness TB of 180 mm in FIG. 4 and a depth LB of 1500 mm and a thickness T5 of 180 mm in FIG. In the sleeve wall 5, the Z upper end muscle 1U and the Z lower end bar 1D having the same diameter are integrated with a 45 ° slope between the intermediate inclined portions 1S on both sides of the Z truss bar 1M having a distance L14 of 75 mm and a diameter of 16 mm. In the case of balcony floor slab SB, Z-strand 1 holding 92mm of stress center distance L15 is one Z-strip at intervals of 450mm (two Z-strands in one composite panel 2 of 900mm width), sleeve wall In case of 5, In the case where one Z bar is arranged at an interval (3h) of 900 mm (three bars are arranged at an equal interval of 2700 mm in standard floor height), the diameter of the reinforcing bar is larger than that in the case of adopting a bar diameter of 22 mm as the Z upper bar 1U and Z lower bar 1D. If 25 mm is used, the Z upper bar 1U and the Z lower bar 1D can be shortened, but the weight increases and the material cost increases.

以下、使用鉄筋棒鋼の径19mm、径22mm、径25mmで、図4のバルコニー床スラブに適用する場合、及び図7の袖壁5に適用する場合を試算比較すると次の通りである。

径19mm 径22mm 径25mm
Z上端筋1Uの全長(mm) 1300 1200 1150
Z下端筋1Dの全長(mm) 820 760 730
重量(kg) 5.0 6.3 7.8
出願時価格(円) 320 403 500
バルコニーの強度余裕 43% 58% 68%
袖壁の強度余裕 31% 49% 61%
バルコニー先端変位量(mm) 2.6 2.0 1.7
居住部床スラブSAと断熱層2Bとの
当接部位変位量(mm) 0.3 0.3 0.3
袖壁先端の変位量(mm) 0.668 0.494 0.376
袖壁基端の変位量(mm) 0.001 0.001 0.001

尚、Zトラス筋1Mは、全て16mmの異形棒鋼を、同一形態で採用。
In the following, a comparison is made between the case where the steel bars used have a diameter of 19 mm, a diameter of 22 mm, and a diameter of 25 mm, and are applied to the balcony floor slab of FIG. 4 and to the sleeve wall 5 of FIG.

Diameter 19mm Diameter 22mm Diameter 25mm
Overall length (mm) of Z upper end muscle 1U 1300 1200 1150
Total length (mm) of Z lower end muscle 1D 820 760 730
Weight (kg) 5.0 6.3 7.8
Application price (yen) 320 403 500
Balcony strength margin 43% 58% 68%
Strength margin of sleeve wall 31% 49% 61%
Balcony tip displacement (mm) 2.6 2.0 1.7
Abutting part displacement amount (mm) between living part floor slab SA and heat insulation layer 2B 0.3 0.3 0.3
Displacement of sleeve wall tip (mm) 0.668 0.494 0.376
Displacement of sleeve wall base end (mm) 0.001 0.001 0.001

The Z truss bars 1M are all 16mm deformed bars in the same form.

上記試算より、標準タイプの奥行きLBが1500mmで厚さTBが180mmのバルコニー床スラブSBには、Z筋1を450mm間隔で、奥行きLBが1500mmで、厚さT5が180mm、高さが階高1h(2700mm)の標準タイプの袖壁5には、Z筋1を、該袖壁5内に3本等間隔(900mm間隔)に配置するタイプとし、図2(A)の如く、Z上端筋1Uとしては、長さL10が1200mm、径22mmの異形棒鋼を、Z下端筋1Dとしては、長さL12が760mm、径22mmの異形棒鋼を、Zトラス筋1Mとしては、両側の中間傾斜部1Sの傾斜角θが45°、水平上辺部1U´及び水平下辺部1D´が各80mmで、水平上辺部1U´は不燃断熱材4Bの厚さY4(75mm)に亘って配置する、台形状で、高さL14が75mmに屈曲形成した、径16mmの異形棒鋼を採用し、Zトラス筋1Mの、水平上辺部1U´をZ上端筋1Uの中央下面に、水平下辺部1D´をZ下端筋1Uの上面に当接し、両側面溶着による固着部ZU,ZDで一体化し、次いで、Z上端筋1U、Z下端筋1D及びZトラス筋1Mの外周全長に、防蝕性、付着性、断熱性に優れたエポキシ樹脂塗料(耐火コート下塗材:(株)エスケー化研、商品名)を、錆止め塗料1Bとして2回塗布し、不燃断熱材4B内に位置させる部位には、更に、耐火塗料1A(SK耐火コート:(株)エスケー化研、商品名)を塗布して、Z筋1を準備する。   Based on the above calculations, the standard type balcony floor slab SB with a depth LB of 1500 mm and a thickness TB of 180 mm has a Z-strand 1 spacing of 450 mm, a depth LB of 1500 mm, a thickness T5 of 180 mm, and a height of the floor. 1h (2700mm) standard type sleeve wall 5 is a type in which Z stripes 1 are arranged in three equal intervals (900 mm gap) in the sleeve wall 5, and as shown in FIG. 1U is a deformed steel bar having a length L10 of 1200 mm and a diameter of 22 mm, the Z lower end bar 1D is a deformed steel bar having a length L12 of 760 mm and a diameter of 22 mm, and the Z truss bar 1M is an intermediate inclined portion 1S on both sides. The trapezoidal shape in which the inclination angle θ is 45 °, the horizontal upper side portion 1U ′ and the horizontal lower side portion 1D ′ are each 80 mm, and the horizontal upper side portion 1U ′ is disposed over the thickness Y4 (75 mm) of the incombustible heat insulating material 4B. , Height L14 bent to 75mm, diameter 16mm Of the Z truss bar 1M, the horizontal upper side 1U 'is in contact with the center lower surface of the Z upper bar 1U, and the horizontal lower side 1D' is in contact with the upper surface of the Z lower bar 1U, and the fixed part by welding on both sides Integrated with ZU, ZD, and then the epoxy resin paint (fireproof coat primer: (stock) with excellent corrosion resistance, adhesion, and heat insulation on the entire outer circumference of the Z upper bar 1U, Z lower bar 1D and Z truss bar 1M ) SK Kaken Co., Ltd., trade name) is applied twice as anti-corrosion paint 1B, and the part placed in the non-combustible heat insulating material 4B is further provided with fire proof paint 1A (SK fire proof coat: SK Kaken Co., Ltd., trade name) ) Is applied to prepare the Z muscle 1.

〔不燃支持ブロック(図1)〕
図1(A)は不燃支持ブロック4の全体斜視図であって、図1(B)は製作説明図である。
そして、不燃支持ブロック4は、図3(A)に示す如く、複合パネル断熱層2Bの嵌入用孔H1や、図5(A),(B)に示す如く、断熱支持パネル本体を構成する断熱層3Bの嵌入用孔H1に嵌入止着する部材であって、不燃断熱材4BでZ筋1を保持した部材である。
[Non-combustible support block (Fig. 1)]
FIG. 1A is an overall perspective view of the non-combustible support block 4, and FIG. 1B is a production explanatory view.
And the non-combustible support block 4 is the heat insulation which comprises the hole H1 for insertion of the composite panel heat insulation layer 2B, as shown to FIG. 3 (A), and the heat insulation support panel main body as shown to FIG. 5 (A), (B). It is a member that is fitted and fixed in the fitting hole H1 of the layer 3B, and is a member that holds the Z-strip 1 with the non-combustible heat insulating material 4B.

不燃断熱材4Bは、断熱層2B,3Bの嵌入用孔H1内に嵌入埋設しても、断熱層2B、3Bに断熱欠損を生じない材質、即ち、JISA9511の発泡プラスチック系断熱層2B、3Bと物性の近似した材質、を選択する必要があり、フジ化成工業(株)製の炭酸カルシウム系発泡板のロックセルボード(商品名)は、切断加工性に優れており、物性は、発泡プラスチック系断熱板と近似で、熱伝導率が0.032kcal/mh℃(発泡プラスチック系は0.022〜0.037kcal/mh℃)、透湿性が0.038g/mhmmHg(発泡プラスチック系は0.02〜0.14g/mhmmHg)、圧縮強度は1.8kgf/cm(発泡プラスチック系は0.5〜2.0kgf/cm)、重さ(密度)は90kg/m(発泡プラスチック系は15〜45kg/m)であり、ロックセルボード(商品名)は、断熱層2B、3B内に一体化埋設しても、不燃性を発揮し、且つ、断熱層2B、3Bと一体となって近似の断熱機能を発揮する。 The non-combustible heat insulating material 4B is made of a material that does not cause a heat insulation defect in the heat insulating layers 2B and 3B even when the heat insulating layers 2B and 3B are inserted and embedded in the insertion holes H1, that is, the foamed plastic heat insulating layers 2B and 3B of JIS A9511 It is necessary to select a material with similar physical properties. The lock cell board (trade name) of calcium carbonate foam plate manufactured by Fuji Kasei Kogyo Co., Ltd. is excellent in cutting processability, and the physical properties are foam plastic type. The thermal conductivity is approximately 0.032 kcal / mh ° C. (0.022 to 0.037 kcal / mh ° C. for foamed plastics), and the moisture permeability is 0.038 g / m 2 hmmHg (0. 0 for foamed plastics). 02~0.14g / m 2 hmmHg), compressive strength 1.8 kgf / cm 2 (plastic foam system 0.5~2.0kgf / cm 2), the weight (density) 90 kg / m 3 (foamed plastic system 15~45kg / m ), And lock cell board (trade name), a heat insulating layer 2B, be integrated embedded in the 3B, to demonstrate the non-flammable, and, the heat-insulating layer 2B, 3B and a heat-insulating function of the approximation together Demonstrate.

従って、不燃支持ブロック4は、図1(B)に示す如く、炭酸カルシウム系発泡板を、高さZ4が200mm、厚さY4が75mm、幅X4が50mmのブロック形態の不燃断熱材4Bとして用意し、該不燃断熱材4Bを幅X2が25mmに2分割して不燃断熱材片4B´とし、該両方の不燃断熱材片4B´の内面4Dに、面対称に、且つ、Z筋1が高さZ4の中央に配置出来るように、上方には、Z上端筋1U用の嵌合溝H2と、Zトラス筋1Mの水平上辺部1U´用の嵌合溝H2´とを連設し、下方には、Z下端筋1D用の嵌合溝H3を、テーブル式発泡スチロールカッターで形成する。
この場合、各嵌合溝H2,H2´,H3の径は、各嵌合鉄筋(Z上端筋、Zトラス筋、Z下端筋)の径より若干(標準:6mm)大きく形成する。
Accordingly, as shown in FIG. 1 (B), the non-combustible support block 4 is prepared as a non-combustible heat insulating material 4B in the form of a block having a calcium carbonate foam plate having a height Z4 of 200 mm, a thickness Y4 of 75 mm, and a width X4 of 50 mm. The incombustible heat insulating material 4B is divided into two parts having a width X2 of 25 mm to form a noncombustible heat insulating material piece 4B ′. The inner surface 4D of both the incombustible heat insulating material pieces 4B ′ is plane-symmetrical and the Z-strip 1 is high. A fitting groove H2 for the Z upper bar 1U and a fitting groove H2 'for the horizontal upper side 1U' of the Z truss bar 1M are connected to the upper side so that they can be arranged in the center of the Z4. In this case, the fitting groove H3 for the Z lower end streak 1D is formed with a table-type foamed polystyrene cutter.
In this case, the diameter of each fitting groove H2, H2 ', H3 is slightly larger (standard: 6 mm) than the diameter of each fitting reinforcing bar (Z upper bar, Z truss bar, Z lower bar).

次いで、予め用意したZ筋1に、図1(B)に示す如く、不燃断熱材4Bの前後端面4Fの位置LF−LFから、間隔d12(標準:10mm)を保った内側位置に、厚さ2mm、幅20mmの隙間追従シート12A(積水化学工業(株)、ソフトロン(商品名))を巻き付け、該Z筋1を両方の不燃断熱材片4B´の嵌合溝H2,H2´,H3に嵌合して、不燃断熱材片4B´の内面4Dでの接着により、不燃断熱材片4B´を一体化する。
そして、隙間追従シート12Aが経時膨張して各嵌合溝H2,H2´,H3を充填密閉した後(標準:1時間後)に、Z筋1を挟着保持した不燃断熱材4Bの前後の嵌合溝H2,H2´,H3の隙間から、慣用の耐火シーリング13を慣用のシーリングガンで充填し、不燃断熱材4Bの幅中央の接着界面に隙間があれば、該隙間にも耐火シーリングを充填して、Z筋1を一体化保持した不燃支持ブロック4とする。
Next, as shown in FIG. 1 (B), the thickness of the Z line 1 prepared in advance from the position LF-LF of the front and rear end face 4F of the non-combustible heat insulating material 4B to the inner position maintaining a distance d12 (standard: 10 mm). A 2 mm, 20 mm wide gap following sheet 12A (Sekisui Chemical Co., Ltd., Softlon (trade name)) is wound, and the Z-strip 1 is fitted into the non-combustible heat insulating material pieces 4B 'fitting grooves H2, H2', H3 And the non-combustible heat insulating material piece 4B ′ is integrated by bonding on the inner surface 4D of the non-combustible heat insulating material piece 4B ′.
Then, after the gap following sheet 12A expands with time and fills and seals the fitting grooves H2, H2 ′, H3 (standard: 1 hour later), the front and rear of the non-combustible heat insulating material 4B sandwiching and holding the Z-strip 1 are retained. If the conventional fire-resistant sealing 13 is filled with a conventional sealing gun from the gaps between the fitting grooves H2, H2 ', H3, and there is a gap at the adhesive interface at the center of the width of the non-combustible heat insulating material 4B, the fire-resistant sealing is also applied to the gap. The incombustible support block 4 is filled and the Z-strand 1 is integrally held.

〔不燃支持ブロックの使用〕
〔例1.バルコニー床スラブ(図3、図4)〕
図3は、通気用条溝Gを外面に備えた断熱層2Bにセメント板2Aを層着した、通気性断熱複合パネルへ不燃支持ブロック4を適用するものであり、図3(A)に示す如く、コンクリート外壁の外側型枠として配置する幅AWが900mmの複合パネル2の上部の、バルコニー床スラブSBの基端対応部位では、複合パネル2のセメント板2Aを切除して前面に通気用条溝Gを備えた断熱層2Bを剥き出しとし、該剥き出し部に、幅W4が60mm、高さ4hが200mmの嵌入用孔H1を、450mm間隔で2ヶ所切開形成しておく。
そして、該複合パネル2を、慣用の型枠組みで、外側型枠として立設した段階で、不燃支持ブロック4には、図1(A)、図3(B)に示す如く、不燃断熱材4Bの両側面の前後に、2mm厚の隙間追従シート12Aを貼着し、且つ下面にも接着テープ12Bを添着して、該不燃断熱材4Bの底面を、接着テープ12Bを介して嵌入用孔H1に整合固着し、セメント板2Aを切除した部位には、図3(B)に示す如く、耐水板6を、厚肉部2Cを介して貼着配置して条溝Gを保護する。
尚、断熱層2Bの上面2ヶ所の浅い着座溝2Gは、複合パネル2相互の上下接続の位置合せを司るT字ジョイント(図示せず)を着座固定するものである。
[Use of non-combustible support block]
[Example 1. Balcony floor slab (Fig. 3, Fig. 4)]
FIG. 3 shows the application of the non-combustible support block 4 to a breathable heat insulating composite panel in which a cement board 2A is layered on a heat insulating layer 2B having a ventilation groove G on the outer surface, and is shown in FIG. 3 (A). Thus, at the upper part of the composite panel 2 having a width AW of 900 mm arranged as the outer formwork of the concrete outer wall and corresponding to the base end of the balcony floor slab SB, the cement plate 2A of the composite panel 2 is cut out and a ventilation strip is formed on the front surface. The heat insulating layer 2B provided with the groove G is exposed, and two insertion holes H1 having a width W4 of 60 mm and a height 4h of 200 mm are cut in the exposed portion at intervals of 450 mm.
Then, at the stage where the composite panel 2 is erected as an outer mold with a conventional mold, the non-flammable support block 4 has a non-flammable heat insulating material 4B as shown in FIGS. 1 (A) and 3 (B). A gap tracking sheet 12A having a thickness of 2 mm is attached to the front and back of both sides, and an adhesive tape 12B is also attached to the lower surface. As shown in FIG. 3 (B), a water-resistant plate 6 is stuck and disposed through the thick portion 2C at the site where the cement plate 2A has been cut off and aligned and the groove G is protected.
The shallow seating grooves 2G at the two upper surfaces of the heat insulating layer 2B seat and fix a T-shaped joint (not shown) that controls the alignment of the vertical connection between the composite panels 2.

そして、不燃支持ブロック4の、Z筋1のコンクリート躯体側への突出部AP、及びバルコニー床スラブ内への突出部BPを、それぞれ、慣用のスペーサー等を介して位置保持して配筋固定し、コンクリート躯体側及びバルコニー床スラブ側にコンクリート打設すれば、図4に示す如く、バルコニー床スラブSBは、上下複合パネル2間で、断熱層2Bによってコンクリート外壁Wの外面Wfと熱的に遮断され、且つ、450mm間隔に配置したZ筋のみによって片持ち支持されたものとなる。
尚、嵌入用孔H1の幅W4は60mmであり、不燃断熱材4Bの幅X4は50mmであるが、該隙間は、隙間追従シート12Aの経時膨張によって空密的に閉止されるため、該隙間の密閉空気は、断熱空気層として機能し、断熱層2Bの嵌入用孔H1による断熱欠損は生じない。
Then, the protrusions AP of the non-combustible support block 4 to the concrete frame side of the Z bars 1 and the protrusions BP to the inside of the balcony floor slab are respectively held and fixed through a conventional spacer or the like. If the concrete is placed on the concrete frame side and the balcony floor slab side, the balcony floor slab SB is thermally shielded from the outer surface Wf of the concrete outer wall W by the heat insulating layer 2B between the upper and lower composite panels 2 as shown in FIG. And cantilevered only by the Z bars arranged at intervals of 450 mm.
The width W4 of the insertion hole H1 is 60 mm, and the width X4 of the incombustible heat insulating material 4B is 50 mm. However, the gap is airtightly closed by the time-dependent expansion of the gap following sheet 12A. The sealed air functions as a heat insulating air layer, and heat insulation defects due to the insertion holes H1 of the heat insulating layer 2B do not occur.

〔例2.コンクリート袖壁(図5,6,7)〕
図5(B)に示す如く、コンクリート外壁Wを被覆する複合パネル2の断熱層2Bの厚さ(標準:75mm)と、厚さT3が等厚で、高さ3hが階高1h(標準:2700mm)の1/3で、幅W3がコンクリート袖壁5の突出部基端の幅T5と、少なくとも同幅の断熱層3Bの中央に、幅W4(60mm)、高さ4h(200mm)の嵌入用孔H1を切開し、該断熱層3Bの嵌入用孔H1に、工場生産品の不燃支持ブロック4を、図1(A)に示す如く、不燃断熱材4Bの両側面前後には隙間追従シート12Aを、底面には接着テープ12Bを付設して、図5(A)の如く、不燃断熱材4Bを断熱層3Bと整合して嵌入固着し、不燃支持ブロック4を一体化した断熱支持パネル3とする。
次いで、慣用の型枠組みで、コンクリート外壁Wの外側型枠として立設した複合パネル2に対し、袖壁突出部位で、不燃支持ブロック4を一体化した断熱支持パネル3の3枚を、複合パネル2の断熱層2Bに衝合して、順次、階高1h分(3枚)上下に接合する。
[Example 2. Concrete sleeve wall (Figure 5, 6, 7)]
As shown in FIG. 5 (B), the thickness (standard: 75 mm) of the heat insulating layer 2B of the composite panel 2 covering the concrete outer wall W is equal to the thickness T3, and the height 3h is the floor height 1h (standard: 2700mm), and the width W3 is fitted with a width W4 (60mm) and a height 4h (200mm) at the center of the heat insulating layer 3B having the same width as the width T5 of the base end of the protruding portion of the concrete sleeve wall 5. The hole H1 is incised, and the non-combustible support block 4 of the factory-produced product is inserted into the hole H1 for insertion of the heat insulating layer 3B. As shown in FIG. The bottom surface is provided with an adhesive tape 12B, and as shown in FIG. 5A, the incombustible heat insulating material 4B is fitted and fixed in alignment with the heat insulating layer 3B, and the incombustible support block 4 is integrated. To do.
Next, with respect to the composite panel 2 erected as an outer formwork of the concrete outer wall W with a conventional mold frame, three heat insulating support panels 3 in which a non-combustible support block 4 is integrated at a sleeve wall protruding portion are combined with the composite panel. The two heat-insulating layers 2B are abutted and sequentially joined up and down for the floor height of 1 h (3 sheets).

この場合、図5(A)に示す如く、断熱支持パネル3の断熱層3Bの両側面にはスリット溝3Gを付設し、対応複合パネルの断熱層2Bの側面にもスリット溝(図示せず)を付設し、プラスチック製の接合板3Eを衝合した断熱支持パネル3と複合パネル断熱層2Bとに差し込めば、両断熱層3Bと2Bとの衝合当接の位置規制が出来る。
そして、断熱支持パネル3の外側には、慣用の袖壁型枠を組み、断熱支持パネル3から突出するZ筋1の、袖壁側突出部BP及びコンクリート躯体側突出部APを、それぞれ、対応型枠内で位置保持して固定し、両側の型枠内にコンクリート打設すれば、図6に示す如く、階高1hの高さの袖壁5内に、Z筋1の3本が上下等間隔(900mm間隔)に配置され、コンクリート袖壁5は、コンクリート躯体CFに断熱層3Bで熱遮断されて、上下3本のZ筋で片持ち支持されたものとなる。
In this case, as shown in FIG. 5A, slit grooves 3G are provided on both side surfaces of the heat insulating layer 3B of the heat insulating support panel 3, and slit grooves (not shown) are also formed on the side surfaces of the heat insulating layer 2B of the corresponding composite panel. Is inserted into the heat insulating support panel 3 and the composite panel heat insulating layer 2B which are joined to each other, and the position of the abutting contact between the heat insulating layers 3B and 2B can be regulated.
And, on the outside of the heat insulating support panel 3, a conventional sleeve wall mold is assembled, and the sleeve wall side protruding portion BP and the concrete frame side protruding portion AP of the Z-strip 1 protruding from the heat insulating support panel 3 respectively correspond to each other. If the position is held and fixed in the formwork, and concrete is placed in the formwork on both sides, as shown in FIG. Arranged at equal intervals (900 mm intervals), the concrete sleeve wall 5 is heat-insulated by the heat insulating layer 3B on the concrete frame CF, and is cantilevered by the upper and lower three Z bars.

本発明不燃支持ブロックの説明図であって、(A)は全体斜視図、(B)は製作説明斜視図である。It is explanatory drawing of this invention nonflammable support block, Comprising: (A) is a whole perspective view, (B) is a manufacture description perspective view. 本発明に用いるZ筋の説明図であって、(A)は全体正面図、(B)は(A)の部分拡大図である。It is explanatory drawing of Z line | wire used for this invention, Comprising: (A) is a whole front view, (B) is the elements on larger scale of (A). 本発明の提供に用いる複合パネルの説明図であって、(A)は斜視図、(B)は側面図、(C)は上面図である。It is explanatory drawing of the composite panel used for provision of this invention, Comprising: (A) is a perspective view, (B) is a side view, (C) is a top view. 本発明を適用した水平突出構築物の斜視図である。It is a perspective view of the horizontal protrusion structure to which this invention is applied. 本発明を適用するための断熱支持パネルの説明図であって、(A)は断熱層3Bの斜視図、(B)は断熱支持パネル3の斜視図である。It is explanatory drawing of the heat insulation support panel for applying this invention, Comprising: (A) is a perspective view of the heat insulation layer 3B, (B) is a perspective view of the heat insulation support panel 3. FIG. 本発明を適用した垂直突出構築物の縦断面図である。It is a longitudinal cross-sectional view of the vertical protrusion structure to which this invention is applied. 本発明を適用した垂直突出構築物の斜視図である。It is a perspective view of the vertical protrusion structure to which the present invention is applied. 従来例図であって、(A)は従来例1の横断面図、(B)は従来例1の縦断面図、(C)は従来例2の横断面図、(D)は従来例2の縦断面図である。It is a conventional example figure, (A) is a cross-sectional view of Conventional Example 1, (B) is a vertical cross-sectional view of Conventional Example 1, (C) is a cross-sectional view of Conventional Example 2, and (D) is Conventional Example 2. FIG. 従来例3の説明図であって、(A)はバルコニー縦断面図、(B)は鉄筋ユニットの正面図、(C)は鉄筋ユニット平面図である。It is explanatory drawing of the prior art example 3, Comprising: (A) is a balcony longitudinal cross-sectional view, (B) is a front view of a reinforcing bar unit, (C) is a reinforcing bar unit top view. 従来例4の説明図であって、(A)はバルコニー縦断面図、(B)は(A)の要部拡大図、(C)は断熱材の説明図である。It is explanatory drawing of the prior art example 4, Comprising: (A) is a balcony longitudinal cross-sectional view, (B) is a principal part enlarged view of (A), (C) is explanatory drawing of a heat insulating material.

符号の説明Explanation of symbols

1 Z筋
1A 耐火塗料
1B 錆止め塗料
1D Z下端筋
1D´ 水平下辺部
1h 階高
1M Zトラス筋
1S 中間傾斜部
1U Z上端筋
1U´ 水平上辺部
2 複合パネル(断熱複合パネル)
2A 外装下地材
2B,3B 断熱層
2C 厚肉部
3 断熱支持パネル
3G スリット溝
3E 接合板
4 不燃支持ブロック
4B 不燃断熱材
4B´ 不燃断熱材片
4D 内面(対称内面)
4F 端面(前後端面)
4S 側面
5 袖壁(コンクリート袖壁)
6 耐水板
7 T字ジョイント
12A 隙間追従シート
12B 接着テープ
13 耐火シーリング
16A シーリング
A 居住部
AP,BP 突出部(Z筋突出部)
B バルコニー
CF コンクリート躯体
G 条溝(通気用条溝)
H1 嵌入用孔
H2,H2´,H3 嵌合溝
L15 応力中心距離(中心間距離)
P パラペット
SA 居住部床スラブ
SB バルコニー床スラブ
Sf,Sf´ コンクリート床表面
W コンクリート外壁(外壁、コンクリート壁)
Wf 外壁表面
ZD,ZU 固着部
1 Z line 1A Fireproof paint 1B Rust prevention paint 1D Z bottom line 1D 'Horizontal lower side 1h Floor height 1M Z truss line 1S Middle inclined part 1U Z Upper line 1U' Horizontal upper side 2 Composite panel (heat insulation composite panel)
2A Exterior base material 2B, 3B Heat insulation layer 2C Thick part 3 Heat insulation support panel 3G Slit groove 3E Joint plate 4 Noncombustion support block 4B Noncombustion heat insulation material 4B 'Noncombustion heat insulation piece 4D Inner surface (symmetric inner surface)
4F end face (front and back end face)
4S Side 5 Sleeve wall (concrete sleeve wall)
6 Water-resistant plate 7 T-joint 12A Gap following sheet 12B Adhesive tape 13 Fire-resistant sealing 16A Sealing A Residential section
AP, BP Protrusion (Z muscle protrusion)
B Balcony CF Concrete frame G Strip (strip for ventilation)
H1 insertion holes H2, H2 ', H3 fitting groove L15 Stress center distance (center-to-center distance)
P Parapet SA Living floor slab SB Balcony floor slab Sf, Sf 'Concrete floor surface W Concrete outer wall (outer wall, concrete wall)
Wf Outer wall surface ZD, ZU fixing part

Claims (6)

鉄筋コンクリート造外断熱建物のコンクリート外壁(W)から、鉄筋コンクリート造の突出構築物(SB,5)を、断熱層(2B,3B)で熱的に遮断して、片持ち支持形態で支持するための不燃支持ブロックであって、不燃支持ブロック(4)は、コンクリート外壁(W)を外断熱被覆する断熱層(2B,3B)の嵌入用孔(H1)に嵌着するための、左右幅(X4)、前後厚さ(Y4)及び高さ(Z4)を備えた不燃断熱材(4B)と、不燃断熱材(4B)を貫通して、不燃断熱材(4B)で保持された連結用の1本のZ筋(1)とを含み、Z筋(1)は、Z上端筋(1U)とZ下端筋(1D)とを、上下方向に応力中心距離(L15)を保ってZトラス筋(1M)で一体化固着したものであり、不燃断熱材(4B)がZ筋(1)を空密的に保持している不燃支持ブロック。 Non-combustible for supporting the reinforced concrete structure (SB, 5) from the concrete outer wall (W) of the reinforced concrete building with the cantilever support by thermally insulating it with the insulation layer (2B, 3B). The non-combustible support block (4) is a left-right width (X4) for fitting into a fitting hole (H1) of a heat insulating layer (2B, 3B) covering the concrete outer wall (W) with heat insulation. , One non-combustible heat insulating material (4B) having front and rear thickness (Y4) and height (Z4), and one for connection held by the non-combustible heat insulating material (4B) through the non-combustible heat insulating material (4B) The Z muscle (1) includes the Z upper muscle (1U) and the Z lower muscle (1D) while maintaining the stress center distance (L15) in the vertical direction. ) is obtained by integrating fixed with non-combustible heat-insulating material (4B) is Z muscle (1) Soramitsu Non retardant support block held in the. Z筋(1)は、Z上端筋(1U)とZ下端筋(1D)とを、台形状に屈曲して水平上辺部(1U´)、両側の等傾斜の中間傾斜部(1S)、及び両側の水平下辺部(1D´)を備えたZトラス筋(1M)で一体化固着した、請求項1の不燃支持ブロック。   The Z line (1) is formed by bending the Z upper end line (1U) and the Z lower end line (1D) into a trapezoidal shape, the horizontal upper side part (1U ′), the intermediate inclined parts (1S) having equal inclinations on both sides, and The non-combustible support block according to claim 1, wherein the non-combustible support block is integrally fixed by a Z truss bar (1M) having horizontal lower sides (1D ') on both sides. Zトラス筋(1M)が、中央の水平上辺部(1U´)でZ上端筋(1U)の下面と、両側の水平下辺部(1D´)でZ下端筋(1D)の上面と固着一体化し、両側の中間傾斜部(1S)が、それぞれ、Z下端筋(1D)に対して挟角(θ)が45°である、請求項2の不燃支持ブロック。   The Z truss bar (1M) is fixedly integrated with the lower surface of the Z upper bar (1U) at the central horizontal upper side (1U ') and the upper surface of the Z lower bar (1D) at the horizontal lower side (1D') on both sides. The nonflammable support block according to claim 2, wherein the intermediate inclined portions (1 S) on both sides have an included angle (θ) of 45 ° with respect to the Z lower streak (1 D). Z筋(1)は、不燃断熱材(4B)内では耐火塗料(1A)を塗布し、突出部(AP,BP)では錆止め塗料(1B)を塗布した、請求項1乃至のいずれか1項の不燃支持ブロック。 Z muscle (1) is non-combustible heat-insulating material (4B) of the refractory coating (1A) was applied within the projecting portions (AP, BP) was coated with the rust coating (1B), one of the claims 1 to 3 1 Item non-combustible support block. 幅(X4)の不燃断熱材(4B)を半幅(X2)の不燃断熱材片(4B´)に2分割し、両断熱材片(4B´)の対称内面(4D)に配置した嵌合溝(H2,H2´,H3)に、隙間追従シート(12A)を巻き付けたZ筋(1)を嵌合して、対称内面(4D)を接着一体化した不燃支持ブロック。   A non-combustible heat insulating material (4B) having a width (X4) is divided into two non-combustible heat insulating material pieces (4B ′) having a half width (X2), and the fitting grooves are arranged on the symmetrical inner surface (4D) of both heat insulating material pieces (4B ′). A non-combustible support block in which a Z-strip (1) wound with a gap following sheet (12A) is fitted to (H2, H2 ′, H3), and a symmetrical inner surface (4D) is bonded and integrated. 隙間追従シート(12A)は、不燃断熱材片(4B´)の端面位置(LF−LF)より若干(d12)入り込んだ位置で巻き付けて不燃断熱材片(4B´)を一体化し、不燃断熱材(4B)の端面(4F)から隙間追従シート(12A)に到る空隙に耐火シーリング(13)を充填した請求項の不燃支持ブロック。 The gap following sheet (12A) is wound at a position slightly (d12) from the end face position (LF-LF) of the non-combustible heat insulating material piece (4B ') to integrate the non-combustible heat insulating material piece (4B'). The nonflammable support block according to claim 5 , wherein a fireproof sealing (13) is filled in a gap from the end face (4F) of (4B) to the gap following sheet (12A).
JP2007031738A 2007-02-13 2007-02-13 Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner. Active JP4375806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007031738A JP4375806B2 (en) 2007-02-13 2007-02-13 Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007031738A JP4375806B2 (en) 2007-02-13 2007-02-13 Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner.

Publications (2)

Publication Number Publication Date
JP2008196188A JP2008196188A (en) 2008-08-28
JP4375806B2 true JP4375806B2 (en) 2009-12-02

Family

ID=39755381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007031738A Active JP4375806B2 (en) 2007-02-13 2007-02-13 Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner.

Country Status (1)

Country Link
JP (1) JP4375806B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462802B1 (en) * 2013-07-26 2014-11-21 청원화학 주식회사 Unit insulation product for blocking thermal bridge
KR101706731B1 (en) * 2015-06-02 2017-03-07 청원화학 주식회사 Thermal break device and slab-wall connection structure using the same
PL70919Y1 (en) * 2017-07-31 2019-08-30 Pekabex Bet Spolka Akcyjna Precast balcony fastener

Also Published As

Publication number Publication date
JP2008196188A (en) 2008-08-28

Similar Documents

Publication Publication Date Title
USRE49073E1 (en) Foam wall structure
JP5166992B2 (en) Fireproof coating structure
JP3775671B2 (en) Balcony in reinforced concrete exterior insulation building
JP4375806B2 (en) Non-combustible thermal insulation block for supporting concrete structures protruding from the concrete outer wall in a cantilevered manner.
JP4341977B2 (en) Outer wall structure in which balcony is projected with cantilever support, method for constructing outer wall, and non-combustible heat insulating block to be used
JP4100475B2 (en) Precast balcony structure and reinforced concrete exterior heat insulation wall structure with balcony
JP5285332B2 (en) building
CN209817737U (en) Assembly type bay window and structure system thereof
JP6691746B2 (en) Building outer wall structure
JP4375808B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and method for constructing exterior wall
JP4480179B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and method for constructing exterior wall
JP4337985B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and insulation support panel used
JP4337984B2 (en) Exterior wall structure with sleeve wall of cantilever support type, method for constructing the exterior wall, and wall Z-stripe panel
JP4375809B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and method for constructing exterior wall
JP4229465B2 (en) Outer wall structure with sleeve wall of cantilever support type, and method for constructing the outer wall
JP4079966B2 (en) Cantilevered balcony in reinforced concrete exterior insulation building and method for constructing cantilevered balcony
JP4056072B2 (en) Cantilevered balcony in reinforced concrete exterior insulation building, and cantilever balcony construction method
JP4282085B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and insulation support panel used
JP4257923B2 (en) Exterior wall structure of reinforced concrete exterior heat insulation building and method for constructing exterior wall
JP4381421B2 (en) Outer wall structure in which balcony is projected with cantilever support, method for constructing outer wall, and non-combustible heat insulating block to be used
JP2002180575A (en) Exterior wall structure, heat insulating material and building
JP7162509B2 (en) wall structure
JP2008150853A (en) Outer wall structuring method allowing balcony to project with cantilever support, construction method of the outer wall, and nonflammable heat insulating block to be used
JPH0538170Y2 (en)
KR20040093587A (en) The open joint outer wall panel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090907

R150 Certificate of patent or registration of utility model

Ref document number: 4375806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250