JP4372482B2 - Method for producing amide compound - Google Patents

Method for producing amide compound Download PDF

Info

Publication number
JP4372482B2
JP4372482B2 JP2003289564A JP2003289564A JP4372482B2 JP 4372482 B2 JP4372482 B2 JP 4372482B2 JP 2003289564 A JP2003289564 A JP 2003289564A JP 2003289564 A JP2003289564 A JP 2003289564A JP 4372482 B2 JP4372482 B2 JP 4372482B2
Authority
JP
Japan
Prior art keywords
reaction
hydroxyl group
carboxylic acid
containing organic
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003289564A
Other languages
Japanese (ja)
Other versions
JP2005060256A (en
Inventor
邦夫 新井
利之 野中
宗宏 内田
秀雄 服部
聖彦 田嶋
満 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Research Institute Inc
Toyota Motor Corp
Original Assignee
Genesis Research Institute Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Research Institute Inc, Toyota Motor Corp filed Critical Genesis Research Institute Inc
Priority to JP2003289564A priority Critical patent/JP4372482B2/en
Publication of JP2005060256A publication Critical patent/JP2005060256A/en
Application granted granted Critical
Publication of JP4372482B2 publication Critical patent/JP4372482B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、亜臨界または超臨界状態の水を反応溶媒として、水酸基含有有機化合物とカルボン酸アンモニウム塩とからアミド化合物を生成するアミド化合物およびアミノ化合物の製造方法に関する。   The present invention relates to an amide compound and a method for producing an amino compound, which form an amide compound from a hydroxyl group-containing organic compound and a carboxylic acid ammonium salt using subcritical or supercritical water as a reaction solvent.

近年、超臨界水を反応溶媒として用いることにより、重金属等の有害な触媒を用いることなく、様々な有機合成反応を進行させうるグリーンケミストリープロセスが注目されている。このグリーンケミストリープロセスは、化学合成において有害な触媒や溶媒を可能な限り使わず、また環境汚染となる副生物や廃棄物を減らすプロセスである。   In recent years, a green chemistry process has been attracting attention, in which supercritical water is used as a reaction solvent, and various organic synthesis reactions can proceed without using harmful catalysts such as heavy metals. This green chemistry process is a process that uses no harmful catalysts and solvents as much as possible in chemical synthesis and reduces by-products and waste that cause environmental pollution.

水は、地球に存在する唯一の溶媒であり、特に超臨界水(臨界温度Tc=374℃、臨界圧力Pc=22.1MPa)は溶媒機能を温度圧力により容易に制御することができるため、この超臨界水を利用した新しい環境調和型の化学反応プロセスの開発が注目を集めている。   Since water is the only solvent existing on the earth, especially supercritical water (critical temperature Tc = 374 ° C., critical pressure Pc = 22.1 MPa) can easily control the solvent function by temperature and pressure. The development of a new environmentally conscious chemical reaction process using supercritical water has attracted attention.

また、超臨界水は誘電率が2〜10程度と、極性有機溶媒程度であることから有機物とも相溶し、また水分子自体が酸や塩基触媒として機能するため、有機溶媒に替わる新たな溶媒として期待されている。   In addition, since supercritical water has a dielectric constant of about 2 to 10 and is a polar organic solvent, it is compatible with organic substances, and the water molecule itself functions as an acid or base catalyst. As expected.

一方、近年、表1に示すように、キチン・キトサンあるいはヒアルロン酸のような天然素材の数多くの特性が報告されている。   On the other hand, in recent years, as shown in Table 1, many properties of natural materials such as chitin / chitosan or hyaluronic acid have been reported.

Figure 0004372482
Figure 0004372482

しかしながら、現状においては、上記キチンは甲殻類(主にカニ殻)から無機塩を除去し、さらに炭酸カルシウムを除去し、またタンパク質を除去して、更には色素を除去するという複数の工程を経なければ得られない。さらに、キトサンは、上記キチンの脱アセチル化処理を経なければ回収できない。   However, at present, the chitin is subjected to a plurality of steps of removing inorganic salts from crustaceans (mainly crab shells), further removing calcium carbonate, removing proteins, and further removing pigments. You can't get it without it. Furthermore, chitosan cannot be recovered unless the chitin is deacetylated.

そこで、キチン・キトサン等の合成の出発原料として、バイオマスから回収されるセルロースを用い、このセルロースの第1級および第2級水酸基をアミド基またはアミノ基に変換することができれば、アミド化またはアミノ化を一工程で製造できることが期待されている。   Therefore, if cellulose recovered from biomass is used as a starting material for the synthesis of chitin, chitosan, etc., and primary and secondary hydroxyl groups of cellulose can be converted into amide groups or amino groups, amidation or amino acids can be obtained. It is expected that the process can be manufactured in one step.

しかしながら、現在、第1級および第2級水酸基を一反応工程でアミド基に変換し、アミド化合物を製造する方法は全く知られていない。   However, there is currently no known method for producing amide compounds by converting primary and secondary hydroxyl groups into amide groups in one reaction step.

更に、近年、アンモニアによるアルコール類のアミノ化が各種検討されているが、いずれも金属塩化合物などの触媒を必要としており、グリーンケミストリープロセスとはなっていない。   Furthermore, in recent years, various studies have been made on the amination of alcohols with ammonia, but all of them require a catalyst such as a metal salt compound and are not a green chemistry process.

本発明は、上記課題に鑑みなされたものであり、有害な触媒や溶媒を用いることなく、また不要な副生成物の生成を抑え、水酸基含有有機化合物とカルボン酸アンモニウム塩とから一工程でアミド化合物およびアミノ化合物を製造することができるアミド化合物の製造方法およびアミノ化合物生成方法を提供することを目的とする。   The present invention has been made in view of the above problems, and without using a harmful catalyst or solvent, suppresses the generation of unnecessary by-products, and amides in one step from a hydroxyl group-containing organic compound and a carboxylic acid ammonium salt. It aims at providing the manufacturing method of an amide compound which can manufacture a compound, and an amino compound, and an amino compound production | generation method.

上記目的を達成するために、本発明のアミド化合物の製造方法は、以下の特徴を有する。   In order to achieve the above object, the method for producing an amide compound of the present invention has the following characteristics.

(1)亜臨界または超臨界状態の水を反応溶媒とし、1−ヘキサノールからなる第1級鎖式アルコール及びベンジルアルコールからなる芳香族アルコールからなる群から選択される水酸基含有有機化合物を酢酸アンモニウムからなるカルボン酸アンモニウム塩と共存させ、更に、前記水酸基含有有機化合物に対するカルボン酸アンモニウム塩の添加比率と前記亜臨界または超臨界状態の水の密度とを相互に制御することにより、前記水酸基含有有機化合物とカルボン酸アンモニウム塩とを反応させ、アミド化合物を生成させるアミド化合物の製造方法である。 (1) A hydroxyl group-containing organic compound selected from the group consisting of a primary chain alcohol consisting of 1-hexanol and an aromatic alcohol consisting of benzyl alcohol from water in a subcritical or supercritical state as a reaction solvent from ammonium acetate made coexist with a carboxylic acid ammonium salt, by controlling the density of the addition ratio between the subcritical water or the supercritical state of the carboxylic acid ammonium salt relative to the hydroxyl group-containing organic compounds to each other, the hydroxyl group-containing organic compounds It is a method for producing an amide compound in which an amide compound is produced by reacting a carboxylic acid ammonium salt.

有害な触媒や溶媒を使用することなく、アセトアミド化剤としてアセトアミド化剤の一種のアミド類に比べて安価なカルボン酸アンモニウム塩を用いることにより、、水酸基含有有機化合物に対する添加比率を少なくすることができるとともに、短時間で高収率のアミド化合物を一工程で生成させることができる。   By using an inexpensive carboxylic acid ammonium salt as an amidamide agent as an acetamide agent without using a harmful catalyst or solvent, the addition ratio to the hydroxyl group-containing organic compound can be reduced. In addition, a high yield amide compound can be produced in a single step in a short time.

本発明によれば、亜臨界または超臨界状態の水を反応溶媒とし、水酸基含有有機化合物に対するカルボン酸アンモニウム塩の添加比率と前記亜臨界または超臨界状態の水の密度とを相互に制御することにより、一工程でかつ有害な触媒や溶媒を用いることなく、水酸基含有有機化合物とカルボン酸アンモニウム塩との反応を生起させ、アセトアミド化剤の一種のアミド類に比べ、短時間で高収率のアミド化合物またはアミノ化合物を得ることができ、環境に調和した製造方法を提供することができる。   According to the present invention, subcritical or supercritical water is used as a reaction solvent, and the addition ratio of the carboxylic acid ammonium salt to the hydroxyl group-containing organic compound and the subcritical or supercritical water density are mutually controlled. Can cause a reaction between a hydroxyl group-containing organic compound and a carboxylic acid ammonium salt in one step and without using a harmful catalyst or solvent. An amide compound or an amino compound can be obtained, and a production method in harmony with the environment can be provided.

上記アミド化合物を加水分解することでアミノ化合物を容易に得ることができる。特に、芳香族アルコール類からの芳香族アミノ化合物の生成は、アミド化と加水分解によるアミン化合物への誘導を一工程で行えるため、著しく反応工程を短縮することができる。   An amino compound can be easily obtained by hydrolyzing the amide compound. In particular, the production of an aromatic amino compound from aromatic alcohols can lead to an amine compound by amidation and hydrolysis in one step, so that the reaction step can be significantly shortened.

以下、本発明の実施形態について、図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明に係るアミド化合物の製造方法に利用される反応装置の概略構造を示す図である。流動砂浴20は、ヒータ22によって加熱される。流動砂浴20内の温度は、熱電対10の一方によって計測され、この計測結果によってヒータ22が制御されることで、流動砂浴20内の温度が所定の温度に維持される。   FIG. 1 is a diagram showing a schematic structure of a reaction apparatus used in the method for producing an amide compound according to the present invention. The fluid sand bath 20 is heated by a heater 22. The temperature in the fluid sand bath 20 is measured by one of the thermocouples 10, and the heater 22 is controlled by the measurement result, whereby the temperature in the fluid sand bath 20 is maintained at a predetermined temperature.

一方、水酸基含有有機化合物とカルボン酸アンモニウム塩と蒸留水とが、予め反応管であるSUS316製回分式反応器30に所定量仕込まれ、仕込んだ後、例えば1MPa〜3MPa程度の圧力のアルゴンガスなどの不活性ガスにより系内空気を置換しておく。そして、予め反応温度に設定した流動砂浴20に回分式反応器30を投入して反応を開始させる。ここで、回分式反応器30内の反応温度は熱電対10の他方により測定される。回分式反応器30では、加熱水と水酸基含有有機化合物とカルボン酸アンモニウム塩とが混合され、さらに回分式反応器30を所定の温度と圧力に制御して、回分式反応器30内において水を超臨界または亜臨界状態に維持する。従って、この回分式反応器30内において、超臨界または亜臨界状態の水を反応溶媒として、水酸基含有有機化合物とカルボン酸アンモニウム塩との間の反応が生起される。所定時間経過後、回分式反応器30を冷水浴に浸すことにより急冷して反応を停止させる。なお、反応時間は、流動砂浴20に回分式反応器30を投入した時点から冷水浴に投入した時点までとする。なお、本実施の形態では、回分式反応器を用いたが、これに限るものではなく、連続式の反応器を用いて本発明の製造方法を同様に行うことができる。   On the other hand, a hydroxyl group-containing organic compound, a carboxylic acid ammonium salt, and distilled water are charged in advance into a batch reactor 30 made of SUS316, which is a reaction tube, and after charging, for example, argon gas having a pressure of about 1 MPa to 3 MPa. The air in the system is replaced with an inert gas. And the batch type reactor 30 is thrown into the fluidized sand bath 20 previously set to reaction temperature, and reaction is started. Here, the reaction temperature in the batch reactor 30 is measured by the other of the thermocouples 10. In the batch reactor 30, heated water, a hydroxyl group-containing organic compound, and a carboxylic acid ammonium salt are mixed, and the batch reactor 30 is further controlled to a predetermined temperature and pressure so that water is fed into the batch reactor 30. Maintain a supercritical or subcritical state. Accordingly, in the batch reactor 30, a reaction between the hydroxyl group-containing organic compound and the carboxylic acid ammonium salt is caused by using supercritical or subcritical water as a reaction solvent. After a predetermined time has elapsed, the batch reactor 30 is quenched by immersing it in a cold water bath to stop the reaction. The reaction time is from the time when the batch reactor 30 is charged into the fluidized sand bath 20 to the time when it is charged into the cold water bath. In this embodiment, a batch reactor is used. However, the present invention is not limited to this, and the production method of the present invention can be similarly performed using a continuous reactor.

例えば、反応温度200〜450℃、反応圧力20〜50MPa、反応時間5〜60分などという反応条件を設定することができる。   For example, reaction conditions such as a reaction temperature of 200 to 450 ° C., a reaction pressure of 20 to 50 MPa, and a reaction time of 5 to 60 minutes can be set.

また、本発明では、亜臨界または超臨界状態の水を反応溶媒として用いる。   In the present invention, subcritical or supercritical water is used as a reaction solvent.

本発明における水酸基含有有機化合物は、第1級または第2級または第3級の脂肪族鎖式アルコール(例えば、炭素数5以下の直鎖または分岐の低級アルコール、炭素数6以上の直鎖または分岐の高級アルコール)、脂環式アルコール(例えば、シクロアルコール)、芳香族アルコール(例えば、フェノール類およびベンジルアルコール)、糖類(例えば、セルロースなどの多糖類やD−グルコピラノース等の単糖類)の群から選択される少なくとも1種の化合物である。   The hydroxyl group-containing organic compound in the present invention is a primary, secondary or tertiary aliphatic chain alcohol (for example, a linear or branched lower alcohol having 5 or less carbon atoms, a straight chain having 6 or more carbon atoms or Branched higher alcohols), alicyclic alcohols (eg, cycloalcohols), aromatic alcohols (eg, phenols and benzyl alcohol), saccharides (eg, polysaccharides such as cellulose and monosaccharides such as D-glucopyranose). At least one compound selected from the group.

本発明におけるカルボン酸アンモニウム塩としては、例えば、酢酸アンモニウム、プロピオン酸アンモニウム、酪酸アンモニウム、吉草酸アンモニウムなどが挙げられる。   Examples of the carboxylic acid ammonium salt in the present invention include ammonium acetate, ammonium propionate, ammonium butyrate, and ammonium valerate.

本発明の反応においては、反応系に別途有機酸または無機酸を添加しても良い。   In the reaction of the present invention, an organic acid or an inorganic acid may be separately added to the reaction system.

本発明のアミド化合物の合成経路を以下に詳説する。水酸基含有有機化合物とカルボン酸アンモニウム塩とが異なる物質の場合の反応は、以下の化1の通りである。   The synthesis route of the amide compound of the present invention is described in detail below. The reaction in the case where the hydroxyl group-containing organic compound and the carboxylic acid ammonium salt are different from each other is as follows.

Figure 0004372482
Figure 0004372482

[水酸基含有有機化合物とカルボン酸アンモニウム塩との反応]
上記水酸基含有有機化合物とカルボン酸アンモニウム塩との反応について、以下に例示しながら詳説する。
[Reaction of hydroxyl group-containing organic compound with ammonium carboxylate]
The reaction between the hydroxyl group-containing organic compound and the carboxylic acid ammonium salt will be described in detail with reference to the following examples.

図2には、水酸基含有有機化合物として1−ヘキサノールを、カルボン酸アンモニウム塩として酢酸アンモニウムを用い、さらに亜臨界または超臨界状態の水を反応溶媒として、アミド化合物であるN−ヘキシルアセトアミドを生成する反応が示されている。   In FIG. 2, 1-hexanol is used as the hydroxyl group-containing organic compound, ammonium acetate is used as the carboxylic acid ammonium salt, and N-hexylacetamide, which is an amide compound, is produced using subcritical or supercritical water as a reaction solvent. The reaction is shown.

本発明においては、水酸基含有有機化合物に対するカルボン酸アンモニウム塩の添加比率と前記亜臨界または超臨界状態の水の密度とを相互に制御することが好ましい。   In the present invention, it is preferable to mutually control the addition ratio of the carboxylic acid ammonium salt to the hydroxyl group-containing organic compound and the density of the water in the subcritical or supercritical state.

水酸基含有有機化合物対カルボン酸アンモニウム塩のモル比は、1:5〜1:95が好ましく、より好ましくは1:10〜1:60、更に好ましくは1:15〜1:50である。この範囲のモル比に制御することによって、アミド化合物およびアミノ化合物をより短時間に高収率で得ることができる。   The molar ratio of the hydroxyl group-containing organic compound to the carboxylic acid ammonium salt is preferably 1: 5 to 1:95, more preferably 1:10 to 1:60, and still more preferably 1:15 to 1:50. By controlling the molar ratio within this range, the amide compound and amino compound can be obtained in a high yield in a shorter time.

また、亜臨界または超臨界状態の仕込み水密度は、好ましくは0.1〜0.8g/ml、より好ましくは0.2〜0.6g/ml、更に好ましくは0.3〜0.5g/mlである。この範囲に密度を制御することによって、アミド化合物およびアミノ化合物をより短時間に高収率で得ることができる。   Further, the subcritical or supercritical charged water density is preferably 0.1 to 0.8 g / ml, more preferably 0.2 to 0.6 g / ml, still more preferably 0.3 to 0.5 g / ml. ml. By controlling the density within this range, the amide compound and amino compound can be obtained in a high yield in a shorter time.

更に、上記モル比と水密度を適宜選択して組み合わせることによって、更に短時間で高収率でアミド化合物およびアミノ化合物を得ることができる。   Furthermore, an amide compound and an amino compound can be obtained in a higher yield in a shorter time by appropriately selecting and combining the molar ratio and the water density.

実施例1〜3.
アンモニア無添加、反応温度400℃で水密度0.3g/ml、反応時間60分における第1級鎖式アルコールの1−ヘキサノールと酢酸アンモニウムとの反応において、酢酸アンモニウムの添加量(当量、eq)を変化させたときのN−ヘキシルアセトアミド(HexNHAc)の収率が示されている。
Examples 1-3.
Addition of ammonium acetate (equivalent, eq) in the reaction of primary chain alcohol 1-hexanol with ammonium acetate without addition of ammonia, reaction temperature of 400 ° C., water density of 0.3 g / ml, reaction time of 60 minutes The yield of N-hexylacetamide (HexNHAc) when changing is shown.

実施例4〜5.
アンモニア無添加、反応温度400℃で水密度0.5g/ml、反応時間15分、30分における第1級鎖式アルコールの1−ヘキサノールと酢酸アンモニウムとの反応において、酢酸アンモニウムの添加量を20当量としたときのN−ヘキシルアセトアミド(HexNHAc)の収率が示されている。
Examples 4-5.
In the reaction of 1-hexanol of primary chain alcohol and ammonium acetate at a reaction temperature of 400 ° C., water density of 0.5 g / ml, reaction time of 15 minutes, and 30 minutes, the amount of ammonium acetate added was 20 The yield of N-hexylacetamide (HexNHAc) when equivalent is shown.

実施例6.
アンモニア無添加、反応温度400℃で水密度0.3g/ml、反応時間10分における芳香族アルコールのベンジルアルコールと酢酸アンモニウムとの反応におけるN−ベンジルアセトアミドの収率が示されている。
Example 6
The yield of N-benzylacetamide in the reaction of the aromatic alcohol benzyl alcohol and ammonium acetate at a reaction temperature of 400 ° C. with a water density of 0.3 g / ml and a reaction time of 10 minutes is shown.

比較例1〜3.
アンモニア無添加、反応温度400℃で水密度0.3g/mlまたは0.5g/ml、反応時間60分における第1級鎖式アルコールの1−ヘキサノールとアセトアミド化剤としてアセトアミドとの反応において、1−ヘキサノールに対するアセトアミドの添加量(当量、eq)を変化させたときのN−ヘキシルアセトアミド(HexNHAc)の収率が示されている。
Comparative Examples 1-3.
In the reaction of 1-hexanol of a primary chain alcohol and acetamide as an acetamidating agent without addition of ammonia, reaction temperature of 400 ° C., water density of 0.3 g / ml or 0.5 g / ml, and reaction time of 60 minutes, 1 The yield of N-hexylacetamide (HexNHAc) when the amount of acetamide added to hexanol (equivalent, eq) is changed is shown.

ここで、収率の求め方は、以下の通りである。   Here, the method of obtaining the yield is as follows.

Figure 0004372482
Figure 0004372482

また、上記実施例1〜6および比較例1〜3についての生成物の分析および収率等の分析は、以下に示すガスクロマトグラフィー熱伝導度検出装置(GC−FID)および高速液体クロマトグラフィー(HPLC)により、それぞれ表2,3に示す条件で行った。   Moreover, the analysis of the product about said Examples 1-6 and Comparative Examples 1-3, and analysis, such as a yield, are the gas chromatography thermal conductivity detector (GC-FID) and high performance liquid chromatography which are shown below ( By HPLC) under the conditions shown in Tables 2 and 3, respectively.

Figure 0004372482
Figure 0004372482

Figure 0004372482
Figure 0004372482

上記実施例1〜6および比較例1〜3の結果を以下の表4に示す。   The results of Examples 1-6 and Comparative Examples 1-3 are shown in Table 4 below.

Figure 0004372482
Figure 0004372482

表4の実施例1と比較例1によれば、1−ヘキサノールに対するアセトアミド化剤をアセトアミドから酢酸アンモニウムに代え、水仕込み密度を制御することによって、収率が著しく向上することが明らかになった。   According to Example 1 and Comparative Example 1 in Table 4, it was revealed that the yield was remarkably improved by replacing the acetamidating agent for 1-hexanol with ammonium acetate from acetamide and controlling the water charge density. .

更に、表4の実施例1〜3によれば、アミド化剤を酢酸アンモニウムとすることにより、1−ヘキサノールに対する酢酸アンモニウムの添加量を最適化することによって、N−ヘキシルアセトアミドの収率がより向上することが判明した。一方、比較例2,3では、アミド化剤をアセトアミドとした場合、1−ヘキサノールに対するアセトアミドの添加量を変化させても、N−ヘキシルアセトアミドの収率は変化しなかった。   Furthermore, according to Examples 1 to 3 in Table 4, the yield of N-hexylacetamide is further improved by optimizing the amount of ammonium acetate added to 1-hexanol by using ammonium acetate as the amidating agent. It turned out to improve. On the other hand, in Comparative Examples 2 and 3, when the amidating agent was acetamide, the yield of N-hexylacetamide did not change even when the amount of acetamide added to 1-hexanol was changed.

表4の実施例4の結果を実施例3と比較することによって、仕込み水密度の最適化により(0.3g/mlから0.5g/mlに代えることにより)、反応時間の短縮化と収率の向上が達成されることが明らかである。   By comparing the results of Example 4 in Table 4 with Example 3, optimization of the feed water density (by changing from 0.3 g / ml to 0.5 g / ml) reduces the reaction time and yields. It is clear that a rate increase is achieved.

また、表4の実施例4と比較例2、実施例5と比較例1によれば、1−ヘキサノールに対するアセトアミド化剤をアセトアミドから酢酸アンモニウムに代え、仕込み水密度および1−ヘキサノールに対するアセトアミド化剤の添加量を制御することによって、短時間で同等程度の収率を得ることができることを見出した。特に、比較例1と実施例5の結果より、アミド化剤としてアセトアミドを酢酸アンモニウムに代えることによって、アミド化剤の添加量を40%に削減しても4倍の反応速度で同等程度の収率を達成できることが判明した。更に、実施例4,5に用いた酢酸アンモニウムは、比較例1,2に用いたアセトアミドに比べ、1−ヘキサノールに対する添加量を削減することができることが判明した。   In addition, according to Example 4 and Comparative Example 2 and Example 5 and Comparative Example 1 in Table 4, the acetamidating agent for 1-hexanol was changed from acetamide to ammonium acetate, the charged water density and the acetamidating agent for 1-hexanol were changed. It has been found that by controlling the amount of addition, it is possible to obtain a comparable yield in a short time. In particular, from the results of Comparative Example 1 and Example 5, by replacing acetamide with ammonium acetate as an amidating agent, even if the addition amount of the amidating agent is reduced to 40%, the yield is about the same at 4 times the reaction rate. It has been found that the rate can be achieved. Further, it was found that the ammonium acetate used in Examples 4 and 5 can reduce the amount of addition to 1-hexanol as compared with the acetamide used in Comparative Examples 1 and 2.

また、表4の実施例2と比較例3によれば、1−ヘキサノールに対するアセトアミド化剤をアセトアミドから酢酸アンモニウムに代えることによって、アセトアミド化剤の添加量が同等であり、その他の反応条件が同一であっても、N−ヘキシルアセトアミドなどアミド化合物を高収率で製造することができることが分かった。   Further, according to Example 2 and Comparative Example 3 in Table 4, the amount of the acetamidating agent added is the same and the other reaction conditions are the same by changing the acetamidating agent for 1-hexanol from acetamide to ammonium acetate. Even so, it has been found that amide compounds such as N-hexylacetamide can be produced in high yield.

一般に、アセトアミドに比べ、酢酸アンモニウムは安価である。したがって、アセトアミド化剤として、アセトアミドに比べ1−ヘキサノールに対する添加量を同等または削減可能な酢酸アンモニウムを用いることにより、N−ヘキシルアセトアミドなどアミド化合物の製造コストを低減することができる。更に、1−ヘキサノールに対するアセトアミド化剤をアセトアミドから酢酸アンモニウムに代えることにより、短時間で、N−ヘキシルアセトアミドなどアミド化合物を高収率で製造することができることが判明した。また、実施例6より、第1級アルコールの代わりに芳香族アルコールを用いた場合でも、酢酸アンモニウムにより、短時間で高収率のアミド化合物を得ることができることが判明した。   In general, ammonium acetate is less expensive than acetamide. Therefore, the production cost of amide compounds such as N-hexylacetamide can be reduced by using ammonium acetate as an acetamidating agent, which can be added to 1-hexanol as much or less than acetamide. Furthermore, it has been found that an amide compound such as N-hexylacetamide can be produced in a high yield in a short time by changing the acetamidating agent for 1-hexanol from acetamide to ammonium acetate. Further, from Example 6, it was found that a high yield of amide compound can be obtained in a short time with ammonium acetate even when an aromatic alcohol is used in place of the primary alcohol.

有害な触媒や溶媒を使用せずに、短い工程でアミド化合物またはアミノ化合物を生成させる用途に適用でき、更に、バイオマスから回収されるセルロースを用いて、セルロースの第1級および第2級水酸基をアミド化またはアミノ化して、アミド基またはアミノ基に変換させ、キチン・キトサン、ヒアルロン酸を製造することが可能である。   It can be applied to the use of producing amide compounds or amino compounds in a short process without using harmful catalysts and solvents. Furthermore, cellulose recovered from biomass can be used to form primary and secondary hydroxyl groups of cellulose. It is possible to produce chitin / chitosan and hyaluronic acid by amidation or amination and converting to an amide group or amino group.

実施形態の方法に利用する装置構成を示す図である。It is a figure which shows the apparatus structure utilized for the method of embodiment. 1−ヘキサノールと酢酸アンモニウム間の脱水反応の概要を示す図である。It is a figure which shows the outline | summary of the dehydration reaction between 1-hexanol and ammonium acetate.

符号の説明Explanation of symbols

10 熱電対、20 流動砂浴、22 ヒータ、30 回分式反応器。   10 thermocouples, 20 fluidized sand bath, 22 heaters, 30 batch reactors.

Claims (1)

亜臨界または超臨界状態の水を反応溶媒とし、1−ヘキサノールからなる第1級鎖式アルコール及びベンジルアルコールからなる芳香族アルコールからなる群から選択される水酸基含有有機化合物を酢酸アンモニウムからなるカルボン酸アンモニウム塩と共存させ、更に、前記水酸基含有有機化合物に対するカルボン酸アンモニウム塩の添加比率と前記亜臨界または超臨界状態の水の密度とを相互に制御することにより、前記水酸基含有有機化合物とカルボン酸アンモニウム塩とを反応させ、アミド化合物を生成させるアミド化合物の製造方法。 Carboxylic acid comprising ammonium acetate as a hydroxyl group-containing organic compound selected from the group consisting of primary alcohols consisting of 1-hexanol and aromatic alcohols consisting of benzyl alcohol, using subcritical or supercritical water as a reaction solvent coexist with ammonium salts, furthermore, by controlling the density of the addition ratio between the subcritical water or the supercritical state of the carboxylic acid ammonium salt relative to the hydroxyl group-containing organic compounds to each other, the hydroxyl group-containing organic compound and a carboxylic acid The manufacturing method of the amide compound which makes an ammonium salt react and produces | generates an amide compound.
JP2003289564A 2003-08-08 2003-08-08 Method for producing amide compound Expired - Lifetime JP4372482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003289564A JP4372482B2 (en) 2003-08-08 2003-08-08 Method for producing amide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003289564A JP4372482B2 (en) 2003-08-08 2003-08-08 Method for producing amide compound

Publications (2)

Publication Number Publication Date
JP2005060256A JP2005060256A (en) 2005-03-10
JP4372482B2 true JP4372482B2 (en) 2009-11-25

Family

ID=34367846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003289564A Expired - Lifetime JP4372482B2 (en) 2003-08-08 2003-08-08 Method for producing amide compound

Country Status (1)

Country Link
JP (1) JP4372482B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406301B2 (en) * 2004-02-13 2010-01-27 トヨタ自動車株式会社 Method for producing primary amine
JP5013509B2 (en) * 2006-07-28 2012-08-29 国立大学法人東北大学 Method for producing diamide compound and method for producing diamine compound
DE102006047617B4 (en) 2006-10-09 2008-11-27 Clariant International Limited Process for the preparation of basic (meth) acrylamides
DE102008017216B4 (en) 2008-04-04 2013-08-14 Clariant International Ltd. Continuous process for the preparation of fatty acid amides
DE102009031059A1 (en) 2009-06-30 2011-01-05 Clariant International Ltd. Apparatus for continuously carrying out chemical reactions at high temperatures
DE102009042522A1 (en) 2009-09-22 2011-04-07 Clariant International Ltd. Continuous transesterification process
DE102009042523B4 (en) 2009-09-22 2012-02-16 Clariant International Ltd. Apparatus and method for the continuous performance of heterogeneously catalyzed chemical reactions at high temperatures
DE102010056564A1 (en) 2010-12-30 2012-07-05 Clariant International Limited Hydroxyl groups and ester-bearing polymers and processes for their preparation
DE102010056565A1 (en) 2010-12-30 2012-07-05 Clariant International Ltd. Process for modifying hydroxyl-bearing polymers

Also Published As

Publication number Publication date
JP2005060256A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4372482B2 (en) Method for producing amide compound
Du et al. Highly efficient reduction of carbonyls, azides, and benzyl halides by NaBH 4 in water catalyzed by PANF-immobilized quaternary ammonium salts
KR950011110B1 (en) Method of manufacturing ferulic acid
KR101125853B1 (en) Process for preparing of n-methyl pyrrolidone
JP4276406B2 (en) Method for producing amide compound and amino compound
CN103998438A (en) Method for manufacturing compounds including nitrile functions
CN1772379A (en) Copper catalyst for vapor catalytic dehydrogenation of methyl isobutyl alcohol and its prepn process and application method
CN110606806A (en) Method for synthesizing primary amine under catalysis of nano ruthenium
CN103922931B (en) A kind of method of a step catalytically synthesizing glycol ether acetate
CN109942517A (en) A kind of method that metal hydroxide catalysis furfural transfer hydrogenation prepares furfuryl alcohol
CN110294724A (en) A kind of method that catalysis oxidation acetyl furan prepares 2- furyl glyoxalic acid
CN107417494B (en) Method for preparing fatty alcohol by in-situ hydrogenation of fatty acid
CN103626810A (en) Method for catalyzing glucose by using magnetic solid acid to produce methyl glucoside
CN103665062A (en) Method for producing alkyl glycoside by utilizing starch
CN101838211B (en) Processing method for producing intermediate 2-aminobutyric acid of levetiracetam
CN113979888A (en) Method for preparing N, N, N-trineovalerylated-1, 3, 5-triaminobenzene
CN108479769B (en) Method for preparing Pd nano-particles
CN102127117A (en) Method for preparing dichloro(1,5-cyclooctadiene)platinum(II)
TWI229065B (en) Chemical process for the preparation of 4-methyl-2,3,5,6-tetrafluorobenzyl alcohol
CN112679527B (en) Method for synthesizing 3-decarbamoyl-acetyl-cefuroxime acid compound
CN110577467A (en) Synthetic method of 3-hydroxypropionic acid
CN110590574B (en) Preparation method of organic intermediate N-ethyl-N-beta-hydroxypropyl m-toluidine
KR890001850B1 (en) Process for the preparation of benzidine compound
CN108516942A (en) A kind of preparation method of left-handed milnacipran hydrochloride
CN1030914A (en) The production method of 2-quinoxaline

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4372482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term