JP4372293B2 - Exhaust heat exchanger with integrated catalyst - Google Patents

Exhaust heat exchanger with integrated catalyst Download PDF

Info

Publication number
JP4372293B2
JP4372293B2 JP34714899A JP34714899A JP4372293B2 JP 4372293 B2 JP4372293 B2 JP 4372293B2 JP 34714899 A JP34714899 A JP 34714899A JP 34714899 A JP34714899 A JP 34714899A JP 4372293 B2 JP4372293 B2 JP 4372293B2
Authority
JP
Japan
Prior art keywords
heat exchanger
catalyst
type heat
inner cylinder
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34714899A
Other languages
Japanese (ja)
Other versions
JP2001164931A (en
Inventor
小野  純
久雄 萩原
秀孝 新長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP34714899A priority Critical patent/JP4372293B2/en
Publication of JP2001164931A publication Critical patent/JP2001164931A/en
Application granted granted Critical
Publication of JP4372293B2 publication Critical patent/JP4372293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form

Description

【0001】
【発明の属する技術分野】
本願の発明は、触媒一体型排気熱交換器に関し、特に内燃機関の排気系に使用される触媒を利用した排ガス浄化装置(触媒コンバーター)と排ガス熱回収用熱交換器とを一体化して、排気系のコンパクト化と、消音効果の向上、熱交換性能の向上等を図った触媒一体型排気熱交換器に関する。
【0002】
【従来技術】
従来、この種内燃機関における排気系は、図24に図示されるように構成されていた。
すなわち、図24において、内燃機関01から排出された排ガスは、先ず、排ガス浄化装置(触媒コンバーター)02に入り、ここで、排ガス中の有害成分が浄化されて、外部に排出される。
【0003】
次いで、浄化されて幾分温度の上昇した排ガスは、熱交換器03に入り、ここで、内燃機関01の冷却水と熱交換をして、その保有熱を冷却水に与え、自身は低温の排ガスとなって、外部に放出される。
【0004】
熱交換器03に入る内燃機関01の冷却水は、内燃機関01を出た後排熱回収用の熱交換器04において水道水等の冷水と熱交換をして熱を放出して十分に温度を下げられた冷却水であるので、浄化された幾分温度の上昇した排ガスを効果的に冷却することができる。冷却水は、ここでの熱交換により、やや温度が上昇するが、内燃機関01に還流されて、内燃機関01の各部を支障なく冷却する。
【0005】
熱交換器04において、内燃機関01を出た後の冷却水と熱交換をして温度の上昇した水道水は、温水となって、事業所用もしくは家庭用の給湯冷暖房等の各種の用途に向けられ、直接温水として、もしくは温水熱源として、使用される。
【0006】
従来の内燃機関01における排気系は、前記のように構成されているので、排ガス浄化装置02は、排ガス通路の上流側に配設され、該排ガス浄化装置02と熱交換器03とは、別体に形成されていた。このため、排気系の構成にスペースを要し、構造も複雑になっていた。
【0007】
そこで、本出願人は、従来のこの種内燃機関01における排気系が有する前記のような問題点を解決して、排気系をコンパクト化し、構造を簡単化して、製作コストを低減するとともに、消音効果の向上と熱交換性能の向上とを可能にする触媒一体型排気熱交換器を提案した(特開2000−257415号・特許第3891724号公報参照)
【0008】
【発明が解決しようとする課題】
本発明は、本出願人による特許第3891724号に係る発明をさらに改良して、軽量化と製作コストのさらなる低減、熱交換性能のさらなる向上とを可能にする触媒一体型排気熱交換器を提供することを課題とする。
【0009】
【課題を解決するための手段および効果】
本発明は、前記のような課題を解決した触媒一体型排気熱交換器に係り、その請求項1に記載された発明は、触媒中を流れて浄化された高温排ガスが水と熱交換をして、その排熱が回収されるようにされた触媒一体型排気熱交換器が、内筒と内胴と外胴とからなるシェルタイプ熱交換器部と、前記シェルタイプ熱交換器部の一端に一体に組み付けられたドーナツ状の多板タイプ熱交換器部とを備え、前記内筒は、前記シェルタイプ熱交換器部から突出して前記多板タイプ熱交換器部の内部空間にまで伸びて、その内部に前記触媒が収容され、前記シェルタイプ熱交換器部は、前記内筒の内部に収容された前記触媒中を流れて前記内筒と前記内胴との間に流入した前記排ガスと、前記外胴と前記内胴との間に流入した前記水とが、前記内胴を介して間接熱交換をするようにされ、前記多板タイプ熱交換器部は、前記シェルタイプ熱交換器部で熱交換をした前記排ガスと前記水を流入させて、該多板タイプ熱交換器部内で熱交換をさせるために、前記水が流れる空間と前記排ガスが流れる空間とを有することを特徴とする触媒一体型排気熱交換器である。
【0010】
請求項1に記載された発明は、前記のように構成されているので、排ガス浄化装置として機能する内筒内部の触媒収容部と排熱回収用熱交換器として機能する2つの熱交換器部とが一体化されて、触媒一体型排気熱交換器をコンパクトに、かつ、構造簡単に構成することができる。また、板状素材を用いる2つの熱交換器部は、大量生産に適するので、触媒一体型排気熱交換器の製作コストを大きく低減することができる。
【0011】
また、触媒収容部が熱交換器部に包囲されている上に、多板タイプ熱交換器部の採用により伝熱面積が増大するので、排ガスの保有熱および排ガスと触媒との反応熱が冷却水により十分に吸収されて、熱交換性能が大きく向上する。
【0012】
また、排ガスが発する騒音は、排ガスが比較的大容量のウォータージャケット構造のシェルタイプ熱交換器部と多室構造の多板タイプ熱交換器部とを通る過程において効果的に減衰されるので、消音効果が向上する。
【0013】
さらに、請求項1に係る発明では、シェルタイプ熱交換器部は、内筒の内部に収容された触媒中を流れて内筒と内胴との間に流入した排ガスと、外胴と内胴との間に流入した水とが、内胴を介して間接熱交換をするようにされるので、排ガスは、内筒と内胴との間の排ガス流路を取り巻く水室内の冷却水により効果的に冷却されて、熱交換性能がさらに向上する。
【0014】
また、請求項記載のように明を構成することにより、多板タイプ熱交換器部は、2枚の環状板からなる熱交換器素子が複数個積層されて構成され、該熱交換器素子は、2枚の環状板の各内周縁同志および各外周縁同志がそれぞれ接合されて、その内部に一方の熱交換媒体が流れる空間が形成され、隣接する2つの熱交換器素子間に他方の熱交換媒体が流れる空間が形成されるので、多板タイプ熱交換器部の構造がさらに簡単化されて、製作コストをさらに低減することができる。
【0015】
また、請求項記載のように明を構成することにより、熱交換器素子を構成する2枚の環状板の各々には、複数のディンプルが規則的に形成されて、熱交換器素子の内部空間および隣接する2つの熱交換器素子間の空間に、各熱交換媒体の乱流流路が形成される。
【0016】
この結果、排ガスと冷却水との熱交換性能がさらに大きく向上するとともに、ディンプルは、2枚の環状板間の間隔保持部材として機能させることができ、また、隣接する2つの熱交換器素子間の間隔保持部材として機能させることができるので、触媒一体型排気熱交換器の強度が向上する。
【0017】
さらに、請求項記載のように明を構成することにより、シェルタイプ熱交換器部と多板タイプ熱交換器部とは、それらの組付け部において各熱交換媒体が流体連通するようにされる。
【0018】
この結果、シェルタイプ熱交換器部と多板タイプ熱交換器部とは、最短流路で結ばれて、排ガスの保有熱の散逸が防がれるとともに、触媒一体型排気熱交換器をさらにコンパクトに構成することができる。
【0019】
【発明の実施の形態】
以下、図1ないし図23に図示される本発明の一実施形態について説明する。
図1は、本実施形態における触媒一体型排気熱交換器の縦断面図であって、図2のI−I線矢視縦断面図であるが、多板タイプ熱交換器部のみ外観視して示す図、図2は、図1の平面図、図3は、図2のIII−III線で切断した多板タイプ熱交換器部の部分縦断面図、図4は、図3の多板タイプ熱交換器部の1つの熱交換器素子のみを取り出して示す図、図5は、図2のV−V線で切断した多板タイプ熱交換器部の部分縦断面図、図6は、図5の多板タイプ熱交換器部の1つの熱交換器素子のみを取り出して示す図、図7は、図2のVII−VII線で切断した多板タイプ熱交換器部の縦断面図である。
【0020】
本実施形態における触媒一体型排気熱交換器は、自家発電用内燃機関等の内燃機関の排気系に使用され、従来の触媒を利用した排ガス浄化装置(触媒コンバーター)と排ガス熱回収用熱交換器とを一体化したものとして構成される。
【0021】
図1において、本実施形態における触媒一体型排気熱交換器1は、シェルタイプ熱交換器部2と、該シェルタイプ熱交換器部2の一端に一体に組み付けられたドーナツ状の多板タイプ熱交換器部7とを備えている。シェルタイプ熱交換器部2は、円筒状の内筒3の略下半部と、フランジ付き有底円筒状の内胴4と、同じくフランジ付き有底円筒状の外胴5とからなっている。外胴5の底部には、冷却水の供給管6が接続される接続口9が開口形成されている。
【0022】
内筒3は、シェルタイプ熱交換器部2から突出して多板タイプ熱交換器部7の内部空間にまで伸び、その内部が触媒8の収容室Cとされている。排ガスは、矢印A方向から流入して、触媒収容室C内を触媒8と接触しつつ貫流して、該触媒収容室Cを出た後に、内筒3と内胴4との間の室Dに流入し、供給管6を経て外胴5と内胴4との間の室Eに流入した冷却水と内胴4を介して間接熱交換を行なう。排ガスは、触媒8との化学反応により浄化される。
【0023】
排ガスと冷却水とは、次いで、多板タイプ熱交換器部7内で熱交換を行ない、排ガスは、低温となって、多板タイプ熱交換器部7の下部に連結された排気管10内を矢印B方向に流れ、外部に排出される。また、冷却水は、排ガスが保有する排熱を回収して幾分高温となって、多板タイプ熱交換器部7の上端部に一体に固着された取付板11に形成された配管接続口12に接続される図示されない冷却水排出管を経て、図示されない内燃機関に還流される。
【0024】
次に、多板タイプ熱交換器部7の詳細構造および排ガスと冷却水との熱交換の態様について、詳細に説明する。
多板タイプ熱交換器部7は、図1〜図6に図示されるように、2枚の環状板30、40からなる熱交換器素子20が複数個積層されて構成されている。
【0025】
環状板30には、図10〜図13に図示されるように、その内周部に平坦な内周縁部32、その外周部に平坦な外周縁部33、その中心に関して点対称の位置にガス入口部34、ガス出口部35がそれぞれ形成され、また、ガス入口部34、ガス出口部35にそれぞれ隣接して、同じく環状板30の中心に関して点対称の位置に水入口開口37、水出口開口38がそれぞれ形成されている。さらに、ガス入口部34と水出口開口38との対、ガス出口部35と水入口開口37との対を円周方向から囲むようにして、複数のディンプル36が半径方向に隔てられて2列に形成されている。
【0026】
これら内周縁部32、外周縁部33、ガス入口部34、ガス出口部35、複数のディンプル36は、環状板30の基体をなす環状基板31が、プレス加工により、図11〜図13において下方に深さaだけ凹入されることにより形成される。なお、ガス入口部34およびガス出口部35の底部には、円孔からなるガス入口開口34a 、ガス出口開口35a がそれぞれ打ち抜き形成されている。水入口開口37、水出口開口38は、プレス加工により、環状基板31が図11、図12において上方に打ち抜かれた後、その内周縁がわずかに上方に折曲されて形成され、その折曲部には、短い鍔部37a 、38a がそれぞれ形成されている。
【0027】
環状板40には、図14〜図17に図示されるように、その内周側に環状の内周溝49、その外周側に環状の外周溝50、その中心に関して点対称の位置に水入口部47、水出口部48がそれぞれ形成され、また、水入口部47、水出口部48にそれぞれ隣接して、同じく環状板40の中心に関して点対称の位置にガス入口開口44、ガス出口開口45がそれぞれ形成されている。また、水入口部47とガス出口開口45との対、水出口部48とガス入口開口44との対を円周方向から囲むようにして、複数のディンプル46が周方向に連ねられて1列に形成されている。水入口部47、水出口部48、ガス入口開口44、ガス出口開口45、ディンプル46は、内周溝49と外周溝50とに囲まれる領域に形成されている。
【0028】
内周溝49の内周側には、平坦な環状の内周縁部42が連なり、さらに、この内周縁部42には、短かい筒状のかしめ部51が折曲形成されて連なっている。また、外周溝50の外周側には、平坦な環状の外周縁部43が連なり、さらに、この外周縁部43には、短かい筒状のかしめ部52が折曲形成されて連なっている。
【0029】
これら水入口部47、水出口部48、複数のディンプル46、内周溝49、外周溝50は、環状板40の基体をなす環状基板41が、プレス加工により、図15〜図17において下方に深さbだけ凹入されることにより形成される。なお、水入口部47および水出口部48の底部には、円孔からなる水入口開口47a 、水出口開口48a がそれぞれ打ち抜き形成されている。
【0030】
ガス入口開口44、ガス出口開口45は、プレス加工により、環状基板41が図15、図16において上方に打ち抜かれた後、その内周縁がわずかに上方に折曲されて形成され、その折曲部には、短い鍔部44a 、45a がそれぞれ形成されている。かしめ部51、かしめ部52も、プレス加工により、環状基板41が図15、図16において上方に折曲されることにより形成される。
【0031】
以上のようにして形成される環状板30と環状板40とは、環状板30の内周縁部32、外周縁部33が環状板40の内周縁部42、外周縁部43とそれぞれ重なるようにして重ねられて、環状板40のかしめ部51、かしめ部52が環状板30の内周縁部32、外周縁部33を抱持するように折曲されて、全体が一体のものに組み付けられる。次いで、このようにして一体に組み付けられたものがロウ付けされて、熱交換器素子20が製作される(図4、図6参照)。
【0032】
図11に図示される環状板30と図15に図示される環状板40とが重ねられて製作された熱交換器素子20が、断面を同じくして、図4に図示されている。また、図12に図示される環状板30と図16に図示される環状板40とが重ねられて製作された熱交換器素子20が、断面を同じくして、図6に図示されている。
【0033】
最上段の熱交換器素子20の上部には、上部端板13が被冠されている。そして、この上部端板13と熱交換器素子20の環状板30との間に、排ガス小室15が形成されている(図3、図5参照)。環状板30の水出口開口38の鍔部38a は、上部端板13に形成された開口14を貫通して、取付板11の配管接続口12内に突出している。上部端板13の詳細が、図8および図9に図示されている。
【0034】
最下段の熱交換器素子20の下部には、環状板30が接合され、さらに、この最下段の環状板30に、下部端板60が被冠されている。最下段の環状板30と下部端板60との間には、水小室16が形成されている(図3、図5参照)。下部端板60には、図18および図19に詳細に図示されるように、下部端板60の中心に関して点対称の位置にガス入口開口61、ガス出口開口62がそれぞれ形成され、このガス出口開口62に隣接して、水入口開口63が形成されている。なお、最下段の環状板30は、省略されてもよい。
【0035】
環状板30のガス入口部34、ガス出口部35、環状板40のガス入口開口44、ガス出口開口45、下部端板60のガス入口開口61、ガス出口開口62は、それぞれ中心を一軸上に揃えて上下に連ねられている。また、環状板30の水入口開口37、水出口開口38、環状板40の水入口部47、水出口部48、下部端板60の水入口開口63は、それぞれ中心を一軸上に揃えて上下に連ねられている。
【0036】
多板タイプ熱交換器部7は、このようにして製作された熱交換器素子20が複数個積層され、さらに、その上部に上部端板13が被冠され、その下部に環状板30が接合され、この環状板30に下部端板60が被冠されて、全体が仮組付けされ、ロウ付けされることにより、一体に組み立てられる。
【0037】
熱交換器素子20を製作する過程における環状板30と環状板40とのロウ付け、多板タイプ熱交換器部7を完成する過程における隣接する熱交換器素子20、20、上部端板13、最下段の環状板30、下部端板60間のロウ付けは、環状板30と環状板40とを一体に組み付けて熱交換器素子20を仮組付けし、さらに、このようにして仮組付けされた複数の熱交換器素子20に上部端板13、最下段の環状板30、下部端板60を積層して全体を一体に仮組付けした後、全体をロウ浴に浸漬することにより、同時に行なわれる。
【0038】
このようにして完成された多板タイプ熱交換器部7においては、環状板30に形成されたディンプル36は、環状板40の基板平坦部に当接して、そこにロウ付けされ、環状板40に形成されたディンプル46、内周溝49および外周溝50は、隣接する熱交換器素子20における環状板30の基板平坦部に当接して、そこにロウ付けされる(図7参照)。
【0039】
このようにして完成された多板タイプ熱交換器部7において、下部端板60の水入口開口63から多板タイプ熱交換器部7内に流入した冷却水は、環状板30の水入口開口37を経て各熱交換器素子20の水室F内に流入し、円周方向左右に分かれて、各熱交換器素子20の軸心に関して対称の位置にある環状板30の水出口開口38の開口位置に集まり、この水出口開口38を経て器外に排出される(図3、図5参照)。
【0040】
他方、下部端板60のガス入口開口61から多板タイプ熱交換器部7内に流入した排ガスは、最下段の環状板30のガス入口部34、環状板40のガス入口開口44を経て隣接する熱交換器素子20、20間に形成される排ガス室G内に流入し、円周方向左右に分かれて、各熱交換器素子20の軸心に関して対称の位置にある環状板40のガス出口開口45の開口位置に集まり、このガス出口開口45、最下段の環状板30のガス出口部35、下部端板60のガス出口開口62を経て器外に排出される(図3、図5参照)。
【0041】
この間に、冷却水と排ガスとは、複数のディンプル36、46により攪拌されて乱流を伴いながら、熱交換器素子20内の流路および隣接する熱交換器素子20、20間の流路をそれぞれ流れて、環状板30および環状板40の各壁面を介して効果的な熱交換を行なう。
【0042】
下部端板60は、多板タイプ熱交換器部7を内筒3に対して位置決めして、これに取り付けるための部材としても機能するとともに、後述するように、シェルタイプ熱交換器部2を多板タイプ熱交換器部7に組み付ける際の組付け板としても機能している。
【0043】
次に、シェルタイプ熱交換器部2と多板タイプ熱交換器部7との組付け部の流体連通構造について、詳細に説明する。
シェルタイプ熱交換器部2は、前記のとおり、内筒3(その略下半部)と内胴4と外胴5とから構成されている。
【0044】
内胴4は、図20および図21に詳細に図示されるように、フランジ付き有底円筒状の容器形状を呈し、その開口部周縁のフランジ部4a は、その深さに対して、かなり幅広に形成されている。そして、この幅広のフランジ部4a には、内胴4の中心に関して点対称の位置に、ガス流入凹部70とガス出口開口71とが形成され、このガス出口開口71に隣接して、水入口開口72が形成されている。
【0045】
ここで、ガス流入凹部70、ガス出口開口71、水入口開口72の各形成位置は、下部端板60のガス入口開口61、ガス出口開口62、水入口開口63の各形成位置にそれぞれ符合している。したがって、室Dからガス流入凹部70に流入した排ガスは、ガス入口開口61を経て多板タイプ熱交換器部7の排ガス室G内に流入することができる。
【0046】
外胴5は、図22および図23に詳細に図示されるように、フランジ付き有底円筒状の容器形状を呈し、その開口部周縁のフランジ部は2段に形成されていて、上段フランジ部5a は、比較的幅狭で、その外径は、内胴4のフランジ部4a に等しくされている。また、下段フランジ部5b は、比較的幅広で、その円周方向の1個所は、略方形状に潰されて、そこに外部に開放された凹部73が形成されている。この個所は、内胴4のガス出口開口71の形成位置に符合している。
【0047】
凹部73の天井壁面73a は、フランジ部5a の壁面に連続していて、そこにガス出口開口74が形成されている。また、その内部壁面73b は、外胴5の筒体部の壁面に連続しており、その両側壁面73c 、73c は、上段フランジ部5a および下段フランジ部5b により形成される環状の段部空間Hを中断させている。凹部73は、排気管10の一端部をガス出口開口74、71、62に接続するための空間として利用される。
【0048】
外胴5の底部には、前記のとおり、冷却水の供給管6の接続口9が開口形成されており、冷却水は、ここから室E内に流入する。そして、次いで、段部空間Hに流入して、内胴4の水入口開口72、下部端板60の水入口開口63を経て多板タイプ熱交換器部7の水室F内に流入することができる。
【0049】
また、多板タイプ熱交換器部7の排ガス室G内に流入した排ガスは、下部端板60のガス出口開口62、内胴4のガス出口開口71、外胴5のガス出口開口74、排気管10を経て外部に放出することができる。下部端板60、内胴4のフランジ部4a 、外胴5の上段フランジ部5a が液密に一体に連結されることはいうまでもない。
【0050】
本実施形態における触媒一体型排気熱交換器1は、触媒8を除き、シェルタイプ熱交換器部2の各構成要素、多板タイプ熱交換器部7の各構成要素、取付板11、その他の接続配管類を一体に組み付けた後、その全体をロウ浴に浸漬することにより、各ロウ付け個所を同時にロウ付けして、一挙に触媒一体型排気熱交換器1の本体部を製作するようにすることができる。
【0051】
本実施形態は、前記のように構成されているので、次のような効果を奏することができる。
触媒8中を流れて浄化された高温排ガスが水と熱交換をして、その排熱が回収されるようにされた触媒一体型排気熱交換器1が、内筒3と内胴4と外胴5とからなるシェルタイプ熱交換器部2と、該シェルタイプ熱交換器部2の一端に一体に組み付けられたドーナツ状の多板タイプ熱交換器部7とを備え、内筒3は、シェルタイプ熱交換器部2から突出して多板タイプ熱交換器部7の内部空間にまで伸びて、その内部(触媒収容室C)に触媒8が収容されている。
【0052】
この結果、排ガス浄化装置として機能する内筒3内部の触媒収容部と排熱回収用熱交換器として機能する2つの熱交換器部2、7とが一体化されて、触媒一体型排気熱交換器1をコンパクトに、かつ、構造簡単に構成することができる。また、板状素材を用いる2つの熱交換器部2、7は、大量生産に適するので、触媒一体型排気熱交換器1の製作コストを大きく低減することができる。
【0053】
また、多板タイプ熱交換器部7は、2枚の環状板30、40からなる熱交換器素子20が複数個積層されて構成され、該熱交換器素子20は、2枚の環状板30、40の各内周縁同志および各外周縁同志がそれぞれ接合されて、その内部に一方の熱交換媒体である冷却水が流れる空間Fが形成され、隣接する2つの熱交換器素子20、20間に他方の熱交換媒体である排ガスが流れる空間Gが形成されるので、多板タイプ熱交換器部7の構造がさらに簡単化されて、触媒一体型排気熱交換器1の製作コストをさらに低減することができる。
【0054】
また、触媒収容部(触媒収容室C)が熱交換器部2、7に包囲されている上に、多板タイプ熱交換器部7の採用により伝熱面積が増大しているので、排ガスの保有熱および排ガスと触媒8との反応熱が冷却水により十分に吸収されて、熱交換性能が大きく向上する。
【0055】
さらに、シェルタイプ熱交換器部2は、内筒3の内部に収容された触媒8中を流れて内筒3と内胴4との間の室Dに流入した排ガスと、外胴5と内胴4との間の室Eに流入した水とが、内胴4を介して間接熱交換をするようにされているので、排ガスは、内筒3と内胴4との間の排ガス流路(室D)を取り巻く水室(室E)内の冷却水により効果的に冷却されて、熱交換性能がさらに向上する。
【0056】
また、熱交換器素子20を構成する2枚の環状板30、40の各々には、複数のディンプル36、46が規則的に形成されて、熱交換器素子20の内部空間Fおよび隣接する2つの熱交換器素子間の空間Gに、各熱交換媒体の乱流流路が形成されるので、排ガスと冷却水との熱交換性能がさらに大きく向上するとともに、ディンプル36は、2枚の環状板30、40間の間隔保持部材として機能させることができ、また、ディンプル46は、隣接する2つの熱交換器素子20、20間の間隔保持部材として機能させることができるので、触媒一体型排気熱交換器1の強度が向上する。
【0057】
また、排ガスが発する騒音は、排ガスが比較的大容量のウォータージャケット構造のシェルタイプ熱交換器部2と多室構造の多板タイプ熱交換器部7とを通る過程において効果的に減衰されるので、消音効果が向上する。
【0058】
さらに、シェルタイプ熱交換器部2と多板タイプ熱交換器部7とは、それらの組付け部において各熱交換媒体が流体連通するようにされているので、シェルタイプ熱交換器部2と多板タイプ熱交換器部7とは、最短流路で結ばれて、排ガスの保有熱の散逸が防がれるとともに、触媒一体型排気熱交換器1をさらにコンパクトに構成することができる。しかも、この流体連通構造は、プレス加工により、内胴4のフランジ部4a にガス流入凹部70、外胴5に上段フランジ部5a と下段フランジ部5b 、この下段フランジ部5b に凹部73等を形成することにより、容易に構成することができる。
【図面の簡単な説明】
【図1】 本発明の一実施形態における触媒一体型排気熱交換器の縦断面図であって、多板タイプ熱交換器部のみ外観視して示す図である。
【図2】図1の平面図である。
【図3】図2のIII−III線で切断した多板タイプ熱交換器部の部分縦断面図である。
【図4】図3の多板タイプ熱交換器部の1つの熱交換器素子のみを取り出して示す図である。
【図5】図2のV−V線で切断した多板タイプ熱交換器部の部分縦断面図である。
【図6】図5の多板タイプ熱交換器部の1つの熱交換器素子のみを取り出して示す図である。
【図7】図2のVII−VII線で切断した多板タイプ熱交換器部の縦断面図である。
【図8】上部端板の平面図である。
【図9】図8のIX−IX線矢視断面図である。
【図10】環状板の平面図である。
【図11】図10のXI−XI線矢視断面図である。
【図12】図10のXII−XII線矢視断面図である。
【図13】図10のXIII−XIII線矢視断面図である。
【図14】図10の環状板と対をなす他の環状板の平面図である。
【図15】図14のXV−XV線矢視断面図である。
【図16】図14のXVI−XVI線矢視断面図である。
【図17】図14のXVII−XVII線矢視断面図である。
【図18】下部端板の平面図である。
【図19】図18のXIX−XIX線矢視断面図である。
【図20】内胴の縦断面図である。
【図21】同平面図である。
【図22】外胴の縦断面図である。
【図23】同平面図である。
【図24】従来例を示す図である。
【符号の説明】
1…触媒一体型排気熱交換器、2…シェルタイプ熱交換器部、3…内筒、4…内胴、4a …フランジ部、5…外胴、5a …上段フランジ部、5b …下段フランジ部、6…冷却水供給管、7…多板タイプ熱交換器部、8…触媒、9…配管接続口、10…排気管、11…取付板、12…配管接続口、13…上部端板、14…開口、15…排ガス小室、16…水小室、20…熱交換器素子、30…環状板、31…環状基板、32…内周縁部、33…外周縁部、34…ガス入口部、34a …ガス入口開口、35…ガス出口部、35a …ガス出口開口、36…ディンプル、37…水入口開口、37a …鍔部、38…水出口開口、38a …鍔部、40…環状板、41…環状基板、42…内周縁部、43…外周縁部、44…ガス入口開口、44a …鍔部、45…ガス出口開口、45a …鍔部、46…ディンプル、47…水入口部、47a …水入口開口、48…水出口部、48a …水出口開口、49…内周溝、50…外周溝、51…かしめ部、52…かしめ部、60…下部端板、61…ガス入口開口、62…ガス出口開口、63…水入口開口、70…ガス流入凹部、71…ガス出口開口、72…水入口開口、73…凹部、73a …天井壁面、73b …内部壁面、73c …側壁面、74…ガス出口開口、C…触媒収容室、D…排ガス室、E…冷却水室、F…冷却水室、G…排ガス室、H…環状段部空間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a catalyst-integrated exhaust heat exchanger, and in particular, an exhaust gas purifying device (catalytic converter) using a catalyst used in an exhaust system of an internal combustion engine and an exhaust gas heat recovery heat exchanger are integrated into an exhaust gas. The present invention relates to a catalyst-integrated exhaust heat exchanger that is compact in size, improved in silencing effect, and improved in heat exchange performance.
[0002]
[Prior art]
Conventionally, the exhaust system in this type of internal combustion engine has been configured as shown in FIG.
That is, in FIG. 24, the exhaust gas discharged from the internal combustion engine 01 first enters the exhaust gas purification device (catalytic converter) 02, where harmful components in the exhaust gas are purified and discharged to the outside.
[0003]
Next, the exhaust gas, which has been purified and the temperature has risen somewhat, enters the heat exchanger 03, where it exchanges heat with the cooling water of the internal combustion engine 01 to give the retained heat to the cooling water, which itself has a low temperature. It becomes exhaust gas and is released to the outside.
[0004]
The cooling water of the internal combustion engine 01 that enters the heat exchanger 03 is sufficiently heated to release heat by exchanging heat with cold water such as tap water in the heat exchanger 04 for exhaust heat recovery after leaving the internal combustion engine 01. Therefore, the purified exhaust gas having a somewhat elevated temperature can be effectively cooled. Although the temperature of the cooling water slightly rises due to the heat exchange here, it is returned to the internal combustion engine 01 to cool each part of the internal combustion engine 01 without any trouble.
[0005]
In the heat exchanger 04, the tap water whose temperature has been increased by exchanging heat with the cooling water after leaving the internal combustion engine 01 becomes hot water, and is used for various purposes such as water heating / cooling / heating for offices or home use. It is used directly as hot water or as a hot water heat source.
[0006]
Since the exhaust system in the conventional internal combustion engine 01 is configured as described above, the exhaust gas purification device 02 is disposed on the upstream side of the exhaust gas passage, and the exhaust gas purification device 02 and the heat exchanger 03 are different from each other. It was formed on the body. For this reason, a space is required for the configuration of the exhaust system, and the structure is complicated.
[0007]
Therefore, the present applicant has solved the above-mentioned problems of the exhaust system in the conventional internal combustion engine 01, and has made the exhaust system compact, simplified the structure, reduced the manufacturing cost, and silenced. A catalyst-integrated exhaust heat exchanger that improves efficiency and improves heat exchange performance Proposed (see Japanese Patent Laid-Open No. 2000-257415, Japanese Patent No. 389724) .
[0008]
[Problems to be solved by the invention]
Main departure Ming is by the applicant According to Japanese Patent No. 3899724 It is an object of the present invention to provide a catalyst-integrated exhaust heat exchanger that further improves the invention and enables weight reduction, further reduction in manufacturing cost, and further improvement in heat exchange performance.
[0009]
[Means for solving the problems and effects]
Main departure The present invention relates to a catalyst-integrated exhaust heat exchanger that solves the above-described problems, and the invention described in claim 1 is directed to the heat exchange between the high-temperature exhaust gas purified by flowing through the catalyst with water. The catalyst-integrated exhaust heat exchanger configured to recover the exhaust heat is provided with a shell type heat exchanger unit including an inner cylinder, an inner cylinder and an outer cylinder, and one end of the shell type heat exchanger unit. A donut-shaped multi-plate type heat exchanger unit assembled integrally, and the inner cylinder protrudes from the shell type heat exchanger unit and extends to the internal space of the multi-plate type heat exchanger unit, The catalyst is housed inside, The shell-type heat exchanger section includes the exhaust gas flowing between the inner cylinder and the inner cylinder through the catalyst housed in the inner cylinder, the outer cylinder, and the inner cylinder. The water that has flowed in between is indirectly exchanged heat through the inner cylinder, and the multi-plate type heat exchanger section is exchanged with the exhaust gas that has exchanged heat with the shell type heat exchanger section. In order to allow water to flow in and to perform heat exchange in the multi-plate type heat exchanger section, it has a space through which the water flows and a space through which the exhaust gas flows. This is a catalyst-integrated exhaust heat exchanger.
[0010]
Since the invention described in claim 1 is configured as described above, the catalyst housing portion inside the inner cylinder that functions as an exhaust gas purification device and two heat exchanger portions that function as a heat exchanger for exhaust heat recovery And the catalyst integrated exhaust heat exchanger can be configured in a compact and simple structure. Moreover, since the two heat exchanger parts using the plate-shaped material are suitable for mass production, the production cost of the catalyst-integrated exhaust heat exchanger can be greatly reduced.
[0011]
In addition, since the catalyst housing is surrounded by the heat exchanger and the heat transfer area is increased by adopting the multi-plate heat exchanger, the heat retained in the exhaust gas and the reaction heat between the exhaust gas and the catalyst are cooled. It is sufficiently absorbed by water and heat exchange performance is greatly improved.
[0012]
In addition, since the noise emitted by the exhaust gas is effectively attenuated in the process of passing through the shell type heat exchanger part having a relatively large capacity water jacket structure and the multi-plate type heat exchanger part having a multi-chamber structure, The silencing effect is improved.
[0013]
further, In the invention according to claim 1, The shell-type heat exchanger section is composed of exhaust gas flowing between the inner cylinder and the inner cylinder through the catalyst accommodated in the inner cylinder, and water flowing between the outer cylinder and the inner cylinder. Since the indirect heat exchange is performed via the inner cylinder, the exhaust gas is effectively cooled by the cooling water in the water chamber surrounding the exhaust gas flow path between the inner cylinder and the inner cylinder, and the heat exchange performance is improved. Further improve.
[0014]
Claims 2 As described Departure By configuring the light, the multi-plate type heat exchanger section is configured by laminating a plurality of heat exchanger elements composed of two annular plates, and the heat exchanger elements are each of the two annular plates. The inner peripheral edges and the outer peripheral edges are joined to form a space in which one heat exchange medium flows, and a space in which the other heat exchange medium flows is formed between two adjacent heat exchanger elements. Therefore, the structure of the multi-plate type heat exchanger part is further simplified, and the manufacturing cost can be further reduced.
[0015]
Claims 3 As described Departure By configuring the light, a plurality of dimples are regularly formed on each of the two annular plates constituting the heat exchanger element, and the internal space of the heat exchanger element and two adjacent heat exchangers are formed. A turbulent flow path for each heat exchange medium is formed in the space between the elements.
[0016]
As a result, the heat exchange performance between the exhaust gas and the cooling water is further greatly improved, and the dimples can function as a spacing member between two annular plates, and between two adjacent heat exchanger elements. Thus, the strength of the catalyst-integrated exhaust heat exchanger is improved.
[0017]
And claims 4 As described Departure By configuring the light, the heat exchange medium is in fluid communication between the shell-type heat exchanger unit and the multi-plate type heat exchanger unit in their assembled parts.
[0018]
As a result, the shell type heat exchanger part and the multi-plate type heat exchanger part are connected by the shortest flow path to prevent the heat of the exhaust gas from being dissipated, and the catalyst-integrated exhaust heat exchanger is more compact. Can be configured.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, it is illustrated in FIGS. Main departure A clear embodiment will be described.
FIG. 1 is a longitudinal sectional view of the catalyst-integrated exhaust heat exchanger according to the present embodiment, and is a longitudinal sectional view taken along line II in FIG. 2, FIG. 2 is a plan view of FIG. 1, FIG. 3 is a partial longitudinal sectional view of a multi-plate type heat exchanger section taken along line III-III of FIG. 2, and FIG. 4 is a multi-plate of FIG. FIG. 5 is a partial vertical sectional view of a multi-plate type heat exchanger section cut along the line V-V in FIG. 2, and FIG. 6 is a diagram showing only one heat exchanger element of the type heat exchanger section. FIG. 7 is a drawing showing only one heat exchanger element of the multi-plate type heat exchanger section of FIG. 5, and FIG. 7 is a longitudinal sectional view of the multi-plate type heat exchanger section cut along line VII-VII of FIG. is there.
[0020]
The catalyst-integrated exhaust heat exchanger in the present embodiment is used in an exhaust system of an internal combustion engine such as an internal combustion engine for private power generation, and an exhaust gas purification device (catalytic converter) using a conventional catalyst and a heat exchanger for exhaust gas heat recovery. And are integrated.
[0021]
In FIG. 1, a catalyst-integrated exhaust heat exchanger 1 in this embodiment includes a shell-type heat exchanger section 2 and a donut-shaped multi-plate type heat integrally assembled to one end of the shell-type heat exchanger section 2. And an exchange unit 7. The shell type heat exchanger section 2 includes a substantially lower half portion of a cylindrical inner cylinder 3, a bottomed cylindrical inner cylinder 4 with a flange, and a bottomed cylindrical outer cylinder 5 with a flange. . A connection port 9 to which a cooling water supply pipe 6 is connected is formed at the bottom of the outer body 5.
[0022]
The inner cylinder 3 protrudes from the shell type heat exchanger portion 2 and extends to the internal space of the multi-plate type heat exchanger portion 7, and the inside thereof serves as a storage chamber C for the catalyst 8. The exhaust gas flows in from the direction of arrow A, flows through the catalyst storage chamber C while contacting the catalyst 8, exits the catalyst storage chamber C, and then the chamber D between the inner cylinder 3 and the inner cylinder 4. Indirect heat exchange is performed via the inner cylinder 4 with the cooling water flowing into the chamber E between the outer cylinder 5 and the inner cylinder 4 via the supply pipe 6. The exhaust gas is purified by a chemical reaction with the catalyst 8.
[0023]
Next, the exhaust gas and the cooling water exchange heat in the multi-plate type heat exchanger unit 7, and the exhaust gas becomes a low temperature in the exhaust pipe 10 connected to the lower part of the multi-plate type heat exchanger unit 7. In the direction of arrow B and discharged to the outside. Also, the cooling water recovers the exhaust heat held by the exhaust gas, becomes somewhat hot, and is connected to the pipe connection port formed in the mounting plate 11 integrally fixed to the upper end portion of the multi-plate type heat exchanger section 7. The refrigerant is recirculated to an internal combustion engine (not shown) through a cooling water discharge pipe (not shown) connected to 12.
[0024]
Next, the detailed structure of the multi-plate type heat exchanger section 7 and the mode of heat exchange between the exhaust gas and the cooling water will be described in detail.
As shown in FIGS. 1 to 6, the multi-plate type heat exchanger section 7 is configured by laminating a plurality of heat exchanger elements 20 including two annular plates 30 and 40.
[0025]
As shown in FIGS. 10 to 13, the annular plate 30 has a flat inner peripheral edge 32 on the inner peripheral part, a flat outer peripheral part 33 on the outer peripheral part, and a gas at a point-symmetrical position with respect to the center. An inlet portion 34 and a gas outlet portion 35 are formed, respectively, and adjacent to the gas inlet portion 34 and the gas outlet portion 35, respectively, are also point-symmetrical with respect to the center of the annular plate 30, and a water inlet opening 37 and a water outlet opening 38 are formed. Further, a plurality of dimples 36 are formed in two rows separated in the radial direction so as to surround the pair of the gas inlet part 34 and the water outlet opening 38 and the pair of the gas outlet part 35 and the water inlet opening 37 from the circumferential direction. Has been.
[0026]
The inner peripheral edge portion 32, the outer peripheral edge portion 33, the gas inlet portion 34, the gas outlet portion 35, and the plurality of dimples 36 are formed so that the annular substrate 31 that forms the base of the annular plate 30 is pressed downward in FIGS. It is formed by being recessed by a depth a. A gas inlet opening 34a and a gas outlet opening 35a each formed of a circular hole are punched and formed at the bottoms of the gas inlet portion 34 and the gas outlet portion 35, respectively. The water inlet opening 37 and the water outlet opening 38 are formed by pressing the annular substrate 31 upward in FIGS. 11 and 12 and then bending the inner peripheral edge slightly upward. Short flanges 37a and 38a are formed in the part, respectively.
[0027]
14 to 17, the annular plate 40 has an annular inner circumferential groove 49 on the inner circumferential side, an annular outer circumferential groove 50 on the outer circumferential side, and a water inlet at a point-symmetrical position with respect to the center. 47 and water outlet part 48 are formed, respectively, and adjacent to water inlet part 47 and water outlet part 48, respectively, gas inlet opening 44 and gas outlet opening 45 are also located symmetrically with respect to the center of annular plate 40. Are formed respectively. A plurality of dimples 46 are connected in the circumferential direction so as to surround the pair of the water inlet portion 47 and the gas outlet opening 45 and the pair of the water outlet portion 48 and the gas inlet opening 44 from the circumferential direction. Has been. The water inlet 47, the water outlet 48, the gas inlet opening 44, the gas outlet opening 45, and the dimple 46 are formed in a region surrounded by the inner peripheral groove 49 and the outer peripheral groove 50.
[0028]
A flat annular inner peripheral edge portion 42 is connected to the inner peripheral side of the inner peripheral groove 49, and a short cylindrical caulking portion 51 is bent and connected to the inner peripheral edge portion 42. Further, a flat annular outer peripheral edge portion 43 is connected to the outer peripheral side of the outer peripheral groove 50, and a short cylindrical caulking portion 52 is bent and connected to the outer peripheral edge portion 43.
[0029]
The water inlet portion 47, the water outlet portion 48, the plurality of dimples 46, the inner peripheral groove 49, and the outer peripheral groove 50 are formed so that the annular substrate 41 that forms the base of the annular plate 40 is pressed downward in FIGS. It is formed by being recessed by a depth b. A water inlet opening 47a and a water outlet opening 48a each formed by a circular hole are punched and formed at the bottoms of the water inlet 47 and the water outlet 48, respectively.
[0030]
The gas inlet opening 44 and the gas outlet opening 45 are formed by pressing the annular substrate 41 upward in FIGS. 15 and 16 and then bending the inner peripheral edge slightly upward. Short flanges 44a and 45a are formed in the part, respectively. The caulking portion 51 and the caulking portion 52 are also formed by bending the annular substrate 41 upward in FIGS. 15 and 16 by pressing.
[0031]
The annular plate 30 and the annular plate 40 formed as described above are arranged so that the inner peripheral edge portion 32 and the outer peripheral edge portion 33 of the annular plate 30 overlap the inner peripheral edge portion 42 and the outer peripheral edge portion 43 of the annular plate 40, respectively. The caulking portion 51 and the caulking portion 52 of the annular plate 40 are bent so as to hold the inner peripheral edge portion 32 and the outer peripheral edge portion 33 of the annular plate 30, and the whole is assembled into one piece. Next, the one assembled in this way is brazed, and the heat exchanger element 20 is manufactured (see FIGS. 4 and 6).
[0032]
A heat exchanger element 20 produced by overlapping the annular plate 30 shown in FIG. 11 and the annular plate 40 shown in FIG. 15 is shown in FIG. Further, the heat exchanger element 20 manufactured by superposing the annular plate 30 shown in FIG. 12 and the annular plate 40 shown in FIG. 16 is shown in FIG.
[0033]
An upper end plate 13 is crowned on the upper part of the uppermost heat exchanger element 20. An exhaust gas chamber 15 is formed between the upper end plate 13 and the annular plate 30 of the heat exchanger element 20 (see FIGS. 3 and 5). The flange portion 38 a of the water outlet opening 38 of the annular plate 30 passes through the opening 14 formed in the upper end plate 13 and protrudes into the pipe connection port 12 of the mounting plate 11. Details of the upper end plate 13 are shown in FIGS.
[0034]
An annular plate 30 is joined to the lower part of the lowermost heat exchanger element 20, and the lower end plate 60 is covered with the lowermost annular plate 30. A water chamber 16 is formed between the lowermost annular plate 30 and the lower end plate 60 (see FIGS. 3 and 5). As shown in detail in FIGS. 18 and 19, a gas inlet opening 61 and a gas outlet opening 62 are formed in the lower end plate 60 at points symmetrical with respect to the center of the lower end plate 60. A water inlet opening 63 is formed adjacent to the opening 62. Note that the lowermost annular plate 30 may be omitted.
[0035]
The gas inlet portion 34, the gas outlet portion 35 of the annular plate 30, the gas inlet opening 44, the gas outlet opening 45 of the annular plate 40, the gas inlet opening 61 of the lower end plate 60, and the gas outlet opening 62 are respectively centered on one axis. They are lined up and down. Further, the water inlet opening 37, the water outlet opening 38 of the annular plate 30, the water inlet portion 47 of the annular plate 40, the water outlet portion 48, and the water inlet opening 63 of the lower end plate 60 are vertically aligned with their centers aligned on one axis. It is linked to.
[0036]
In the multi-plate type heat exchanger section 7, a plurality of heat exchanger elements 20 manufactured in this way are stacked, and further, an upper end plate 13 is covered with an upper portion thereof, and an annular plate 30 is joined to the lower portion thereof. Then, the lower end plate 60 is covered with the annular plate 30, and the whole is temporarily assembled and brazed to be integrally assembled.
[0037]
Brazing of the annular plate 30 and the annular plate 40 in the process of manufacturing the heat exchanger element 20, adjacent heat exchanger elements 20, 20 in the process of completing the multi-plate type heat exchanger section 7, the upper end plate 13, For brazing between the lowermost annular plate 30 and the lower end plate 60, the annular plate 30 and the annular plate 40 are assembled together, and the heat exchanger element 20 is temporarily assembled. By laminating the upper end plate 13, the lowermost annular plate 30, and the lower end plate 60 on the plurality of heat exchanger elements 20 thus temporarily assembled as a whole, and then immersing the whole in a brazing bath, Done at the same time.
[0038]
In the multi-plate type heat exchanger section 7 thus completed, the dimples 36 formed on the annular plate 30 abut against the flat portion of the substrate of the annular plate 40 and are brazed to the annular plate 40. The dimples 46, the inner peripheral grooves 49 and the outer peripheral grooves 50 formed in the above are brought into contact with the substrate flat portion of the annular plate 30 in the adjacent heat exchanger element 20 and brazed thereto (see FIG. 7).
[0039]
In the multi-plate type heat exchanger section 7 thus completed, the cooling water flowing into the multi-plate type heat exchanger section 7 from the water inlet opening 63 of the lower end plate 60 is transferred to the water inlet opening of the annular plate 30. 37 flows into the water chamber F of each heat exchanger element 20, is divided into the left and right in the circumferential direction, and the water outlet openings 38 of the annular plate 30 that are symmetrical with respect to the axis of each heat exchanger element 20. It gathers at the opening position and is discharged out of the vessel through this water outlet opening 38 (see FIGS. 3 and 5).
[0040]
On the other hand, the exhaust gas flowing into the multi-plate type heat exchanger section 7 from the gas inlet opening 61 of the lower end plate 60 is adjacent to the gas inlet section 34 of the lowermost annular plate 30 and the gas inlet opening 44 of the annular plate 40. The gas outlet of the annular plate 40 flows into the exhaust gas chamber G formed between the heat exchanger elements 20 and 20 and is divided into the left and right in the circumferential direction and is symmetrical with respect to the axis of each heat exchanger element 20 Collected at the opening position of the opening 45, the gas is discharged outside through the gas outlet opening 45, the gas outlet portion 35 of the lowermost annular plate 30 and the gas outlet opening 62 of the lower end plate 60 (see FIGS. 3 and 5). ).
[0041]
During this time, the cooling water and the exhaust gas are agitated by the plurality of dimples 36 and 46 and accompanied by turbulent flow, while the flow path in the heat exchanger element 20 and the flow path between the adjacent heat exchanger elements 20 and 20 are Each flows and performs effective heat exchange through the wall surfaces of the annular plate 30 and the annular plate 40.
[0042]
The lower end plate 60 functions as a member for positioning the multi-plate type heat exchanger section 7 with respect to the inner cylinder 3 and attaching it to the inner cylinder 3, and as will be described later, the shell type heat exchanger section 2 is It also functions as an assembly plate when assembled to the multi-plate type heat exchanger section 7.
[0043]
Next, the fluid communication structure of the assembly part of the shell type heat exchanger part 2 and the multi-plate type heat exchanger part 7 will be described in detail.
As described above, the shell-type heat exchanger section 2 is composed of the inner cylinder 3 (its substantially lower half), the inner cylinder 4 and the outer cylinder 5.
[0044]
As shown in detail in FIGS. 20 and 21, the inner cylinder 4 has a flanged bottomed cylindrical container shape, and the flange portion 4 a at the peripheral edge of the opening is considerably wide with respect to its depth. Is formed. A gas inlet recess 70 and a gas outlet opening 71 are formed in the wide flange portion 4 a at a point-symmetrical position with respect to the center of the inner cylinder 4, and the water inlet opening is adjacent to the gas outlet opening 71. 72 is formed.
[0045]
Here, the formation positions of the gas inflow recess 70, the gas outlet opening 71, and the water inlet opening 72 correspond to the formation positions of the gas inlet opening 61, the gas outlet opening 62, and the water inlet opening 63 of the lower end plate 60, respectively. ing. Therefore, the exhaust gas flowing into the gas inflow recess 70 from the chamber D can flow into the exhaust gas chamber G of the multi-plate type heat exchanger section 7 through the gas inlet opening 61.
[0046]
As shown in detail in FIGS. 22 and 23, the outer cylinder 5 has a bottomed cylindrical container shape with a flange, and the flange portion at the periphery of the opening is formed in two steps, and the upper flange portion 5a is relatively narrow and has an outer diameter equal to the flange portion 4a of the inner cylinder 4. Further, the lower flange portion 5b is relatively wide, and one portion in the circumferential direction is crushed into a substantially rectangular shape, and a recess 73 opened to the outside is formed therein. This point coincides with the position where the gas outlet opening 71 of the inner cylinder 4 is formed.
[0047]
The ceiling wall surface 73a of the recess 73 is continuous with the wall surface of the flange portion 5a, and a gas outlet opening 74 is formed there. The inner wall surface 73b is continuous with the wall surface of the cylindrical portion of the outer body 5, and both side wall surfaces 73c and 73c are annular step space H formed by the upper flange portion 5a and the lower flange portion 5b. Is interrupted. The recess 73 is used as a space for connecting one end of the exhaust pipe 10 to the gas outlet openings 74, 71, 62.
[0048]
As described above, the connection port 9 of the cooling water supply pipe 6 is formed at the bottom of the outer body 5, and the cooling water flows into the chamber E from here. Then, it flows into the step space H and flows into the water chamber F of the multi-plate type heat exchanger section 7 through the water inlet opening 72 of the inner trunk 4 and the water inlet opening 63 of the lower end plate 60. Can do.
[0049]
Further, the exhaust gas flowing into the exhaust gas chamber G of the multi-plate type heat exchanger section 7 is the gas outlet opening 62 of the lower end plate 60, the gas outlet opening 71 of the inner cylinder 4, the gas outlet opening 74 of the outer cylinder 5, and the exhaust gas. It can be discharged to the outside through the tube 10. Needless to say, the lower end plate 60, the flange portion 4a of the inner cylinder 4, and the upper flange portion 5a of the outer cylinder 5 are integrally connected in a liquid-tight manner.
[0050]
Except for the catalyst 8, the catalyst-integrated exhaust heat exchanger 1 according to the present embodiment includes the components of the shell type heat exchanger unit 2, the components of the multi-plate type heat exchanger unit 7, the mounting plate 11, and the like. After assembling the connecting pipes integrally, the whole part is immersed in a brazing bath to braze each brazing part at the same time, so that the main body of the catalyst-integrated exhaust heat exchanger 1 is manufactured at once. can do.
[0051]
Since the present embodiment is configured as described above, the following effects can be obtained.
The catalyst-integrated exhaust heat exchanger 1 in which the high-temperature exhaust gas that has been purified by flowing through the catalyst 8 exchanges heat with water and the exhaust heat is recovered is the inner cylinder 3, the inner cylinder 4, and the outer A shell-type heat exchanger section 2 composed of a body 5 and a donut-shaped multi-plate type heat exchanger section 7 assembled integrally with one end of the shell-type heat exchanger section 2; It protrudes from the shell type heat exchanger part 2 and extends to the internal space of the multi-plate type heat exchanger part 7, and the catalyst 8 is accommodated in the interior (catalyst accommodating chamber C).
[0052]
As a result, the catalyst housing part inside the inner cylinder 3 that functions as an exhaust gas purification device and the two heat exchanger parts 2 and 7 that function as a heat exchanger for exhaust heat recovery are integrated, and the catalyst-integrated exhaust heat exchange is integrated. The container 1 can be configured in a compact and simple structure. Moreover, since the two heat exchanger parts 2 and 7 using a plate-shaped material are suitable for mass production, the manufacturing cost of the catalyst integrated exhaust heat exchanger 1 can be greatly reduced.
[0053]
Further, the multi-plate type heat exchanger section 7 is configured by laminating a plurality of heat exchanger elements 20 composed of two annular plates 30 and 40, and the heat exchanger element 20 includes two annular plates 30. 40, each inner peripheral edge and each outer peripheral edge are joined to each other to form a space F through which cooling water as one heat exchange medium flows, and between two adjacent heat exchanger elements 20, 20. Since the space G through which the exhaust gas, which is the other heat exchange medium, flows is formed, the structure of the multi-plate type heat exchanger section 7 is further simplified and the manufacturing cost of the catalyst-integrated exhaust heat exchanger 1 is further reduced. can do.
[0054]
In addition, since the catalyst storage section (catalyst storage chamber C) is surrounded by the heat exchanger sections 2 and 7 and the heat transfer area is increased by adopting the multi-plate type heat exchanger section 7, The retained heat and the reaction heat between the exhaust gas and the catalyst 8 are sufficiently absorbed by the cooling water, and the heat exchange performance is greatly improved.
[0055]
Furthermore, the shell-type heat exchanger section 2 flows through the catalyst 8 accommodated in the inner cylinder 3 and flows into the chamber D between the inner cylinder 3 and the inner cylinder 4, and the outer cylinder 5 and the inner cylinder 5. Since the water flowing into the chamber E between the cylinder 4 and the inner cylinder 4 exchanges heat indirectly, the exhaust gas flows between the inner cylinder 3 and the inner cylinder 4. It is cooled effectively by the cooling water in the water chamber (chamber E) surrounding (chamber D), and the heat exchange performance is further improved.
[0056]
A plurality of dimples 36 and 46 are regularly formed on each of the two annular plates 30 and 40 constituting the heat exchanger element 20, and the internal space F of the heat exchanger element 20 and the adjacent 2 Since the turbulent flow path of each heat exchange medium is formed in the space G between the two heat exchanger elements, the heat exchange performance between the exhaust gas and the cooling water is further improved, and the dimple 36 has two annular shapes. Since the dimple 46 can function as a spacing member between the two adjacent heat exchanger elements 20 and 20, the catalyst-integrated exhaust gas can be used as a spacing member between the plates 30 and 40. The strength of the heat exchanger 1 is improved.
[0057]
Further, the noise generated by the exhaust gas is effectively attenuated in the process in which the exhaust gas passes through the shell type heat exchanger section 2 having a relatively large capacity water jacket structure and the multi-plate type heat exchanger section 7 having a multi-chamber structure. Therefore, the silencing effect is improved.
[0058]
Further, the shell type heat exchanger section 2 and the multi-plate type heat exchanger section 7 are configured such that the heat exchange media are in fluid communication with each other in their assembled sections. The multi-plate type heat exchanger section 7 is connected with the shortest flow path, so that dissipation of the retained heat of the exhaust gas can be prevented and the catalyst-integrated exhaust heat exchanger 1 can be configured more compactly. Moreover, in this fluid communication structure, the gas inflow recess 70 is formed in the flange 4a of the inner cylinder 4, the upper flange 5a and the lower flange 5b are formed in the outer cylinder 5, and the recess 73 and the like are formed in the lower flange 5b by pressing. By doing so, it can be configured easily.
[Brief description of the drawings]
[Figure 1] Main departure FIG. 2 is a longitudinal sectional view of a catalyst-integrated exhaust heat exchanger in one embodiment of the present invention. Many FIG. 3 is a diagram showing only a plate-type heat exchanger section as viewed from the outside.
2 is a plan view of FIG. 1. FIG.
3 is a partial longitudinal sectional view of a multi-plate type heat exchanger section cut along line III-III in FIG. 2. FIG.
4 is a diagram showing only one heat exchanger element of the multi-plate type heat exchanger section of FIG.
5 is a partial longitudinal sectional view of a multi-plate type heat exchanger section cut along line VV in FIG. 2. FIG.
6 is a diagram showing only one heat exchanger element of the multi-plate type heat exchanger section of FIG.
7 is a longitudinal sectional view of a multi-plate type heat exchanger section cut along a line VII-VII in FIG. 2. FIG.
FIG. 8 is a plan view of the upper end plate.
9 is a cross-sectional view taken along line IX-IX in FIG.
FIG. 10 is a plan view of an annular plate.
11 is a cross-sectional view taken along line XI-XI in FIG.
12 is a cross-sectional view taken along line XII-XII in FIG.
13 is a cross-sectional view taken along line XIII-XIII in FIG.
14 is a plan view of another annular plate that is paired with the annular plate of FIG. 10;
15 is a cross-sectional view taken along line XV-XV in FIG.
16 is a cross-sectional view taken along line XVI-XVI in FIG.
17 is a cross-sectional view taken along line XVII-XVII in FIG.
FIG. 18 is a plan view of a lower end plate.
19 is a cross-sectional view taken along line XIX-XIX in FIG.
FIG. 20 is a longitudinal sectional view of the inner trunk.
FIG. 21 is a plan view of the same.
FIG. 22 is a longitudinal sectional view of the outer trunk.
FIG. 23 is a plan view of the same.
FIG. 24 is a diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Catalyst integrated exhaust heat exchanger, 2 ... Shell type heat exchanger part, 3 ... Inner cylinder, 4 ... Inner cylinder, 4a ... Flange part, 5 ... Outer cylinder, 5a ... Upper flange part, 5b ... Lower flange part , 6 ... Cooling water supply pipe, 7 ... Multi-plate type heat exchanger section, 8 ... Catalyst, 9 ... Pipe connection port, 10 ... Exhaust pipe, 11 ... Mounting plate, 12 ... Pipe connection port, 13 ... Upper end plate, 14 ... Opening, 15 ... Exhaust gas chamber, 16 ... Water chamber, 20 ... Heat exchanger element, 30 ... Ring plate, 31 ... Ring substrate, 32 ... Inner peripheral edge, 33 ... Outer peripheral edge, 34 ... Gas inlet, 34a ... Gas inlet opening, 35 ... Gas outlet part, 35a ... Gas outlet opening, 36 ... Dimple, 37 ... Water inlet opening, 37a ... Horse part, 38 ... Water outlet opening, 38a ... Horse part, 40 ... Ring plate, 41 ... Annular substrate, 42 ... inner peripheral edge, 43 ... outer peripheral edge, 44 ... gas inlet opening, 44a ... collar part, 45 ... gas outlet opening, 45a ... collar part, 46 ... dimple, 47 ... water inlet part, 47a ... water Entrance opening, 48 ... water Mouth part, 48a ... Water outlet opening, 49 ... Inner peripheral groove, 50 ... Outer peripheral groove, 51 ... Caulking part, 52 ... Caulking part, 60 ... Lower end plate, 61 ... Gas inlet opening, 62 ... Gas outlet opening, 63 ... Water inlet opening, 70 ... gas inflow recess, 71 ... gas outlet opening, 72 ... water inlet opening, 73 ... recess, 73a ... ceiling wall surface, 73b ... inner wall surface, 73c ... side wall surface, 74 ... gas outlet opening, C ... catalyst Storage chamber, D ... exhaust gas chamber, E ... cooling water chamber, F ... cooling water chamber, G ... exhaust gas chamber, H ... annular step space.

Claims (4)

触媒中を流れて浄化された高温排ガスが水と熱交換をして、その排熱が回収されるようにされた触媒一体型排気熱交換器が、
内筒と内胴と外胴とからなるシェルタイプ熱交換器部と、
前記シェルタイプ熱交換器部の一端に一体に組み付けられたドーナツ状の多板タイプ熱交換器部と
を備え、
前記内筒は、前記シェルタイプ熱交換器部から突出して前記多板タイプ熱交換器部の内部空間にまで伸びて、その内部に前記触媒が収容され、
前記シェルタイプ熱交換器部は、前記内筒の内部に収容された前記触媒中を流れて前記内筒と前記内胴との間に流入した前記排ガスと、前記外胴と前記内胴との間に流入した前記水とが、前記内胴を介して間接熱交換をするようにされ、
前記多板タイプ熱交換器部は、前記シェルタイプ熱交換器部で熱交換をした前記排ガスと前記水を流入させて、該多板タイプ熱交換器部内で熱交換をさせるために、前記水が流れる空間と前記排ガスが流れる空間とを有する
ことを特徴とする触媒一体型排気熱交換器。
A catalyst-integrated exhaust heat exchanger in which high-temperature exhaust gas purified by flowing through the catalyst exchanges heat with water, and the exhaust heat is recovered,
A shell-type heat exchanger unit composed of an inner cylinder, an inner cylinder and an outer cylinder;
A donut-shaped multi-plate type heat exchanger unit assembled integrally with one end of the shell type heat exchanger unit;
The inner cylinder protrudes from the shell type heat exchanger part and extends to the internal space of the multi-plate type heat exchanger part, and the catalyst is accommodated therein.
The shell-type heat exchanger section includes the exhaust gas flowing between the inner cylinder and the inner cylinder through the catalyst housed in the inner cylinder, the outer cylinder, and the inner cylinder. The water flowing in between is indirectly exchanged heat through the inner trunk,
The multi-plate type heat exchanger unit is configured to allow the exhaust gas and the water that have undergone heat exchange in the shell type heat exchanger unit to flow in and to perform heat exchange in the multi-plate type heat exchanger unit. A catalyst-integrated exhaust heat exchanger having a space through which the exhaust gas flows and a space through which the exhaust gas flows .
前記多板タイプ熱交換器部は、2枚の環状板からなる熱交換器素子が複数個積層されて構成され、
前記熱交換器素子は、前記2枚の環状板の各内周縁同志および各外周縁同志がそれぞれ接合されて、その内部に一方の熱交換媒体が流れる空間が形成され、
隣接する2つの前記熱交換器素子間に他方の熱交換媒体が流れる空間が形成されたことを特徴とする請求項記載の触媒一体型排気熱交換器。
The multi-plate type heat exchanger section is configured by laminating a plurality of heat exchanger elements composed of two annular plates,
In the heat exchanger element, the inner peripheral edges and the outer peripheral edges of the two annular plates are joined to each other, and a space through which one heat exchange medium flows is formed.
Catalyst integrated exhaust heat exchanger according to claim 1, wherein a space between adjacent two of the heat exchanger element through the other heat exchange medium is formed.
前記熱交換器素子を構成する前記2枚の環状板の各々には、複数のディンプルが規則的に形成されて、前記熱交換器素子の内部空間および隣接する2つの前記熱交換器素子間の空間に前記各熱交換媒体の乱流流路が形成されたことを特徴とする請求項記載の触媒一体型排気熱交換器。A plurality of dimples are regularly formed on each of the two annular plates constituting the heat exchanger element, and the internal space of the heat exchanger element and between the two adjacent heat exchanger elements are formed. The catalyst-integrated exhaust heat exchanger according to claim 2 , wherein a turbulent flow path for each heat exchange medium is formed in the space. 前記シェルタイプ熱交換器部と前記多板タイプ熱交換器部とは、それらの組付け部において前記各熱交換媒体が流体連通するようにされたことを特徴とする請求項1ないし請求項3のいずれかに記載の触媒一体型排気熱交換器。」The shell-type heat exchanger unit and said multi-plate type heat exchanger unit, according to claim 1 to claim 3 wherein the heat exchange medium in their assembling unit is characterized in that it is in fluid communication The catalyst-integrated exhaust heat exchanger according to any one of the above. "
JP34714899A 1999-12-07 1999-12-07 Exhaust heat exchanger with integrated catalyst Expired - Fee Related JP4372293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34714899A JP4372293B2 (en) 1999-12-07 1999-12-07 Exhaust heat exchanger with integrated catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34714899A JP4372293B2 (en) 1999-12-07 1999-12-07 Exhaust heat exchanger with integrated catalyst

Publications (2)

Publication Number Publication Date
JP2001164931A JP2001164931A (en) 2001-06-19
JP4372293B2 true JP4372293B2 (en) 2009-11-25

Family

ID=18388250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34714899A Expired - Fee Related JP4372293B2 (en) 1999-12-07 1999-12-07 Exhaust heat exchanger with integrated catalyst

Country Status (1)

Country Link
JP (1) JP4372293B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767927B2 (en) * 2011-09-25 2015-08-26 株式会社ユタカ技研 Heat exchanger
JP5767928B2 (en) * 2011-09-25 2015-08-26 株式会社ユタカ技研 Heat exchanger
KR101324120B1 (en) 2012-01-31 2013-11-01 삼성중공업 주식회사 Vessel
DE102012219968A1 (en) * 2012-10-31 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Exhaust system with thermoelectric generator

Also Published As

Publication number Publication date
JP2001164931A (en) 2001-06-19

Similar Documents

Publication Publication Date Title
JP6233612B2 (en) Heat exchanger
JP2009512832A (en) Heat exchanger
JP3891724B2 (en) Exhaust heat exchanger with integrated catalyst
JP2013122366A (en) Heat exchanger
JP2012514733A (en) Heat exchanger and method of making and using it
US20070000652A1 (en) Heat exchanger with dimpled tube surfaces
JP2013083436A (en) Internal heat exchanger with external manifold
JP4372293B2 (en) Exhaust heat exchanger with integrated catalyst
JP5831996B2 (en) Heat exchanger with annular axial flow rib
JP4372294B2 (en) Exhaust heat exchanger with integrated catalyst
JP2732559B2 (en) Gas boiler stacked heat exchanger
EP1460365A1 (en) Heat exchanger
JP6280520B2 (en) Exhaust gas heat exchanger made of duplex steel
JP3024653B2 (en) Oil cooler
JPS5928219Y2 (en) Oil cooler for internal combustion engine
CN211800744U (en) Jacket type heat exchange device also serving as guide cylinder
JPH073161Y2 (en) Heat exchanger
JP4247462B2 (en) Heat exchanger for exhaust heat recovery
JPH0330572Y2 (en)
JPH0443742Y2 (en)
KR100760589B1 (en) Heat exchanging plate and heat exchanger by the same
JP2006300407A (en) Shell and tube type heat exchanger
JP2694894B2 (en) Heat exchanger
JP2522856Y2 (en) Heat exchanger
JPH09303875A (en) Hot water boiler for heating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060920

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees