JP4371200B2 - Ultra high pressure mercury lamp sealing method and sealing device - Google Patents

Ultra high pressure mercury lamp sealing method and sealing device Download PDF

Info

Publication number
JP4371200B2
JP4371200B2 JP2003138767A JP2003138767A JP4371200B2 JP 4371200 B2 JP4371200 B2 JP 4371200B2 JP 2003138767 A JP2003138767 A JP 2003138767A JP 2003138767 A JP2003138767 A JP 2003138767A JP 4371200 B2 JP4371200 B2 JP 4371200B2
Authority
JP
Japan
Prior art keywords
quartz glass
glass tube
straight pipe
pressure mercury
mercury lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003138767A
Other languages
Japanese (ja)
Other versions
JP2004342497A (en
Inventor
政行 尾上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2003138767A priority Critical patent/JP4371200B2/en
Publication of JP2004342497A publication Critical patent/JP2004342497A/en
Application granted granted Critical
Publication of JP4371200B2 publication Critical patent/JP4371200B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、超高圧水銀ランプの封止方法および封止装置に関する。
【0002】
【従来の技術】
最近、プロジェクタに使用する光源として超高圧水銀ランプが定着し、着実に出荷数量を延ばしている。超高圧水銀ランプはその材料や生産方式などから、一般的な水銀ランプなどに比べて非常に高価であるため、プロジェクタの低価格化を担う非常に重要なデバイスである。しかし、プロジェクタの低価格化を実現するのに安価なランプ材料を選択することは、ランプ品質に直接影響するため、安易に実施できない。このため、製造ラインにおける歩留りを向上させてランプ価格を引き下げる必要が生じてくる。
【0003】
そこで歩留りについて着目すると、現在、ランプの歩留まりを最も悪化させている要因は、ランプ内で対向する電極の精度不具合である。この不具合は、以下の2種類に大別できる。
1)電極間隔(主にランプ中心軸方向)
2)ランプ中心軸に対する電極の偏心(ランプ中心軸と交差する方向)
また、光学系を小さくする為には、ランプの電極間距離を短くしなければならず、その場合、電極間距離の規格は更に厳しくなることが予想される。従って、必然的に製造ラインの歩留まりは悪化する。
【0004】
ここで、超高圧水銀ランプの一般的な構造および製造方法について説明する。超高圧水銀ランプの構造を図3に、さらにこの製造時における封止方法の概要を図4、5に示す。
【0005】
超高圧水銀ランプは図3に示すように石英ガラス管101からなり、石英ガラス管101は中空の球体部102と、この球体部102の両端に形成された直管部103,104と、各直管部103,104に一部が埋設され、球体部102内で電極が対向する電極アセンブリとにより構成されている。各電極アセンブリはモリブテン箔105の一端にタングステン電極106を接続し、もう一端に外部リード線107を接続してなる。球体部102内の空間には水銀、不活性ガスおよびハロゲンガスが封入されている。
【0006】
また製法は、まず、中央部に球体部102が形成されて両端部に直管部103,104が形成され、直管部103,104がそれぞれ開口された石英ガラス管101を用意し、一方の直管部103の端部を加熱溶融して封止しておく。次に、もう一方の直管部104の開口から電極アセンブリを挿入し、直管部103内に位置させる。
【0007】
直管部103内に電極アセンブリを挿入した石英ガラス管101を、この石英ガラス管101の中心軸が上下方向を向くように治具等で保持、固定する。このとき、石英ガラス管101の中心軸周りに、加熱溶融装置(不図示)を構成する複数のバーナー108が均等に配置されることになる。これらのバーナー108からなる加熱溶融装置は上下方向に移動可能で、バーナー108が石英ガラス管101の周りを回転する構成となっている。
【0008】
次に、直管部103におけるモリブテン箔105が挿入された部分をバーナー108で加熱溶融する。このランプは通常、発光部となる球体部102の上(タングステン電極106とモリブテン箔105の溶接部分に対応する位置)からバーナー108で加熱を開始し(図4)、石英ガラス管101を加熱溶融してタングステン電極106と封着しながら、バーナー108を上昇させていく。バーナー108を移動させる速度は、バーナー108の熱量や、封止対象物である石英ガラス管101などにより大幅に変わるので、通常、バーナー108の移動速度や、石英ガラス管101に対する加熱位置等を加熱溶融装置側でプログラムできる様にしてある。バーナー108を上下させるだけでは、石英ガラス管101をその中心軸周りに均一に溶融できない為、バーナー108を回転させなければならない。したがって、石英ガラス管101の中心軸周りにバーナー108を回転させながら所定の位置まで上昇させる(図5)。これにより、直管部103における加熱溶融された部分が内側に収縮し、直管部103におけるモリブテン箔105の周囲の部分が封止され、封止完了となる。
【0009】
次に、石英ガラス管101のもう一方の直管部104内に電極アセンブリを配置し、石英ガラス管101内を排気しつつ、水銀、不活性ガスおよびハロゲンガスを導入した後、直管部104の端部を加熱溶融して封止する。
【0010】
そして、上述した直管部103における封止と同様に、直管部104におけるモリブテン箔105が挿入された部分を、バーナー108を回転しつつ移動させて加熱溶融し、このモリブテン箔105の周囲部分を封止する。
【0011】
以上の工程により超高圧水銀ランプが完成する。
【0012】
上記従来例の封止は石英ガラス管101の中心軸周りにバーナー108を回転させる方法であるが、特許文献1および2に開示されているように、バーナー108に対して石英ガラス管をその中心軸周りに回転させる封止技術もある。
【0013】
【特許文献1】
特開2000−173543号公報(図1〜3)
【特許文献2】
特開平10−302636号公報(図1)
【0014】
【発明が解決しようとする課題】
図3に示した従来の封止では、石英ガラス管101の中心軸周りにバーナーを回転させる方法を採用しているが、この方式の場合、図6で示すように電極の偏心が発生しやすい。
【0015】
その理由を図7に基づいて説明する。図7は石英ガラス管の中心軸方向から封止工程を見た概要図である。この図に示すとおり、石英ガラス管101を中心とした円周上の等間隔の位置A,B,C,Dにバーナー108を配置したときのバーナー回転軸のセンターBが、石英ガラス管のセンターAに対して少しでも偏心している場合、石英ガラス管の、バーナーと近い部分は常にバーナーに近くにあり、逆にバーナーと遠い部分は常にバーナーから遠くなる傾向にある。したがって、バーナーが近い部分と遠い部分での、加熱むらが生じて、封止対象物である石英ガラス管が曲がるという結果に至る。石英ガラス管が曲がると、電極も曲がり易くなり、これが、石英ガラス管の両側の直管部の封止で発生した場合、著しく電極が偏心する。また、ランプ中心軸方向の電極間隔の精度も悪くなる。
【0016】
このように従来の封止方法では電極の精度不具合が多く、歩留りが悪いため、加熱むらが生じない封止方法を発明する必要性が生じていた。
【0017】
そこで本発明の目的は、上述した実状に鑑み、電極アセンブリを挿入した石英ガラス管の直管部を封止する時に加熱を石英ガラス管の円周方向にばらつき無く行うことができる超高圧水銀ランプの封止方法および封止装置を提供することにある。
【0018】
なお、特許文献1および2は、電極アセンブリを組み込んだ石英ガラス管の封止方法と、封止後の電極位置精度との因果関係については全く検討しておらず、本明細書に記載の発明はこれらの文献とは大きく相違する。
【0019】
【課題を解決するための手段】
上述の目的を達成するために本発明は、中空の球体部とその両端に形成された直管部とを備え、一対の電極が前記球体部内に対向配置されるように前記電極と金属箔と外部リード線とを含む電極アセンブリが前記直管部に挿入された石英ガラス管からなる超高圧水銀ランプを製造する際、
前記石英ガラス管を中心とした円周上に配置された複数のバーナーを用い、該円周の中心と、前記石英ガラス管の中心軸とが偏心した状態で、前記直管部を封止する方法であって、
前記石英ガラス管の中心軸が上下方向を向くように、前記電極アセンブリが挿入された前記石英ガラス管の一方の直管部のみを保持し、
該石英ガラス管の中心軸と交差する方向から該一方の直管部を前記バーナーで加熱しながら、前記石英ガラス管をその中心軸周りに回転させ、上下方向に移動させることを特徴とする。
【0020】
上記の封止方法では、前記直管部の、前記電極と前記金属箔の接合部分に対応する位置から加熱を開始することが好ましい。さらに、前記石英ガラス管の一部を水槽に浸漬した状態で、該石英ガラス管の中心軸と交差する方向から加熱することが好ましい。
【0021】
また本発明は、中空の球体部とその両端に形成された直管部とを備え、一対の電極が前記球体部内に対向配置されるように前記電極と金属箔と外部リード線とを含む電極アセンブリが前記直管部に挿入された石英ガラス管からなる超高圧水銀ランプを製造する際、
前記石英ガラス管を中心とした円周上に配置された複数のバーナーを用い、該円周の中心と、前記石英ガラス管の中心軸とが偏心した状態で、前記直管部を封止する装置であって、
前記石英ガラス管の中心軸が上下方向を向くように、前記電極アセンブリが挿入された前記石英ガラス管の一方の直管部のみを保持する保持部と、
前記保持部を上下に移動する昇降装置と、
前記保持部に保持された前記石英ガラス管をその中心軸周りに回転させる回転駆動装置とを備えたことを特徴とする。
【0022】
上記の封止装置では、前記保持部に保持された前記石英ガラス管の一部を浸漬させる水槽を備え、該水槽の上部近傍に前記加熱溶融装置が配置されていることが好ましい。
【0023】
また前記加熱溶融装置は前記保持部で保持された前記石英ガラス管を挟んで対向するバーナーであることが好ましい。
【0024】
上記のとおりの発明では、電極アセンブリが直管部に挿入された石英ガラス管をその中心軸が上下方向を向くように保持し、この石英ガラス管の中心軸と交差する方向から、電極アセンブリが挿入された直管部をバーナー等で加熱しながら、石英ガラス管をその中心軸周りに回転させたことにより、バーナー等の近い部分と遠い部分は、常時、回転によって入れ替わるという現象が起こる。このため、加熱むらが無く、石英ガラス管の円周方向は均一に加熱される。この結果、石英ガラス管の曲がりは抑制され、電極の精度不具合が生じにくい。したがって、ランプ製造過程での歩留りが上がり、製品価格も低下する。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0026】
図1は本発明の実施の形態による、超高圧水銀ランプの製造装置を示す概略構成図である。
【0027】
図1に示すランプ製造装置は、封止対象物である石英ガラス管101を保持する保持部と、保持部を上下に移動する昇降装置と、石英ガラス管101の周囲に配置された加熱溶融装置と、石英ガラス管101の保持部を回転させる回転駆動装置と備えている。石英ガラス管101の保持部はチャック2を備えた機器(例えばエアチャック)であり、チャック2で石英ガラス管101の一端を挟み、石英ガラス管101の中心軸が上下方向を向くように保持する。チャック2は回転駆動装置であるチャック回転モータ3に取り付けられ、回転可能となっている。
【0028】
チャック回転モータ3は支持部材5に取り付けられており、支持部材5はスプライン軸4の回転に伴い上下方向に移動する。スプライン軸4は、台座7に固定されたサーボモータ6により回転可能となっている。このような昇降装置は、位置決め精度の高いサーボモータ6が望ましいが、ステッピングモータやエアシリンダ等でも良い。
【0029】
また、台座7には石英ガラス管101を浸漬させる水槽8が設置され、水槽8の上部近傍に加熱溶融装置であるバーナー9が、チャック2で保持された石英ガラス管101を挟んで対向して配置されている。本例では2個の対向するバーナーを設置したが、1個のバーナーもしくは、2個以上の複数のバーナーを設けてもよい。すなわち、石英ガラス管101を中心とする円周方向において、本例のように2個のバーナーを180度で対向配置する以外に、4個のバーナーを互いに90度をなすように配置して対向させたり、6個のバーナーを互いに60度をなすように配置して対向させたりしてもよい。
【0030】
次に、この製造装置を用いた超高圧水銀ランプの製造方法について説明する。なお、ここの説明では超高圧水銀ランプの構成部品を示す図3中の符号を流用する。
【0031】
まず、直管部103,104がそれぞれ開口された石英ガラス管101を用意し、一方の直管部103の端部を加熱溶融して封止しておく。そして、もう一方の直管部104の開口から電極アセンブリを挿入し、直管部103内に位置させる(図4参照)。
【0032】
直管部103内に電極アセンブリを挿入した石英ガラス管101を、この石英ガラス管101の中心軸が上下方向を向くようにチャック2で保持する。このとき、石英ガラス管101の中心軸周りに、加熱溶融装置(不図示)の対向するバーナー9が配置されることになる。
【0033】
次に、サーボモータ6によりスプライン軸4を回転させることで、支持部材5に支持されたチャック2が保持する石英ガラス管101を上下方向に移動させ、石英ガラス管101の一部を水槽8に浸漬するとともに、発光部となる球体部102の上(タングステン電極106とモリブテン箔105の溶接部分に対応する位置)をバーナー9に対向させる。この位置から、石英ガラス管101の中心軸と交差する方向にバーナー9で加熱を開始し、チャック回転モータ3によりチャック2と共に石英ガラス管101を回転させながら、サーボモータ6により石英ガラス管101を所定の位置まで下降させていく。これにより、直管部103における加熱溶融された部分が円周方向に均等に収縮し、直管部103におけるモリブテン箔105の周囲の部分が封止され、封止完了となる(図5参照)。
【0034】
次に、石英ガラス管101のもう一方の直管部104内に電極アセンブリを配置し、石英ガラス管101内を排気しつつ、水銀、不活性ガスおよびハロゲンガスを導入した後、直管部104の端部を加熱溶融して封止する。
【0035】
そして、上述した直管部103における封止と同様に、直管部104におけるモリブテン箔105が挿入された部分を、石英ガラス管101を回転しつつ移動させてバーナー9で加熱溶融し、このモリブテン箔105の周囲部分を封止する。
【0036】
以上の工程により超高圧水銀ランプが完成する。
【0037】
このように本実施形態では、封止対象物である石英ガラス管101を保持しているチャックを回転させる方法を採用した。この場合、図2に示す通り、バーナーの近い部分(C点)と遠い部分は、常時、回転によって入れ替わるという現象が起こる。したがって、加熱むらが無く、石英ガラス管101の円周方向は均一に加熱され、結果として石英ガラス管101の曲がりは抑制される。また、この封止方式においては、加熱途中に電極先端が、発光部(球体部102)中央に向き易いという傾向にある。
【0038】
その結果、電極の偏心に関しては、下記の表1の様に大幅に改善される。この偏心が大きいと、電極間距離(ちなみに、電極間距離とは図6に示した電極先端の最短距離であり、図中のX、Yから算出する。)も大きくなるので、偏心が改善されれば、自動的に電極間隔の精度も改善される(表2)。電極間隔はそのまま製品の歩留まりであり、規格が±0.15mmとした場合に、不良率は従来技術と比較し、約1割改善する。今後、電極間隔がさらに短くなってくれば、規格は±0.10mm程度になることも十分予想され、その場合は、約3割の改善効果が得られることが分かる。
1)偏心の改善(定義:図6において上下電極先端の左右方向のずれで最も大きい値)
【0039】
【表1】

Figure 0004371200
2)電極間距離の改善(定義:図6において上下電極先端距離で最も大きい値)
【0040】
【表2】
Figure 0004371200
【0041】
【発明の効果】
本発明によれば、中空の球体部とその両端に形成された直管部とを備え、一対の電極が前記球体部内に対向配置されるように前記電極と金属箔と外部リード線とを含む電極アセンブリが前記直管部に挿入された石英ガラス管からなる超高圧水銀ランプを製造する際、前記石英ガラス管を中心とした円周上に配置された複数のバーナーを用い、該円周の中心と、前記石英ガラス管の中心軸とが偏心した状態で、前記直管部を封止する場合、
前記石英ガラス管の中心軸が上下方向を向くように、前記電極アセンブリが挿入された前記石英ガラス管の一方の直管部のみを保持し、
該石英ガラス管の中心軸と交差する方向から該一方の直管部を前記バーナーで加熱しながら、前記石英ガラス管をその中心軸周りに回転させ、上下方向に移動させることにより、
加熱を石英ガラス管の円周方向にばらつき無く行うことができる。この結果、石英ガラス管の曲がりは抑制され、電極の精度不具合が生じにくいので、ランプ製造過程での歩留まりが上がり、ランプ価格を下げることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による、超高圧水銀ランプの製造装置を示す概略構成図である。
【図2】本発明の実施の形態として、超高圧水銀ランプを構成する石英ガラス管の中心軸方向から封止工程を見た概要図である
【図3】超高圧水銀ランプの一般構造を示す断面図である。
【図4】超高圧水銀ランプ製造時における一般の封止工程の一部を示す概要図である。
【図5】超高圧水銀ランプ製造時における一般の封止工程の一部を示す概要図である。
【図6】超高圧水銀ランプの従来の封止工程後の電極周辺部を拡大した断面図である。
【図7】超高圧水銀ランプを構成する石英ガラス管の中心軸方向から従来の封止工程を見た概要図である。
【符号の説明】
2 チャック
3 チャック回転モータ
4 スプライン軸
5 支持部材
6 サーボモータ
7 台座
8 水槽
9 バーナー
101 石英ガラス管
102 球体部
103,104 直管部
105 モリブテン箔
106 タングステン電極
107 外部リード線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sealing method and a sealing device for an ultra-high pressure mercury lamp.
[0002]
[Prior art]
Recently, an ultra-high pressure mercury lamp has been established as a light source used in projectors, and the shipment quantity has been steadily increased. An ultra-high pressure mercury lamp is very expensive compared to a general mercury lamp because of its material and production method, and is therefore an extremely important device for reducing the price of a projector. However, selecting an inexpensive lamp material to reduce the price of the projector directly affects the lamp quality and cannot be easily implemented. For this reason, it is necessary to improve the yield in the production line and lower the lamp price.
[0003]
Therefore, when attention is paid to the yield, the factor that most deteriorates the yield of the lamp at present is an accuracy defect of the electrodes facing each other in the lamp. This defect can be roughly divided into the following two types.
1) Electrode spacing (mainly in the lamp central axis direction)
2) Eccentricity of electrode with respect to lamp center axis (direction intersecting lamp center axis)
Further, in order to reduce the optical system, the distance between the electrodes of the lamp must be shortened. In this case, it is expected that the standard for the distance between the electrodes will become stricter. Therefore, the yield of the production line inevitably deteriorates.
[0004]
Here, the general structure and manufacturing method of the ultra high pressure mercury lamp will be described. FIG. 3 shows the structure of the ultra-high pressure mercury lamp, and FIGS. 4 and 5 show an outline of the sealing method at the time of manufacturing.
[0005]
As shown in FIG. 3, the ultra-high pressure mercury lamp includes a quartz glass tube 101. The quartz glass tube 101 includes a hollow sphere portion 102, straight tube portions 103 and 104 formed at both ends of the sphere portion 102, and each straight tube portion. A part of the tube portions 103 and 104 are embedded, and the electrode assembly is configured such that the electrodes face each other in the spherical portion 102. Each electrode assembly includes a tungsten electrode 106 connected to one end of a molybdenum foil 105 and an external lead wire 107 connected to the other end. Mercury, an inert gas, and a halogen gas are sealed in the space inside the sphere portion 102.
[0006]
In addition, the manufacturing method first prepares a quartz glass tube 101 in which a sphere portion 102 is formed in the central portion, straight pipe portions 103 and 104 are formed at both ends, and the straight pipe portions 103 and 104 are respectively opened. The end portion of the straight pipe portion 103 is heated and melted and sealed. Next, the electrode assembly is inserted from the opening of the other straight pipe portion 104 and positioned in the straight pipe portion 103.
[0007]
The quartz glass tube 101 in which the electrode assembly is inserted into the straight tube portion 103 is held and fixed with a jig or the like so that the central axis of the quartz glass tube 101 is directed in the vertical direction. At this time, a plurality of burners 108 constituting a heating and melting apparatus (not shown) are evenly arranged around the central axis of the quartz glass tube 101. The heating and melting apparatus including these burners 108 can move in the vertical direction, and the burner 108 rotates around the quartz glass tube 101.
[0008]
Next, the portion of the straight pipe portion 103 where the molybdenum foil 105 is inserted is heated and melted by the burner 108. This lamp usually starts heating with a burner 108 from above the spherical portion 102 (light emitting portion corresponding to the welded portion of the tungsten electrode 106 and molybdenum foil 105) (FIG. 4), and the quartz glass tube 101 is heated and melted. Then, the burner 108 is raised while sealing with the tungsten electrode 106. The speed at which the burner 108 is moved varies greatly depending on the amount of heat of the burner 108, the quartz glass tube 101 that is the object to be sealed, etc. Therefore, the moving speed of the burner 108, the heating position with respect to the quartz glass tube 101, etc. are usually heated. It can be programmed on the melter side. Since the quartz glass tube 101 cannot be uniformly melted around its central axis simply by moving the burner 108 up and down, the burner 108 must be rotated. Therefore, the burner 108 is rotated up to a predetermined position while rotating around the central axis of the quartz glass tube 101 (FIG. 5). As a result, the heated and melted portion of the straight pipe portion 103 contracts inward, and the portion around the molybdenum foil 105 in the straight pipe portion 103 is sealed, and the sealing is completed.
[0009]
Next, an electrode assembly is disposed in the other straight pipe portion 104 of the quartz glass tube 101, and after introducing mercury, an inert gas and a halogen gas while exhausting the quartz glass tube 101, the straight pipe portion 104 is introduced. The end of each is heated and melted and sealed.
[0010]
Then, similarly to the sealing in the straight pipe portion 103 described above, the portion where the molybdenum foil 105 is inserted in the straight pipe portion 104 is heated and melted by rotating the burner 108, and the peripheral portion of the molybdenum foil 105 is Is sealed.
[0011]
The ultra high pressure mercury lamp is completed through the above process.
[0012]
The sealing in the conventional example is a method in which the burner 108 is rotated around the central axis of the quartz glass tube 101. As disclosed in Patent Documents 1 and 2, the quartz glass tube is centered with respect to the burner 108. There is also a sealing technique that rotates around an axis.
[0013]
[Patent Document 1]
JP 2000-173543 A (FIGS. 1 to 3)
[Patent Document 2]
Japanese Patent Laid-Open No. 10-302636 (FIG. 1)
[0014]
[Problems to be solved by the invention]
In the conventional sealing shown in FIG. 3, a method of rotating the burner around the central axis of the quartz glass tube 101 is adopted, but in this method, the eccentricity of the electrode is likely to occur as shown in FIG. .
[0015]
The reason will be described with reference to FIG. FIG. 7 is a schematic view of the sealing process viewed from the central axis direction of the quartz glass tube. As shown in this figure, the center B of the burner rotation axis when the burners 108 are arranged at equidistant positions A, B, C, D on the circumference around the quartz glass tube 101 is the center of the quartz glass tube. When it is slightly eccentric with respect to A, the portion of the quartz glass tube close to the burner is always close to the burner, and conversely, the portion far from the burner tends to be far from the burner. Therefore, heating unevenness occurs between the portion where the burner is near and the portion where the burner is far, and the quartz glass tube which is the object to be sealed is bent. When the quartz glass tube is bent, the electrode is also easily bent. When this occurs when the straight tube portions on both sides of the quartz glass tube are sealed, the electrode is significantly decentered. In addition, the accuracy of the electrode interval in the lamp central axis direction also deteriorates.
[0016]
As described above, in the conventional sealing method, there are many electrode accuracy defects, and the yield is poor, and therefore, it is necessary to invent a sealing method that does not cause uneven heating.
[0017]
Accordingly, an object of the present invention is to provide an ultra-high pressure mercury lamp capable of performing heating without variation in the circumferential direction of the quartz glass tube when sealing the straight tube portion of the quartz glass tube into which the electrode assembly is inserted in view of the above-described actual situation. It is providing the sealing method and sealing apparatus.
[0018]
Patent Documents 1 and 2 do not examine the causal relationship between the sealing method of the quartz glass tube incorporating the electrode assembly and the electrode position accuracy after sealing, and the invention described in this specification. Is very different from these documents.
[0019]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present invention includes a hollow sphere part and straight pipe parts formed at both ends thereof, and the electrode and the metal foil are arranged so that a pair of electrodes are opposed to each other in the sphere part. When manufacturing an ultra-high pressure mercury lamp composed of a quartz glass tube in which an electrode assembly including an external lead wire is inserted into the straight tube portion,
Using a plurality of burners arranged on the circumference centering on the quartz glass tube, the straight pipe portion is sealed in a state where the center of the circumference and the central axis of the quartz glass tube are eccentric. A method,
Holding only one straight tube portion of the quartz glass tube into which the electrode assembly is inserted, so that the central axis of the quartz glass tube is directed in the vertical direction ,
The quartz glass tube is rotated about its central axis and moved in the vertical direction while heating the one straight pipe portion with the burner from the direction intersecting the central axis of the quartz glass tube.
[0020]
In said sealing method, it is preferable to start a heating from the position of the said straight pipe part corresponding to the junction part of the said electrode and the said metal foil. Furthermore, it is preferable that the quartz glass tube is heated from the direction intersecting the central axis of the quartz glass tube in a state where a portion of the quartz glass tube is immersed in the water tank.
[0021]
The present invention also includes an electrode including a hollow sphere portion and straight pipe portions formed at both ends thereof, and the electrode, the metal foil, and an external lead wire so that a pair of electrodes are disposed opposite to each other in the sphere portion. When manufacturing an ultra-high pressure mercury lamp composed of a quartz glass tube inserted into the straight tube part,
Using a plurality of burners arranged on the circumference centering on the quartz glass tube, the straight pipe portion is sealed in a state where the center of the circumference and the central axis of the quartz glass tube are eccentric. A device,
A holding part for holding only one straight pipe part of the quartz glass tube into which the electrode assembly is inserted, so that the central axis of the quartz glass tube is directed in the vertical direction ;
A lifting device for moving the holding part up and down;
And a rotation driving device for rotating the quartz glass tube held by the holding portion around a central axis thereof.
[0022]
The sealing device preferably includes a water tank in which a part of the quartz glass tube held by the holding part is immersed, and the heating and melting apparatus is disposed in the vicinity of the upper part of the water tank.
[0023]
The heating and melting apparatus is preferably a burner that faces the quartz glass tube held by the holding unit.
[0024]
In the invention as described above, the electrode assembly is held in such a manner that the quartz glass tube in which the electrode assembly is inserted in the straight tube portion is oriented so that its central axis faces the vertical direction. By rotating the quartz glass tube around its central axis while heating the inserted straight tube portion with a burner or the like, a phenomenon occurs in which the near and far portions of the burner and the like are always interchanged by rotation. For this reason, there is no uneven heating and the circumferential direction of the quartz glass tube is heated uniformly. As a result, the bending of the quartz glass tube is suppressed, and the accuracy defect of the electrode hardly occurs. Therefore, the yield in the lamp manufacturing process increases and the product price also decreases.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0026]
FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing an ultrahigh pressure mercury lamp according to an embodiment of the present invention.
[0027]
The lamp manufacturing apparatus shown in FIG. 1 includes a holding unit that holds a quartz glass tube 101 that is an object to be sealed, a lifting device that moves the holding unit up and down, and a heating and melting device that is disposed around the quartz glass tube 101. And a rotation drive device that rotates the holding portion of the quartz glass tube 101. The holding part of the quartz glass tube 101 is a device (for example, an air chuck) provided with the chuck 2. One end of the quartz glass tube 101 is sandwiched by the chuck 2 and is held so that the central axis of the quartz glass tube 101 faces the vertical direction. . The chuck 2 is attached to a chuck rotation motor 3 which is a rotation driving device, and is rotatable.
[0028]
The chuck rotation motor 3 is attached to a support member 5, and the support member 5 moves in the vertical direction as the spline shaft 4 rotates. The spline shaft 4 can be rotated by a servo motor 6 fixed to a pedestal 7. Such a lifting device is preferably a servo motor 6 with high positioning accuracy, but may be a stepping motor, an air cylinder, or the like.
[0029]
In addition, a water tank 8 in which the quartz glass tube 101 is immersed is installed on the pedestal 7, and a burner 9, which is a heating and melting device, opposes the quartz glass tube 101 held by the chuck 2 in the vicinity of the upper part of the water tank 8. Has been placed. In this example, two opposing burners are installed, but one burner or two or more burners may be provided. That is, in the circumferential direction around the quartz glass tube 101, in addition to the two burners facing each other at 180 degrees as in this example, the four burners are disposed at 90 degrees to face each other. Alternatively, the six burners may be arranged to face each other at 60 degrees.
[0030]
Next, the manufacturing method of the ultra high pressure mercury lamp using this manufacturing apparatus is demonstrated. In the description here, the reference numerals in FIG. 3 showing the components of the ultrahigh pressure mercury lamp are used.
[0031]
First, a quartz glass tube 101 in which the straight pipe portions 103 and 104 are respectively opened is prepared, and an end portion of one straight pipe portion 103 is heated and melted and sealed. Then, the electrode assembly is inserted from the opening of the other straight pipe portion 104 and positioned in the straight pipe portion 103 (see FIG. 4).
[0032]
The quartz glass tube 101 with the electrode assembly inserted into the straight tube portion 103 is held by the chuck 2 so that the central axis of the quartz glass tube 101 faces the vertical direction. At this time, the opposed burner 9 of the heating and melting apparatus (not shown) is disposed around the central axis of the quartz glass tube 101.
[0033]
Next, by rotating the spline shaft 4 by the servo motor 6, the quartz glass tube 101 held by the chuck 2 supported by the support member 5 is moved in the vertical direction, and a part of the quartz glass tube 101 is moved to the water tank 8. While being immersed, the burner 9 is made to face the sphere portion 102 (position corresponding to the welded portion of the tungsten electrode 106 and the molybdenum foil 105) as the light emitting portion. From this position, heating is started by the burner 9 in a direction crossing the central axis of the quartz glass tube 101, and the quartz glass tube 101 is rotated by the servo motor 6 while rotating the quartz glass tube 101 together with the chuck 2 by the chuck rotating motor 3. Lower to a predetermined position. As a result, the heated and melted portion of the straight pipe portion 103 is evenly contracted in the circumferential direction, and the portion around the molybdenum foil 105 in the straight pipe portion 103 is sealed to complete the sealing (see FIG. 5). .
[0034]
Next, an electrode assembly is disposed in the other straight pipe portion 104 of the quartz glass tube 101, and after introducing mercury, an inert gas and a halogen gas while exhausting the quartz glass tube 101, the straight pipe portion 104 is introduced. The end of each is heated and melted and sealed.
[0035]
Then, similarly to the sealing in the straight pipe portion 103 described above, the portion of the straight pipe portion 104 where the molybdenum foil 105 is inserted is moved while rotating the quartz glass tube 101 and heated and melted by the burner 9. The peripheral part of the foil 105 is sealed.
[0036]
The ultra high pressure mercury lamp is completed through the above process.
[0037]
Thus, in this embodiment, the method of rotating the chuck holding the quartz glass tube 101 that is the sealing object is employed. In this case, as shown in FIG. 2, a phenomenon occurs in which the portion near the burner (point C) and the portion far from the burner are always interchanged by rotation. Therefore, there is no unevenness in heating, and the circumferential direction of the quartz glass tube 101 is heated uniformly, and as a result, the bending of the quartz glass tube 101 is suppressed. Further, in this sealing method, the electrode tip tends to be easily directed to the center of the light emitting part (sphere part 102) during heating.
[0038]
As a result, the electrode eccentricity is greatly improved as shown in Table 1 below. When this eccentricity is large, the distance between the electrodes (by the way, the distance between the electrodes is the shortest distance at the tip of the electrode shown in FIG. 6 and is calculated from X and Y in the figure) is also increased, so that the eccentricity is improved. Then, the accuracy of the electrode spacing is automatically improved (Table 2). The electrode spacing is the product yield as it is, and when the standard is ± 0.15 mm, the defect rate is improved by about 10% compared to the conventional technology. In the future, it is expected that the standard will be about ± 0.10 mm if the electrode interval is further shortened. In this case, it can be seen that an improvement effect of about 30% can be obtained.
1) Improvement of eccentricity (definition: the largest value in the lateral displacement of the upper and lower electrode tips in FIG. 6)
[0039]
[Table 1]
Figure 0004371200
2) Improvement of the distance between the electrodes (Definition: The largest value of the distance between the upper and lower electrode tips in FIG. 6)
[0040]
[Table 2]
Figure 0004371200
[0041]
【The invention's effect】
According to the present invention, a hollow sphere portion and straight pipe portions formed at both ends thereof are provided, and the electrode, the metal foil, and the external lead wire are included so that a pair of electrodes are disposed to face each other in the sphere portion. When manufacturing an ultra-high pressure mercury lamp in which an electrode assembly is formed of a quartz glass tube inserted into the straight tube portion, a plurality of burners arranged on the circumference around the quartz glass tube are used, When the straight tube portion is sealed with the center and the central axis of the quartz glass tube being eccentric ,
Holding only one straight tube portion of the quartz glass tube into which the electrode assembly is inserted, so that the central axis of the quartz glass tube is directed in the vertical direction ,
By rotating the quartz glass tube around its central axis while moving the one straight pipe part with the burner from the direction intersecting the central axis of the quartz glass tube, and moving it up and down,
Heating can be performed without variation in the circumferential direction of the quartz glass tube. As a result, the bending of the quartz glass tube is suppressed, and the accuracy defect of the electrode hardly occurs, so that the yield in the lamp manufacturing process is increased and the lamp price can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an apparatus for manufacturing an ultrahigh pressure mercury lamp according to an embodiment of the present invention.
FIG. 2 is a schematic view of a sealing process viewed from the central axis direction of a quartz glass tube constituting an ultra high pressure mercury lamp as an embodiment of the present invention. FIG. 3 shows a general structure of the ultra high pressure mercury lamp. It is sectional drawing.
FIG. 4 is a schematic view showing a part of a general sealing process when manufacturing an ultrahigh pressure mercury lamp.
FIG. 5 is a schematic diagram showing a part of a general sealing process at the time of manufacturing an ultra-high pressure mercury lamp.
FIG. 6 is an enlarged cross-sectional view of the periphery of an electrode after a conventional sealing process of an ultra-high pressure mercury lamp.
FIG. 7 is a schematic view of a conventional sealing process viewed from the central axis direction of a quartz glass tube constituting an ultrahigh pressure mercury lamp.
[Explanation of symbols]
2 Chuck 3 Chuck rotation motor 4 Spline shaft 5 Support member 6 Servo motor 7 Base 8 Water tank 9 Burner 101 Silica glass tube 102 Spherical part 103, 104 Straight pipe part 105 Molybden foil 106 Tungsten electrode 107 External lead wire

Claims (6)

中空の球体部とその両端に形成された直管部とを備え、一対の電極が前記球体部内に対向配置されるように前記電極と金属箔と外部リード線とを含む電極アセンブリが前記直管部に挿入された石英ガラス管からなる超高圧水銀ランプを製造する際、
前記石英ガラス管を中心とした円周上に配置された複数のバーナーを用い、該円周の中心と、前記石英ガラス管の中心軸とが偏心した状態で、前記直管部を封止する方法であって、
前記石英ガラス管の中心軸が上下方向を向くように、前記電極アセンブリが挿入された前記石英ガラス管の一方の直管部のみを保持し、
該石英ガラス管の中心軸と交差する方向から該一方の直管部を前記バーナーで加熱しながら、前記石英ガラス管をその中心軸周りに回転させ、上下方向に移動させる、超高圧水銀ランプの封止方法。
An electrode assembly including a hollow sphere portion and straight pipe portions formed at both ends thereof, and including the electrodes, metal foil, and external lead wires so that a pair of electrodes are disposed opposite to each other in the sphere portion, includes the straight pipe. When manufacturing an ultra-high pressure mercury lamp consisting of a quartz glass tube inserted in the section,
Using a plurality of burners arranged on the circumference centering on the quartz glass tube, the straight pipe portion is sealed in a state where the center of the circumference and the central axis of the quartz glass tube are eccentric. A method,
Holding only one straight tube portion of the quartz glass tube into which the electrode assembly is inserted, so that the central axis of the quartz glass tube is directed in the vertical direction ,
An ultra-high pressure mercury lamp that rotates the quartz glass tube around its central axis and moves it up and down while heating the one straight pipe portion with the burner from the direction intersecting the central axis of the quartz glass tube. Sealing method.
前記直管部の、前記電極と前記金属箔の接合部分に対応する位置から前記バーナーでの加熱を開始する、請求項1に記載の超高圧水銀ランプの封止方法。The method for sealing an ultrahigh pressure mercury lamp according to claim 1, wherein heating by the burner is started from a position of the straight pipe portion corresponding to a joint portion between the electrode and the metal foil. 前記石英ガラス管の一部を水槽に浸漬した状態で、該石英ガラス管の中心軸と交差する方向から前記バーナーでの加熱を行う、請求項1に記載の超高圧水銀ランプの封止方法。2. The method for sealing an ultrahigh pressure mercury lamp according to claim 1, wherein heating with the burner is performed from a direction intersecting a central axis of the quartz glass tube while a part of the quartz glass tube is immersed in a water tank. 中空の球体部とその両端に形成された直管部とを備え、一対の電極が前記球体部内に対向配置されるように前記電極と金属箔と外部リード線とを含む電極アセンブリが前記直管部に挿入された石英ガラス管からなる超高圧水銀ランプを製造する際、
前記石英ガラス管を中心とした円周上に配置された複数のバーナーを用い、該円周の中心と、前記石英ガラス管の中心軸とが偏心した状態で、前記直管部を封止する装置であって、
前記石英ガラス管の中心軸が上下方向を向くように、前記電極アセンブリが挿入された前記石英ガラス管の一方の直管部のみを保持する保持部と、
前記保持部を上下に移動する昇降装置と、
前記保持部に保持された前記石英ガラス管をその中心軸周りに回転させる回転駆動装置とを備えた、超高圧水銀ランプの封止装置。
An electrode assembly including a hollow sphere portion and straight pipe portions formed at both ends thereof, and including the electrodes, metal foil, and external lead wires so that a pair of electrodes are disposed opposite to each other in the sphere portion, includes the straight pipe. When manufacturing an ultra-high pressure mercury lamp consisting of a quartz glass tube inserted in the section,
Using a plurality of burners arranged on the circumference centering on the quartz glass tube, the straight pipe portion is sealed in a state where the center of the circumference and the central axis of the quartz glass tube are eccentric. A device,
A holding part for holding only one straight pipe part of the quartz glass tube into which the electrode assembly is inserted, so that the central axis of the quartz glass tube is directed in the vertical direction ;
A lifting device for moving the holding part up and down;
A sealing device for an ultra-high pressure mercury lamp, comprising: a rotation driving device that rotates the quartz glass tube held by the holding portion around a central axis thereof.
記石英ガラス管の一部を浸漬させる水槽を備え、該水槽の上部近傍に前記バーナーが配置されている、請求項4に記載の超高圧水銀ランプの封止装置。Comprising a water tank for immersing a part of the pre-Symbol quartz glass tube, the burner near the top of the water tank is arranged, the sealing device of the ultra-high pressure mercury lamp according to claim 4. 前記複数のバーナーは前記保持部で保持された前記石英ガラス管を挟んで対向する、請求項4に記載の超高圧水銀ランプの封止装置。Wherein the plurality of burners you face each other across said quartz glass tube which is held by the holding portion, the sealing device of the ultra-high pressure mercury lamp according to claim 4.
JP2003138767A 2003-05-16 2003-05-16 Ultra high pressure mercury lamp sealing method and sealing device Expired - Fee Related JP4371200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003138767A JP4371200B2 (en) 2003-05-16 2003-05-16 Ultra high pressure mercury lamp sealing method and sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003138767A JP4371200B2 (en) 2003-05-16 2003-05-16 Ultra high pressure mercury lamp sealing method and sealing device

Publications (2)

Publication Number Publication Date
JP2004342497A JP2004342497A (en) 2004-12-02
JP4371200B2 true JP4371200B2 (en) 2009-11-25

Family

ID=33528045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003138767A Expired - Fee Related JP4371200B2 (en) 2003-05-16 2003-05-16 Ultra high pressure mercury lamp sealing method and sealing device

Country Status (1)

Country Link
JP (1) JP4371200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191676B (en) * 2011-05-20 2012-06-06 吕铭 Automatic forcible clothes drier

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5876661B2 (en) * 2011-03-29 2016-03-02 株式会社オーク製作所 Discharge lamp and discharge lamp manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191676B (en) * 2011-05-20 2012-06-06 吕铭 Automatic forcible clothes drier

Also Published As

Publication number Publication date
JP2004342497A (en) 2004-12-02

Similar Documents

Publication Publication Date Title
JP4371200B2 (en) Ultra high pressure mercury lamp sealing method and sealing device
CN1202556C (en) Discharge lamp and its making method, and lamp assembling unit
JP3322390B2 (en) Manufacturing method of fluorescent lamp
EP0229348B1 (en) Method and apparatus for manufacturing cathode ray tube
JPH0417908B2 (en)
JP3565829B2 (en) Electrode, method for manufacturing the same, and metal vapor discharge lamp
JP2010218890A (en) Bead stem and fluorescent lamp using the same
USRE36055E (en) Method of manufacturing electrodes
JP3101379U (en) Cup-shaped electrode bottom shape of cold cathode fluorescent lamp
JPH0142290Y2 (en)
JPS5889756A (en) Sealing apparatus for electrode of luminous bulb for discharge lamp
JPS62219435A (en) Sealing device for cathode-ray tube
JPH10302636A (en) Water-cooled low pressure mercury lamp and its manufacture
JPH06103968A (en) Manufacture of small tube and its device
JP3070105B2 (en) How to seal an electron gun
JPH0480495B2 (en)
JP2014067569A (en) Fixing structure of electrode lead rod and its fixing method
JP2005327594A (en) Manufacturing device and manufacturing method of cold-cathode fluorescent lamp
JPH0992157A (en) Sealing method of image receiving tube and image receiving tube sealing burner device
JPS62219433A (en) Sealing device for cathoe-ray tube
WO2004086442A1 (en) Discharge lamp producing method
JPH01246153A (en) Forming of glass tube
JPH06310030A (en) Manufacture of electric discharging lamp
JPH0536356A (en) Sealing device and sealing method for tubular bulb
JPH0528917A (en) Sealing device for tubular bulb

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080416

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4371200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090825

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees