JP4370956B2 - Method and apparatus for processing soluble organic substance-containing liquid - Google Patents

Method and apparatus for processing soluble organic substance-containing liquid Download PDF

Info

Publication number
JP4370956B2
JP4370956B2 JP2004088580A JP2004088580A JP4370956B2 JP 4370956 B2 JP4370956 B2 JP 4370956B2 JP 2004088580 A JP2004088580 A JP 2004088580A JP 2004088580 A JP2004088580 A JP 2004088580A JP 4370956 B2 JP4370956 B2 JP 4370956B2
Authority
JP
Japan
Prior art keywords
soluble organic
bacteria
organic substance
containing liquid
activated sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004088580A
Other languages
Japanese (ja)
Other versions
JP2004306026A (en
Inventor
要生 大竹
世人 伊藤
麻里 河邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2004088580A priority Critical patent/JP4370956B2/en
Publication of JP2004306026A publication Critical patent/JP2004306026A/en
Application granted granted Critical
Publication of JP4370956B2 publication Critical patent/JP4370956B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Activated Sludge Processes (AREA)

Description

本発明は、食品工場などから排出される産業廃水や生活排水など、溶解性有機物を含有する液体を膜分離活性汚泥法により処理するにあたって好適に採用することができる溶解性有機物含有液の処理方法および処理装置に関する。   The present invention is a method for treating a solution containing a soluble organic substance that can be suitably employed for treating a liquid containing a soluble organic substance such as industrial wastewater and domestic wastewater discharged from a food factory by the membrane separation activated sludge method. And a processing device.

廃水などの溶解性有機物含有液の処理に適用される膜分離活性汚泥法においては、その処理安定性を損なう様々な現象が知られている。例えば、膜の目詰まりによる膜透水性不良や激しい発泡、スカムの発生、さらには粘性増加に伴う曝気効率の悪化や汚泥流動性減少・気泡の抱き込みによる不具合などが挙げられる。   In the membrane separation activated sludge method applied to the treatment of a solution containing a soluble organic substance such as waste water, various phenomena that impair the treatment stability are known. For example, membrane permeability failure due to clogging of the membrane, severe foaming, scum generation, deterioration of aeration efficiency due to increase in viscosity, sludge fluidity reduction, defects due to bubble inclusion, and the like can be mentioned.

一方、活性汚泥法をはじめとする溶解性有機物含有液の生物学的処理においては、不安定性を予測・把握する様々な方法が提案されており、例えば溶存酸素や酸化還元電位、pH変動などをモニタリングする方法が知られている。特に近年では、有用な微生物の生育をモニタリングしその制御の一助にすることを目的とした技術が提案されている(特許文献1)。また、同様に、トラブル原因微生物の生育をモニタリングする技術も提案されており、例えば活性汚泥法における沈降性不良現象(糸状性バルキング)の原因の一つとされる糸状性細菌(「アイケルブームタイプ021N(Eikelboom Type021N)」細菌など)をモニタリングする方法が提案されている(特許文献2)。   On the other hand, various methods for predicting and grasping instability have been proposed in biological treatment of dissolved organic matter-containing liquids such as the activated sludge method. For example, dissolved oxygen, redox potential, pH fluctuation, etc. Monitoring methods are known. Particularly in recent years, a technique for monitoring the growth of useful microorganisms and helping to control the growth has been proposed (Patent Document 1). Similarly, a technique for monitoring the growth of trouble-causing microorganisms has also been proposed. For example, filamentous bacteria (“Eikel boom type”), which is one of the causes of sedimentation failure in the activated sludge process (filamentous bulking). [021N (Eikelboom Type021N) "bacteria, etc.) has been proposed (Patent Document 2).

しかし、こうした従来の方法は溶解性有機物含有液の全ての生物学的処理方法に適用できるものではなく、特に膜分離活性汚泥法においては適切でない場合が多い。これは、特許文献2に記載の方法も含め、一般に活性汚泥法はその処理方法ゆえ、汚泥の比重低下や圧密性低下などの沈降性不良対策を重視しなければならず、その対策として各種方法が開発されてきたのに対し、膜分離活性汚泥法では活性汚泥法とは異なり前述の膜透水性不良や発泡、スカムの発生、粘性増加など別の要素が大きな問題となるからである。それにも拘わらず、膜分離活性汚泥法に適切な不安定性予測・把握方法やその制御方法は十分に確立されていない。特許文献3および特許文献4には、汚泥混合液の粘性測定結果をもとに運転制御を行う方法が示されているが、これでは、粘性が上昇してから運転条件を制御する、すなわち、実際に膜透水性に影響を与えるようになってから対処することになり、後追いの対処で十分な方法とは言えない。そのため、膜分離活性汚泥法において早い段階でトラブルを予測・検知し対策を講ずることができる手段を開発することは急務である。
特開2001-128678号公報 特開2002-119300号公報 特開平7-75782号公報 特開平9-75938号公報
However, such conventional methods are not applicable to all biological treatment methods of liquids containing soluble organic substances, and are often not suitable particularly in the membrane separation activated sludge method. This is because, in general, the activated sludge method including the method described in Patent Document 2 is a treatment method. Therefore, it is important to focus on countermeasures against sedimentation defects such as reduced specific gravity and reduced compactness of sludge. This is because, unlike the activated sludge method, other factors such as poor membrane water permeability, foaming, scum generation, and increased viscosity become major problems in the membrane separation activated sludge method. Nevertheless, the instability prediction and grasping method and its control method appropriate for the membrane separation activated sludge method have not been sufficiently established. Patent Document 3 and Patent Document 4 show a method of controlling the operation based on the result of measuring the viscosity of the sludge mixed solution. In this method, however, the operating condition is controlled after the viscosity has increased. It will be dealt with after actually affecting the membrane permeability, and it cannot be said that the follow-up deal is sufficient. Therefore, there is an urgent need to develop means that can predict and detect troubles and take countermeasures at an early stage in the membrane separation activated sludge method.
JP 2001-128678 A JP 2002-119300 A JP-A-7-75782 JP-A-9-75938

本発明は、従来技術における上記問題点を受けてなされたものであって、その目的は、溶解性有機物含有液を膜分離活性汚泥法にて膜透水性不良や発泡、スカムの発生、粘性増加などを防ぎつつ処理する方法および装置を提供することにある。   The present invention has been made in response to the above-mentioned problems in the prior art, and its purpose is to use a soluble organic substance-containing liquid in a membrane-separated activated sludge method, resulting in poor membrane permeability, foaming, occurrence of scum, increased viscosity. It is an object of the present invention to provide a method and apparatus for processing while preventing the above.

上記課題を解決するため、本発明は以下の構成を有する。すなわち、
(1)膜分離活性汚泥法により溶解性有機物含有液を処理する際に、溶解性有機物含有液と活性汚泥との混合液中に存在するフレクトバシラス(Flectobacillus)系統群細菌の状態をモニタリングしながら処理を行うことを特徴とする溶解性有機物含有液の処理方法。
(2)膜分離活性汚泥法により溶解性有機物含有液を処理する際に、溶解性有機物含有液と活性汚泥との混合液中に存在するフレクトバシラス系統群細菌の状態をモニタリングして処理条件を制御することを特徴とする溶解性有機物含有液の処理方法。
(3)フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の遺伝情報に基づいてモニタリングする、上記(1)または(2)に記載の溶解性有機物含有液の処理方法。
(4)フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌のRNA転写特性、蛋白質翻訳特性および生成物質特性の少なくとも1つに基づいてモニタリングする、上記(1)〜(3)のいずれかに記載の溶解性有機物含有液の処理方法。
(5)フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の形態学的特徴に基づいてモニタリングする、上記(1)〜(4)のいずれかに記載の溶解性有機物含有液の処理方法。
(6)溶解性有機物含有液を活性汚泥により処理する生物反応槽と、溶解性有機物含有液と活性汚泥との混合液を固液分離する分離膜と、溶解性有機物含有液と活性汚泥との混合液中のフレクトバシラス系統群細菌の状態をモニタリングするモニタリング手段とを備えている溶解性有機物含有液の処理装置。
(7)モニタリング手段は、フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の遺伝情報、RNA転写特性、蛋白質翻訳特性、生成物質特性および形態学的特徴の少なくとも1つに基づいてモニタリングするものである、上記(6)に記載の溶解性有機物含有液の処理装置。
(8)モニタリング手段は処理条件の制御手段を備えている、上記(6)または(7)に記載の溶解性有機物含有液の処理装置。
In order to solve the above problems, the present invention has the following configuration. That is,
(1) When processing the soluble organic substance-containing liquid by the membrane-separated activated sludge method, while monitoring the state of the Flectobacillus strain group bacteria present in the mixed liquid of the soluble organic substance-containing liquid and the activated sludge A method for treating a soluble organic substance-containing liquid, which comprises performing a treatment.
(2) When processing the soluble organic substance-containing liquid by the membrane-separated activated sludge method, the condition of the Fructobacillus strain group bacteria present in the mixed liquid of the soluble organic substance-containing liquid and the activated sludge is monitored to determine the processing conditions. A method for treating a soluble organic substance-containing liquid, which comprises controlling.
(3) The method for treating a soluble organic substance-containing liquid according to (1) or (2) above, wherein the state of the bacteria of the Streptobacillus strain group is monitored based on genetic information of the bacteria of the Streptobacillus strain group.
(4) Any of the above (1) to (3), wherein the state of the bacteria of the Streptococcus group is monitored based on at least one of the RNA transcription characteristics, protein translation characteristics and product characteristics of the bacteria The processing method of the soluble organic substance containing liquid as described in 2.
(5) The method for treating a solution containing a soluble organic substance according to any one of the above (1) to (4), wherein the state of the bacteria of the family Flectobacillus is monitored based on the morphological characteristics of the bacteria of the family Flectobacillus. .
(6) A biological reaction tank that treats a soluble organic substance-containing liquid with activated sludge, a separation membrane that separates a mixed liquid of the soluble organic substance-containing liquid and activated sludge, and a soluble organic substance-containing liquid and activated sludge. A processing apparatus for a solution containing a soluble organic substance, comprising: a monitoring means for monitoring the state of the bacteria of the group of Streptococcus in the mixed solution.
(7) The monitoring means monitors the state of the bacteria of the Streptococcus group based on at least one of genetic information, RNA transcription characteristics, protein translation characteristics, product characteristics and morphological characteristics of the bacteria. The processing apparatus of the soluble organic substance containing liquid as described in said (6) which is what.
(8) The processing apparatus for a soluble organic substance-containing liquid according to (6) or (7), wherein the monitoring means includes a processing condition control means.

ここで、本発明において、膜分離活性汚泥法とは、活性汚泥などの微生物により廃水中の有機物や窒素・リンなどの汚濁物質の除去を行い、清澄な処理液を得るにあたって膜分離を用いる方法のことをいう。膜分離方式は、浸漬膜方式、外部膜分離方式など特に問わない。   Here, in the present invention, the membrane separation activated sludge method is a method using membrane separation to remove organic substances in waste water and pollutants such as nitrogen and phosphorus by microorganisms such as activated sludge to obtain a clear treatment liquid. I mean. The membrane separation method is not particularly limited, such as an immersion membrane method or an external membrane separation method.

また、本発明において、フレクトバシラス(Flectobacillus)系統群細菌とは、原核生物の系統分類学指標として多く用いられている16S リボソームRNA遺伝子が配列番号1記載の塩基配列に対して相同率88%以上の細菌を指し、培養の可否を問わない。フレクトバシラス系統群細菌に含まれる細菌には、例えばフレクトバシラス属細菌が含まれ、フレクトバシラス・メイジャー(Flectobacillus major)やフレクトバシラス・スピランケイ(Flectobacillus speluncae)、Flectobacillus sp. EP293、Flectobacillus sp. str. MWH38などが挙げられる。当然、分類されておらずフレクトバシラス属に属するとされていない細菌であっても、前述の条件に合致していれば、その近縁性からフレクトバシラス系統群細菌とする。   Further, in the present invention, the Flectobacillus family bacteria means that the 16S ribosomal RNA gene, which is often used as a prokaryotic phylogenetic index, has a homology of 88% or more with respect to the base sequence described in SEQ ID NO: 1. It does not matter whether or not the culture is possible. Bacteria contained in the group of bacteria belonging to the family Flectobacillus include, for example, bacteria belonging to the genus Flectobacillus, such as Flectobacillus major, Flectobacillus speluncae, Flectobacillus sp. EP293, Flectobacillus sp. Str. Etc. Naturally, even if the bacteria are not classified and are not classified as belonging to the genus Flectobacillus, if they meet the above-mentioned conditions, they are considered to be a Flectobacillus strain group bacteria because of their closeness.

そして、フレクトバシラス系統群細菌の状態とは、フレクトバシラス系統群細菌の存在数や濃度、優占性、特性などを指す。   And, the state of the Flectobacillus strain group bacteria refers to the number, concentration, dominance, characteristics, etc. of the Flectobacillus strain group bacteria.

本発明によれば、膜分離活性汚泥法により溶解性有機物含有液を処理する際に、溶解性有機物含有液と活性汚泥との混合液中に存在するフレクトバシラス(Flectobacillus)系統群細菌の状態をモニタリングしながら処理するので、その結果に応じて処理条件を制御することができる。そのため、、早い段階で粘性増加、膜の目詰まりなどを予測、検知して対策を講じることができ、膜透水性不良や発泡・スカムの発生など処理安定性を損なう様々な現象の発生を未然に防止することが出来る。   According to the present invention, when a soluble organic substance-containing liquid is treated by the membrane-separated activated sludge method, the state of the Flectobacillus strain group bacteria present in the mixed liquid of the soluble organic substance-containing liquid and the activated sludge is determined. Since the processing is performed while monitoring, the processing conditions can be controlled according to the result. For this reason, it is possible to predict and detect viscosity increase and clogging of the membrane at an early stage and take measures to prevent various phenomena that impair processing stability such as poor membrane permeability and foaming / scum. Can be prevented.

以下、本発明を詳細かつ具体的に説明する。   Hereinafter, the present invention will be described in detail and specifically.

本発明においては、廃水などの溶解性有機物含有液が例えば図1に示す処理装置にて処理され、最終的に得られる清澄液は、河川等にそのまま放流することができる程度にまで溶解性有機物が分解処理されている。   In the present invention, a soluble organic substance-containing liquid such as waste water is treated by, for example, the treatment apparatus shown in FIG. 1, and the finally obtained clarified liquid is soluble organic substance to such an extent that it can be discharged into a river or the like as it is. Has been disassembled.

図1に示す処理装置は、微生物を含有する汚泥を収容した生物反応槽1と、その生物反応槽1に原液を供給する原液ポンプ4と、生物処理された処理液を固液分離する膜分離装置2と、固液分離の際に分離液を吸引する吸引ポンプ3と、生物反応槽1内の溶解性有機物含有液と活性汚泥との混合液中のフレクトバシラス系統群細菌の状態をモニタリングするモニタリング手段7とを備えている。膜分離装置2は、生物反応槽1内の処理液に浸漬されており、その膜分離装置2の下方には、酸素を供給し好気処理を進行させるとともに膜面の洗浄を行う、ブロワー6に接続された曝気装置5が設けられている。また、生物反応槽1の下方には、必要に応じて余剰汚泥を引き抜く汚泥引き抜きポンプ13が設置されている。   The processing apparatus shown in FIG. 1 includes a biological reaction tank 1 containing sludge containing microorganisms, a raw solution pump 4 for supplying a raw solution to the biological reaction tank 1, and a membrane separation for solid-liquid separation of the biologically processed processing liquid. Monitors the state of the bacteria of the group of the Streptococcus strains in the mixed liquid of the device 2, the suction pump 3 for sucking the separated liquid during the solid-liquid separation, and the soluble organic substance-containing liquid and the activated sludge in the biological reaction tank 1 And monitoring means 7. The membrane separation device 2 is immersed in a treatment liquid in the biological reaction tank 1, and oxygen is supplied below the membrane separation device 2 to advance the aerobic treatment and to clean the membrane surface. An aeration device 5 connected to is provided. In addition, a sludge extraction pump 13 for extracting excess sludge as necessary is installed below the biological reaction tank 1.

生物反応槽1には、微生物を含有する汚泥が収容されており、この微生物が、有機物の分解菌、さらにはそれら微生物の分解菌として作用し、生物処理を行う。従って、生物反応槽1は、汚泥が部分的に偏在することがないように、また、酸素が均一に供給され部分的に嫌気性になることがないように、内表面に角がないものや凹凸がないものが好ましい。この結果、生物反応槽1内では処理液の温度やpHが均一になる。   The biological reaction tank 1 contains sludge containing microorganisms, and these microorganisms act as organic matter-degrading bacteria and further decompose these microorganisms to perform biological treatment. Therefore, the bioreactor 1 has an inner surface with no corners so that sludge is not partially unevenly distributed and oxygen is uniformly supplied and partially anaerobic. The thing without an unevenness | corrugation is preferable. As a result, the temperature and pH of the treatment liquid become uniform in the biological reaction tank 1.

また、汚泥に含有される微生物は、細菌類、酵母およびカビを含む真菌類など、溶解性有機物などの分解に寄与するもので、土壌、堆肥、汚泥など、自然界から集積培養及び馴養によって取得される。またこの馴養液から分解に関与する主要な微生物群を単離して用いることも可能である。   Microorganisms contained in sludge contribute to the degradation of soluble organic matter such as bacteria, yeasts and fungi including fungi, and are obtained from nature, such as soil, compost, and sludge, by accumulating culture and acclimatization. The It is also possible to isolate and use the main microbial group involved in the degradation from this conditioned solution.

生物反応槽1には、その他、微生物の生育に必要な成分が収容されていなければならない。そのため、例えば窒素、リン、カリウム、ナトリウム、マグネシウムその他の金属塩を、原液中に既に含まれている場合を除き、生物反応槽に添加する。   The biological reaction tank 1 must contain other components necessary for the growth of microorganisms. Therefore, for example, nitrogen, phosphorus, potassium, sodium, magnesium and other metal salts are added to the bioreactor, except when already contained in the stock solution.

そして、生物反応槽1に設けられている膜分離装置2としては、精密ろ過膜、限外ろ過膜、ナノろ過膜、逆浸透膜などを用いて形成されたモジュールを用いることができる。経済性の観点からは、ろ過速度が高くコンパクト化が可能で、メンテナンスが容易である精密ろ過膜、限外ろ過膜を用いたモジュールが好ましい。膜の形状は平膜、中空糸膜等のものが用いられる。モジュールの形態も特に限定されないが、本実施態様においては省スペース化のため浸漬型の膜モジュールを使用している。なお、浸漬型の場合は、曝気装置や撹拌装置との組合せ、配置により、ファウリング物質がうまく除去できるような形状であることが好ましい。さらに、膜分離装置2におけるろ過方法としては、クロスフロー方式や全量ろ過方式があるが、クロスフロー方式を採用すれば膜面の汚れを取りながらろ過できる。   As the membrane separation device 2 provided in the biological reaction tank 1, a module formed using a microfiltration membrane, an ultrafiltration membrane, a nanofiltration membrane, a reverse osmosis membrane, or the like can be used. From the economical point of view, a module using a microfiltration membrane or an ultrafiltration membrane that has a high filtration rate and can be made compact and is easy to maintain is preferable. The membrane may be a flat membrane, a hollow fiber membrane or the like. The form of the module is not particularly limited, but in this embodiment, an immersion type membrane module is used for space saving. In the case of the immersion type, the shape is preferably such that the fouling substance can be successfully removed by combination and arrangement with an aeration apparatus or a stirring apparatus. Furthermore, as a filtration method in the membrane separation device 2, there are a cross flow method and a total amount filtration method. If the cross flow method is employed, filtration can be performed while removing the membrane surface.

また、生物反応槽1内の溶解性有機物含有液と活性汚泥との混合液中のフレクトバシラス系統群細菌の状態をモニタリングするモニタリング手段7としては、フレクトバシラス系統群細菌の遺伝情報、RNA転写特性、蛋白質翻訳特性、発現蛋白質生成物質特性、形態学的特徴などに基づいて、フレクトバシラス系統群細菌の状態をモニタリングするものを用いることができる。   In addition, as a monitoring means 7 for monitoring the state of the bacteria of the Streptococcus strain group in the mixed solution of the soluble organic substance-containing liquid and the activated sludge in the biological reaction tank 1, genetic information of the Streptococcus strain group bacteria, RNA transcription characteristics Based on protein translation characteristics, expressed protein-generating substance characteristics, morphological characteristics, and the like, it is possible to use those that monitor the status of the bacteria of the family Flectobacillus.

具体的には、遺伝情報に基づいてモニタリングする場合には、蛍光顕微鏡、蛍光イメージスキャナ等の蛍光測定装置、核酸のハイブリダイゼーション検出装置、フローサイトメーター、サーマルサイクラーおよび電気泳動装置などである。また、RNA転写特性、蛋白質翻訳特性、発現蛋白質生成物質特性などの遺伝子発現特性に基づいてモニタリングする場合には、蛍光顕微鏡、フローサイトメーター、電気泳動装置、質量分析装置、画像解析装置、分光光度計、蛍光測定装置、発光量測定装置など、さらに、形態学的特徴に基づいてモニタリングする場合には、顕微鏡や、顕微鏡付属画像記録手段およびその画像解析手段などを用いればよい。   Specifically, when monitoring based on genetic information, a fluorescence measuring device such as a fluorescence microscope or a fluorescence image scanner, a nucleic acid hybridization detection device, a flow cytometer, a thermal cycler, and an electrophoresis device are used. In addition, when monitoring based on gene expression characteristics such as RNA transcription characteristics, protein translation characteristics, expressed protein product characteristics, etc., fluorescence microscope, flow cytometer, electrophoresis apparatus, mass spectrometer, image analyzer, spectrophotometer When monitoring based on morphological features, such as a meter, a fluorescence measuring device, a luminescence measuring device, etc., a microscope, a microscope-attached image recording means and an image analyzing means thereof may be used.

そして、モニタリング手段7には、モニタリング結果に基づいて処理条件を制御する処理条件制御装置8が付加されている。たとえば、処理条件制御装置8は、モニタリング結果に基づく処理条件調整信号9を吸引ポンプ3に発し、時間当たりの膜ろ過水量や吸引圧力を調整したり、膜ろ過運転時間の増減などを行う。また、生物反応槽1の雰囲気をコントロールする処理条件調整信号10を発し、pHや温度、曝気量、攪拌条件の調整を行うこともでき、生物反応槽1に流入する溶解性有機物含有液の詳細条件をコントロールする処理条件調整信号11を発し、汚泥負荷量調整や溶解性有機物含有液に含まれる汚濁物質の種別調整、抗生物質等薬品や特異的ウィルスの添加、微量元素の添加量調整などを行うこともできる。そして、生物反応槽1における汚泥滞留時間を制御するため処理条件調整信号12を発し、汚泥引き抜き量を調整することもできる。さらに、これらの調整を通して水滞留時間を調整することもできる。   The monitoring means 7 is provided with a processing condition control device 8 that controls processing conditions based on the monitoring result. For example, the processing condition control device 8 issues a processing condition adjustment signal 9 based on the monitoring result to the suction pump 3 to adjust the amount of membrane filtration water and suction pressure per hour, increase or decrease the membrane filtration operation time, and the like. In addition, the processing condition adjustment signal 10 for controlling the atmosphere of the biological reaction tank 1 can be issued to adjust the pH, temperature, aeration amount, and stirring conditions. The details of the soluble organic substance-containing liquid flowing into the biological reaction tank 1 Processing condition adjustment signal 11 to control the conditions, adjustment of sludge load amount, adjustment of types of pollutants contained in soluble organic substance-containing liquid, addition of antibiotics and other chemicals and specific viruses, adjustment of addition amount of trace elements, etc. It can also be done. And in order to control the sludge residence time in the biological reaction tank 1, the process condition adjustment signal 12 can be emitted and the sludge extraction amount can also be adjusted. Furthermore, the water residence time can be adjusted through these adjustments.

このように構成された処理装置において、溶解性有機物含有液は次のように処理される。原液ポンプ4によって溶解性有機物含有液は生物反応槽1に供給され、生物反応槽1内の活性汚泥によって溶解性有機物が分解される。このとき、生物反応槽1は、ブロワー6に連結された曝気装置5によって酸素が供給されることによって好気性に保たれる。そして、溶解性有機物含有液と活性汚泥との混合液は膜分離装置2に供され、活性汚泥と清澄な処理液に分離される。   In the processing apparatus configured as described above, the soluble organic substance-containing liquid is processed as follows. The soluble organic substance-containing liquid is supplied to the biological reaction tank 1 by the stock solution pump 4, and the soluble organic substance is decomposed by the activated sludge in the biological reaction tank 1. At this time, the biological reaction tank 1 is kept aerobic by being supplied with oxygen by the aeration apparatus 5 connected to the blower 6. And the liquid mixture of a soluble organic substance containing liquid and activated sludge is provided to the membrane separator 2, and is isolate | separated into activated sludge and a clear processing liquid.

そして、本発明においては、膜分離に供される溶解性有機物含有液と活性汚泥との混合液について、モニタリング手段7でフレクトバシラス系統群細菌の状態をモニタリングするが、このとき処理条件制御装置8によりモニタリング結果に基づく処理条件の調整を行うことが好ましい。   And in this invention, about the liquid mixture of the soluble organic substance containing liquid and activated sludge which are used for membrane separation, the monitoring means 7 monitors the state of the Fructobacillus strain group bacteria. It is preferable to adjust the processing conditions based on the monitoring result.

処理条件の調整としては、たとえば生物反応槽1内の汚泥負荷の調整や溶解性有機物含有液に含まれる汚濁物質の種別調整、pH調整、温度調整、曝気量調整、撹拌条件調整、抗生物質等薬品添加、窒素、リン、マグネシウムなどの微量元素添加量調整、汚泥滞留時間・水滞留時間調整、特異的ウィルスの添加、時間当たりの膜ろ過水量や吸引圧力の調整、膜ろ過運転時間の増減、流入負荷変動を調整する調整槽の調節などが挙げられ、これらの方法を試行することを通じて、トラブル発生前のモニタリング状況により近付くように制御する。なお、汚濁物質の種別調整とは、例えば別々の工程で排出された糖廃水と脂質廃水とを混合して生物処理する際に、糖廃水の投入を一時中断もしくは割合を減少させ、脂質廃水の投入割合を一時的に増加させるといった調整のことである。   Examples of adjustment of treatment conditions include adjustment of sludge load in biological reaction tank 1, type adjustment of pollutants contained in soluble organic substance-containing liquid, pH adjustment, temperature adjustment, aeration amount adjustment, agitation condition adjustment, antibiotics, etc. Addition of chemicals, adjustment of trace elements such as nitrogen, phosphorus and magnesium, adjustment of sludge residence time / water residence time, addition of specific viruses, adjustment of membrane filtration water volume and suction pressure per hour, increase / decrease of membrane filtration operation time, Adjustment of the adjustment tank that adjusts the inflow load fluctuation, etc. can be mentioned, and through these methods, control is performed so that the monitoring situation before the trouble occurs is closer. In addition, the type adjustment of the pollutant is, for example, when sugar wastewater and lipid wastewater discharged in separate processes are mixed and biologically treated, the input of sugar wastewater is temporarily suspended or the ratio is reduced, and the lipid wastewater is reduced. It is an adjustment that increases the input ratio temporarily.

フレクトバシラス系統群細菌は、普通寒天培地やフレクトバシラス系統群細菌選択培地などによる平板培養法によって増殖させてモニタリングすることもできるが、たとえば次に説明するように、フレクトバシラス系統群細菌の遺伝情報、RNA転写特性、蛋白質翻訳特性、生成物質特性、形態学的特徴などに基づいてその存在数や濃度、優占性、形態、特性の経時的変化などを観察すると、精度が高く、効率的であるので好ましい。   Fructobacillus group bacteria can be monitored by growing them by a plate culture method using a normal agar medium or Flectobacillus group bacteria selection medium. For example, as described below, the genetic information of the Flectobacillus group bacteria It is highly accurate and efficient to observe changes in number, concentration, dominance, morphology, and characteristics over time based on RNA transcription characteristics, protein translation characteristics, product characteristics, morphological characteristics, etc. This is preferable.

<モニタリング方法1:遺伝情報/特定遺伝子配列に基づくモニタリング>
フレクトバシラス系統群細菌の存在数や濃度、優占性を遺伝情報に基づいてモニタリングする方法としては、染色体ゲノム全体のハイブリダイゼーション相同値による方法や、フレクトバシラス系統群細菌に特異的な遺伝子配列に基づく方法があるが、簡単に効率的かつ実質的に確認できるという観点から後者の方法に基づいてモニタリングすることが好ましい。特異的な遺伝子配列対象としては、16SリボソームRNA遺伝子、23SリボソームRNA遺伝子、gyrB遺伝子配列、リボソームRNA遺伝子間スペーサー領域などが挙げられる。また、モニタリングの対象としては、フレクトバシラス系統群細菌の全部であっても一部であってもよく、さらに、フレクトバシラス系統群細菌をモニタリングできるのであればその余の細菌を含んでいてもよい。
<Monitoring method 1: Genetic information / monitoring based on specific gene sequence>
Methods for monitoring the number, concentration, and dominance of the bacteria in the strain of the Streptococcus group based on genetic information include hybridization homology values for the entire chromosomal genome, and gene sequences specific to the bacteria in the group of Streptobacillus strains. Although there is a method based on the above, it is preferable to perform monitoring based on the latter method from the viewpoint that it can be easily and effectively confirmed. Specific gene sequence targets include 16S ribosomal RNA gene, 23S ribosomal RNA gene, gyrB gene sequence, spacer region between ribosomal RNA genes, and the like. Further, the monitoring target may be all or a part of the bacteria of the Streptococcus group, and may further include other bacteria as long as it can monitor the bacteria of the Streptococcus group. .

フレクトバシラス系統群細菌の優占性をモニタリングする際には、例えば全原核生物や、全細菌、ある分類群の細菌の存在数をできるだけ反映するような測定を同時に行い、それらとの比率で優占性を算出するとよい。   When monitoring the dominance of the bacteria of the Fructobacillus family, for example, measurements that reflect as much as possible the total number of prokaryotes, total bacteria, and bacteria of a certain taxonomic group are performed at the same time, and the ratio of these is superior. It is good to calculate fortune-telling.

特異的な遺伝子配列をモニタリングする方法としては、公知の手法を用いることができ、例えば遺伝子配列情報の中からフレクトバシラス系統群細菌に特異的な領域を選択し、その遺伝子配列をもつオリゴヌクレオチドもしくはポリヌクレオチドのハイブリダイゼーション効率を利用する方法を用いることができる。具体的には、蛍光物質やラジオアイソトープ、酵素学的レポーター分子、電気活性を持つインターカレーターなどを用いて、ドットハイブリダイゼーション法や、マイクロアレイ法、原位置ハイブリダイゼーション法などを用いることができる。原位置ハイブリダイゼーション法としては、蛍光標識オリゴヌクレオチドもしくは蛍光標識ポリヌクレオチドを用いた蛍光原位置ハイブリダイゼーション法(FISH法)を用いることができる。なお、必要に応じてシグナルを増強してFISH法を実施すればよい。FISH法による検出方法としては、蛍光顕微鏡による方法でもフローサイトメーターを用いた方法でもよい。ドットハイブリダイゼーション法やマイクロアレイ法としては、フレクトバシラス系統群細菌に特異的な遺伝子配列をもつオリゴヌクレオチドもしくはポリヌクレオチドをメンブレンフィルターもしくは基盤状に固定し、これに検出対象の汚泥由来の核酸を蛍光物質などで標識したものをハイブリダイゼーションさせて行う方法などが挙げられる。   As a method for monitoring a specific gene sequence, a known method can be used. For example, a region specific to a Fructobacillus strain bacterium is selected from gene sequence information, and an oligonucleotide having the gene sequence or A method using the hybridization efficiency of the polynucleotide can be used. Specifically, a dot hybridization method, a microarray method, an in situ hybridization method, or the like can be used using a fluorescent substance, a radioisotope, an enzymatic reporter molecule, an intercalator having electric activity, or the like. As the in situ hybridization method, a fluorescence in situ hybridization method (FISH method) using a fluorescently labeled oligonucleotide or a fluorescently labeled polynucleotide can be used. In addition, what is necessary is just to implement FISH method, enhancing a signal as needed. As a detection method by the FISH method, a method using a fluorescence microscope or a method using a flow cytometer may be used. In the dot hybridization method and microarray method, oligonucleotides or polynucleotides having gene sequences specific to the bacteria of the Streptococcus group are immobilized on a membrane filter or substrate, and the nucleic acid derived from the sludge to be detected is fluorescent. And the like, which are carried out by hybridization of those labeled with the above.

フレクトバシラス系統群細菌に特異的な16SリボソームRNA遺伝子配列をもつオリゴヌクレオチドもしくはポリヌクレオチドのハイブリダイゼーション効率を利用する方法としては、配列番号1記載の塩基配列またはこれに相当する塩基配列の一部を有し、フレクトバシラス系統群細菌の核酸と特異的にハイブリダイズし得るDNAもしくはRNAプローブを用いればよい。例えば、DNAプローブ「R-FL615」(Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R. Appl Environ Microbiol. 2001 Jun;67(6):2723-33.)や、配列番号2〜35に記載の塩基配列またはこれに相当する塩基配列を有するプローブが挙げられる。ただ、当然これらのプローブ以外にも、フレクトバシラス系統群細菌をハイブリダイゼーションによって検出できるよう設計されたものであれば用いることができる。   As a method of utilizing the hybridization efficiency of an oligonucleotide or polynucleotide having a 16S ribosomal RNA gene sequence specific to the Fructobacillus strain group bacteria, the base sequence described in SEQ ID NO: 1 or a part of the base sequence corresponding thereto is used. And a DNA or RNA probe that can specifically hybridize with the nucleic acid of the bacteria belonging to the family Flectobacillus strain. For example, DNA probe “R-FL615” (Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R. Appl Environ Microbiol. 2001 Jun; 67 (6): 2723-33. And a probe having the base sequence set forth in SEQ ID NOs: 2 to 35 or a base sequence corresponding thereto. Of course, in addition to these probes, any probe designed to be able to detect the Fructobacillus strain bacteria by hybridization can be used.

また、特異的な遺伝子配列をモニタリングする方法としては、フレクトバシラス系統群細菌に特異的な遺伝子配列をもつプライマーDNAを用いたポリメラーゼ連鎖反応法(PCR)を応用して検出・定量する方法もある。こうした方法としては、フレクトバシラス系統群細菌に特異的なプライマーセットを用いて、核酸の増幅をリアルタイムで検出しながら行う定量PCR法などが挙げられる。さらに、汚泥混合液に含まれる微生物のゲノムDNAを抽出し、原核生物一般、細菌一般あるいはさらに範囲の狭い分類系統群に特異的なプライマーセットを用いてPCR増幅を行い、電気泳動によりフレクトバシラス系統群細菌の遺伝子配列を分別しモニタリングすることもできる。この電気泳動法としては変性剤濃度勾配ゲル電気泳動法(DGGE)を用いることができる。   In addition, as a method for monitoring a specific gene sequence, there is also a method for detecting and quantifying by applying a polymerase chain reaction method (PCR) using a primer DNA having a gene sequence specific to the bacteria of the Streptococcus group. . Examples of such a method include a quantitative PCR method in which nucleic acid amplification is detected in real time using a primer set specific to the bacteria of the group of Streptobacillus strains. Furthermore, the genomic DNA of microorganisms contained in the sludge mixture is extracted, PCR amplification is performed using a primer set specific to prokaryotes in general, bacteria in general, or a narrower taxonomic group, and the Flectobacillus strain is obtained by electrophoresis. It is also possible to discriminate and monitor the gene sequences of group bacteria. As this electrophoresis method, denaturant concentration gradient gel electrophoresis (DGGE) can be used.

<モニタリング方法2/形態学的特徴のモニタリング>
膜分離活性汚泥法におけるトラブル、例えば膜の目詰まりによる膜透水性不良や激しい発泡やスカムの発生、粘性増加に伴う曝気効率の悪化や汚泥流動性減少・気泡の抱き込みによる不具合の要因として、フレクトバシラス系統群細菌は重要な役割を果たしているが、それは、存在量や優占性のみならず形態学的特徴の変化に伴う粘性物質の分泌が重要な要因と考えられる。そこで、粘性物質の分泌と関連するフレクトバシラス系統群細菌の形態変化と発生トラブルとを関連づけてモニタリングすることによって、早い段階でより正確にトラブルを予測・検知し対策を講じることが可能となる。具体的には、トラブルが発生するときには、フレクトバシラス系統群細菌の形態が螺旋状、長桿菌状もしくは繊維状(すなわち長軸方向に伸展した形態)に変化しているため、フレクトバシラス系統群細菌の形態が螺旋状、長桿菌状もしくは繊維状に変化しはじめたときをモニタリングにより検知し、対策を講じる。なお、形態学的特徴のモニタリング方法としては、顕微鏡によるモニタリングや、顕微鏡付属画像記録手段とその画像解析手段による自動モニタリングを行うことができる。その際、フレクトバシラス系統群細菌を標的とした蛍光標識オリゴヌクレオチドもしくは蛍光標識ポリヌクレオチドを用いた蛍光原位置ハイブリダイゼーション法(FISH法)を用いてもよい。
<Monitoring Method 2 / Monitoring Morphological Features>
Causes of troubles in the membrane separation activated sludge method, such as membrane permeability failure due to clogging of membranes, generation of severe foaming and scum, deterioration of aeration efficiency due to increased viscosity, sludge fluidity reduction, entrapment of bubbles, Fractobacillus bacteria play an important role, but it is thought that the secretion of viscous substances accompanying changes in morphological characteristics as well as abundance and dominance is an important factor. Therefore, by monitoring and correlating the morphological change of the Fructobacillus bacteria related to the secretion of the viscous substance and the occurrence trouble, it becomes possible to predict and detect the trouble more accurately and take measures at an early stage. Specifically, when trouble occurs, the form of the bacteria of the Flectobacillus strain is changing to a spiral, long fungus or fibrous form (that is, a form extending in the long axis direction). Measures when the form starts to change to a spiral, long fungus, or fibrous form through monitoring. As a method for monitoring morphological features, monitoring with a microscope or automatic monitoring with a microscope-attached image recording means and its image analysis means can be performed. At that time, a fluorescence in situ hybridization method (FISH method) using a fluorescently labeled oligonucleotide or a fluorescently labeled polynucleotide targeting Flectobacillus strain bacteria may be used.

<モニタリング方法3/遺伝子発現特性>
さらに、フレクトバシラス系統群細菌のモニタリング方法としては、その遺伝子発現特性を利用することもできる。遺伝子発現特性とは、フレクトバシラス系統群細菌ゲノムからのRNA転写特性、蛋白質翻訳特性および生成物質特性(たとえば発現蛋白質生成物質特性)などをいう。フレクトバシラス系統群細菌は、生育条件によりその性質が大きく変化する。そのため、性質変化を遺伝子発現特性で追跡することは膜分離活性汚泥法の運転安定性において非常に有用であり、遺伝子発現特性と発生トラブルとを関連づけてモニタリングすることによって、早い段階でより正確にトラブルを予測・検知し対策を講じることが可能となる。遺伝子発現特性の対象としては特に限定するものではなく、構成遺伝子、制御遺伝子を問わない。
<Monitoring method 3 / gene expression characteristics>
Furthermore, the gene expression characteristic can also be used as a method for monitoring the bacteria of the family Flectobacillus. The gene expression characteristics refer to RNA transcription characteristics, protein translation characteristics, and production substance characteristics (for example, expressed protein production substance characteristics) from the bacteria genome of the Streptococcus strain. The properties of the Streptococcus strain bacteria vary greatly depending on the growth conditions. Therefore, tracking property changes with gene expression characteristics is very useful in the operational stability of the membrane separation activated sludge process, and it is more accurate at an early stage by monitoring gene expression characteristics and occurrence troubles in association with each other. It is possible to predict and detect troubles and take countermeasures. The target of gene expression characteristics is not particularly limited, and may be any constituent gene or regulatory gene.

RNA転写特性の対象としては、メッセンジャーRNAおよびリボソームRNAのいずれであってもよい。そして、これらRNA転写特性をモニタリングする手法としては様々な公知の方法をとることができ、例えば、メッセンジャーRNAの存在量をハイブリダイゼーションにより解析する方法や、画像解析装置を用いたDNAチップによる方法などが挙げられる。また、FISH法を用いることもできる。   The target of RNA transcription characteristics may be either messenger RNA or ribosomal RNA. Various known methods can be used as a method for monitoring these RNA transcription characteristics, such as a method for analyzing the abundance of messenger RNA by hybridization, a method using a DNA chip using an image analyzer, and the like. Is mentioned. Also, the FISH method can be used.

また、蛋白質翻訳特性の対象蛋白質としては特に限定されるものではなく、たとえば形態変化誘導蛋白質や細胞外ポリマー生成蛋白質などが挙げられる。蛋白質翻訳特性をモニタリングする方法としても、例えば2次元電気泳動法やウェスタンブロット、質量分析装置など様々な公知の蛋白質分析方法を用いることができる。   In addition, the target protein of the protein translation characteristic is not particularly limited, and examples thereof include a morphological change-inducing protein and an extracellular polymer-forming protein. As a method for monitoring protein translation characteristics, various known protein analysis methods such as two-dimensional electrophoresis, Western blot, and mass spectrometer can be used.

さらに、生成物質特性の対象としても特に限定するものではなく、例えば細胞外生成ポリマーや菌体内成分が挙げられる。細胞外生成ポリマーや菌体内成分をモニタリングする方法としては、例えば液体クロマトグラフィー装置やガスクロマトグラフィー装置、質量分析装置、分光光度計、蛍光測定装置、発光量測定装置などを用いた方法があり、抗体抗原反応を活用したイライザ法なども適用できる。   Furthermore, it is not particularly limited as a target of the product substance characteristics, and examples thereof include extracellularly generated polymers and intracellular components. Examples of methods for monitoring extracellularly produced polymers and intracellular components include methods using a liquid chromatography device, a gas chromatography device, a mass spectrometer, a spectrophotometer, a fluorescence measuring device, a luminescence measuring device, etc. An ELISA method using an antibody-antigen reaction can also be applied.

<実施例1>
(1)孔径0.1μmのPVDF製精密ろ過平膜をモジュール化した膜分離装置を、有効容積30 Lの生物反応槽に浸漬したものを2系列用意し、BOD 1000 ppmのデキストリン系人工廃水を膜分離活性汚泥法により処理した。なお、生物反応槽における人工廃水の滞留時間は1日とし、膜透水性能、透過水の水質、およびPCR-DGGE法によるフレクトバシラス系統群細菌のモニタリング状態が安定するまで処理を行った。
<Example 1>
(1) Prepare two series of membrane separators, which are modularized PVDF microfiltration flat membranes with a pore size of 0.1 μm, immersed in a bioreactor with an effective volume of 30 L, and dextrin artificial wastewater with 1000 ppm BOD Treated by the separated activated sludge method. The residence time of the artificial wastewater in the biological reaction tank was 1 day, and the treatment was performed until the membrane permeation performance, the quality of the permeated water, and the monitoring state of the Fructobacillus strain group bacteria by the PCR-DGGE method were stabilized.

PCR-DGGE法によるモニタリングは、次のとおり行った。すなわち、生物反応槽内の混合液を0.5 ml程度抽出し遠心分離によって0.2 mlに濃縮したものを試料とし、Ultra Clean Soil DNA Isolation Kit(MO BIO laboratories社製)を用いてゲノムDNAの抽出・精製を行い、次に石井らによって報告された方法(石井ら、Microbes and Environments 15、2000、P59-73)に従って、16S リボソームRNA遺伝子の一部をPCR増幅し変性剤濃度勾配ゲル電気泳動を行った。そして、該混合液より単離したフレクトバシラス系統群細菌およびFlectobacillus major DSMZ 103株と同じ移動度を示したバンドの輝度をモニタリングすることによって、フレクトバシラス系統群細菌の優占性を確認した。なお、モニタリングした該バンドの塩基配列を解読し、国際的な公的塩基配列データベースにて相同性検索を行ったところ、フレクトバシラス系統群細菌であることを確認した。   Monitoring by PCR-DGGE method was performed as follows. Extraction and purification of genomic DNA using the Ultra Clean Soil DNA Isolation Kit (manufactured by MO BIO laboratories) using about 0.5 ml of the mixture in the biological reaction tank extracted to 0.2 ml by centrifugation. Next, according to the method reported by Ishii et al. (Ishii et al., Microbes and Environments 15, 2000, P59-73), a part of 16S ribosomal RNA gene was PCR amplified and denaturing gradient gel electrophoresis was performed. . Then, by monitoring the brightness of the band showing the same mobility as that of the strain Flectobacillus major DSMZ 103 isolated from the mixed solution and the strain Flectobacillus major DSMZ 103, the superiority of the strain Flectobacillus strain was confirmed. In addition, when the base sequence of the monitored band was decoded and homology search was performed using an international official base sequence database, it was confirmed that the bacteria were Flectobacillus strains.

また、処理が安定したところで生物反応槽内の混合液中に含まれるフレクトバシラス系統群細菌をFISH法およびドットハイブリダイゼーション法でもモニタリングしたが、両方法ではフレクトバシラス系統群細菌が検知されなかった。   In addition, when the treatment was stable, the Streptococcus strain bacteria contained in the mixed solution in the biological reaction tank were also monitored by the FISH method and the dot hybridization method. However, the Flectobacillus strain bacteria were not detected by both methods.

なお、FISH法では、DNAプローブ「R-FL615」(Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R. Appl Environ Microbiol. 2001 Jun;67(6):2723-33.)および配列番号16に示すプローブを用いて、生物反応槽内混合液の4%パラホルムアルデヒド固定サンプルに含まれるフレクトバシラス系統群細菌を検出した。ハイブリダイゼーション条件としては、35%ホルムアミドを含む緩衝液存在下において46℃で行った。   In the FISH method, DNA probe “R-FL615” (Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R. Appl Environ Microbiol. 2001 Jun; 67 (6): 2723-33.) And the probe shown in SEQ ID NO: 16 were used to detect the Fructobacillus strain bacteria contained in the 4% paraformaldehyde-fixed sample of the biological reaction tank mixture. Hybridization conditions were performed at 46 ° C. in the presence of a buffer containing 35% formamide.

また、ドットハイブリダイゼーション法では、「R-FL615」および配列番号2に示すプローブをメンブレンフィルターに固定し、ローダミンで標識した上記生物反応槽内混合液サンプル由来のRNAのハイブリダイゼーション量を蛍光により測定した。ハイブリダイゼーション条件はFISH法に準じて行った。
(2)その後、生物反応槽に供給するデキストリン系人工廃水のBOD濃度を、6時間毎に交互に750 ppmもしくは1250 ppmにして生物処理を行い、BOD濃度変更後7日後にフレクトバシラス系統群細菌をモニタリングした。その結果、生物処理槽内の混合液の汚泥濃度および粘性は変更前後を通じ一定であり、それぞれ10 g/L、25 mPa・sであったが、PCR-DGGE法によるモニタリングによってはフレクトバシラス系統群細菌の増加を確認することができ、また、FISH法およびメンブレンハイブリダイゼーション法によってもその存在を検知した。
(3)そこで、2系列のうち一方の系列について、生物反応槽に流入するデキストリン系人工廃水のBOD濃度を再び1000 ppmに戻し(系列A)、他方の系列については、生物反応槽に流入するデキストリン系人工廃水のBOD濃度をそのまま6時間毎に交互に750 ppmもしくは1250 ppmにして生物処理を行った(系列B)。その結果、3日後に系列Bの混合液の粘性が100 mPa・sに増加しPVDF膜の原液側と濾過液側との差圧が上昇したのに対し、系列Aの粘性は25 mPa・sのままであり、差圧の上昇も見られなかった。
In the dot hybridization method, “R-FL615” and the probe shown in SEQ ID NO: 2 are immobilized on a membrane filter, and the amount of hybridization of RNA derived from the mixed liquid sample in the biological reaction vessel labeled with rhodamine is measured by fluorescence. did. Hybridization conditions were performed according to the FISH method.
(2) After that, biological treatment is carried out with the BOD concentration of dextrin-based artificial wastewater supplied to the biological reaction tank being alternately set to 750 ppm or 1250 ppm every 6 hours, and 7 days after the change in BOD concentration. Was monitored. As a result, the sludge concentration and viscosity of the mixed liquid in the biological treatment tank were constant before and after the change, which were 10 g / L and 25 mPa · s, respectively. However, depending on the PCR-DGGE method, The increase in bacteria could be confirmed, and the presence was also detected by FISH method and membrane hybridization method.
(3) Therefore, the BOD concentration of dextrin-based artificial wastewater flowing into the biological reaction tank is returned to 1000 ppm again for one of the two lines (series A), and the other series flows into the biological reaction tank. Biological treatment was carried out by changing the BOD concentration of dextrin-based artificial wastewater as it was every 6 hours to 750 ppm or 1250 ppm alternately (series B). As a result, the viscosity of the mixed liquid of series B increased to 100 mPa · s after 3 days and the differential pressure between the stock side and the filtrate side of the PVDF membrane increased, whereas the viscosity of series A was 25 mPa · s. The differential pressure did not increase.

そして、両系列の生物反応槽内の混合液について、フレクトバシラス系統群細菌をPCR-DGGE法によりモニタリングしたところ、フレクトバシラス系統群細菌は、系列Aでは上記(2)のBOD濃度変動を行う前の水準まで減少していたのに対し、系列Bではさらに増加していた。また、FISH法によりフレクトバシラス系統群細菌をモニタリングしたところ、系列Aではフレクトバシラス系統群細菌が検出されなかった。
(4)このようにフレクトバシラス系統群細菌をモニタリングすることによって、粘性をモニタリングするより早く差圧上昇に見られる膜透水性悪化を予測することができ、適切に対応することで粘性増加や膜透水性不良を未然に防止することが出来た。
Then, when the mixed solution in both series of bioreactors was monitored by the PCR-DGGE method, the Bacterial strain Bacteria were observed before the BOD concentration fluctuation in (2) above was performed in Series A. While it decreased to the level of, it increased further in Series B. In addition, when Fectobacillus strains were monitored by the FISH method, no Fractobacillus strains were detected in line A.
(4) In this way, by monitoring the bacteria of the Streptococcus strain, it is possible to predict the deterioration of membrane permeability seen in the increase in differential pressure earlier than the monitoring of viscosity. It was possible to prevent poor water permeability.

<比較例1>
実施例1の(1)〜(3)の各工程において、フレクトバシラス系統群細菌ではなく、反応槽中の混合液の4%パラホルムアルデヒド固定サンプルに含まれるアイケルブームタイプ021N(Eikelboom Type 021N)細菌を検出した。なお、検出は、DNAプローブ「AP3」(特許文献2)を用い、FISH法により行った。ハイブリダイゼーション条件としては、35%ホルムアミドを含む緩衝液存在下において46℃で行った。 この結果、蛍光顕微鏡によりEikelboom 021Nの一つAP3株の検出を試みたが、いずれの工程のいずれの生物反応槽においても、Eikelboom Type 021N細菌は検出されず、Eikelboom Type 021N細菌を検出しても粘性増加や膜透水性不良を予測することはできないことがわかった。
<Comparative Example 1>
In each of the steps (1) to (3) of Example 1, Eikelboom Type 021N (Eikelboom Type 021N) contained in a 4% paraformaldehyde-fixed sample of the mixed solution in the reaction tank, not in the Flectobacillus strain group Bacteria were detected. The detection was performed by the FISH method using a DNA probe “AP3” (Patent Document 2). Hybridization conditions were performed at 46 ° C. in the presence of a buffer containing 35% formamide. As a result, we tried to detect one AP3 strain of Eikelboom 021N using a fluorescence microscope, but Eikelboom Type 021N bacteria were not detected in any biological reaction tank in any process, and Eikelboom Type 021N bacteria were detected. It was found that an increase in viscosity and poor membrane permeability cannot be predicted.

本発明の一実施形態を示す処理装置の概略フロー図である。It is a schematic flowchart of the processing apparatus which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1:生物反応槽
2:膜分離装置
3:吸引ポンプ
4:原液ポンプ
5:曝気装置
6:ブロワー
7:モニタリング手段
8:処理条件制御装置
9〜12:処理条件調整信号
13:汚泥引き抜きポンプ
1: Bioreaction tank 2: Membrane separation device 3: Suction pump 4: Stock solution pump 5: Aeration device 6: Blower 7: Monitoring means 8: Treatment condition control device 9-12: Treatment condition adjustment signal 13: Sludge extraction pump

Claims (8)

膜分離活性汚泥法により溶解性有機物含有液を処理する際に、溶解性有機物含有液と活性汚泥との混合液中に存在するフレクトバシラス(Flectobacillus)系統群細菌の状態をモニタリングしながら処理を行うことを特徴とする溶解性有機物含有液の処理方法。   When treating a soluble organic substance-containing liquid by the membrane-separated activated sludge method, the treatment is performed while monitoring the state of the Flectobacillus family bacteria in the mixed liquid of the soluble organic substance-containing liquid and the activated sludge. A method for treating a soluble organic substance-containing liquid. 膜分離活性汚泥法により溶解性有機物含有液を処理する際に、溶解性有機物含有液と活性汚泥との混合液中に存在するフレクトバシラス系統群細菌の状態をモニタリングして処理条件を制御することを特徴とする溶解性有機物含有液の処理方法。   When processing soluble organic matter-containing liquids by the membrane-separated activated sludge method, control the processing conditions by monitoring the state of the Fructobacillus family bacteria present in the mixture of soluble organic-containing liquids and activated sludge. A method for treating a soluble organic substance-containing liquid characterized by the above. フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の遺伝情報に基づいてモニタリングする、請求項1または2に記載の溶解性有機物含有液の処理方法。   The method for treating a solution containing a soluble organic substance according to claim 1 or 2, wherein the state of the bacteria of the group Fructobacillus is monitored based on genetic information of the bacteria of the group Fectobacillus. フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌のRNA転写特性、蛋白質翻訳特性および生成物質特性の少なくとも1つに基づいてモニタリングする、請求項1〜3のいずれかに記載の溶解性有機物含有液の処理方法。   The soluble organic matter according to any one of claims 1 to 3, wherein the state of the bacteria of the Streptococcus group is monitored based on at least one of RNA transcription characteristics, protein translation characteristics, and product characteristics of the bacteria. Processing method of contained liquid. フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の形態学的特徴に基づいてモニタリングする、請求項1〜4のいずれかに記載の溶解性有機物含有液の処理方法。   The processing method of the soluble organic substance containing liquid in any one of Claims 1-4 which monitors the state of a Fructobacillus strain group bacteria based on the morphological characteristic of a Flectobacillus strain group bacteria. 溶解性有機物含有液を活性汚泥により処理する生物反応槽と、溶解性有機物含有液と活性汚泥との混合液を固液分離する分離膜と、溶解性有機物含有液と活性汚泥との混合液中のフレクトバシラス系統群細菌の状態をモニタリングするモニタリング手段とを備えている溶解性有機物含有液の処理装置。   In a biological reaction tank for treating a soluble organic substance-containing liquid with activated sludge, a separation membrane for solid-liquid separation of a mixed liquid of the soluble organic substance-containing liquid and activated sludge, and a mixed liquid of the soluble organic substance-containing liquid and activated sludge A device for treating a solution containing a soluble organic matter, comprising: a monitoring means for monitoring the state of the bacteria of the genus Flectobacillus. モニタリング手段は、フレクトバシラス系統群細菌の状態を、フレクトバシラス系統群細菌の遺伝情報、RNA転写特性、蛋白質翻訳特性、生成物質特性および形態学的特徴の少なくとも1つに基づいてモニタリングするものである、請求項6に記載の溶解性有機物含有液の処理装置。   The monitoring means monitors the state of the bacteria of the Streptococcus group based on at least one of genetic information, RNA transcription characteristics, protein translation characteristics, product characteristics and morphological characteristics of the bacteria. The processing apparatus of the soluble organic substance containing liquid of Claim 6. モニタリング手段は処理条件の制御手段を備えている、請求項6または7に記載の溶解性有機物含有液の処理装置。   8. The processing apparatus for a soluble organic substance-containing liquid according to claim 6 or 7, wherein the monitoring means includes processing condition control means.
JP2004088580A 2003-03-27 2004-03-25 Method and apparatus for processing soluble organic substance-containing liquid Expired - Fee Related JP4370956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004088580A JP4370956B2 (en) 2003-03-27 2004-03-25 Method and apparatus for processing soluble organic substance-containing liquid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003087022 2003-03-27
JP2004088580A JP4370956B2 (en) 2003-03-27 2004-03-25 Method and apparatus for processing soluble organic substance-containing liquid

Publications (2)

Publication Number Publication Date
JP2004306026A JP2004306026A (en) 2004-11-04
JP4370956B2 true JP4370956B2 (en) 2009-11-25

Family

ID=33478362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004088580A Expired - Fee Related JP4370956B2 (en) 2003-03-27 2004-03-25 Method and apparatus for processing soluble organic substance-containing liquid

Country Status (1)

Country Link
JP (1) JP4370956B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4830307B2 (en) * 2005-02-01 2011-12-07 東レ株式会社 Method and apparatus for processing soluble organic substance-containing liquid
JP5087832B2 (en) * 2005-03-01 2012-12-05 東レ株式会社 Method and apparatus for treating organic wastewater
JP5463952B2 (en) * 2010-02-26 2014-04-09 東レ株式会社 Treatment method of wastewater containing oil

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05322896A (en) * 1992-04-14 1993-12-07 Yakult Honsha Co Ltd Method and antibody for managing active sludge
JPH0975938A (en) * 1995-09-08 1997-03-25 Kurita Water Ind Ltd Membrane separation device
JPH09285299A (en) * 1996-04-24 1997-11-04 Yaskawa Electric Corp Judgement of state of sewage treatment plant
JPH1070999A (en) * 1996-08-30 1998-03-17 Ngk Insulators Ltd Monitoring of mould
JP2001017175A (en) * 1999-07-01 2001-01-23 Marine Biotechnol Inst Co Ltd Method for efficiently utilizing activated sludge
JP2002119300A (en) * 2000-10-13 2002-04-23 Ngk Insulators Ltd Method for rapidly assaying filamentous bacterium and method for controlling operation of activated sludge process tank using the same
JP3928492B2 (en) * 2002-06-11 2007-06-13 栗田工業株式会社 Monitoring method and management method of mixed microbial system
JP4065942B2 (en) * 2002-11-14 2008-03-26 独立行政法人産業技術総合研究所 New microorganism

Also Published As

Publication number Publication date
JP2004306026A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
Lee et al. Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR
Miura et al. Bacterial community structures in MBRs treating municipal wastewater: relationship between community stability and reactor performance
JP2007289941A (en) Method and apparatus for treating organic waste water
JP4830307B2 (en) Method and apparatus for processing soluble organic substance-containing liquid
JP2007260664A (en) Method for treating organic waste water, membrane separation activated sludge treatment apparatus for treating organic waste water, and method for producing filter-feed animalcule agent
Lv et al. The microbial attachment potential and quorum sensing measurement of aerobic granular activated sludge and flocculent activated sludge
Huang et al. Application of deep-sea psychrotolerant bacteria in wastewater treatment by aerobic dynamic membrane bioreactors at low temperature
Juang et al. Influence of internal biofilm growth on residual permeability loss in aerobic granular membrane bioreactors
Wu et al. Microbial community developments and biomass characteristics in membrane bioreactors under different organic loadings
Ouyang et al. Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs
Drews et al. Process improvement by application of membrane bioreactors
Taşkan et al. Effective biofilm control in a membrane biofilm reactor using a quenching bacterium (Rhodococcus sp. BH4)
Molina-Munoz et al. Effect of the concentration of suspended solids on the enzymatic activities and biodiversity of a submerged membrane bioreactor for aerobic treatment of domestic wastewater
Calli et al. Investigation of variations in microbial diversity in anaerobic reactors treating landfill leachate
JP4370956B2 (en) Method and apparatus for processing soluble organic substance-containing liquid
Zhang et al. An innovative membrane bioreactor and packed-bed biofilm reactor combined system for shortcut nitrification-denitrification
Oude Elferink et al. Detection and quantification of microorganisms in anaerobic bioreactors
You et al. Filamentous bacteria in a foaming membrane bioreactor
JP5087832B2 (en) Method and apparatus for treating organic wastewater
Baba et al. Bacterial population dynamics in a reverse-osmosis water purification system determined by fluorescent staining and PCR-denaturing gradient gel electrophoresis
JP2014172013A (en) Water making method
JP5337631B2 (en) Primer set, Eikeboomtype021N detection method, and biological treatment method
Moreno-Andrade et al. Comparison of the performance of membrane and conventional sequencing batch reactors degrading 4-chlorophenol
JP5640462B2 (en) Diagnosis method for activated water sludge
Ziembinska et al. Molecular analysis of temporal changes of a bacterial community structure in activated sludge using denaturing gradient gel electrophoresis (DGGE) and fluorescent in situ hybridization (FISH)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees