JP4370565B2 - Vehicle navigation device - Google Patents

Vehicle navigation device Download PDF

Info

Publication number
JP4370565B2
JP4370565B2 JP2003428450A JP2003428450A JP4370565B2 JP 4370565 B2 JP4370565 B2 JP 4370565B2 JP 2003428450 A JP2003428450 A JP 2003428450A JP 2003428450 A JP2003428450 A JP 2003428450A JP 4370565 B2 JP4370565 B2 JP 4370565B2
Authority
JP
Japan
Prior art keywords
learning
distance coefficient
distance
vehicle
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003428450A
Other languages
Japanese (ja)
Other versions
JP2005189010A (en
Inventor
孝則 清水
邦博 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP2003428450A priority Critical patent/JP4370565B2/en
Priority to US10/941,080 priority patent/US20050107946A1/en
Priority to EP04024677A priority patent/EP1531321A2/en
Priority to CN200410092612.4A priority patent/CN1616925A/en
Publication of JP2005189010A publication Critical patent/JP2005189010A/en
Application granted granted Critical
Publication of JP4370565B2 publication Critical patent/JP4370565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Navigation (AREA)
  • Measurement Of Distances Traversed On The Ground (AREA)

Description

本発明は位置検出精度を向上させるようにした車両用ナビゲーション装置に関する。   The present invention relates to a vehicle navigation device that improves position detection accuracy.

車両走行距離は、タイヤの回転に応じて発生するパルス(車速パルス)を計数し、この計数値に、パルス数を距離に変換する係数(距離係数)を乗じることにより得られ、これに基づいて現在位置検出を行っている。しかし、車両用ナビゲーション装置はどのようなタイヤが装着されているか関知しないため、地図データと過去に通った走行データを用いて車両毎の距離計数を算出して学習し、現在位置の検出精度を上げるようにしている。距離係数の学習は、通常、地図データ上の一定距離(直線道路)を車両が走行したことをGPS測位データで検出し、この間の車速パルス数を求めることにより行われる。また、さらに検出精度を上げるため、傾斜角センサを用いて車両の高度を検出することも行われている。   The vehicle travel distance is obtained by counting pulses (vehicle speed pulses) generated according to the rotation of the tire and multiplying this counted value by a coefficient (distance coefficient) for converting the number of pulses into a distance. The current position is being detected. However, since the vehicle navigation system does not know what type of tire is installed, it calculates and learns the distance count for each vehicle using the map data and past travel data, and the detection accuracy of the current position is increased. I try to raise it. The learning of the distance coefficient is usually performed by detecting that the vehicle has traveled a certain distance (straight road) on the map data using GPS positioning data and obtaining the number of vehicle speed pulses during this period. In order to further improve the detection accuracy, the altitude of the vehicle is also detected using an inclination angle sensor.

ところで、高速走行時にタイヤの径や圧力が変化した場合は、学習した距離係数のみでは誤差が生じ、現在位置検出精度が悪くなる。そのため、タイヤの径の変化を測定して走行距離を補正するものが提案されているが(特許文献1)、現在位置精度の向上には必ずしも十分ではない。また、高低差が生じる地区を走行した場合にも、学習した距離係数のみでは誤差が生じ、現在位置精度が悪くなる。例えば、勾配が急な坂等では、2次元地図上の距離と実際の距離との誤差が大きくなり、車両位置検出精度が悪くなってしまう。これに対して傾斜角センサを用いて車両の高度を検出して補正するものも提案されているが(特許文献2)、現在位置精度の向上には必ずしも十分ではない。
特開平10−239092号公報 特開平10−253352号公報
By the way, if the tire diameter or pressure changes during high-speed running, an error occurs only with the learned distance coefficient, and the current position detection accuracy deteriorates. For this reason, there has been proposed a method for correcting the travel distance by measuring a change in the diameter of the tire (Patent Document 1), but it is not necessarily sufficient for improving the current position accuracy. Further, even when the vehicle travels in an area where a level difference occurs, an error occurs only with the learned distance coefficient, and the current position accuracy deteriorates. For example, on a slope with a steep slope, the error between the distance on the two-dimensional map and the actual distance increases, and the vehicle position detection accuracy deteriorates. On the other hand, although what has detected and correct | amended the height of a vehicle using an inclination-angle sensor is proposed (patent document 2), it is not necessarily enough for the improvement of the present position accuracy.
Japanese Patent Laid-Open No. 10-239092 JP-A-10-253352

本発明は上記課題を解決しようとするもので、車両の現在位置検出精度を維持し、向上させることを目的とする。
そのために本発明は、車両の走行距離に対する車速パルスの距離係数を学習する距離係数学習手段と、前記距離係数学習手段を制御する制御手段と、距離係数の学習を中止する学習中止要因があるか否かを判断する判断手段とを備え、前記制御手段は、学習中止要因があると判断されたエリアを学習中止エリアとして登録し、前記学習中止エリアを走行する際に距離係数の学習を中止することを特徴とする。
The present invention is intended to solve the above-described problems, and an object thereof is to maintain and improve the current position detection accuracy of a vehicle.
Therefore, the present invention has a distance coefficient learning means for learning a distance coefficient of a vehicle speed pulse with respect to a travel distance of the vehicle, a control means for controlling the distance coefficient learning means, and a learning stop factor for stopping learning of the distance coefficient. Determination means for determining whether or not, the control means registers an area determined to have a learning stop factor as a learning stop area, and stops distance coefficient learning when traveling in the learning stop area It is characterized by that.

本発明は、所定距離の走行で学習した距離係数が、学習に適しない状況におけるその後の走行により補正されて位置検出精度が低下するのを防止でき、現在位置検出精度を維持し、さらに向上することが可能となる。   According to the present invention, it is possible to prevent the distance coefficient learned by traveling at a predetermined distance from being corrected by a subsequent traveling in a situation that is not suitable for learning, thereby preventing the position detection accuracy from being lowered, and maintaining and improving the current position detection accuracy. It becomes possible.

以下、実施の形態について説明する。
図1は車両用ナビゲーション装置の実施の形態の例を説明する概念図である。
ナビゲーション制御部1はナビゲーションの各処理を実行する制御部で、本実施の形態では距離係数学習手段2、現在位置検出手段3、制御手段4を有し、情報送受信装置10、GPS(Global Positioning System )位置検出装置(以下、GPS)11、タイヤの回転に応じたパルスを発生する車速センサ12、傾斜角センサ13からの情報を取り込むとともに、情報記憶手段14に格納されている地図データ20のデータ等を参照して距離係数の学習処理と、現在位置検出処理を行っており、これらの処理を制御手段4により制御している。情報記憶手段14には、学習中止属性が付与された道路データを含む地図データ20の他に、標高ポリゴンデータ21、走行データ22、距離係数23、その他ナビゲーションに必要な各種データ24が記憶されている。
Hereinafter, embodiments will be described.
FIG. 1 is a conceptual diagram illustrating an example of an embodiment of a vehicle navigation device.
The navigation control unit 1 is a control unit that executes each process of navigation. In this embodiment, the navigation control unit 1 includes a distance coefficient learning unit 2, a current position detection unit 3, and a control unit 4, and includes an information transmission / reception device 10, a GPS (Global Positioning System). ) The data of the map data 20 stored in the information storage means 14 while taking in the information from the position detection device (hereinafter referred to as GPS) 11, the vehicle speed sensor 12 that generates a pulse corresponding to the rotation of the tire, and the inclination angle sensor 13. The distance coefficient learning process and the current position detection process are performed with reference to the above, and the control unit 4 controls these processes. The information storage means 14 stores altitude polygon data 21, travel data 22, distance coefficient 23, and other various data 24 necessary for navigation, in addition to map data 20 including road data to which a learning stop attribute is assigned. Yes.

距離係数学習手段2は制御手段4により制御され、情報記憶手段14に記憶されている地図データ20から取得した直線道路において、例えばGPS11のデータを利用して100m走行し、この間に車速センサ12から取得したパルス数を距離に変換する係数(距離係数)を算出する。このような処理を車両走行時に随時行うことで距離係数を学習し、10km程の走行による学習で距離係数はほぼ安定し、さらに学習を重ねることでその精度を高めていき、現在位置検出手段3は、学習した距離係数と車速センサ12から得られる車速パルスとから現在位置を検出する。   The distance coefficient learning unit 2 is controlled by the control unit 4 and travels 100 m using, for example, GPS 11 data on a straight road acquired from the map data 20 stored in the information storage unit 14. A coefficient for converting the acquired number of pulses into a distance (distance coefficient) is calculated. The distance coefficient is learned by performing such processing at any time during vehicle travel, the distance coefficient is substantially stabilized by learning by traveling about 10 km, and the accuracy is improved by further learning, and the current position detecting means 3 Detects the current position from the learned distance coefficient and the vehicle speed pulse obtained from the vehicle speed sensor 12.

図2は距離係数の学習を中止する処理フローを示す図である。
本実施の形態では、車両の走行により距離係数を学習し(ステップS1)、車両が所定距離、例えば10km以上の走行で距離係数を学習したか否か判断し(ステップS2)、所定距離走行して距離係数が安定した後、制御手段4により学習に適しない状況の走行である(学習中止要因がある)か否か判断し(ステップS3)、学習中止要因があると判断したときは、距離係数学習手段を制御して距離係数の学習を中止する。この処理は、距離係数が安定した後、学習に適しない状況の走行でさらに学習を続けると、不正確なデータにより距離係数が補正されて誤差を生じてしまい、位置検出精度が低下してしまうためである。
FIG. 2 is a diagram showing a processing flow for stopping learning of the distance coefficient.
In the present embodiment, the distance coefficient is learned by traveling the vehicle (step S1), and it is determined whether the vehicle has learned the distance coefficient by traveling a predetermined distance, for example, 10 km or more (step S2). After the distance coefficient is stabilized, the control unit 4 determines whether the driving is in a situation that is not suitable for learning (there is a learning stop factor) (step S3). The coefficient learning means is controlled to stop distance coefficient learning. In this process, after the distance coefficient is stabilized, if the learning is further continued in a driving state that is not suitable for learning, the distance coefficient is corrected by inaccurate data to cause an error, and the position detection accuracy is lowered. Because.

学習中止要因としては、例えば、標高ポリゴンデータ21から高低差があると認識できるエリアを走行する場合、傾斜角センサ13により車両が所定角度(例えば10°)以上傾斜していることを検知したエリアを走行する場合、情報送受信装置10よりスリップを起こす可能性のある気象条件や道路条件の情報を受信して運転者がそのことをナビゲーション装置に入力した場合、道路データに学習中止属性が付与されたエリアを走行する場合、過去の走行で学習すべきでないと判断したエリアを走行する場合などである。もちろん、学習中止要因のないエリアを走行するときは随時距離係数の学習を行ってさらに位置検出精度を高める。   As a learning stop factor, for example, when traveling in an area that can be recognized as having a height difference from the elevation polygon data 21, an area in which the inclination angle sensor 13 detects that the vehicle is inclined at a predetermined angle (for example, 10 °) or more. If the driver receives information on weather conditions and road conditions that may cause a slip from the information transmitting / receiving device 10 and the driver inputs the information to the navigation device, a learning stop attribute is given to the road data. For example, when traveling in a certain area, it may be traveling in an area determined not to be learned in past traveling. Of course, when traveling in an area where there is no cause for learning stoppage, the distance coefficient is learned at any time to further improve the position detection accuracy.

図3は標高ポリゴンデータの例を説明する平面図である。この例では、四隅に座標(緯度、経度)をもつ各小区画は、数十m(例えば30m)四方の区画であり、図3(a)は各小区画毎にそのエリア内の標高差(最大標高と最小標高との差)ΔH1、ΔH2……をもっている例を示し、図3(b)は各小区画毎にそのエリア内の平均標高H1、H2……を区画の中心位置の標高データとしてもっている例を示している。   FIG. 3 is a plan view for explaining an example of elevation polygon data. In this example, each small section having coordinates (latitude and longitude) at the four corners is a section of several tens of meters (for example, 30 m), and FIG. 3A shows an elevation difference (in the area) for each small section ( Difference between maximum altitude and minimum altitude) ΔH1, ΔH2..., FIG. 3B shows the average altitude H1, H2 in the area for each subdivision and elevation data at the center position of the subdivision An example is shown.

図3(a)に示す標高ポリゴンデータが設定されているエリアを走行する場合は、高低差があるために2次元地図上における距離と実際の距離とではその誤差が大きくなり、2次元地図上で検出する車両位置検出精度が悪くなってしまう。そこで、所定距離以上走行して距離係数が安定した後、このような標高ポリゴンデータが設定されているエリアを走行する場合には、距離係数の学習を中止する。なお、図3(b)に示す標高ポリゴンデータが設定されているエリアでは、各エリアの平均標高の差から所定値以上の高低差があると認識できる場合には、学習に適しない状況と判断して距離係数の学習を中止する。   When traveling in an area where elevation polygon data shown in FIG. 3 (a) is set, there is a difference in height, so the error between the distance on the two-dimensional map and the actual distance becomes large. The vehicle position detection accuracy detected at 1 will deteriorate. Therefore, after traveling over a predetermined distance and stabilizing the distance coefficient, learning of the distance coefficient is stopped when traveling in an area in which such elevation polygon data is set. In the area where the elevation polygon data shown in FIG. 3B is set, if it can be recognized that there is an elevation difference of a predetermined value or more from the difference in average elevation of each area, it is determined that the situation is not suitable for learning. Then, learning of the distance coefficient is stopped.

図4は道路データの学習属性を説明する図である。
本実施形態の道路データは、道路番号、道路属性、形状データ等の他に距離係数学習属性を有している。道路番号は、分岐点間の道路毎に方向(往路、復路)別に設定され、道路属性は、道路種別(高速道路、国道、県道等)、高架、地下道、幅員、車線数等を示すデータである。形状データは複数のノード列からなり、各ノードは、座標データ、標高、ノード属性(交差点ノード、単純ノード、道路端ノードかを示す属性)等からなり、ノードを結ぶのがリンクである。距離係数学習属性は、距離係数学習の対象道路か非対象道路からを示すフラグ(「1」:距離係数学習非対象道路、「0」:距離係数学習対象道路)であり、例えば、山間部の道路等で起伏が激しく学習に適しない道路としてあらかじめ付されている。なお、距離係数学習属性は、道路番号毎にもたせる、リンク毎にもたせる、ノードデータにもたせる等いずれの方法でもよい。
FIG. 4 is a diagram for explaining learning attributes of road data.
The road data of this embodiment has a distance coefficient learning attribute in addition to the road number, road attribute, shape data, and the like. The road number is set for each direction between the junctions (outbound and return roads), and the road attributes are data indicating the type of road (highway, national road, prefectural road, etc.), elevated, underpass, width, number of lanes, etc. is there. The shape data is composed of a plurality of node rows, and each node is composed of coordinate data, elevation, node attributes (attributes indicating intersection nodes, simple nodes, road end nodes), and the like, and links are connected to the nodes. The distance coefficient learning attribute is a flag ("1": distance coefficient learning non-target road, "0": distance coefficient learning target road) indicating whether the distance coefficient learning target road or non-target road, for example, a mountain area It is attached in advance as a road that is not suitable for learning because of its undulations. The distance coefficient learning attribute may be any method such as for each road number, for each link, or for node data.

図5は過去の走行データを活用する処理フローを示す図である。
本実施の形態は、十分に距離係数を学習した後、走行した時に距離係数を用いて算出した現在位置と、GPS測位データに基づいて算出した現在位置とに誤差が生じた場合は、その地域を「位置ズレが発生した地域」として認識して登録し、次回その地域を走行した時に距離係数を学習すべきでないと判定して学習を中止するものである。
FIG. 5 is a diagram showing a processing flow for utilizing past travel data.
In the present embodiment, if there is an error between the current position calculated using the distance coefficient when traveling and the current position calculated based on GPS positioning data after sufficiently learning the distance coefficient, Is recognized and registered as “the region where the positional deviation has occurred”, and it is determined that the distance coefficient should not be learned the next time the vehicle travels in that region, the learning is stopped.

車両の走行により距離係数を学習し(ステップS11)、車両が所定距離以上の走行で距離係数を学習したか否か判断し(ステップS12)、所定距離走行して距離係数が安定した後、制御手段4により、過去に走行した時、位置ズレがあった地域の走行か否か判断する(ステップS13)。位置ズレがあったエリアの走行の場合には、距離係数の学習を中止する(ステップS16)。過去走行時に位置ずれがあった地域として登録されていない場合、現在の走行において距離係数により算出した現在位置と、GPS測位データに基づいて算出した現在位置とに誤差があるか否か判断する(ステップS14)。誤差があれば、例えば、大字、小字レベル等の地区単位で位置ズレがあった地域として位置ズレデータを登録し(ステップS15)、距離係数の学習を中止する。   The distance coefficient is learned by traveling the vehicle (step S11), it is determined whether the vehicle has learned the distance coefficient by traveling more than a predetermined distance (step S12), and the distance coefficient is stabilized after traveling for a predetermined distance. By means 4, it is determined whether or not the vehicle is traveling in an area where there has been a positional shift when traveling in the past (step S13). In the case of traveling in an area where there is a positional deviation, learning of the distance coefficient is stopped (step S16). If it is not registered as an area where there has been a position shift during past travel, it is determined whether there is an error between the current position calculated by the distance coefficient in the current travel and the current position calculated based on GPS positioning data ( Step S14). If there is an error, for example, the positional deviation data is registered as an area where the positional deviation is in units of districts such as large letters and small letters levels (step S15), and distance coefficient learning is stopped.

上述の実施形態では所定距離走行して距離係数が安定した後に学習中止要因を判断して距離係数の学習を中止しているが、距離係数が安定する前から学習中止要因を判断して距離係数学習の有無を制御してもよい。この場合は、学習中止要因を含む地域の走行中は距離係数の学習が中止されるため距離係数が安定するまでに時間がかかる反面、距離係数の学習開始時から正確な学習を行うことが可能となる。   In the above-described embodiment, after learning a factor for stopping the learning by determining the learning factor after the distance coefficient is stabilized after traveling a predetermined distance, the learning factor for the learning is canceled before the distance factor is stabilized. The presence or absence of learning may be controlled. In this case, the distance coefficient learning is canceled while traveling in a region that includes a learning stop factor, so it takes time for the distance coefficient to stabilize, but accurate learning can be performed from the start of distance coefficient learning. It becomes.

本発明によれば、十分に学習した距離係数に誤差が生ずるのを防止でき、現在位置検出精度を維持し向上することが可能となるので、産業上の利用価値は極めて大きい。   According to the present invention, an error can be prevented from occurring in a sufficiently learned distance coefficient, and the current position detection accuracy can be maintained and improved. Therefore, the industrial utility value is extremely large.

本実施の形態の例を説明する概念図である。It is a conceptual diagram explaining the example of this Embodiment. 距離係数の学習を中止する処理フローを示す図である。It is a figure which shows the processing flow which stops learning of a distance coefficient. 標高ポリゴンデータの例を説明する図である。It is a figure explaining the example of elevation polygon data. 道路データの学習属性を説明する図である。It is a figure explaining the learning attribute of road data. 過去の走行データを活用する処理フローを示す図である。It is a figure which shows the processing flow using past driving | running | working data.

符号の説明Explanation of symbols

1…ナビゲーション制御部、2…距離学習手段、3…現在位置検出手段、4…制御手段、10…情報送受信装置、11…GPS、11…車速センサ、13…傾斜角センサ、14…情報記憶手段。 DESCRIPTION OF SYMBOLS 1 ... Navigation control part, 2 ... Distance learning means, 3 ... Current position detection means, 4 ... Control means, 10 ... Information transmission / reception apparatus, 11 ... GPS, 11 ... Vehicle speed sensor, 13 ... Inclination angle sensor, 14 ... Information storage means .

Claims (3)

車両の走行距離に対する車速パルスの距離係数を学習する距離係数学習手段と、
前記距離係数学習手段を制御する制御手段と、
距離係数の学習を中止する学習中止要因があるか否かを判断する判断手段とを備え、
前記制御手段は、学習中止要因があると判断されたエリアを学習中止エリアとして登録し、前記学習中止エリアを走行する際に距離係数の学習を中止することを特徴とする車両用ナビゲーション装置。
Distance coefficient learning means for learning a distance coefficient of a vehicle speed pulse with respect to a travel distance of the vehicle;
And control means for controlling the distance coefficient learning means,
A determination means for determining whether or not there is a learning stop factor for stopping learning of the distance coefficient ,
The vehicle navigation apparatus, wherein the control means registers an area determined to have a learning stop factor as a learning stop area, and stops distance coefficient learning when traveling in the learning stop area .
前記判断手段は、車両が走行したときに距離係数を用いて算出した現在位置と、GPS測位データに基づいて算出した現在位置とに誤差が生じた場合に学習中止要因があると判断し、前記制御手段は、前記判断手段により学習中止要因があると判断されたエリアを学習中止エリアとして登録することを特徴とする請求項1記載の車両用ナビゲーション装置。The determination means determines that there is a learning stop factor when an error occurs between a current position calculated using a distance coefficient when the vehicle travels and a current position calculated based on GPS positioning data, 2. The vehicle navigation apparatus according to claim 1, wherein the control unit registers an area determined to have a learning stop factor by the determining unit as a learning stop area. 前記制御手段は、前記距離係数学習手段による学習が所定距離以上に達している場合に、前記判断手段により学習中止要因があると判断されたエリアを学習中止エリアとして登録することを特徴とする請求項1または2記載の車両用ナビゲーション装置。The control means, when learning by the distance coefficient learning means has reached a predetermined distance or more, registers an area determined to have a learning stop factor by the determination means as a learning stop area. Item 3. The vehicle navigation device according to Item 1 or 2.
JP2003428450A 2003-11-13 2003-12-24 Vehicle navigation device Expired - Fee Related JP4370565B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003428450A JP4370565B2 (en) 2003-12-24 2003-12-24 Vehicle navigation device
US10/941,080 US20050107946A1 (en) 2003-11-13 2004-09-15 Vehicle navigation apparatus
EP04024677A EP1531321A2 (en) 2003-11-13 2004-10-15 Vehicle navigation apparatus
CN200410092612.4A CN1616925A (en) 2003-11-13 2004-11-15 Vehicle navigation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003428450A JP4370565B2 (en) 2003-12-24 2003-12-24 Vehicle navigation device

Publications (2)

Publication Number Publication Date
JP2005189010A JP2005189010A (en) 2005-07-14
JP4370565B2 true JP4370565B2 (en) 2009-11-25

Family

ID=34787410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003428450A Expired - Fee Related JP4370565B2 (en) 2003-11-13 2003-12-24 Vehicle navigation device

Country Status (1)

Country Link
JP (1) JP4370565B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864064B2 (en) 2012-06-27 2018-01-09 Mitsubishi Electric Corporation Positioning device
US10267920B2 (en) 2012-06-27 2019-04-23 Mitsubishi Electric Corporation Positioning method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464884B2 (en) * 2005-07-28 2010-05-19 トヨタ自動車株式会社 Step learning system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9864064B2 (en) 2012-06-27 2018-01-09 Mitsubishi Electric Corporation Positioning device
US10267920B2 (en) 2012-06-27 2019-04-23 Mitsubishi Electric Corporation Positioning method

Also Published As

Publication number Publication date
JP2005189010A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
US20050107946A1 (en) Vehicle navigation apparatus
CN101819042B (en) Navigation device and navigation program
US7463974B2 (en) Systems, methods, and programs for determining whether a vehicle is on-road or off-road
KR100272901B1 (en) Method and apparatus for calibration of a distance sensor in a vehicle navigation system
CN101819043B (en) Navigation device and navigation method
EP0933615B1 (en) Route searching apparatus
US20070021912A1 (en) Current position information management systems, methods, and programs
EP0602013A2 (en) Calibration apparatus of angular velocity sensor in self-contained navigational system
KR20150080604A (en) Vehicle location estimation apparatus and vehicle location estimation method
CN101750086B (en) Navigation information correcting method and navigation device thereof
JP2000097713A (en) Device for detecting and displaying current location for vehicle, navigation device, and storage medium
EP3943887B1 (en) Dead-reckoning guidance system and method with cardinal-direction based coordinate-corrections
CN106443745A (en) Course angle correction method and device
CN101576387B (en) Navigation information revision method and navigation device thereof
CN112731483B (en) Method for judging RTK abnormal value in automatic driving integrated navigation system
US20100299059A1 (en) Method for operating a navigation system and a navigation system
CN111845740A (en) Method and device for estimating dynamic yaw rate deviation
CN109923375A (en) Road determining device and vehicle control system
KR20210153696A (en) Map calibration error detection method and device
JP4931113B2 (en) Own vehicle position determination device
JPH10307037A (en) Navigator
EP1674827A1 (en) System for detecting a lane change of a vehicle
JP4370565B2 (en) Vehicle navigation device
US11747156B2 (en) Method and system for generating maneuvering trajectories for a vehicle
JP6790951B2 (en) Map information learning method and map information learning device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090807

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140911

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees