JP4370083B2 - Sodium-sulfur secondary battery module - Google Patents

Sodium-sulfur secondary battery module Download PDF

Info

Publication number
JP4370083B2
JP4370083B2 JP2002250284A JP2002250284A JP4370083B2 JP 4370083 B2 JP4370083 B2 JP 4370083B2 JP 2002250284 A JP2002250284 A JP 2002250284A JP 2002250284 A JP2002250284 A JP 2002250284A JP 4370083 B2 JP4370083 B2 JP 4370083B2
Authority
JP
Japan
Prior art keywords
sodium
secondary battery
temperature
sulfur
electrode container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002250284A
Other languages
Japanese (ja)
Other versions
JP2004087430A (en
Inventor
敏郎 西
英鋭 相木
康 森
道夫 栗原
力也 阿部
栄 鷲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002250284A priority Critical patent/JP4370083B2/en
Publication of JP2004087430A publication Critical patent/JP2004087430A/en
Application granted granted Critical
Publication of JP4370083B2 publication Critical patent/JP4370083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電力貯蔵用ナトリウム硫黄二次電池モジュールの信頼性及び安全性向上に関する。更に詳しくは、ナトリウム伝導性電解質焼結体の熱応力による損傷を防止したナトリウム硫黄二次電池モジュールに関する。
【0002】
【従来の技術】
ナトリウム硫黄二次電池は正極活物質に硫黄若しくは多硫化ソーダを、負極活物質にナトリウムを使用するなど、低コストな材料を利用できるので、その利点を生かして、大電力貯蔵用などの応用に向けて、開発、実用化が進んでいる。
【0003】
電池単セルや単セルを集積接続して構成するモジュールの性能向上を図るにつれて、単セルは大型化し、セルの構成部品として欠かすことのできない、ナトリウムイオン伝導性の隔膜である、電解質焼結体が熱応力による影響で、損傷する問題が顕在化し、性能自体の信頼性にかかわることになり、また、内部に充填されている、活物質がナトリウムや硫黄など危険性の高い物質であるため、安全性の問題ともなっている。
【0004】
ここで、本発明に関わるナトリウム硫黄二次電池の構造を説明すると、図6はナトリウムイオン伝導性電解質としてβ”アルミナを隔膜に用いたナトリウム硫黄二次電池の分解斜視図である。
【0005】
図6において、107は負極容器でナトリウムイオン伝導性電解質即ちこの場合はβ”アルミナ焼結体の有底円筒108をイオン伝導性隔膜として外側に持っていて、負極容器107の底部の小孔109によってβ”アルミナの焼結体有底円筒108の内側と連通してる。そしてこのβ”アルミナ焼結体有底円筒を含む負極容器全体は、正極容器104の内側に設置されている。そして、この負極容器107にはナトリウム106を、正極容器104(詳細には、正極容器104とβ”アルミナの焼結体有底円筒108の間)には硫黄若しくは多硫化ソーダ105が充填されている。負極容器107の底部の小孔109によってβ”アルミナの焼結体有底円筒108の内側は、すべてナトリウムでみたされており、外側は硫黄若しくは多硫化ソーダで満たされているので、β”アルミナの焼結体有底円筒108の隔膜によって両極の活物質が分離、対峙していることになる。
【0006】
103は組み立て用の締結ボルト、101は正極端子で正極容器104に接続されており、102負極端子で負極容器107に接続されており、該両極間に、外部直流電源若しくは外部負荷を接続して充放電を行う。
【0007】
このようにして構成したナトリウム硫黄二次電池単セルは複数個集積接続されて、モジュール化する。この状況を図2に示した。即ちナトリウム硫黄二次電池単セル201を、多数集積して、目的に応じて直列、並列に接続し、ハウジングやフレームを含む一体化手段で、一体化してモジュール202として、さらに複数のモジュールを制御部などとともに設置、接続して、電池ユニット203とする。なお、図示していないが、本装置は高温例えば350℃で動作させるために、モジュールの一体化手段とともに若しくは電池ユニット内に加熱手段を備えている。
【0008】
運転開始準備過程で動作温度まで前記ナトリウム硫黄二次電池の温度を昇温するとき、加熱手段による熱供給はモジュールの器壁側から輻射若しくは伝熱により行われるため、必ずしも装置全体が均一に昇温しないため、偏溶融現象を起こし、このため種々な応力発生要因となり、固体電解質の損傷原因となる。
【0009】
このように偏溶融によって固体中に拘束された溶融液体溜りが発生して、加熱、膨張が続けられると、それが側面に発生した場合、横方向の大きな圧力が発生し、また底面に現れた場合、縦方向に大きな圧力が発生し、これが伝播して、β”アルミナ焼結体有底円筒を押しつぶす力となり、損傷原因となる。
【0010】
これを解析モデルを用いて応力の計算をすると次のような結果を与えた。図3はその計算モデル300で、単セルの断面を示す。このセルの図の右方から熱が供給されて、固体の多硫化ナトリウムまたは硫黄301中で、部分的に溶融液化した多硫化ナトリウムまたは硫黄303がSUSの正極金属容器304とβ”アルミナ焼結体円筒302間で加熱、膨張されて圧力Pが発生し、損傷原因となる。
【0011】
更に、運転中断のとき、運転温度から室温まで温度が降下する過程で、正極側の硫黄又は多硫化ソーダが底の部分で固化し始めると次のような現象が起きる。図4にその様子を示したが、401は未だ液体の中に粒状固体が混在している状態で、403は正極液が固化して固体となった状態である。ここで、正極容器には従来オーステナイト系のSUS304が使用されており、その線膨張係数は16×10−6、負極、正極間の隔膜のβ”アルミナ焼結体の線膨張係数は8×10−6であるため、外側の容器の収縮が中側のβ”アルミナ焼結体より大きい。底部の固化によって、この収縮差による縦方向の変位の全てが、β”アルミナ焼結体の底部にかかる事になり、β”アルミナ焼結体はクラック402を生じる。そして、次の昇温時にこのクラックは開口してしまう。
【0012】
この現象も応力を計算すると、底部から固化が始まるケースだと、その発生応力は22kgf/mmにも達し、均一に固化するときは5.8kgf/mmでしかなかった。β”アルミナ焼結体の平均強度は30kgf/mm程度なので、部分的なバラツキ等を考慮すると、前記現象は十分起こりうることが解った。
【0013】
【発明が解決しようとする課題】
そこで本発明は従来のこのような問題点に鑑みてなされたもので、ナトリウム伝導性電解質の焼結体からなる有底円筒を外側に有し、該有底円筒内側と連通する負極容器と、該負極容器を内設する正極容器とを有し、負極容器中にはナトリウムを、正極容器には多硫化ソーダ若しくは硫黄を充填してなるナトリウム硫黄二次電池を複数個集積接続した同モジュールにおいて、昇降温によって発生する、ナトリウム伝導性電解質焼結体の破損を防止した、信頼性及び安全性の高い電池モジュール構成を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明はナトリウム伝導性電解質の焼結体からなる有底円筒を外側に有し、該有底円筒内側と連通する負極容器と、該負極容器を内設する正極容器とを有し、負極容器中にはナトリウムを、正極容器には多硫化ソーダ若しくは硫黄を充填してなるナトリウム硫黄二次電池の複数個を集積接続し、該ナトリウム硫黄二次電池の複数個の集積体を集積体外側から加熱する加熱手段を備えた二次電池モジュールにおいて、加熱手段を集積体底面部と側面部と上面部とに分離独立して、加熱可能に構成したことを特徴とする。
【0015】
これにより、熱供給が底面と側面と上面それぞれ任意に制御可能となり、加熱が均一に行われ、偏溶融が防止されるので、前記した問題は起きなくなる。また、降温時にも、先行固化してトラブル原因となる部分のみに暫時弱く熱供給しながら、全体を降温することにより、原因排除が可能となる。
【0016】
更に本発明のナトリウム硫黄二次電池モジュールは、温度検出部と、温度制御部を備え、該集積体を運転温度まで加熱する際、検出部で、モジュール内の温度を検出し、検出温度が設定温度に到達するまでは、底面部若しくは側面部から加熱し、設定温度以上では上面部からのみにより加熱して、運転温度に到達せしめるよう制御部で制御可能としたことを特徴とする。
【0017】
即ち溶融が始まるまでは、熱伝達効率のよい底面若しくは側面加熱で昇温し、溶融が始まる直前に達したら、上面加熱に切り替えることにより、電池底部、側面部での偏溶融を避けることが出来る。
【0018】
更に本発明のナトリウム硫黄二次電池モジュールは、前記ナトリウム硫黄二次電池モジュールを構成するナトリウム硫黄二次電池のナトリウム伝導性電解質がβ”アルミナであり、設定温度が略120℃であり、運転温度が略350℃であることを特徴とする。
【0019】
当該二次電池の正極活物質である多硫化ソーダは融点260℃であり、硫黄が120℃であるので、先ず硫黄が先行して溶融するからである。また、到達最高温度は、電池の特性から選ばれた運転温度の350℃近辺でよい。
【0020】
更に本発明は、ナトリウム伝導性電解質の焼結体からなる有底円筒を外側に有し、該有底円筒内側と連通する負極容器と、該負極容器を内設する正極容器とを有し、負極容器中にはナトリウムを、正極容器には多硫化ソーダ若しくは硫黄を充填してなるナトリウム硫黄二次電池において、正極容器の材質の線膨張係数が前記ナトリウム伝導性電解質焼結体の線膨張係数の150%を超えず、50%を下回らない範囲の金属材料で構成するのがよい。
【0021】
こうすることにより、前記した線膨張係数の差で発生する応力を低減できて、ナトリウム伝導性電解質の焼結体の破損を防止することができる。
【0022】
更に本発明のナトリウム硫黄二次電池は、ナトリウム伝導性電解質がβ”アルミナであり、正極容器を構成する金属材料の線膨張係数の範囲が4.0〜12.0×10−6である。
【0023】
ナトリウム伝導性電解質のβ”アルミナの線膨張係数が8.0×10−6であるので、正極容器の金属材料の線膨張係数が4.0〜12.0×10−6の中にあれば、破損を防止することができるのを、本発明者等は見出したからある。
【0024】
更に本発明のナトリウム硫黄二次電池は、正極容器が金属の有底円筒であって、室温で平板の底板が温度上昇によって内方凸に湾曲し、室温に戻すと平板となるよう、温度によって可逆的に変形する底板を有する。
【0025】
前記した、降温時に正極容器が相対的に縦方向上方へ収縮して、底部分の固体が上方へ変位して、ナトリウム伝導性電解質の焼結体の底を圧迫する力を、温度上昇で内方凸、即ち上方へ湾曲した底が、温度降下によって下方へ戻り変位して、前記要因で起きる、底部分の固体の上方変位を相殺して、応力の発生を防ぐからである。
【0026】
更に本発明に好ましく適用されるナトリウム硫黄二次電池は、正極容器の底板が、異なる線膨張係数の金属材料を張り合わせ、該底板を正極容器とする円筒の底部に、底板の円周部に逃げを持たせて拘束している
【0027】
底板を二枚の金属の張り合わせ構造とし、その上板を下板より線膨張係数の大きい金属を使用するとき、加熱により上方凸に反る。この底板を、その反りを妨害しないように、円筒の円周に固定すれば、前記原理が達成できる。
【0028】
更に本発明に好ましく適用されるナトリウム硫黄二次電池は、異なる線膨張係数の金属材料を張り合わせた底板の一方の金属材料の円周のみを、正極容器とする円筒の円周に溶接している。
この構造は正極容器底板の反りを妨害しない更に具体的な構造の一つである。
【0029】
【発明の実施の形態】
次に必要に応じ、図面を参照しながら、発明の実施形態について例示的に説明する。但し本実施の形態に記載される製品の寸法、形状、材質、その相対配置等は特に特定的な記載がない限りは本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例に過ぎない。
【0030】
(実施例1)図1は各面を分離して加熱制御出来る構成の電池モジュールの概念図である。図1において、802は単セル、この単セルの複数個を集積接続し、集積体内部の温度を検出できる検出部803を配置する。該単セル集積体の上面には上面部加熱手段804として抵抗式加熱体を、下面には上面部加熱手段805として抵抗式加熱体を、側面には側面部加熱手段806として抵抗式加熱体を、集積体に近接配置する。
【0031】
制御部807は前記検出部803の検出した温度信号を設定温度と比較し、その結果により、各面に供給する電力の切換えスイッチを操作する操作量、及び供給電圧を操作する操作量を出力し、制御部に接続された電源808から、供給先への電圧の変圧、若しくは供給先の切り替えを操作する。制御部にはかくして行われた各面部の制御電圧を出力する端子があり、該端子と前記独立に配置された各面加熱手段804、805、806である抵抗式加熱体へ夫々接続して、各面分離、独立に温度制御可能とした。
【0032】
(実施例2)正極容器を従来のオーステナイト系SUS316を使用して作成し、前記ナトリウム硫黄二時電池を組み立て、運転温度から、室温まで降温すると前記した原理により、β”アルミナ管に22kgf/mmの応力がかかり、解体して検査するとβ”アルミナ管上部に横割れが観察された。一方、本発明の一例として線膨張係数が11×10−6であるフェライト系のSUS436を使用して作成し、前記ナトリウム硫黄二時電池を組み立て、運転温度から、室温まで降温すると前記した原理により、β”アルミナ管にかかる応力は15kgf/mmに低下し、解体して検査するとβ”アルミナ管上部の横割れはなかった。
【0033】
(実施例3)図5は正極容器の底板が内方に凸に湾曲する状況を説明した略図である。
図5の上部において、SUS316L円盤と炭素鋼円盤を張り合わせて厚さ1mmの底板を作成した。室温で平らな該円盤は350℃に昇温すると、図のごとく円盤中央が1.0mm窪み、湾曲した。
【0034】
図5の中部において、前記SUS316L円盤と炭素鋼円盤を張り合わせて作成した厚さ1mmの底板を同じくSUS316Lの円筒に図のごとく固定した。室温で平らな底板は350℃に昇温すると、図のごとく円盤中央が1.0mm窪み、湾曲した。
【0035】
図5の下部において、前記SUS316L円盤と炭素鋼円盤を張り合わせて作成した厚さ1mmの底板を同じくSUS316Lの円筒に図のごとく全周固定した。室温で平らな底板は350℃に昇温すると、図のごとく円盤中央が0.2mm窪み、湾曲の程度は低かった。
【0036】
図7は正極容器の張合わせ底板の溶接例の略図である。図7において、前記の現象を踏まえて、SUS304とSUS436で少し半径差のある円盤を切り抜き、張り合わせて、正極容器の底板を作成した。そして、図に示すようにSUS436製の正極容器円筒に張り合わせた底板の一方の円盤のみを固定した。即ち、線膨張係数の低いSUS436円板903を溶接用当て板904にビード905を作って溶接し、溶接用当て板904を円筒にビード905を作って溶接し正極容器を作製した。
【0037】
かくのごとくして作製した本容器の底板は室温から350℃まで昇温したところ、内側に大きく湾曲した。この容器を使用してナトリウム硫黄二次電池を組み立て、実施例1の加熱手段とともに実機に使用したところ、β”アルミナ管の破損は皆無であった。
【0038】
【発明の効果】
以上説明したように、本発明により、ナトリウム伝導性電解質の焼結体からなる有底円筒を外側に有し、該有底円筒内側と連通する負極容器と、該負極容器を内設する正極容器とを有し、負極容器中にはナトリウムを、正極容器には多硫化ソーダ若しくは硫黄を充填してなるナトリウム硫黄二次電池若しくはその複数個を集積接続した同モジュールにおいて、昇降温によって発生する、ナトリウム伝導性電解質焼結体の破損を防止した、信頼性及び安全性の高い電池モジュール構成を提供することの提供を可能とした。
【図面の簡単な説明】
【図1】 各面を分離して加熱制御出来る構成の電池モジュールの概念図。
【図2】 ナトリウム硫黄二次電池単セルを複数個集積接続したモジュール及びモジュールを設置したユニットの略図。
【図3】 ナトリウム硫黄二次電池応力解析モデルの径方向断面図。
【図4】 ナトリウム硫黄二次電池の降温時の内部状況を説明した縦方向断面図。
【図5】 正極容器の底板が内方に凸に湾曲する状況を説明した略図。
【図6】 ナトリウムイオン伝導性電解質としてβ”アルミナを隔膜に用いたナトリウム硫黄二次電池の分解斜視図。
【図7】 正極容器の張合わせ底板の溶接例の略図。
【符号の説明】
101 正極端子
102 負極端子
103 締結ボルト
104 正極容器
105 硫黄若しくは多硫化ソーダ
106 ナトリウム
107 負極容器
108 β”アルミナの焼結体有底円筒
109 小孔
201 ナトリウム硫黄二次電池単セル
202 モジュール
203 電池ユニット
300 計算モデル
301 固体の多硫化ナトリウムまたは硫黄
302 β”アルミナ焼結体円筒
303 溶融液化した多硫化ナトリウムまたは硫黄
304 SUSの正極金属容器
401 液中粒状固体混在相
402 クラック
403 正極液固化固体
801 電池モジュール
802 単セル
803 温度検出部
804 上面部加熱手段
805 下面部加熱手段
806 側面部加熱手段
807 制御部
808 加熱電源
901 正極容器円筒
902 SUS304円板
903 SUS436円板
904 溶接用当て板
905 溶接ビード
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the reliability and safety improvement in the sodium-sulfur secondary battery Ikemo Joule power storage. More particularly, to sodium sulfur secondary battery module capable of preventing damage due to thermal stress of the sodium conducting electrolyte sintered body.
[0002]
[Prior art]
Sodium-sulfur secondary batteries can use low-cost materials such as sulfur or sodium polysulfide for the positive electrode active material and sodium for the negative electrode active material. Development and commercialization are progressing.
[0003]
As the performance of a single cell or a module comprising a single cell integrated and connected is improved, the single cell becomes larger and the electrolyte sintered body is a sodium ion conductive diaphragm that is indispensable as a component of the cell. However, because of the effects of thermal stress, the problem of damage becomes obvious and the reliability of the performance itself is concerned, and the active material filled inside is a highly dangerous substance such as sodium or sulfur. It is also a safety issue.
[0004]
Here, to describe the structure of sodium-sulfur battery according to the present invention, FIG. 6 is an exploded perspective view of a sodium-sulfur secondary battery using the beta "alumina as a sodium ion-conducting electrolyte membrane.
[0005]
In FIG. 6, reference numeral 107 denotes a negative electrode container having a bottomed cylinder 108 of sodium ion conductive electrolyte, that is, β ″ alumina sintered body in this case as an ion conductive diaphragm, and a small hole 109 at the bottom of the negative electrode container 107. To communicate with the inside of the bottomed cylinder 108 of β ″ alumina. The entire negative electrode container including this β ″ alumina sintered body bottomed cylinder is installed inside the positive electrode container 104. Then, sodium 106 is added to the negative electrode container 107 and the positive electrode container 104 (in detail, the positive electrode container 104). Sulfur or sodium polysulfide 105 is filled between the container 104 and the β ″ alumina sintered body-bottomed cylinder 108. The inside of the β ″ alumina sintered cylinder with a bottom 108 is filled with sodium and the outside is filled with sulfur or sodium polysulfide because of the small hole 109 at the bottom of the negative electrode container 107. The active material of both electrodes is separated and confronted by the diaphragm of the bottomed cylinder 108 of the sintered body.
[0006]
103 fastening bolts for assembly, 101 is connected to the positive electrode container 104 at the positive terminal is connected to the negative electrode chamber 107 at 102 the negative terminal, to the both the machining gap, by connecting an external DC power source or an external load Charge and discharge.
[0007]
A plurality of sodium-sulfur secondary battery single cells configured in this way are integrated and connected to form a module. This situation is shown in FIG. That is, a large number of sodium-sulfur secondary battery cells 201 are integrated, connected in series or in parallel according to the purpose, and integrated with a means including a housing and a frame to be integrated as a module 202 to further control a plurality of modules. The battery unit 203 is installed and connected together with the unit. Although not shown, the apparatus includes a heating unit in addition to the module integration unit or in the battery unit in order to operate at a high temperature, for example, 350 ° C.
[0008]
When the temperature of the sodium-sulfur secondary battery is raised to the operating temperature during the operation start preparation process, the heat supply by the heating means is performed by radiation or heat transfer from the side of the module wall. Since it does not warm, it causes a partial melting phenomenon, which causes various stresses and causes damage to the solid electrolyte.
[0009]
In this way, a molten liquid pool constrained in the solid due to partial melting occurs, and when heating and expansion are continued, if it occurs on the side surface, a large lateral pressure is generated and appears on the bottom surface. In this case, a large pressure is generated in the vertical direction, which propagates and becomes a force for crushing the bottomed cylinder of the β ″ alumina sintered body, which causes damage.
[0010]
When the stress was calculated using an analytical model, the following results were given. FIG. 3 is a calculation model 300 showing a cross section of a single cell. Heat is supplied from the right side of the figure of this cell, and in the solid sodium polysulfide or sulfur 301, partially melted and liquefied sodium polysulfide or sulfur 303 becomes the SUS positive electrode metal container 304 and β "alumina sintered. The body cylinder 302 is heated and expanded to generate pressure P, which causes damage.
[0011]
Further, when the operation is interrupted, the following phenomenon occurs when sulfur or sodium polysulfide on the positive electrode side starts to solidify in the bottom part in the process of the temperature decreasing from the operating temperature to room temperature. This is shown in FIG. 4, where 401 is a state where granular solids are still mixed in the liquid, and 403 is a state where the positive electrode solution is solidified into a solid. Here, austenitic SUS304 is conventionally used for the positive electrode container, and its linear expansion coefficient is 16 × 10 −6 , and the β ”alumina sintered body of the diaphragm between the negative electrode and the positive electrode has a linear expansion coefficient of 8 × 10 6. Since it is −6 , the shrinkage of the outer container is larger than that of the middle β ″ alumina sintered body. Due to the solidification of the bottom portion, all of the longitudinal displacement due to this shrinkage difference is applied to the bottom portion of the β ″ alumina sintered body, and the β ″ alumina sintered body generates cracks 402. And this crack will open at the next temperature rising.
[0012]
When this phenomenon to calculate the stress, that's the case solidification begins from the bottom, the generated stress is reached to 22 kgf / mm 2, when uniformly solidified was only 5.8kgf / mm 2. Since the average strength of the β ″ alumina sintered body is about 30 kgf / mm 2 , it has been found that the above phenomenon can occur sufficiently in consideration of partial variations and the like.
[0013]
[Problems to be solved by the invention]
Therefore, the present invention has been made in view of such conventional problems, and has a bottomed cylinder made of a sintered body of a sodium conductive electrolyte on the outside, and a negative electrode container communicating with the inside of the bottomed cylinder, In the same module having a positive electrode container in which the negative electrode container is installed, a plurality of sodium sulfur secondary batteries in which sodium is contained in the negative electrode container and sodium polysulfide or sulfur is filled in the positive electrode container. , generated by heating and cooling, to prevent breakage of the sodium conducting electrolyte sintered body, and to provide a high electroforming cell module structure of reliability and safety.
[0014]
[Means for Solving the Problems]
The present invention has a bottomed cylinder made of a sintered body of a sodium conductive electrolyte on the outside, a negative electrode container communicating with the inside of the bottomed cylinder, and a positive electrode container in which the negative electrode container is provided, and a negative electrode container A plurality of sodium-sulfur secondary batteries filled with sodium and a positive electrode container filled with sodium polysulfide or sulfur are integrated and connected, and the plurality of assemblies of sodium-sulfur secondary batteries are connected from the outside of the integrated body. A secondary battery module provided with a heating means for heating is characterized in that the heating means is configured to be capable of being heated independently and separately into a bottom surface portion, a side surface portion, and a top surface portion of the integrated body.
[0015]
As a result, the heat supply can be arbitrarily controlled at the bottom, side, and top surfaces, heating is performed uniformly, and uneven melting is prevented, so that the above-described problem does not occur. Further, even when the temperature is lowered, it is possible to eliminate the cause by lowering the temperature of the whole while supplying heat weakly for a while to only the part that causes solidification due to advance solidification.
[0016]
Furthermore, the sodium-sulfur secondary battery module of the present invention includes a temperature detection unit and a temperature control unit. When the integrated body is heated to the operating temperature, the detection unit detects the temperature in the module and sets the detection temperature. Heating is performed from the bottom surface or side surface until reaching the temperature, and heating is performed only from the top surface above the set temperature so that the control unit can control the temperature so as to reach the operating temperature.
[0017]
That is, until the melting starts, the temperature is raised by bottom or side surface heating with good heat transfer efficiency, and when it reaches just before the melting starts, switching to the top surface heating can avoid uneven melting at the bottom and side surfaces of the battery. .
[0018]
Furthermore, in the sodium-sulfur secondary battery module of the present invention, the sodium-conductive electrolyte of the sodium-sulfur secondary battery constituting the sodium-sulfur secondary battery module is β ″ alumina, the set temperature is approximately 120 ° C., and the operating temperature Is approximately 350 ° C.
[0019]
This is because sodium polysulfide, which is the positive electrode active material of the secondary battery, has a melting point of 260 ° C. and sulfur of 120 ° C., so that sulfur first melts. Further, the maximum temperature reached may be around 350 ° C. of the operating temperature selected from the characteristics of the battery.
[0020]
Furthermore, the present invention has a bottomed cylinder made of a sintered body of sodium conductive electrolyte on the outside, a negative electrode container communicating with the inside of the bottomed cylinder, and a positive electrode container having the negative electrode container provided therein, In a sodium-sulfur secondary battery in which sodium is filled in the negative electrode container and sodium polysulfide or sulfur is filled in the positive electrode container, the linear expansion coefficient of the material of the positive electrode container is the linear expansion coefficient of the sodium conductive electrolyte sintered body. It is preferable to use a metal material in a range not exceeding 150% and not less than 50% .
[0021]
By carrying out like this, the stress which generate | occur | produces by the difference of an above-mentioned linear expansion coefficient can be reduced, and the failure | damage of the sintered compact of a sodium conductive electrolyte can be prevented.
[0022]
Further sodium-sulfur secondary battery of the present invention is sodium conducting electrolyte is beta "alumina, area by the from 4.0 to 12.0 × 10 -6 der the linear expansion coefficient of the metal material constituting the positive electrode container .
[0023]
Since the linear expansion coefficient of β ”alumina of the sodium conductive electrolyte is 8.0 × 10 −6 , if the linear expansion coefficient of the metal material of the positive electrode container is within 4.0 to 12.0 × 10 −6. , that it can be prevented from being damaged, the present inventors have since been found.
[0024]
Furthermore, in the sodium-sulfur secondary battery of the present invention, the positive electrode container is a metal bottomed cylinder, and the bottom plate of the flat plate is bent inwardly with increasing temperature at room temperature, and becomes flat when returning to room temperature. that having a bottom plate to reversibly deformed.
[0025]
As described above, the positive electrode container contracts relatively upward in the vertical direction when the temperature is lowered, and the solid in the bottom portion is displaced upward, and the force that presses the bottom of the sintered body of the sodium conductive electrolyte is increased by increasing the temperature. This is because the bottom that is convex, that is, curved upward, returns and is displaced downward due to a temperature drop, offsets the upward displacement of the solid in the bottom portion, and prevents the generation of stress.
[0026]
Further, in the sodium-sulfur secondary battery preferably applied to the present invention , the bottom plate of the positive electrode container is bonded to a metal material having a different linear expansion coefficient, and the bottom plate escapes to the circumference of the bottom plate using the bottom plate as a positive electrode container. Is restrained .
[0027]
When the bottom plate is made of a laminate structure of two metals and the upper plate is made of a metal having a larger linear expansion coefficient than the lower plate, it is warped upward by heating. The above principle can be achieved by fixing the bottom plate to the circumference of the cylinder so as not to disturb the warpage.
[0028]
Further, in the sodium-sulfur secondary battery preferably applied to the present invention , only the circumference of one metal material of the bottom plate bonded with the metal materials having different linear expansion coefficients is welded to the circumference of the cylinder as the positive electrode container . .
This structure is one of more specific structures that does not hinder the warping of the positive electrode container bottom plate.
[0029]
DETAILED DESCRIPTION OF THE INVENTION
Next, exemplary embodiments of the invention will be exemplarily described with reference to the drawings as necessary. However, the dimensions, shapes, materials, relative arrangements, and the like of the products described in the present embodiment are not intended to limit the scope of the present invention unless otherwise specified, but are merely illustrative examples. Absent.
[0030]
(Embodiment 1) FIG. 1 is a conceptual diagram of a battery module having a structure in which each surface can be separated and heated. In FIG. 1, reference numeral 802 denotes a single cell, and a plurality of single cells are connected in an integrated manner, and a detection unit 803 capable of detecting the temperature inside the integrated body is disposed. On the upper surface of the single cell integrated body, a resistance heating body is used as the upper surface heating means 804, a resistance heating body is used as the upper surface heating means 805 on the lower surface, and a resistance heating body is used as the side surface heating means 806 on the side surface. , Placed close to the stack.
[0031]
The control unit 807 compares the temperature signal detected by the detection unit 803 with a set temperature, and outputs an operation amount for operating a switch for switching power supplied to each surface and an operation amount for operating a supply voltage based on the result. From the power source 808 connected to the control unit, voltage transformation to the supply destination or switching of the supply destination is operated. The control unit has a terminal for outputting the control voltage of each surface portion thus performed, and is connected to the resistance heating body which is each surface heating means 804, 805, 806 arranged independently of the terminal, Each surface can be separated and temperature controlled independently.
[0032]
(Example 2) A positive electrode vessel was prepared using a conventional austenitic SUS316, the sodium sulfur binary battery was assembled, and the temperature was lowered from the operating temperature to room temperature. When a stress of 2 was applied and the sample was disassembled and inspected, transverse cracks were observed at the top of the β "alumina tube. On the other hand, as an example of the present invention, a ferrite-based SUS436 having a linear expansion coefficient of 11 × 10 −6 is used, the sodium-sulfur binary battery is assembled, and the temperature is lowered from the operating temperature to room temperature. The stress applied to the β ″ alumina tube decreased to 15 kgf / mm 2 , and when disassembled and inspected, there was no transverse crack at the top of the β ″ alumina tube.
[0033]
(Embodiment 3) FIG. 5 is a schematic diagram for explaining the situation where the bottom plate of the positive electrode container is curved inwardly.
In the upper part of FIG. 5, a SUS316L disk and a carbon steel disk were laminated to form a bottom plate having a thickness of 1 mm. When the disc flat at room temperature was heated to 350 ° C., the center of the disc was depressed by 1.0 mm and curved as shown in the figure.
[0034]
In the middle of FIG. 5, a bottom plate having a thickness of 1 mm prepared by bonding the SUS316L disk and a carbon steel disk was fixed to a cylinder of SUS316L as shown in the figure. When the temperature of the flat bottom plate was raised to 350 ° C. at room temperature, the center of the disk was depressed by 1.0 mm and curved as shown in the figure.
[0035]
In the lower part of FIG. 5, a bottom plate having a thickness of 1 mm prepared by bonding the SUS316L disk and a carbon steel disk was fixed to the cylinder of SUS316L as shown in the figure. When the temperature of the flat bottom plate at room temperature was raised to 350 ° C., the center of the disk was depressed by 0.2 mm as shown in the figure, and the degree of curvature was low.
[0036]
FIG. 7 is a schematic view of a welding example of a laminated bottom plate of a positive electrode container. In FIG. 7, based on the above phenomenon, a disc having a slight radius difference between SUS304 and SUS436 was cut out and pasted to create a bottom plate of the positive electrode container. Then, as shown in the figure, only one disk of the bottom plate attached to the positive electrode cylinder made of SUS436 was fixed. That is, a SUS436 disk 903 having a low coefficient of linear expansion was welded to a welding plate 904 by making a bead 905, and the welding plate 904 was welded to a cylinder by making a bead 905 to produce a positive electrode container.
[0037]
When the temperature of the bottom plate of the container thus prepared was raised from room temperature to 350 ° C., it was greatly curved inward. When this container was used to assemble a sodium-sulfur secondary battery and used in an actual machine together with the heating means of Example 1, there was no damage to the β ″ alumina tube.
[0038]
【The invention's effect】
As described above, according to the present invention, a negative electrode container having a bottomed cylinder made of a sintered body of sodium conductive electrolyte on the outside and communicating with the inner side of the bottomed cylinder, and a positive electrode container having the negative electrode container provided therein In the negative electrode container, sodium polysulfide filled with sodium sulfide or sulfur in the positive electrode container, or in the same module in which a plurality of the sodium sulfur secondary batteries are integrated and connected. to prevent breakage of the sodium conducting electrolyte sintered body, it made it possible to provide to provide high electroforming cell module structure of reliability and safety.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram of a battery module configured to be able to control heating by separating each surface.
FIG. 2 is a schematic view of a module in which a plurality of sodium sulfur secondary battery single cells are connected in an integrated manner and a unit in which the modules are installed.
FIG. 3 is a radial cross-sectional view of a sodium-sulfur secondary battery stress analysis model.
FIG. 4 is a longitudinal cross-sectional view illustrating an internal state of the sodium sulfur secondary battery when the temperature is lowered.
FIG. 5 is a schematic diagram illustrating a situation where the bottom plate of the positive electrode container is curved inwardly.
FIG. 6 is an exploded perspective view of a sodium-sulfur secondary battery using β ″ alumina as a diaphragm as a sodium ion conductive electrolyte.
FIG. 7 is a schematic diagram of a welding example of a laminated bottom plate of a positive electrode container.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 Positive electrode terminal 102 Negative electrode terminal 103 Fastening bolt 104 Positive electrode container 105 Sulfur or sodium polysulfide 106 Sodium 107 Negative electrode container 108 β "Alumina sintered body bottomed cylinder 109 Small hole 201 Sodium sulfur secondary battery 202 Cell 203 Battery unit 300 Calculation Model 301 Solid Sodium Polysulfide or Sulfur 302 β ”Alumina Sintered Cylinder 303 Molten Liquid Sodium Polysulfide or Sulfur 304 SUS Cathode Metal Container 401 Liquid Solid Solid Mixed Phase 402 Crack 403 Cathode Liquid Solidified Solid 801 Battery Module 802 Single cell 803 Temperature detection unit 804 Upper surface heating unit 805 Lower surface heating unit 806 Side surface heating unit 807 Control unit 808 Heating power source 901 Positive electrode container cylinder 902 SUS304 disc 903 SUS436 disc 904 Welding Caul plate 905 weld bead

Claims (3)

ナトリウム伝導性電解質の焼結体からなる有底円筒を外側に有し、該有底円筒内側と連通する負極容器と、該負極容器を内設する正極容器とを有し、負極容器中にはナトリウムを、正極容器には多硫化ソーダ若しくは硫黄を充填してなるナトリウム硫黄二次電池の複数個を集積接続し、該ナトリウム硫黄二次電池の複数個の集積体を集積体外側から加熱する加熱手段を備えた二次電池モジュールにおいて、加熱手段を集積体底面部と側面部と上面部とに分離独立して、加熱可能に構成したことを特徴とするナトリウム硫黄二次電池モジュール。  It has a bottomed cylinder made of a sintered body of sodium conductive electrolyte on the outside, and has a negative electrode container communicating with the inside of the bottomed cylinder, and a positive electrode container in which the negative electrode container is installed. Sodium is connected to a plurality of sodium-sulfur secondary batteries filled with sodium polysulfide or sulfur in the positive electrode container, and the plurality of sodium-sulfur secondary batteries are heated from outside the integrated body. A sodium-sulfur secondary battery module characterized in that, in the secondary battery module including the means, the heating means is configured to be able to be heated independently and separately into the bottom surface portion, the side surface portion, and the top surface portion of the integrated body. 前記ナトリウム硫黄二次電池モジュールに温度検出部と、温度制御部を備え、該集積体を運転温度まで加熱する際、検出部で、モジュール内の温度を検出し、検出温度が設定温度に到達するまでは、底面部若しくは側面部から加熱し、設定温度以上では上面部からのみにより加熱して、運転温度に到達せしめるよう制御部で制御可能としたことを特徴とする請求項1記載のナトリウム硫黄二次電池モジュール。  The sodium-sulfur secondary battery module includes a temperature detection unit and a temperature control unit. When the integrated body is heated to the operating temperature, the detection unit detects the temperature in the module, and the detected temperature reaches the set temperature. 2. The sodium sulfur according to claim 1, which is heated from the bottom surface portion or the side surface portion, and is heated only from the top surface portion at a set temperature or higher so as to reach the operating temperature. Secondary battery module. 前記ナトリウム硫黄二次電池モジュールを構成するナトリウム硫黄二次電池のナトリウム伝導性電解質がβ”アルミナであり、設定温度が略120℃であり、運転温度が略350℃であることを特徴とする請求項2記載のナトリウム硫黄二次電池モジュール。  The sodium conductive electrolyte of the sodium sulfur secondary battery constituting the sodium sulfur secondary battery module is β ″ alumina, the set temperature is about 120 ° C., and the operation temperature is about 350 ° C. Item 3. A sodium-sulfur secondary battery module according to Item 2.
JP2002250284A 2002-08-29 2002-08-29 Sodium-sulfur secondary battery module Expired - Fee Related JP4370083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002250284A JP4370083B2 (en) 2002-08-29 2002-08-29 Sodium-sulfur secondary battery module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002250284A JP4370083B2 (en) 2002-08-29 2002-08-29 Sodium-sulfur secondary battery module

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008207611A Division JP4875674B2 (en) 2008-08-12 2008-08-12 Sodium-sulfur secondary battery

Publications (2)

Publication Number Publication Date
JP2004087430A JP2004087430A (en) 2004-03-18
JP4370083B2 true JP4370083B2 (en) 2009-11-25

Family

ID=32057151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002250284A Expired - Fee Related JP4370083B2 (en) 2002-08-29 2002-08-29 Sodium-sulfur secondary battery module

Country Status (1)

Country Link
JP (1) JP4370083B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3046177B1 (en) * 2013-09-11 2018-10-17 NGK Insulators, Ltd. Battery-pack case
CN103490118B (en) * 2013-10-09 2016-09-21 中国东方电气集团有限公司 A kind of cool-down method of sodium-sulphur battery
CN103474716B (en) * 2013-10-09 2016-06-01 中国东方电气集团有限公司 The temperature-rising method of a kind of sodium-sulfur cell

Also Published As

Publication number Publication date
JP2004087430A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
CN100565976C (en) Syndeton between monocell
US20170317324A1 (en) Housing for the cell stack of a battery
CN108604689B (en) Fuel cell
JPS60107267A (en) Wet seal of high temperature fuel battery and method of suppressing corrosion thereof
US7811716B2 (en) Fuel cell
JP2008147157A (en) Method of manufacturing metal separator for fuel cell
US8168347B2 (en) SOFC assembly joint spacing
CN207183330U (en) Battery cover plate structure
US4564568A (en) Electrochemical storage cell
JP4370083B2 (en) Sodium-sulfur secondary battery module
JPS5951482A (en) Sodium-sulfur battery
JP5475682B2 (en) Sealed flexible link between metal substrate and ceramic substrate, method of forming the link, application of the method to a sealed high-temperature electrolytic cell and a fuel cell
JP4875674B2 (en) Sodium-sulfur secondary battery
JP4148416B2 (en) Insulated container and assembled battery including the same
KR101550891B1 (en) Sodium-sulfur rechargeable battery module
JP2019220374A (en) Joining mold of fuel battery single cell
EP2368287A1 (en) Cassette less sofc stack and method of assembly
US9692079B2 (en) Laminated plate repeating fuel cell unit for an SOFC stack
JPH09283170A (en) Flat plate-shaped solid electrolyte fuel cell
JP2999653B2 (en) Solid electrolyte fuel cell
KR101850396B1 (en) All-liquid metal battery with inert gas flow and method for producing the same
JP2008198563A (en) Lead acid storage battery
JP2771578B2 (en) Solid electrolyte fuel cell
US20220320478A1 (en) Method and device for producing a component for a battery cell and such a component
JPH07153479A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090814

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees