JP4367693B2 - Hydrogen separator and method for producing the same - Google Patents

Hydrogen separator and method for producing the same Download PDF

Info

Publication number
JP4367693B2
JP4367693B2 JP2003181483A JP2003181483A JP4367693B2 JP 4367693 B2 JP4367693 B2 JP 4367693B2 JP 2003181483 A JP2003181483 A JP 2003181483A JP 2003181483 A JP2003181483 A JP 2003181483A JP 4367693 B2 JP4367693 B2 JP 4367693B2
Authority
JP
Japan
Prior art keywords
hydrogen
porous substrate
metal layer
selective permeable
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003181483A
Other languages
Japanese (ja)
Other versions
JP2005013853A (en
Inventor
哲 山崎
修 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003181483A priority Critical patent/JP4367693B2/en
Publication of JP2005013853A publication Critical patent/JP2005013853A/en
Application granted granted Critical
Publication of JP4367693B2 publication Critical patent/JP4367693B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素分離体及びその製造方法に関し、更に詳しくは、熱サイクルを加えても水素分離層の剥離や欠陥が発生し難く、更に金属微粉末が表面に付着しても欠陥が発生し難く、それにより気密性が低下し難い水素分離体及びその製造方法に関する。
【0002】
【従来の技術】
従来より、水蒸気改質ガス等の水素を含有するガスから水素のみを選択的に取り出すために、セラミック多孔質基体にパラジウム等からなる水素分離層を配設した水素分離体が使用されている。水素分離体は、高温において水素のみを分離するために使用されることがあるため、高温又は昇降温が繰り返される環境において高い気密性を有することが要求される。
【0003】
パラジウム等の水素分離層をセラミック多孔質基体に配設して水素分離体を製造するときには、例えば、メッキ等の方法によりパラジウムをセラミック多孔質基体の表面に配設している(例えば、特許文献1〜3参照)。しかし、この場合、パラジウムとセラミック多孔質基体のそれぞれの熱膨張係数が異なり、更に、パラジウムとセラミック多孔質基体との濡れ性が良くないため、昇降温が繰り返され、熱サイクルが加えられると、パラジウムがセラミック多孔質基体の表面から剥離したり、パラジウムに欠陥が発生し、気密性が低下するという問題があった。また、パラジウムをセラミック多孔質基体に配設した後に銀等をパラジウムの表面に配設し、その後に加熱することにより、パラジウムと銀との合金をセラミック多孔質基体に配設して、水素分離層とする場合には、上記合金がセラミック多孔質基体から、より剥離し易くなるという問題があった。
【0004】
また、水素分離体を使用しているときに、上記ガスに金属微粉末が含有されている場合には、この金属微粉末と、水素分離体の表面に配設されたパラジウム等の水素分離層とが反応することにより、欠陥が発生し、気密性が低下するという問題があった。
【0005】
【特許文献1】
特開平3−146122号公報
【特許文献2】
特許第3213430号公報
【特許文献3】
特開昭62−273030号公報
【0006】
【発明が解決しようとする課題】
本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、熱サイクルを加えても水素分離層の剥離や欠陥が発生し難く、更に金属微粉末が表面に付着しても欠陥が発生し難く、それにより気密性が低下し難い水素分離体及びその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、本発明によって以下の水素分離体及びその製造方法が提供される。
【0008】
[1] その一の表面から他の表面まで連通する多数の細孔を有する多孔質基体と、前記多孔質基体に配設された、前記一の表面側から流入する水素を含む気体のうち水素だけを選択的に透過させて前記他の表面側から流出させることが可能な水素分離層とを備える水素分離体であって、
前記水素分離層が、前記多孔質基体の前記細孔のそれぞれの内部に、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで形成された水素選択透過性金属層によって構成されてなることを特徴とする水素分離体。
【0010】
] 前記水素分離層を構成する前記水素選択透過性金属層が、1〜5μmの厚さで形成されてなる[1に記載の水素分離体。
【0011】
] 前記水素分離層を構成する前記水素選択透過性金属層が、パラジウム又はパラジウムを含有する合金からなる[1]又は[2]に記載の水素分離体。
【0012】
] 前記多孔質基体がセラミックを主成分としてなる[1]〜[]のいずれかに記載の水素分離体。
【0013】
] その一の表面から他の表面まで連通する多数の細孔を有する多孔質基体と、前記多孔質基体に配設された、前記一の表面側から流入する水素を含む気体のうち水素だけを選択的に透過させて前記他の表面側から流出させることが可能な水素分離層とを備える水素分離体を製造する方法であって、前記多孔質基体の表面及び前記細孔の内壁に、活性化金属を付着させて、活性化金属付着基体を作製し、前記活性化金属付着基体に付着した前記活性化金属のうち、前記多孔質基体の表面、及び前記細孔の内壁の、前記多孔質基体の一の表面から所定の深さの部位までに付着した前記活性化金属を除去して、前記多孔質基体の一の表面から所定の深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで、前記細孔の内壁に前記活性化金属が付着した活性化処理基体を作製し、前記活性化処理基体に前記活性化金属を核として化学メッキ処理して、前記活性化金属が付着した位置に前記水素選択透過性金属層を形成することにより、前記多孔質基体の前記細孔のそれぞれの内部に、前記多孔質基体の一の表面から所定の深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで形成された水素選択透過性金属層によって構成された前記水素分離層を配設して、前記水素分離体を得ることを特徴とする水素分離体の製造方法。
【0014】
] 前記水素分離層を構成する前記水素選択透過性金属層が、パラジウム又はパラジウムを含有する合金からなる[]に記載の水素分離体の製造方法。
【0015】
] 前記活性化金属付着基体から前記活性化金属を除去するときに、前記活性化金属付着基体を酸性溶液に浸漬して、前記活性化金属を酸性溶液に溶解させて除去する[]又は[]に記載の水素分離体の製造方法。
【0016】
] 前記酸性溶液が、塩酸と硝酸とを混合した混酸である[]に記載の水素分離体の製造方法。
【0017】
] 前記多孔質基体が、セラミックを主成分としてなる[]〜[]のいずれかに記載の水素分離体の製造方法。
【0018】
10] 前記水素分離層を構成する前記水素選択透過性金属層を、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から形成する[]〜[]のいずれかに記載の水素分離体の製造方法。
【0019】
11] 前記水素分離層を構成する前記水素選択透過性金属層を、1〜5μmの厚さで形成する[]〜[10]のいずれかに記載の水素分離体の製造方法。
【0020】
12] 前記水素選択透過性金属層を形成した後に、前記水素選択透過性金属層の、前記多孔質基体の一の表面側の表面に、電気メッキにより合金形成用金属層を形成し、前記水素選択透過性金属層及び前記合金形成用金属層を加熱し、水素選択透過性金属と合金形成用金属との合金から構成される合金化された水素選択透過性金属層を形成することにより、前記合金化された水素選択透過性金属層から構成される前記水素分離層を配設する[]〜[11]のいずれかに記載の水素分離体の製造方法。
【0021】
13] 前記水素分離層を構成する前記合金化された水素選択透過性金属層を、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から形成する[12]に記載の水素分離体の製造方法
【0022】
14] 前記水素分離層を構成する前記合金化された水素選択透過性金属層を、1〜5μmの厚さで形成する[12]又は[13]に記載の水素分離体の製造方法。
【0023】
このように、本発明の水素分離体によれば、多孔質基体に配設される水素分離層が、多孔質基体の細孔のそれぞれの内部に、多孔質基体の一の表面から所定の深さの部位から形成された水素選択透過性金属層によって構成されてなることにより、水素分離層が多孔質基体の細孔内部に保持され、自由に膨脹・収縮することが抑制されるため、水素分離体に熱サイクルを加えても、水素分離層が多孔質基体から剥離したり、水素分離層に欠陥が生じたりすることを抑制することができる。また、水素分離層が、多孔質基体の一の表面から所定の深さの部位から形成されることにより、水素分離層が水素分離体の表面に存在しなくなるため、金属微粉末が水素分離体の表面に付着しても、水素分離層と接触することがなく、水素分離層に欠陥が生じることを抑制することができる。
【0024】
また、本発明の水素分離体の製造方法によれば、多孔質基体に活性化金属を付着させて活性化処理基体を作製するときに、多孔質基体の一の表面から所定の深さの部位から、多孔質基体の他の表面側に向かって所定の厚さで、細孔の内壁に活性化金属を付着させ、その活性化金属を核として水素選択透過性金属層を形成したため、水素分離層が、多孔質基体の細孔のそれぞれの内部に、多孔質基体の一の表面から所定の深さの部位から多孔質基体の他の表面側に向かって所定の厚さで形成された、水素選択透過性金属層によって構成されてなる水素分離体を作製することができる。
【0025】
【発明の実施の形態】
次に本発明の実施の形態を図面を参照しながら詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
【0026】
図1は、本発明の水素分離体の一の実施の形態を模式的に示す、水素分離層に垂直な平面で切断して要部を拡大した断面図である。
【0027】
図1に示すように、本実施の形態の水素分離体1は、その一の表面5から他の表面(図示せず)まで連通する多数の細孔4を有する多孔質基体2と、多孔質基体2に配設された、一の表面5側から流入する水素を含む気体のうち水素だけを選択的に透過させて他の表面(図示せず)側から流出させることが可能な水素分離層3とを備え、水素分離層3が、多孔質基体2の細孔4のそれぞれの内部に、多孔質基体2の一の表面5から所定の深さの部位7から、多孔質基体2の他の表面(図示せず)側に向かって所定の厚さWで形成された水素選択透過性金属層6によって構成されてなることを特徴とする。多孔質基体2の細孔4は、水素選択透過性金属8により上記所定の厚さWの範囲で閉塞され、上記一の表面5側と他の表面(図示せず)側との気密性が保たれている。
【0028】
このように、水素選択透過性金属層6によって構成される水素分離層3が、多孔質基体2の一の表面5には存在せず、細孔4の内部に入り込んで存在しているため、水素分離体1に熱サイクルが加わり、多孔質基体2及び水素分離層3が膨脹、収縮を繰り返しても、水素分離層3が細孔4に保持されながら膨脹、収縮するため、多孔質基体2との剥離が生じ難く、気密性を保つことができる。また、水素分離層3が多孔質基体2の一の表面5から所定の深さの部位7から多孔質基体2の他の表面(図示せず)側に向かって形成されているため、多孔質基体2の一の表面5から、所定の深さの部位7までの細孔4には何も充填されていない状態となり、金属微粉末が水素分離体1の表面に付着しても水素分離層3に欠陥が生じることを抑制することができる。
【0029】
水素分離層3を構成する水素選択透過性金属層6は、多孔質基体2の一の表面5から0.1〜5μmの深さの部位から形成されることが好ましい。さらに0.3〜2μmの深さの部位から形成されることがより好ましい。つまり、多孔質基体2の一の表面5から所定の深さの部位7における、所定の深さが、0.1〜5μmである。この所定の深さが0.1μmより小さいと、金属微粉末が水素分離体1の表面に付着したときに水素分離層3にも付着し、水素分離層3に欠陥が生じることがある。また、この所定の深さが5μmより大きいと、一の表面5から、所定の深さの部位7までの細孔4に水素濃度が低下したガス(水素を含む気体)が滞留し、水素の分離効率が低下することがある。
【0030】
水素分離層3を構成する水素選択透過性金属層6の所定の厚さWは、1〜5μmが好ましい。1μmより薄いと、水素分離層3に欠陥が生じ易くなることがあり、5μmより厚いと、水素分離層3による水素分離の分離効率が低下することがある。
【0031】
水素選択透過性金属層6を構成する水素選択透過性金属層は、パラジウム又はパラジウムを含有する合金からなることが好ましい。
【0032】
多孔質基体2が、セラミックを主成分とする多孔質体であることが好ましい。セラミックを主成分とすることにより、耐熱性、耐食性等に優れ、機械的強度の強い水素分離体1とすることができる。セラミックとしては特に限定されるものではなく、水素分離体として一般的に使用されるセラミックのいずれでも採用することができる。例えば、アルミナ、シリカ、シリカ−アルミナ、ムライト、コージェライト、ジルコニア等が挙げられる。セラミック以外の成分としては、不可避的に含有される成分や、通常添加されるような成分を少量含有してもよい。また、セラミック以外にも、カーボンや多孔質ガラスを用いることもできる。尚、多孔質基体2の厚さは、特に制限されない。使用環境において充分な機械強度を保持できればよい。
【0033】
この多孔質基体2は、3次元状に連続した多数の微細な細孔4を有するものであるが、この細孔4の孔径は、0.003〜2μmであることが好ましく、0.1〜1μm以下であることが、より好ましい。孔径が0.003μm未満では、ガスが通過するときの抵抗が大きくなることがある。一方、孔径が2μmを超えると、本実施の形態の水素分離体1を製造するときに、化学メッキにより水素選択透過性金属層6を配設する場合には、水素選択透過性金属8により細孔4を閉塞し難くなるので、好ましくない。
【0034】
また、多孔質基体2の細孔4は、孔径が揃っていることが好ましい。これにより、上記化学メッキにより水素選択透過性金属層6を配設する場合に、メッキ溶液を細孔4に漏れなく均一に侵入させ易く、水素選択透過性金属8が充填されない細孔4が生じてしまう問題を回避できる。
【0035】
次に、本発明の水素分離体の製造方法の一の実施の形態について、図面を参照しながら詳細に説明する。
【0036】
図2は、本実施の形態の水素分離体の製造方法において、多孔質基体に活性化金属を付着させた状態を模式的に示す、多孔質基体の一の表面付近を拡大した断面図である。図3は、本実施の形態の水素分離体の製造方法において、多孔質基体に付着させた活性化金属のうち、多孔質基体の一の表面から所定の深さの部位までに付着した活性化金属を除去した状態を模式的に示す、多孔質基体の一の表面付近を拡大した断面図である。図4は、本実施の形態の水素分離体の製造方法で製造した水素分離体を示す、多孔質基体の一の表面付近を拡大した断面図である。
【0037】
本実施の形態の水素分離体の製造方法は、まず、図2に示すように、多孔質基体22の一の表面25及び細孔24の内壁に、活性化金属29を付着させて、活性化金属付着基体20を作製する。
【0038】
次に、得られた活性化金属付着基体20に付着した活性化金属29のうち、多孔質基体22の一の表面25及び細孔24の内壁の、多孔質基体22の一の表面25から所定の深さの部位27までに付着した活性化金属29を除去して、図3に示すような、多孔質基体22の一の表面25から所定の深さの部位27から、多孔質基体22の他の表面(図示せず)側に向かって所定の厚さWで、細孔24の内壁に活性化金属29が付着した活性化処理基体30を作製する。
【0039】
そして、得られた活性化処理基体30に、活性化金属29を核として化学メッキ処理して、図4に示すように、活性化金属29(図3参照)が付着した位置に水素選択透過性金属層26を形成することにより、多孔質基体22の細孔24のそれぞれの内部に、多孔質基体22の一の表面25から所定の深さの部位27から、多孔質基体22の他の表面(図示せず)側に向かって所定の厚さWで形成された水素選択透過性金属層26によって構成された水素分離層23を配設して、水素分離体40を得る。水素分離層23を構成する水素選択透過性金属層26は、細孔24が水素選択透過性金属28で充填され閉塞されており、水素以外のガスが細孔24を通過しないように形成されている。
【0040】
このように、活性化金属付着基体に付着した活性化金属のうち、多孔質基体の一の表面から所定の深さの部位までに付着した活性化金属を除去して、その後に、化学メッキにより水素選択透過性金属層を形成したため、水素分離層を水素分離体の内部の所望の位置に配設することができる。
【0041】
本実施の形態の水素分離体の製造方法においては、図2に示す活性化金属29を多孔質基体22に付着させるときには、多孔質基体22を活性化金属29を含有する溶液に浸漬させ、多孔質基体22の一の表面25側に活性化金属29を含有する溶液を付着させ、水洗する。このとき、多孔質基体22の他の表面(図示せず)側を減圧し、活性化金属29を含有する溶液を多孔質基体22の細孔24の内部の所望の部位まで浸透させてもよい。また、多孔質基体22の他の表面(図示せず)側にも活性化金属29を付着させてもよい。
【0042】
活性化金属29を付着させる方法としては、パラジウム2価イオンを含有する化合物を好適に用いることができる。活性化金属29を多孔質基体22に付着させる方法としては、水素選択透過性金属としてパラジウムを配設する場合には、多孔質基体22を塩化パラジウムの塩酸水溶液と、塩化錫の塩酸水溶液に交互に浸漬させることが好ましい。
【0043】
本実施の形態の水素分離体の製造方法において、図2に示す、多孔質基体22の一の表面25から所定の深さの部位27までに付着した活性化金属29を、活性化金属付着基体20から除去する方法としては、活性化金属付着基体20を酸性溶液に浸漬して、活性化金属29を酸性溶液に溶解させて除去することが好ましい。酸性溶液の種類としては、塩酸と硝酸との混酸を使用することが好ましい。混酸中の塩酸(塩化水素)と硝酸との合計の濃度(酸濃度)は40〜75質量%が好ましい。また、塩化水素と硝酸との質量比の値(塩化水素/硝酸)は、1/6〜2/7が好ましい。
【0044】
活性化金属付着基体20を酸性溶液に浸漬する時間は特に限定されるものではなく、酸性溶液の組成、濃度によって適宜決定することができるが、10〜25秒が好ましい。
【0045】
図3に示すような、多孔質基体22の細孔24の内壁に所定の厚さWで、活性化金属29が付着した活性化処理基体30に、化学メッキをして、図4に示すような、活性化金属29(図3参照)が付着した位置に水素選択透過性金属層26を形成するために、図3に示す活性化処理基体30を水素選択透過性金属と還元剤とを含有するメッキ溶液に浸漬させる。このとき、活性化処理基体30は、多孔質基体22の一の表面25側がメッキ溶液に接触するように浸漬し、多孔質基体22の他の表面(図示せず)側から減圧することにより、メッキ溶液が多孔質基体22の細孔24内の、活性化金属29が配設されている位置より深い位置まで浸入するようにすることが好ましい。そして、メッキ溶液が細孔24の内部まで浸入することにより、活性化金属29を核として水素選択透過性金属が析出し、活性化金属29が付着した位置に水素選択透過性金属層26(図4参照)が形成される。これにより、図4に示すように、多孔質基体22の細孔24のそれぞれの内部に、多孔質基体22の一の表面25から所定の深さの部位27から、多孔質基体22の他の表面(図示せず)側に向かって所定の厚さWで形成された水素選択透過性金属層26によって構成された水素分離層23を配設して、水素分離体40を得ることができる。メッキ溶液の浸入する深さは、浸漬時間、メッキ溶液の温度、多孔質基体22にかかる減圧等により生じる両面(一の表面25と他の表面)の圧力差等を調節することにより、制御することができる。
【0046】
図4に示す、多孔質基体22の一の表面25から所定の深さの部位27と、多孔質基体22の一の表面25との距離は金属微粉末等が付着しなければ特に限定されるものではないが、0.1〜5μmが好ましい。つまり、水素分離層23を構成する水素選択透過性金属層26を、多孔質基体22の一の表面25から0.1〜5μmの深さの部位(所定の深さの部位27)から形成することが好ましい。0.1μmより浅いと金属微粉末等が水素選択透過性金属に付着することがあり、5μmより深いと一の表面25から、所定の深さの部位27までの細孔24に水素濃度が低下したガス(水素を含む気体)が滞留し、水素の分離効率が低下することがある。図2及び図3に示す、多孔質基体22の一の表面25から所定の深さ27も同じ位置に形成される。
【0047】
図4に示す、水素分離層23を構成する水素選択透過性金属層26の所定の厚さWは、水素選択透過性金属層26に欠陥が生じ難く、且つ水素透過性が良好であれば特に限定されるものではないが、1〜5μmが好ましい。1μmより薄いと、水素分離層23に欠陥が生じ易くなることがあり、5μmより厚いと、水素分離層23による水素分離の分離効率が低下することがある。
【0048】
図4に示す、多孔質基体22が、セラミックを主成分とする多孔質体であることが好ましい。セラミックを主成分とすることにより、耐熱性、耐食性等に優れ、機械的強度の強い水素分離体40とすることができる。セラミックとしては特に限定されるものではなく、水素分離体として一般的に使用されるセラミックのいずれでも採用することができる。例えば、アルミナ、シリカ、シリカ−アルミナ、ムライト、コージェライト、ジルコニア等が挙げられる。また、セラミック以外にも、カーボンや多孔質ガラスを用いることもできる。尚、多孔質基体22の厚さは、特に制限されない。使用環境において充分な機械強度を保持できればよい。
【0049】
この多孔質基体22は、3次元状に連続した多数の微細な細孔24を有するものであるが、この細孔24の孔径は、0.003〜2μmであることが好ましく、0.1〜1μm以下であることが、より好ましい。孔径が0.003μm未満では、ガスが通過するときの抵抗が大きくなることがある。一方、孔径が2μmを超えると、本実施の形態の水素分離体の製造方法において、化学メッキ処理を行う場合に、水素選択透過性金属28により細孔24を閉塞し難くなるので、好ましくない。
【0050】
また、多孔質基体22の細孔24は、孔径が揃っていることが好ましい。これにより、化学メッキにより水素選択透過性金属層26を配設する場合に、メッキ溶液を細孔24に漏れなく均一に侵入させ易く、水素選択透過性金属28が充填されない細孔24が生じてしまう問題を回避できる。
【0051】
本実施の形態の水素分離体の製造方法においては、水素分離層を構成する水素選択透過性金属層は、パラジウム又はパラジウムを含有する合金からなることが好ましい。水素選択透過性金属層をパラジウムを含有する合金からなるようにするためには、上述した製造方法によりパラジウムを化学メッキすることにより水素選択透過性金属層を形成した後、その水素選択透過性金属層の表面に銀を更にメッキして合金形成用金属層を形成し、次いで、加熱することにより、パラジウムと銀とを相互拡散させ、水素選択透過性金属と合金形成用金属とを合金化し、合金化された水素選択透過性金属層を形成することが好ましい。水素選択透過性金属層の表面に銀をメッキするときは、水素選択透過性金属層を構成するパラジウムを電極として、電気メッキすることが好ましい。このとき、パラジウムと銀との質量比(パラジウム:銀)が90:10〜70:30であることが好ましい。パラジウムを合金化する主目的は、パラジウムの水素脆化防止と高温時の分離効率向上である。また、パラジウム以外の金属として銀を使用することにより、パラジウムの水素による脆化がより効果的に防止される。
【0052】
水素分離層を構成する合金化された水素選択透過性金属層は、多孔質基体の一の表面から0.1〜5μm深さの部位から形成することが好ましい。0.1μmより浅いと金属微粉末等が水素選択透過性金属に付着することがあり、5μmより深いと一の表面5から、所定の深さの部位7までの細孔4に水素濃度が低下したガス(水素を含む気体)が滞留し、水素の分離効率が低下することがある。
【0053】
水素分離層を構成する合金化された水素選択透過性金属層は、1〜5μmの厚さで形成することが好ましい。1μmより薄いと、水素分離層に欠陥が生じ易くなることがあり、5μmより厚いと、水素分離層による水素の分離の分離効率が低下することがある。
【0054】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0055】
(実施例1)
多孔質基体として、円筒状の非対称型無機多孔質材料(α−アルミナ製、NGKアドレック(株)製)を用いた。この多孔質基体は外径10mm、内径7mm、長さ110mmで、その細孔径は0.1μmである。この多孔質管(多孔質基体)を水で洗浄し、次いで乾燥した。次いで、脱脂処理として奥野製薬(株)製OPC370を10体積%含む溶液を70℃に保持し、5分間浸漬した後、水洗した。
【0056】
次いで、多孔質基体を活性化処理した(一度目の活性化処理)。上記円筒状の多孔質基体を、奥野製薬(株)製OPCプリディップを1体積%含む溶液に2分間浸漬した。次に、奥野製薬(株)製インデューサーA及びインデューサーCを各々5体積%含む溶液を50℃に保持し、5分間浸漬した後、水洗した。次に、奥野製薬(株)製クリスターMUを15体積%含む溶液に5分間浸漬した。次に、奥野製薬(株)製クリスターMUを3体積%含む溶液に1分間浸漬した後、水洗して、活性化金属としてパラジウム核が付着した活性化金属付着基体を得た。
【0057】
次いで、活性化金属付着基体の表面及び細孔内部の一部のパラジウム核を酸性溶液により溶解洗浄した(酸処理)。上記活性化金属付着基体を、塩酸(36質量%)と硝酸(69質量%)及び水との容積比が1:4:5の酸溶液に15秒間浸漬し、その後に水洗した。
【0058】
次いで、再度、活性化処理(二度目の活性化処理)を行った。上記酸洗浄した活性化金属付着基体を、奥野製薬(株)製クリスターMUを15体積%含む溶液に5分間浸漬した。次に、奥野製薬(株)製クリスターMUを3体積%含む溶液に1分間浸漬し、水洗して、活性化処理基体を得た。
【0059】
次いで、上記活性化処理基体を化学メッキ処理することによりパラジウムを水素選択透過性金属とした水素分離層を形成した。イオンを除去した水1L(リットル)中に[Pd(NH34]Cl2・H2O(5.4g)、2Na・EDTA(67.2g)、アンモニア濃度28質量%のアンモニア水(651.3mL)及びH2NNH2・H2O(0.64mL)を加えた水溶液を準備した。そして上記水溶液を50℃に温度制御し、上記活性化処理基体の外表面をその水溶液に浸漬させ、活性化処理基体の円筒形状の内側を真空ポンプで引いて減圧した。浸漬時間は15分とし、これにより活性化処理基体の内部でパラジウム核が付着した部分にのみパラジウムからなる水素分離層が形成された多孔質基体を得た。
【0060】
ここで、酸性溶液による洗浄を行うときに、活性化処理した多孔質基体の円筒形状の両端部の外周面に、細い(約10mm)シールテープを巻き、酸性溶液から隔離した。これにより、活性化金属付着基体を化学メッキ処理するときに、この両端部の外周面に、多孔質基体の細孔内部に析出したパラジウムと連続する緻密な細いパラジウム膜を容易に形成することができる。そして、これを次工程の電気メッキの電極及び、水素分離体の気密シール部分とすることができる。
【0061】
次いで、上述の多孔質基体の両端部の外周面に形成された細いパラジウム膜を電極として、銀を電気メッキし、パラジウムと銀の重量比が80:20となるように調節した。そして、最後に、900℃で1時間保持して、熱処理を行い、パラジウムと銀とを相互拡散させ、パラジウムと銀とを合金化し、水素分離体(実施例1)を得た。得られた水素分離体の微構造を図5に示す。図5は、本実施例の水素分離体50において、水素分離層53に略垂直な平面で切断した断面を示す顕微鏡写真である。図5より、得られた水素分離体50は、水素分離層53が、多孔質基体52の細孔のそれぞれの内部に、多孔質基体52の一の表面55から所定の深さの部位57から、多孔質基体52の他の表面(図示せず)側に向かって所定の厚さで形成された水素選択透過性金属層56によって構成されてなることがわかる。蛍光X線強度の測定により、水素選択透過性金属層56の厚さは4.2μmであった。また、得られた顕微鏡写真(図5参照)による水素選択透過性金属層56の厚さも同程度の値であった。
【0062】
(実施例2)
実施例1において、活性化処理基体を化学メッキ処理するときの浸漬時間を10分として、水素分離層が形成された多孔質基体を得たこと以外は、実施例1と同様にして水素分離体(実施例2)を得た。得られた水素選択透過性金属層は多孔質基体の表面より深さ0.5μmの位置から多孔質基体の内部へ形成されており、水素蛍光X線強度の測定により、水素選択透過性金属層の厚さは1.9μmであった。また、顕微鏡写真(図示せず)による水素選択透過性金属層の厚さも同程度の値であった。
【0063】
こうして得られた水素分離体(実施例1,2)について気密試験を行った。ヘリウムガスを円筒状の水素分離体の外部に導入し、900kPaの圧力で保持し、円筒状の水素分離体の内部に漏洩するガス量(He漏洩量)を測定した。結果を表1におけるサイクル数0の欄に示す。また、水素分離体(実施例1,2)について以下の方法で熱サイクル試験を行った。
【0064】
(熱サイクル試験)
水素雰囲気中にある水素分離体を室温から500℃まで加熱し、次いで室温まで冷却した。この加熱・冷却サイクルを1サイクルとして、100サイクル行った。10サイクル毎に上記He漏洩量を測定し、100サイクルまでの熱サイクル試験後のHe漏洩量を測定した結果を表1に示す。
【0065】
(比較例1)
実施例1において、一度目の活性化処理の後、酸処理及び二度目の活性化処理を行わず、ヒドラジン処理を行って、活性化処理基体を得た。得られた活性化処理基体を実施例1と同様にパラジウム化学メッキを行い、水素分離体(比較例1)を得た。得られた水素選択透過性金属層は多孔質基体の表面に形成され、蛍光X線強度の測定により、水素選択透過性金属層の厚さは4.3μmであった。また、顕微鏡写真(図示せず)による水素選択透過性金属層の厚さも同程度の値であった。こうして得られた水素分離体について、上記気密試験及び、熱サイクル試験を行った。結果を表1に示す。
【0066】
(比較例2)
比較例1において、活性化処理基体を化学メッキ処理するときの浸漬時間を10分として、水素分離層が形成された多孔質基体を得たこと以外は、比較例1と同様にして水素分離体(比較例2)を得た。得られた水素選択透過性金属層は多孔質基体の表面に形成され、蛍光X線強度の測定により、水素選択透過性金属層の厚さは2.0μmであった。また、顕微鏡写真(図示せず)による水素選択透過性金属層の厚さも同程度の値であった。
【0067】
【表1】

Figure 0004367693
【0068】
図5より、多孔質基体の活性化処理後の酸性溶液による洗浄により、多孔質基体の細孔内部にのみ水素選択透過性金属層を形成させた水素分離体が製造できることがわかる。また、表1より、多孔質基体の細孔の内部にのみ水素選択透過性金属層を形成させた本発明の水素分離体は、従来の水素分離体に比して、昇降温サイクルにおいて長期にわたり高い気密性を維持できることがわかる。本発明の水素分離体は水素選択透過性金属層がセラミック多孔質基体の細孔の内部にのみ形成されている構造を有するため、水素選択透過性金属層の膨張を抑制し、昇降温サイクルによる欠陥の発生を抑制できる。また、水素分離体の外表面がセラミックであるため、金属微粉末が水素選択透過性金属層の表面に付着、反応することを防止できる。この結果、水素分離体の耐久性が大幅に向上できる。
【0069】
【発明の効果】
上述したように、本発明の水素分離体によれば、多孔質基体に配設される水素分離層が、多孔質基体の細孔のそれぞれの内部に、多孔質基体の一の表面から所定の深さの部位から形成された水素選択透過性金属層によって構成されてなることにより、水素分離層が多孔質基体の細孔内部に保持され、自由に膨脹・収縮することが抑制されるため、水素分離体に熱サイクルを加えても、水素分離層が多孔質基体から剥離したり、水素分離層に欠陥が生じたりすることを抑制することができる。また、水素分離層が、多孔質基体の一の表面から所定の深さの部位から形成されることにより、水素分離層が水素分離体の表面にほとんど存在しなくなるため、金属微粉末が水素分離体の表面に付着しても、水素分離層とほとんど接触することがなく、水素分離層に欠陥が生じることを抑制することができる。
【0070】
また、本発明の水素分離体の製造方法によれば、多孔質基体に活性化金属を付着させて活性化処理基体を作製するときに、多孔質基体の一の表面から所定の深さの部位から、多孔質基体の他の表面側に向かって所定の厚さで、細孔の内壁に活性化金属を付着させ、その活性化金属を核として水素選択透過性金属層を形成したため、水素分離層が、多孔質基体の細孔のそれぞれの内部に、多孔質基体の一の表面から所定の深さの部位から多孔質基体の他の表面側に向かって所定の厚さで形成された、水素選択透過性金属層によって構成されてなる水素分離体を作製することができる。
【図面の簡単な説明】
【図1】 本発明の水素分離体その製造方法の一の実施の形態を模式的に示す、水素分離層に垂直な平面で切断して要部を拡大した断面図である。
【図2】 本発明の水素分離体の製造方法の一の実施の形態において、多孔質基体に活性化金属を付着させた状態を模式的に示す、多孔質基体の一の表面付近を拡大した断面図である。
【図3】 本発明の水素分離体の製造方法の一の実施の形態において、多孔質基体に付着させた活性化金属のうち、多孔質基体の一の表面から所定の深さの部位までに付着した活性化金属を除去した状態を模式的に示す、多孔質基体の一の表面付近を拡大した断面図である。
【図4】 本発明の水素分離体の製造方法の一の実施の形態において製造した水素分離体を示す、多孔質基体の一の表面付近を拡大した断面図である。
【図5】 本発明の水素分離体の実施例において、水素分離層に略垂直な平面で切断した断面を示す顕微鏡写真である。
【符号の説明】
1,40,50…水素分離体、2,22,52…多孔質基体、3,23,53…水素分離層、4,24…細孔、5,25,55…一の表面、6,26,56…水素選択透過性金属層、7,27,57…所定の深さの部位、8,28…水素選択透過性金属、20…活性化金属付着基体、29…活性化金属、30…活性化処理基体、W…所定の厚さ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrogen separator and a method for producing the same, and more particularly, even if a thermal cycle is applied, peeling or defects of the hydrogen separation layer hardly occur, and even if metal fine powder adheres to the surface, defects occur. The present invention relates to a hydrogen separator and a method for producing the same, which are difficult to reduce hermeticity.
[0002]
[Prior art]
Conventionally, in order to selectively extract only hydrogen from a gas containing hydrogen such as steam reformed gas, a hydrogen separator in which a hydrogen separation layer made of palladium or the like is disposed on a ceramic porous substrate has been used. Since the hydrogen separator may be used to separate only hydrogen at a high temperature, the hydrogen separator is required to have high airtightness in an environment where high temperature or temperature rise and fall are repeated.
[0003]
When a hydrogen separator such as palladium is disposed on a ceramic porous substrate to produce a hydrogen separator, for example, palladium is disposed on the surface of the ceramic porous substrate by a method such as plating (for example, Patent Documents). 1-3). However, in this case, the thermal expansion coefficients of palladium and the ceramic porous substrate are different, and furthermore, the wettability between the palladium and the ceramic porous substrate is not good, so when the temperature rise and fall is repeated and a thermal cycle is applied, There has been a problem that palladium peels off from the surface of the ceramic porous substrate, or defects occur in the palladium, resulting in a decrease in airtightness. In addition, after palladium is disposed on the ceramic porous substrate, silver or the like is disposed on the surface of the palladium, and then an alloy of palladium and silver is disposed on the ceramic porous substrate by heating to separate hydrogen. In the case of forming a layer, there is a problem that the alloy is more easily separated from the ceramic porous substrate.
[0004]
In addition, when a hydrogen separator is used, if the gas contains a metal fine powder, the metal fine powder and a hydrogen separation layer such as palladium disposed on the surface of the hydrogen separator. As a result of the reaction, defects occur and the airtightness decreases.
[0005]
[Patent Document 1]
JP-A-3-146122
[Patent Document 2]
Japanese Patent No. 3213430
[Patent Document 3]
JP-A-62-273030
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art. The object of the present invention is to prevent the separation or defects of the hydrogen separation layer from occurring even when a thermal cycle is applied. It is an object of the present invention to provide a hydrogen separator and a method for producing the same, in which defects do not easily occur even if the powder adheres to the surface, and the hermeticity is not easily lowered.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides the following hydrogen separator and method for producing the same.
[0008]
[1] Hydrogen among a gas including a porous substrate having a large number of pores communicating from one surface to another surface, and hydrogen flowing from the one surface side disposed on the porous substrate. A hydrogen separator comprising a hydrogen separation layer that can selectively permeate and flow out from the other surface side,
The hydrogen separation layer is formed from one surface of the porous substrate inside each of the pores of the porous substrate. 0.1-5 μm A hydrogen separator comprising a hydrogen selective permeable metal layer formed with a predetermined thickness from a portion having a depth toward the other surface of the porous substrate.
[0010]
[ 2 The hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 μm [1] ] A hydrogen separator according to 1.
[0011]
[ 3 The hydrogen selective permeable metal layer constituting the hydrogen separation layer is made of palladium or an alloy containing palladium [1]. Or [2] A hydrogen separator according to 1.
[0012]
[ 4 [1] to [1], wherein the porous substrate is mainly composed of ceramic. 3 ] The hydrogen separator in any one of.
[0013]
[ 5 ] A porous substrate having a large number of pores communicating from one surface to another surface, and only hydrogen out of a gas including hydrogen flowing from the one surface side and disposed on the porous substrate. A hydrogen separator comprising a hydrogen separation layer that can be selectively permeated and allowed to flow out from the other surface side, and is active on the surface of the porous substrate and the inner walls of the pores. An activated metal-attached substrate is prepared by attaching an activated metal, and among the activated metals attached to the activated metal-attached substrate, the porous surface of the porous substrate and the inner wall of the pore The activated metal adhering from one surface of the substrate to a portion having a predetermined depth is removed, and the other portion of the porous substrate is removed from a portion having a predetermined depth from one surface of the porous substrate. At a predetermined thickness toward the surface side, the inner wall of the pores An activation treatment substrate with an activated metal attached is prepared, and the activation treatment substrate is subjected to a chemical plating treatment using the activated metal as a nucleus, and the hydrogen selective permeable metal layer is formed at a position where the activation metal is attached. By forming, in each of the pores of the porous substrate, a predetermined depth from one surface of the porous substrate toward the other surface side of the porous substrate is predetermined. A method for producing a hydrogen separator, characterized in that the hydrogen separator is formed by disposing the hydrogen separator composed of a hydrogen selective permeable metal layer formed in a thickness of
[0014]
[ 6 The hydrogen selective permeable metal layer constituting the hydrogen separation layer is made of palladium or an alloy containing palladium [ 5 ] The manufacturing method of the hydrogen separator of description.
[0015]
[ 7 When removing the activated metal from the activated metal adhesion substrate, the activated metal adhesion substrate is immersed in an acidic solution, and the activated metal is dissolved in the acidic solution and removed. 5 ] Or [ 6 ] The manufacturing method of the hydrogen separator of description.
[0016]
[ 8 The acidic solution is a mixed acid obtained by mixing hydrochloric acid and nitric acid. 7 ] The manufacturing method of the hydrogen separator of description.
[0017]
[ 9 The porous substrate is mainly composed of ceramic [ 5 ] ~ [ 8 ] The manufacturing method of the hydrogen separator in any one of.
[0018]
[ 10 The hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed from a portion having a depth of 0.1 to 5 μm from one surface of the porous substrate. 5 ] ~ [ 9 ] The manufacturing method of the hydrogen separator in any one of.
[0019]
[ 11 The hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 μm [ 5 ] ~ [ 10 ] The manufacturing method of the hydrogen separator in any one of.
[0020]
[ 12 After the hydrogen selective permeable metal layer is formed, an alloy-forming metal layer is formed by electroplating on the surface of the porous substrate on one surface side of the hydrogen selective permeable metal layer. The alloy is formed by heating the permeable metal layer and the alloy-forming metal layer to form an alloyed hydrogen-selective metal layer composed of an alloy of a hydrogen-selective permeable metal and an alloy-forming metal. The hydrogen separation layer composed of the hydrogen selective permeable metal layer is disposed [ 5 ] ~ [ 11 ] The manufacturing method of the hydrogen separator in any one of.
[0021]
[ 13 The alloyed hydrogen permselective metal layer constituting the hydrogen separation layer is formed from a portion having a depth of 0.1 to 5 μm from one surface of the porous substrate. 12 ] The manufacturing method of the hydrogen separator as described in
[0022]
[ 14 The alloyed hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 μm. 12 ] Or [ 13 ] The manufacturing method of the hydrogen separator of description.
[0023]
Thus, according to the hydrogen separator of the present invention, the hydrogen separation layer disposed on the porous substrate has a predetermined depth from one surface of the porous substrate inside each of the pores of the porous substrate. Since the hydrogen separation layer is formed by the hydrogen selective permeable metal layer formed from the region, the hydrogen separation layer is held inside the pores of the porous substrate, and free expansion / contraction is suppressed. Even if a thermal cycle is applied to the separator, it is possible to suppress the separation of the hydrogen separation layer from the porous substrate or the generation of defects in the hydrogen separation layer. In addition, since the hydrogen separation layer is formed from a portion having a predetermined depth from one surface of the porous substrate, the hydrogen separation layer does not exist on the surface of the hydrogen separator. Even if it adheres to the surface of the metal, it does not come into contact with the hydrogen separation layer, and defects in the hydrogen separation layer can be suppressed.
[0024]
Further, according to the method for producing a hydrogen separator of the present invention, when an activation-treated substrate is produced by attaching an activated metal to a porous substrate, a portion having a predetermined depth from one surface of the porous substrate. Since the activated metal was attached to the inner wall of the pore with a predetermined thickness toward the other surface side of the porous substrate, and the hydrogen selective permeable metal layer was formed using the activated metal as a nucleus, hydrogen separation A layer is formed in each of the pores of the porous substrate at a predetermined thickness from a portion of a predetermined depth from one surface of the porous substrate toward the other surface side of the porous substrate. A hydrogen separator composed of a hydrogen selective permeable metal layer can be produced.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments, and is within the scope of the present invention. Based on this knowledge, it should be understood that design changes, improvements, etc. can be made as appropriate.
[0026]
FIG. 1 is a cross-sectional view schematically showing an embodiment of the hydrogen separator of the present invention in which a main part is enlarged by cutting along a plane perpendicular to the hydrogen separation layer.
[0027]
As shown in FIG. 1, the hydrogen separator 1 of the present embodiment includes a porous substrate 2 having a large number of pores 4 communicating from one surface 5 to another surface (not shown), and a porous structure. Hydrogen separation layer disposed on the substrate 2 and capable of selectively allowing only hydrogen out of a gas containing hydrogen flowing from one surface 5 side to flow out from the other surface (not shown) side. 3, and the hydrogen separation layer 3 is disposed inside each of the pores 4 of the porous substrate 2 from a portion 7 having a predetermined depth from one surface 5 of the porous substrate 2. It is characterized by comprising a hydrogen selective permeable metal layer 6 formed with a predetermined thickness W toward the surface (not shown) of the metal. The pores 4 of the porous substrate 2 are blocked by the hydrogen selective permeable metal 8 in the range of the predetermined thickness W, and the airtightness between the one surface 5 side and the other surface (not shown) side is improved. It is kept.
[0028]
Thus, since the hydrogen separation layer 3 constituted by the hydrogen selective permeable metal layer 6 does not exist on one surface 5 of the porous substrate 2 and enters the inside of the pores 4, Even if the thermal cycle is applied to the hydrogen separator 1 and the porous substrate 2 and the hydrogen separation layer 3 repeatedly expand and contract, the hydrogen separator 3 expands and contracts while being held in the pores 4. And the airtightness can be maintained. Further, since the hydrogen separation layer 3 is formed from the surface 7 of the porous substrate 2 to the other surface (not shown) side of the porous substrate 2 from the portion 7 having a predetermined depth, the porous substrate 2 is porous. Even if the pores 4 from one surface 5 of the substrate 2 to the portion 7 having a predetermined depth are not filled, and the metal fine powder adheres to the surface of the hydrogen separator 1, the hydrogen separation layer 3 can be prevented from being defective.
[0029]
The hydrogen selective permeable metal layer 6 constituting the hydrogen separation layer 3 is preferably formed from a portion having a depth of 0.1 to 5 μm from one surface 5 of the porous substrate 2. Furthermore, it is more preferable to form from the site | part of the depth of 0.3-2 micrometers. That is, the predetermined depth in the portion 7 having a predetermined depth from one surface 5 of the porous substrate 2 is 0.1 to 5 μm. When the predetermined depth is smaller than 0.1 μm, when the metal fine powder adheres to the surface of the hydrogen separator 1, it adheres to the hydrogen separation layer 3, and a defect may occur in the hydrogen separation layer 3. Further, if the predetermined depth is larger than 5 μm, a gas having a reduced hydrogen concentration (gas containing hydrogen) stays in the pores 4 from one surface 5 to the portion 7 having the predetermined depth. Separation efficiency may decrease.
[0030]
The predetermined thickness W of the hydrogen selective permeable metal layer 6 constituting the hydrogen separation layer 3 is preferably 1 to 5 μm. If the thickness is less than 1 μm, defects may easily occur in the hydrogen separation layer 3. If the thickness is more than 5 μm, the separation efficiency of hydrogen separation by the hydrogen separation layer 3 may be reduced.
[0031]
The hydrogen selective permeable metal layer constituting the hydrogen selective permeable metal layer 6 is preferably made of palladium or an alloy containing palladium.
[0032]
The porous substrate 2 is preferably a porous body mainly composed of ceramic. By using ceramic as a main component, the hydrogen separator 1 having excellent heat resistance, corrosion resistance, and the like and high mechanical strength can be obtained. The ceramic is not particularly limited, and any ceramic generally used as a hydrogen separator can be employed. Examples thereof include alumina, silica, silica-alumina, mullite, cordierite, zirconia and the like. As components other than ceramics, a small amount of components inevitably contained or components that are usually added may be contained. In addition to ceramic, carbon or porous glass can also be used. Note that the thickness of the porous substrate 2 is not particularly limited. It is sufficient that sufficient mechanical strength can be maintained in the use environment.
[0033]
The porous substrate 2 has a large number of fine pores 4 that are three-dimensionally continuous. The pore diameter of the pores 4 is preferably 0.003 to 2 μm, It is more preferable that it is 1 micrometer or less. When the pore diameter is less than 0.003 μm, the resistance when the gas passes may increase. On the other hand, when the pore diameter exceeds 2 μm, when the hydrogen selective permeable metal layer 6 is disposed by chemical plating when the hydrogen separator 1 of the present embodiment is manufactured, the hydrogen selective permeable metal 8 makes the finer. Since it becomes difficult to block | close the hole 4, it is not preferable.
[0034]
Further, it is preferable that the pores 4 of the porous substrate 2 have the same pore diameter. As a result, when the hydrogen selective permeable metal layer 6 is disposed by the above chemical plating, the plating solution easily enters the pores 4 without leaking, and the pores 4 not filled with the hydrogen selective permeable metal 8 are generated. Can avoid problems.
[0035]
Next, an embodiment of the method for producing a hydrogen separator of the present invention will be described in detail with reference to the drawings.
[0036]
FIG. 2 is an enlarged cross-sectional view of the vicinity of one surface of the porous substrate, schematically showing a state in which the activated metal is attached to the porous substrate in the method for producing a hydrogen separator according to the present embodiment. . FIG. 3 shows an activation metal deposited from one surface of the porous substrate to a predetermined depth in the activated metal deposited on the porous substrate in the method for producing a hydrogen separator according to the present embodiment. It is sectional drawing which expanded the vicinity of one surface of the porous substrate which shows the state which removed the metal typically. FIG. 4 is an enlarged cross-sectional view of the vicinity of one surface of a porous substrate, showing a hydrogen separator manufactured by the method for manufacturing a hydrogen separator of the present embodiment.
[0037]
In the method for producing a hydrogen separator according to the present embodiment, first, as shown in FIG. 2, an activation metal 29 is attached to one surface 25 of the porous substrate 22 and the inner wall of the pore 24 to activate the hydrogen separator. The metal adhesion base 20 is produced.
[0038]
Next, among the activated metals 29 attached to the obtained activated metal-attached substrate 20, the surface 25 of the porous substrate 22 and the inner wall of the pores 24 are predetermined from the surface 25 of the porous substrate 22. The activated metal 29 adhering to the portion 27 having a depth of 5 mm is removed, and the portion of the porous substrate 22 is removed from the portion 27 having a predetermined depth from one surface 25 of the porous substrate 22 as shown in FIG. An activation treatment substrate 30 having a predetermined thickness W toward the other surface (not shown) and having an activation metal 29 attached to the inner wall of the pore 24 is produced.
[0039]
Then, the obtained activated substrate 30 is subjected to chemical plating treatment using the activated metal 29 as a nucleus, and as shown in FIG. 4, hydrogen selective permeability is provided at the position where the activated metal 29 (see FIG. 3) is attached. By forming the metal layer 26, the inside of each of the pores 24 of the porous substrate 22, from a portion 27 having a predetermined depth from one surface 25 of the porous substrate 22, to the other surface of the porous substrate 22. A hydrogen separation layer 23 composed of a hydrogen selective permeable metal layer 26 formed with a predetermined thickness W toward the side (not shown) is disposed to obtain a hydrogen separator 40. The hydrogen selective permeable metal layer 26 constituting the hydrogen separation layer 23 is formed so that the pores 24 are filled with the hydrogen selective permeable metal 28 and closed, and a gas other than hydrogen does not pass through the pores 24. Yes.
[0040]
As described above, the activated metal adhering to the activated metal adhering substrate from the surface of the porous substrate up to a predetermined depth is removed, and then the chemical plating is performed. Since the hydrogen selective permeable metal layer is formed, the hydrogen separation layer can be disposed at a desired position inside the hydrogen separator.
[0041]
In the method for producing a hydrogen separator according to the present embodiment, when the activated metal 29 shown in FIG. 2 is attached to the porous substrate 22, the porous substrate 22 is immersed in a solution containing the activated metal 29 to obtain a porous material. A solution containing the activated metal 29 is attached to one surface 25 side of the porous substrate 22 and washed with water. At this time, the other surface (not shown) side of the porous substrate 22 may be decompressed, and the solution containing the activated metal 29 may be permeated to a desired site inside the pores 24 of the porous substrate 22. . Further, the activated metal 29 may be attached to the other surface (not shown) side of the porous substrate 22.
[0042]
As a method for attaching the activated metal 29, a compound containing a palladium divalent ion can be suitably used. As a method for attaching the activated metal 29 to the porous substrate 22, when palladium is provided as a hydrogen selective permeable metal, the porous substrate 22 is alternately formed by an aqueous hydrochloric acid solution of palladium chloride and an aqueous hydrochloric acid solution of tin chloride. It is preferable to immerse in.
[0043]
In the method for producing a hydrogen separator according to the present embodiment, an activated metal 29 attached to a portion 27 having a predetermined depth from one surface 25 of the porous substrate 22 shown in FIG. As a method of removing from the substrate 20, it is preferable to remove the activated metal adhesion substrate 20 by immersing it in an acidic solution and dissolving the activated metal 29 in the acidic solution. As the kind of acidic solution, it is preferable to use a mixed acid of hydrochloric acid and nitric acid. The total concentration (acid concentration) of hydrochloric acid (hydrogen chloride) and nitric acid in the mixed acid is preferably 40 to 75% by mass. The mass ratio of hydrogen chloride to nitric acid (hydrogen chloride / nitric acid) is preferably 1/6 to 2/7.
[0044]
The time for immersing the activated metal adhering substrate 20 in the acidic solution is not particularly limited, and can be appropriately determined depending on the composition and concentration of the acidic solution, but is preferably 10 to 25 seconds.
[0045]
As shown in FIG. 4, chemical activation is applied to the activation substrate 30 having the predetermined thickness W attached to the inner wall of the pore 24 of the porous substrate 22 as shown in FIG. In order to form the hydrogen selective permeable metal layer 26 at the position where the activated metal 29 (see FIG. 3) is attached, the activation substrate 30 shown in FIG. 3 contains the hydrogen selective permeable metal and the reducing agent. Immerse in plating solution. At this time, the activation substrate 30 is immersed so that one surface 25 side of the porous substrate 22 is in contact with the plating solution, and the pressure is reduced from the other surface (not shown) side of the porous substrate 22. It is preferable that the plating solution penetrates into the pores 24 of the porous substrate 22 to a position deeper than the position where the activated metal 29 is disposed. Then, when the plating solution penetrates into the pores 24, the hydrogen selective permeable metal is deposited with the activated metal 29 as a nucleus, and the hydrogen selective permeable metal layer 26 (see FIG. 4) is formed. As a result, as shown in FIG. 4, each of the pores 24 of the porous substrate 22 has a predetermined depth from the surface 27 of one surface of the porous substrate 22 to the other portions of the porous substrate 22. The hydrogen separator 40 can be obtained by disposing the hydrogen separation layer 23 composed of the hydrogen selective permeable metal layer 26 formed with a predetermined thickness W toward the surface (not shown). The penetration depth of the plating solution is controlled by adjusting the pressure difference between both surfaces (one surface 25 and the other surface) caused by the immersion time, the temperature of the plating solution, the reduced pressure applied to the porous substrate 22, and the like. be able to.
[0046]
The distance between a portion 27 having a predetermined depth from one surface 25 of the porous substrate 22 and the one surface 25 of the porous substrate 22 shown in FIG. Although it is not a thing, 0.1-5 micrometers is preferable. That is, the hydrogen permselective metal layer 26 constituting the hydrogen separation layer 23 is formed from a portion having a depth of 0.1 to 5 μm (a portion 27 having a predetermined depth) from one surface 25 of the porous substrate 22. It is preferable. If it is shallower than 0.1 μm, fine metal powder or the like may adhere to the hydrogen selective permeable metal. If it is deeper than 5 μm, the hydrogen concentration decreases from one surface 25 to the pores 24 to a predetermined depth 27. Gas (a gas containing hydrogen) may remain, and the hydrogen separation efficiency may decrease. A predetermined depth 27 from one surface 25 of the porous substrate 22 shown in FIGS. 2 and 3 is also formed at the same position.
[0047]
The predetermined thickness W of the hydrogen selective permeable metal layer 26 constituting the hydrogen separation layer 23 shown in FIG. 4 is particularly suitable if the hydrogen selective permeable metal layer 26 is less prone to defects and has good hydrogen permeability. Although not limited, 1-5 micrometers is preferable. If it is thinner than 1 μm, defects may easily occur in the hydrogen separation layer 23, and if it is thicker than 5 μm, the separation efficiency of hydrogen separation by the hydrogen separation layer 23 may be reduced.
[0048]
The porous substrate 22 shown in FIG. 4 is preferably a porous body mainly composed of ceramic. By using ceramic as a main component, the hydrogen separator 40 having excellent heat resistance, corrosion resistance, etc. and high mechanical strength can be obtained. The ceramic is not particularly limited, and any ceramic generally used as a hydrogen separator can be employed. Examples thereof include alumina, silica, silica-alumina, mullite, cordierite, zirconia and the like. In addition to ceramic, carbon or porous glass can also be used. Note that the thickness of the porous substrate 22 is not particularly limited. It is sufficient that sufficient mechanical strength can be maintained in the use environment.
[0049]
The porous substrate 22 has a large number of fine pores 24 that are three-dimensionally continuous. The pore diameter of the pores 24 is preferably 0.003 to 2 μm, It is more preferable that it is 1 micrometer or less. When the pore diameter is less than 0.003 μm, the resistance when the gas passes may increase. On the other hand, if the pore diameter exceeds 2 μm, it is difficult to block the pores 24 by the hydrogen selective permeable metal 28 when performing chemical plating in the method for producing a hydrogen separator of the present embodiment, which is not preferable.
[0050]
Further, it is preferable that the pores 24 of the porous substrate 22 have the same pore diameter. As a result, when the hydrogen selective permeable metal layer 26 is disposed by chemical plating, the plating solution easily enters the pores 24 without leaking, and the pores 24 that are not filled with the hydrogen selective permeable metal 28 are generated. Can be avoided.
[0051]
In the method for producing a hydrogen separator of the present embodiment, the hydrogen selective permeable metal layer constituting the hydrogen separation layer is preferably made of palladium or an alloy containing palladium. In order to make the hydrogen selective permeable metal layer made of an alloy containing palladium, after forming the hydrogen selective permeable metal layer by chemical plating of palladium by the manufacturing method described above, the hydrogen selective permeable metal is formed. The surface of the layer is further plated with silver to form an alloy-forming metal layer, and then heated to cause interdiffusion of palladium and silver to alloy the hydrogen selective permeable metal and the alloy-forming metal, It is preferable to form an alloyed hydrogen permselective metal layer. When silver is plated on the surface of the hydrogen selective permeable metal layer, electroplating is preferably performed using palladium constituting the hydrogen selective permeable metal layer as an electrode. At this time, the mass ratio of palladium to silver (palladium: silver) is preferably 90:10 to 70:30. The main purpose of alloying palladium is to prevent hydrogen embrittlement of palladium and to improve separation efficiency at high temperatures. In addition, by using silver as a metal other than palladium, embrittlement of palladium by hydrogen is more effectively prevented.
[0052]
The alloyed hydrogen permselective metal layer constituting the hydrogen separation layer is preferably formed from a portion having a depth of 0.1 to 5 μm from one surface of the porous substrate. If it is shallower than 0.1 μm, metal fine powder may adhere to the hydrogen selective permeable metal. If it is deeper than 5 μm, the hydrogen concentration decreases from one surface 5 to the pores 4 to a predetermined depth 7. Gas (a gas containing hydrogen) may remain, and the hydrogen separation efficiency may decrease.
[0053]
The alloyed hydrogen selective permeable metal layer constituting the hydrogen separation layer is preferably formed with a thickness of 1 to 5 μm. If the thickness is less than 1 μm, defects may easily occur in the hydrogen separation layer. If the thickness is more than 5 μm, the separation efficiency of hydrogen separation by the hydrogen separation layer may be reduced.
[0054]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0055]
(Example 1)
As the porous substrate, a cylindrical asymmetric inorganic porous material (manufactured by α-alumina, manufactured by NGK Adrec Co., Ltd.) was used. This porous substrate has an outer diameter of 10 mm, an inner diameter of 7 mm, a length of 110 mm, and a pore diameter of 0.1 μm. The porous tube (porous substrate) was washed with water and then dried. Next, as a degreasing treatment, a solution containing 10% by volume of OPC370 manufactured by Okuno Pharmaceutical Co., Ltd. was maintained at 70 ° C., immersed for 5 minutes, and then washed with water.
[0056]
Next, the porous substrate was activated (first activation process). The cylindrical porous substrate was immersed in a solution containing 1% by volume of OPC pre-dip manufactured by Okuno Pharmaceutical Co., Ltd. for 2 minutes. Next, a solution containing 5% by volume of each of Inducer A and Inducer C manufactured by Okuno Pharmaceutical Co., Ltd. was kept at 50 ° C., immersed for 5 minutes, and then washed with water. Next, it was immersed for 5 minutes in a solution containing 15% by volume of Crister MU manufactured by Okuno Pharmaceutical Co., Ltd. Next, after immersing in a solution containing 3% by volume of Crister MU manufactured by Okuno Pharmaceutical Co., Ltd. for 1 minute, it was washed with water to obtain an activated metal-adhered substrate having palladium nuclei attached as the activated metal.
[0057]
Next, the surface of the activated metal-adhered substrate and a part of the palladium nucleus inside the pores were dissolved and washed with an acidic solution (acid treatment). The activated metal-adhered substrate was immersed in an acid solution having a volume ratio of hydrochloric acid (36% by mass), nitric acid (69% by mass) and water for 15 seconds, and then washed with water.
[0058]
Next, an activation process (second activation process) was performed again. The acid-washed activated metal adhesion substrate was immersed in a solution containing 15% by volume of Crister MU manufactured by Okuno Pharmaceutical Co., Ltd. for 5 minutes. Next, it was immersed in a solution containing 3% by volume of Crister MU manufactured by Okuno Pharmaceutical Co., Ltd. for 1 minute and washed with water to obtain an activation-treated substrate.
[0059]
Then, a hydrogen separation layer using palladium as a hydrogen selective permeable metal was formed by chemical plating treatment of the activation treatment substrate. In 1 L (liter) of water from which ions have been removed, [Pd (NH Three ) Four ] Cl 2 ・ H 2 O (5.4 g), 2Na · EDTA (67.2 g), ammonia water having an ammonia concentration of 28 mass% (651.3 mL) and H 2 NNH 2 ・ H 2 An aqueous solution to which O (0.64 mL) was added was prepared. Then, the temperature of the aqueous solution was controlled to 50 ° C., the outer surface of the activation-treated substrate was immersed in the aqueous solution, and the inside of the cylindrical shape of the activation-treated substrate was decompressed with a vacuum pump. The immersion time was 15 minutes, thereby obtaining a porous substrate in which a hydrogen separation layer made of palladium was formed only in a portion where palladium nuclei adhered inside the activated substrate.
[0060]
Here, when washing with an acidic solution, a thin (about 10 mm) sealing tape was wound around the outer peripheral surface of both ends of the cylindrical shape of the activated porous substrate to isolate it from the acidic solution. As a result, when the activated metal-adhered substrate is subjected to chemical plating treatment, it is possible to easily form a fine thin palladium film continuous with palladium deposited inside the pores of the porous substrate on the outer peripheral surfaces of both ends. it can. Then, this can be used as an electrode for electroplating in the next step and an airtight seal portion of the hydrogen separator.
[0061]
Next, silver was electroplated using the thin palladium films formed on the outer peripheral surfaces at both ends of the porous substrate as described above as electrodes, and the weight ratio of palladium to silver was adjusted to 80:20. And finally, it hold | maintained at 900 degreeC for 1 hour, it heat-processed, palladium and silver were mutually diffused, palladium and silver were alloyed, and the hydrogen separator (Example 1) was obtained. The microstructure of the obtained hydrogen separator is shown in FIG. FIG. 5 is a photomicrograph showing a cross section of the hydrogen separator 50 of the present example cut along a plane substantially perpendicular to the hydrogen separation layer 53. As shown in FIG. 5, the obtained hydrogen separator 50 has the hydrogen separation layer 53 from the surface 55 of the porous substrate 52 to a predetermined depth 57 inside the pores of the porous substrate 52. It can be seen that the hydrogen selective permeable metal layer 56 is formed with a predetermined thickness toward the other surface (not shown) of the porous substrate 52. From the measurement of the fluorescent X-ray intensity, the thickness of the hydrogen selective permeable metal layer 56 was 4.2 μm. Further, the thickness of the hydrogen selective permeable metal layer 56 according to the obtained micrograph (see FIG. 5) was a similar value.
[0062]
(Example 2)
In Example 1, the hydrogen separator was obtained in the same manner as in Example 1 except that the porous substrate on which the hydrogen separation layer was formed was obtained by setting the immersion time when the activation treatment substrate was subjected to the chemical plating treatment to 10 minutes. (Example 2) was obtained. The obtained hydrogen selective permeable metal layer is formed in the porous substrate from a position 0.5 μm deep from the surface of the porous substrate, and the hydrogen selective permeable metal layer is measured by measuring the hydrogen fluorescence X-ray intensity. The thickness of was 1.9 μm. Moreover, the thickness of the hydrogen selective permeable metal layer by a microphotograph (not shown) was a similar value.
[0063]
The hydrogen separator (Examples 1 and 2) thus obtained was subjected to an airtight test. Helium gas was introduced to the outside of the cylindrical hydrogen separator, held at a pressure of 900 kPa, and the amount of gas leaking into the cylindrical hydrogen separator (He leakage amount) was measured. The results are shown in the column of cycle number 0 in Table 1. Moreover, the thermal cycle test was done with the following method about the hydrogen separator (Examples 1 and 2).
[0064]
(Thermal cycle test)
The hydrogen separator in the hydrogen atmosphere was heated from room temperature to 500 ° C. and then cooled to room temperature. This heating / cooling cycle was defined as one cycle, and 100 cycles were performed. Table 1 shows the results of measuring the amount of He leakage after every 10 cycles and measuring the amount of He leakage after the thermal cycle test up to 100 cycles.
[0065]
(Comparative Example 1)
In Example 1, after the first activation treatment, the hydrazine treatment was performed without performing the acid treatment and the second activation treatment to obtain an activation-treated substrate. The activated substrate thus obtained was subjected to palladium chemical plating in the same manner as in Example 1 to obtain a hydrogen separator (Comparative Example 1). The obtained hydrogen selective permeable metal layer was formed on the surface of the porous substrate, and the thickness of the hydrogen selective permeable metal layer was 4.3 μm as measured by fluorescent X-ray intensity. Moreover, the thickness of the hydrogen selective permeable metal layer by a microphotograph (not shown) was a similar value. The hydrogen separation body thus obtained was subjected to the above airtightness test and thermal cycle test. The results are shown in Table 1.
[0066]
(Comparative Example 2)
In Comparative Example 1, a hydrogen separator was obtained in the same manner as in Comparative Example 1 except that the porous substrate on which the hydrogen separation layer was formed was obtained by setting the immersion time when the activation-treated substrate was chemically plated to 10 minutes. (Comparative Example 2) was obtained. The obtained hydrogen selective permeable metal layer was formed on the surface of the porous substrate, and the thickness of the hydrogen selective permeable metal layer was 2.0 μm as measured by fluorescent X-ray intensity. Moreover, the thickness of the hydrogen selective permeable metal layer by a microphotograph (not shown) was a similar value.
[0067]
[Table 1]
Figure 0004367693
[0068]
FIG. 5 shows that a hydrogen separator in which a hydrogen selective permeable metal layer is formed only inside the pores of the porous substrate can be produced by washing with the acidic solution after the activation treatment of the porous substrate. Further, from Table 1, the hydrogen separator of the present invention in which the hydrogen selective permeable metal layer is formed only inside the pores of the porous substrate is longer in the heating / cooling cycle than the conventional hydrogen separator. It can be seen that high airtightness can be maintained. Since the hydrogen separator of the present invention has a structure in which the hydrogen selective permeable metal layer is formed only inside the pores of the ceramic porous substrate, it suppresses the expansion of the hydrogen selective permeable metal layer and depends on the temperature raising and lowering cycle. Generation of defects can be suppressed. In addition, since the outer surface of the hydrogen separator is ceramic, the metal fine powder can be prevented from adhering to and reacting with the surface of the hydrogen selective permeable metal layer. As a result, the durability of the hydrogen separator can be greatly improved.
[0069]
【The invention's effect】
As described above, according to the hydrogen separator of the present invention, the hydrogen separation layer disposed on the porous substrate has a predetermined amount from one surface of the porous substrate inside each of the pores of the porous substrate. By being constituted by the hydrogen selective permeable metal layer formed from the depth part, the hydrogen separation layer is held inside the pores of the porous substrate, and it is suppressed from freely expanding and contracting, Even when a thermal cycle is applied to the hydrogen separator, it is possible to suppress the separation of the hydrogen separation layer from the porous substrate or the generation of defects in the hydrogen separation layer. In addition, since the hydrogen separation layer is formed from a portion having a predetermined depth from one surface of the porous substrate, the hydrogen separation layer hardly exists on the surface of the hydrogen separator. Even if it adheres to the surface of the body, it hardly comes into contact with the hydrogen separation layer, and it is possible to suppress the occurrence of defects in the hydrogen separation layer.
[0070]
Further, according to the method for producing a hydrogen separator of the present invention, when an activation-treated substrate is produced by attaching an activated metal to a porous substrate, a portion having a predetermined depth from one surface of the porous substrate. Since the activated metal was attached to the inner wall of the pore with a predetermined thickness toward the other surface side of the porous substrate, and the hydrogen selective permeable metal layer was formed using the activated metal as a nucleus, hydrogen separation A layer is formed in each of the pores of the porous substrate at a predetermined thickness from a portion of a predetermined depth from one surface of the porous substrate toward the other surface side of the porous substrate. A hydrogen separator composed of a hydrogen selective permeable metal layer can be produced.
[Brief description of the drawings]
FIG. 1 is a sectional view schematically showing an embodiment of a method for producing a hydrogen separator according to the present invention by cutting along a plane perpendicular to a hydrogen separation layer and enlarging a main part thereof.
FIG. 2 is an enlarged view of the vicinity of one surface of a porous substrate schematically showing a state in which an activated metal is attached to the porous substrate in one embodiment of the method for producing a hydrogen separator of the present invention. It is sectional drawing.
FIG. 3 shows an embodiment of the method for producing a hydrogen separator according to the present invention, wherein, among activated metals attached to a porous substrate, from one surface of the porous substrate to a portion having a predetermined depth. It is sectional drawing which expanded the vicinity of one surface of the porous substrate which shows the state which removed the activated metal which adhered.
FIG. 4 is an enlarged cross-sectional view of the vicinity of one surface of a porous substrate, showing a hydrogen separator manufactured in one embodiment of a method for manufacturing a hydrogen separator of the present invention.
FIG. 5 is a photomicrograph showing a cross section cut along a plane substantially perpendicular to the hydrogen separation layer in an example of the hydrogen separator of the present invention.
[Explanation of symbols]
1, 40, 50 ... hydrogen separator, 2, 22, 52 ... porous substrate, 3, 23, 53 ... hydrogen separation layer, 4, 24 ... pore, 5, 25, 55 ... one surface, 6, 26 , 56 ... Hydrogen selective permeable metal layer, 7, 27, 57 ... Site of predetermined depth, 8, 28 ... Hydrogen selective permeable metal, 20 ... Activated metal adhesion substrate, 29 ... Activated metal, 30 ... Active Treatment substrate, W: predetermined thickness.

Claims (14)

その一の表面から他の表面まで連通する多数の細孔を有する多孔質基体と、前記多孔質基体に配設された、前記一の表面側から流入する水素を含む気体のうち水素だけを選択的に透過させて前記他の表面側から流出させることが可能な水素分離層とを備える水素分離体であって、
前記水素分離層が、前記多孔質基体の前記細孔のそれぞれの内部に、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで形成された水素選択透過性金属層によって構成されてなることを特徴とする水素分離体。
A porous substrate having a large number of pores communicating from one surface to another surface, and only hydrogen is selected from the gas including hydrogen flowing from the one surface side disposed on the porous substrate. A hydrogen separator comprising a hydrogen separation layer that can be permeated and allowed to flow out from the other surface side,
The hydrogen separation layer is disposed in each of the pores of the porous substrate from a portion having a depth of 0.1 to 5 μm from one surface of the porous substrate to the other surface of the porous substrate. A hydrogen separator comprising a hydrogen selective permeable metal layer formed with a predetermined thickness toward the side.
前記水素分離層を構成する前記水素選択透過性金属層が、1〜5μmの厚さで形成されてなる請求項1に記載の水素分離体。 The hydrogen separator according to claim 1, wherein the hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 µm . 前記水素分離層を構成する前記水素選択透過性金属層が、パラジウム又はパラジウムを含有する合金からなる請求項1又は2に記載の水素分離体。 The hydrogen separator according to claim 1, wherein the hydrogen selective permeable metal layer constituting the hydrogen separation layer is made of palladium or an alloy containing palladium . 前記多孔質基体がセラミックを主成分としてなる請求項1〜3のいずれかに記載の水素分離体。The hydrogen separator according to claim 1, wherein the porous substrate is mainly composed of ceramic . その一の表面から他の表面まで連通する多数の細孔を有する多孔質基体と、前記多孔質基体に配設された、前記一の表面側から流入する水素を含む気体のうち水素だけを選択的に透過させて前記他の表面側から流出させることが可能な水素分離層とを備える水素分離体を製造する方法であって、
前記多孔質基体の表面及び前記細孔の内壁に、活性化金属を付着させて、活性化金属付着基体を作製し、
前記活性化金属付着基体に付着した前記活性化金属のうち、前記多孔質基体の表面、及び前記細孔の内壁の、前記多孔質基体の一の表面から所定の深さの部位までに付着した前記活性化金属を除去して、前記多孔質基体の一の表面から所定の深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで、前記細孔の内壁に前記活性化金属が付着した活性化処理基体を作製し、
前記活性化処理基体に前記活性化金属を核として化学メッキ処理して、前記活性化金属が付着した位置に前記水素選択透過性金属層を形成することにより、前記多孔質基体の前記細孔のそれぞれの内部に、前記多孔質基体の一の表面から所定の深さの部位から、前記多孔質基体の前記他の表面側に向かって所定の厚さで形成された水素選択透過性金属層によって構成された前記水素分離層を配設して、前記水素分離体を得ることを特徴とする水素分離体の製造方法。
A porous substrate having a large number of pores communicating from one surface to another surface, and only hydrogen is selected from the gas including hydrogen flowing from the one surface side disposed on the porous substrate. A hydrogen separator comprising a hydrogen separation layer that is allowed to permeate and flow out from the other surface side,
An activated metal is adhered to the surface of the porous substrate and the inner walls of the pores to produce an activated metal-attached substrate,
Of the activated metal adhering to the activated metal adhering substrate, adhering to the surface of the porous substrate and the inner wall of the pore from one surface of the porous substrate to a predetermined depth. The activated metal is removed so that the inner wall of the pore has a predetermined thickness from a portion having a predetermined depth from one surface of the porous substrate toward the other surface side of the porous substrate. An activation treatment substrate with the activation metal attached thereto was prepared,
The activated substrate is subjected to chemical plating using the activated metal as a nucleus, and the hydrogen selective permeable metal layer is formed at the position where the activated metal is adhered, thereby forming the pores of the porous substrate. A hydrogen selective permeable metal layer formed at a predetermined thickness from a portion having a predetermined depth from one surface of the porous substrate to the other surface side of the porous substrate in each interior. A method for producing a hydrogen separator, wherein the hydrogen separator is obtained by disposing the configured hydrogen separation layer.
前記水素分離層を構成する前記水素選択透過性金属層が、パラジウム又はパラジウムを含有する合金からなる請求項に記載の水素分離体の製造方法。The method for producing a hydrogen separator according to claim 5 , wherein the hydrogen selectively permeable metal layer constituting the hydrogen separation layer is made of palladium or an alloy containing palladium. 前記活性化金属付着基体から前記活性化金属を除去するときに、前記活性化金属付着基体を酸性溶液に浸漬して、前記活性化金属を酸性溶液に溶解させて除去する請求項又はに記載の水素分離体の製造方法。When removing the activated metal from the activated metal deposition substrate, the activated metal deposition substrate was immersed in an acidic solution, to claim 5 or 6 to remove the activated metal is dissolved in an acidic solution The manufacturing method of the hydrogen separator of description. 前記酸性溶液が、塩酸と硝酸とを混合した混酸である請求項に記載の水素分離体の製造方法。The method for producing a hydrogen separator according to claim 7 , wherein the acidic solution is a mixed acid obtained by mixing hydrochloric acid and nitric acid. 前記多孔質基体が、セラミックを主成分としてなる請求項のいずれかに記載の水素分離体の製造方法。The method for producing a hydrogen separator according to any one of claims 5 to 8 , wherein the porous substrate comprises ceramic as a main component. 前記水素分離層を構成する前記水素選択透過性金属層を、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から形成する請求項のいずれかに記載の水素分離体の製造方法。Hydrogen according to the selective hydrogen permeable metal layer forming the hydrogen separation layer, in any one of claims 5-9 to form a part of the depth of 0.1~5μm from one surface of the porous substrate A method for producing a separated body. 前記水素分離層を構成する前記水素選択透過性金属層を、1〜5μmの厚さで形成する請求項10のいずれかに記載の水素分離体の製造方法。The method for producing a hydrogen separator according to any one of claims 5 to 10 , wherein the hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 µm. 前記水素選択透過性金属層を形成した後に、前記水素選択透過性金属層の、前記多孔質基体の一の表面側の表面に、電気メッキにより合金形成用金属層を形成し、前記水素選択透過性金属層及び前記合金形成用金属層を加熱し、水素選択透過性金属と合金形成用金属との合金から構成される合金化された水素選択透過性金属層を形成することにより、前記合金化された水素選択透過性金属層から構成される前記水素分離層を配設する請求項11のいずれかに記載の水素分離体の製造方法。After the hydrogen selective permeable metal layer is formed, an alloy forming metal layer is formed by electroplating on the surface of the porous substrate on the surface side of the porous substrate, and the hydrogen selective permeable metal layer is formed. The alloying by heating the permeable metal layer and the alloy forming metal layer to form an alloyed hydrogen permeable metal layer composed of an alloy of a hydrogen permeable metal and an alloy forming metal. The method for producing a hydrogen separator according to any one of claims 5 to 11 , wherein the hydrogen separation layer composed of the hydrogen selective permeable metal layer is disposed. 前記水素分離層を構成する前記合金化された水素選択透過性金属層を、前記多孔質基体の一の表面から0.1〜5μmの深さの部位から形成する請求項12に記載の水素分離体の製造方法。13. The hydrogen separation according to claim 12 , wherein the alloyed hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed from a portion having a depth of 0.1 to 5 μm from one surface of the porous substrate. Body manufacturing method. 前記水素分離層を構成する前記合金化された水素選択透過性金属層を、1〜5μmの厚さで形成する請求項12又は13に記載の水素分離体の製造方法。The method for producing a hydrogen separator according to claim 12 or 13 , wherein the alloyed hydrogen selective permeable metal layer constituting the hydrogen separation layer is formed with a thickness of 1 to 5 µm.
JP2003181483A 2003-06-25 2003-06-25 Hydrogen separator and method for producing the same Expired - Lifetime JP4367693B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003181483A JP4367693B2 (en) 2003-06-25 2003-06-25 Hydrogen separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003181483A JP4367693B2 (en) 2003-06-25 2003-06-25 Hydrogen separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005013853A JP2005013853A (en) 2005-01-20
JP4367693B2 true JP4367693B2 (en) 2009-11-18

Family

ID=34182186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003181483A Expired - Lifetime JP4367693B2 (en) 2003-06-25 2003-06-25 Hydrogen separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4367693B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729755B2 (en) * 2004-09-06 2011-07-20 独立行政法人産業技術総合研究所 Composite membrane, method for producing the same, and hydrogen separation membrane
JP2008068231A (en) * 2006-09-15 2008-03-27 Kitami Institute Of Technology Hydrogen-permeable membrane and its manufacturing method
JP2009189934A (en) * 2008-02-13 2009-08-27 Research Institute Of Innovative Technology For The Earth Composite body and its manufacturing method
JP5405087B2 (en) * 2008-11-17 2014-02-05 日本碍子株式会社 Hydrogen separator and method for producing hydrogen separator
JP5410937B2 (en) * 2009-12-01 2014-02-05 日本特殊陶業株式会社 Hydrogen production equipment
JP5253369B2 (en) * 2009-12-18 2013-07-31 公益財団法人地球環境産業技術研究機構 Method for producing composite
JP5155343B2 (en) * 2010-01-13 2013-03-06 日本特殊陶業株式会社 Hydrogen separator and method for manufacturing hydrogen separator
JP5897976B2 (en) * 2012-04-25 2016-04-06 日本特殊陶業株式会社 Method for producing hydrogen separator
JP6054683B2 (en) * 2012-08-29 2016-12-27 日本特殊陶業株式会社 Method for producing hydrogen separator
JP2014184381A (en) * 2013-03-22 2014-10-02 Ngk Spark Plug Co Ltd Hydrogen separation body
JP6474953B2 (en) * 2013-07-10 2019-02-27 日本特殊陶業株式会社 Hydrogen separator and hydrogen production apparatus using hydrogen separator
JP6219625B2 (en) * 2013-07-10 2017-10-25 日本特殊陶業株式会社 Hydrogen separator and method for producing the same
JP6199657B2 (en) * 2013-08-07 2017-09-20 日本特殊陶業株式会社 Hydrogen separator and method for producing the same
JP6208067B2 (en) * 2014-03-31 2017-10-04 公益財団法人地球環境産業技術研究機構 Method for producing composite having thin metal-filled layer inside porous substrate, and composite

Also Published As

Publication number Publication date
JP2005013853A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
JP4367693B2 (en) Hydrogen separator and method for producing the same
JP2991609B2 (en) Joint of gas separator and metal and hydrogen gas separator
EP0818233B1 (en) Gas separator
JP4729755B2 (en) Composite membrane, method for producing the same, and hydrogen separation membrane
JP2010523315A (en) COMPOSITE STRUCTURE WITH POROUS ANODE OXIDE LAYER AND METHOD FOR MANUFACTURING
EP0822161A2 (en) Gas separator
TWI421373B (en) Tungsten coating method for metal base material
WO2002064241A1 (en) Hydrogen-permeable structure and method for manufacture thereof or repair thereof
JP2005022924A (en) Pore base material and its manufacturing method, and pore base material for gas separation material
JP2007301514A (en) Hydrogen separation material and its manufacturing method
JP2006239679A (en) Hydrogen separator and manufacturing method thereof
JP5526387B2 (en) Defect-free hydrogen separation membrane, method for producing defect-free hydrogen separation membrane, and hydrogen separation method
EP1688391B1 (en) Hydrogen separator and method for production thereof
JP4112856B2 (en) Method for producing gas separator
JP4909600B2 (en) Hydrogen separator and method for producing the same
JP6208067B2 (en) Method for producing composite having thin metal-filled layer inside porous substrate, and composite
US8070860B2 (en) Pd menbrane having improved H2-permeance, and method of making
JP4429318B2 (en) Hydrogen gas separator having a composite structure for separating hydrogen with high efficiency, and method for producing and using the same
JP3399694B2 (en) Method for producing gas separator
JPH07265673A (en) Joined body of metal coated ceramic to metal and gaseous hydrogen separating device using the same
JP3396470B2 (en) Method for producing Pd-based hydrogen separation membrane
JP4038292B2 (en) Hydrogen separator
EP3669975A1 (en) Ceramic filter and manufacturing method therefor
JP2005013855A (en) Hydrogen separating body and its manufacturing method
WO1996000608A1 (en) Gas separator and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090819

R150 Certificate of patent or registration of utility model

Ref document number: 4367693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

EXPY Cancellation because of completion of term