JP4367065B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4367065B2
JP4367065B2 JP2003328882A JP2003328882A JP4367065B2 JP 4367065 B2 JP4367065 B2 JP 4367065B2 JP 2003328882 A JP2003328882 A JP 2003328882A JP 2003328882 A JP2003328882 A JP 2003328882A JP 4367065 B2 JP4367065 B2 JP 4367065B2
Authority
JP
Japan
Prior art keywords
fuel
reformed fuel
reformed
amount
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003328882A
Other languages
Japanese (ja)
Other versions
JP2005090462A (en
Inventor
信也 広田
貴宣 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003328882A priority Critical patent/JP4367065B2/en
Publication of JP2005090462A publication Critical patent/JP2005090462A/en
Application granted granted Critical
Publication of JP4367065B2 publication Critical patent/JP4367065B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、燃料を改質する燃料改質装置を備えた内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine provided with a fuel reformer for reforming fuel.

燃料を改質させて水素を含む改質ガスを生成し、この改質ガスをNOxトラップ触媒へ供給して触媒にトラップされているNOxを還元する内燃機関の排気浄化装置において、NOxの還元に必要な水素量及びバッファタンクに保持されている改質ガス保持量に応じて改質ガスの排気系への供給を制御する排気浄化装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2〜4が存在する。
特開2002−161735号公報 特開平11−210447号公報 特開2002−38925号公報 特開2002−38926号公報
In an exhaust gas purification apparatus for an internal combustion engine that generates reformed gas containing hydrogen by reforming fuel and supplies the reformed gas to a NOx trap catalyst to reduce NOx trapped in the catalyst, NOx is reduced. There is known an exhaust emission control device that controls the supply of reformed gas to an exhaust system in accordance with the required amount of hydrogen and the amount of reformed gas retained in a buffer tank (see Patent Document 1). In addition, there are Patent Documents 2 to 4 as prior art documents related to the present invention.
JP 2002-161735 A Japanese Patent Laid-Open No. 11-210447 JP 2002-38925 A JP 2002-38926 A

改質ガス等の改質された燃料(改質燃料)の性状は、改質時の温度や量及び改質前の燃料の組成、性状等により変化する。そのため、NOxトラップ触媒等の排気浄化手段の機能を再生するために改質燃料を供給しても、改質燃料の性状によっては排気浄化手段が適切に再生されないおそれがある。   The properties of the reformed fuel such as reformed gas (reformed fuel) vary depending on the temperature and amount during reforming, the composition and properties of the fuel before reforming, and the like. Therefore, even if the reformed fuel is supplied to regenerate the function of the exhaust purification means such as the NOx trap catalyst, the exhaust purification means may not be properly regenerated depending on the properties of the reformed fuel.

そこで、本発明は、改質燃料の性状が安定していない場合でも、排気浄化手段の再生を安定的に実行できる内燃機関の排気浄化装置を提供することを目的とする。   Accordingly, an object of the present invention is to provide an exhaust purification device for an internal combustion engine that can stably perform regeneration of the exhaust purification means even when the properties of the reformed fuel are not stable.

本発明の内燃機関の排気浄化装置は、内燃機関の燃料を改質する燃料改質手段と、前記燃料改質手段により改質された改質燃料を貯留する改質燃料貯留手段と、前記改質燃料貯留手段の前記改質燃料を前記内燃機関の排気浄化手段へ供給する改質燃料供給手段と、前記改質燃料貯留手段に貯留された前記改質燃料の性状を判断する性状判断手段と、前記性状判断手段が判断した前記改質燃料の性状に応じて前記改質燃料供給手段から供給される改質燃料量が調整されるように前記改質燃料供給手段を制御する改質燃料供給制御手段と、を備え、前記改質燃料供給制御手段は、前記改質燃料の供給時に当該改質燃料が複数回に分けて供給され、かつ前記改質燃料が軽質と判断された場合は1回目の供給から最後の供給までの間の時間が所定時間より長くなり、前記改質燃料が重質と判断された場合は1回目の供給から最後の供給までの間の時間が前記所定時間より短くなるように前記改質燃料供給手段を制御することにより、上述した課題を解決する(請求項1)。
The exhaust gas purification apparatus for an internal combustion engine according to the present invention includes a fuel reforming means for reforming fuel of the internal combustion engine, a reformed fuel storage means for storing reformed fuel reformed by the fuel reforming means, and the modified A reformed fuel supply means for supplying the reformed fuel of the quality fuel storage means to the exhaust gas purification means of the internal combustion engine; and a property determination means for determining the properties of the reformed fuel stored in the reformed fuel storage means; The reformed fuel supply for controlling the reformed fuel supply means so that the amount of the reformed fuel supplied from the reformed fuel supply means is adjusted according to the property of the reformed fuel determined by the property determining means Control means, and the reformed fuel supply control means is 1 when the reformed fuel is supplied in a plurality of times when the reformed fuel is supplied and the reformed fuel is determined to be light. The time between the first supply and the last supply is a predetermined time Ri longer, the if the reformed fuel is determined to heavy by the time between the supply of the first to the last supply controls the reforming fuel supply means so as to be shorter than the predetermined time The problem described above is solved (claim 1).

本発明の排気浄化装置によれば、改質燃料の性状に応じて供給する改質燃料量を調整するので、改質燃料の性状が安定していない場合でも、排気浄化手段を再生するのに適切な量の改質燃料を供給することができる。従って、排気浄化手段の再生を安定的に実行することができる。なお、ここでいう改質燃料量とは単位時間当たりに供給される改質燃料量のことを示している。そのため、改質燃料量の調整には、供給間隔、供給回数を調整することも含まれる。   According to the exhaust emission control device of the present invention, the amount of reformed fuel to be supplied is adjusted according to the property of the reformed fuel. Therefore, even when the property of the reformed fuel is not stable, An appropriate amount of reformed fuel can be supplied. Therefore, the regeneration of the exhaust gas purification means can be executed stably. Note that the amount of reformed fuel here refers to the amount of reformed fuel supplied per unit time. Therefore, the adjustment of the reformed fuel amount includes adjusting the supply interval and the supply frequency.

本発明の排気浄化装置において、前記燃料改質手段は、前記内燃機関の排気熱によって前記燃料を改質してもよい(請求項2)。このように内燃機関の排気熱を利用することで、燃料を改質させるためのエネルギを供給するエネルギ供給源を他に設ける必要がなくなる。これにより、コストが低減できる。   In the exhaust emission control device of the present invention, the fuel reforming means may reform the fuel by exhaust heat of the internal combustion engine (claim 2). By utilizing the exhaust heat of the internal combustion engine in this way, there is no need to provide another energy supply source for supplying energy for reforming the fuel. Thereby, cost can be reduced.

本発明の排気浄化装置において、前記性状判断手段は、前記改質燃料の性状として前記改質燃料の沸点の高低を判断し、前記改質燃料供給制御手段は、前記改質燃料の沸点が低いほど前記改質燃料量を低減させてもよい(請求項3)。   In the exhaust emission control device of the present invention, the property determining means determines the high or low boiling point of the reformed fuel as the property of the reformed fuel, and the reformed fuel supply control means has a low boiling point of the reformed fuel. The amount of the reformed fuel may be reduced as much (claim 3).

改質燃料の沸点が低い場合、供給された改質燃料が短時間で気化することにより、改質燃料濃度の高い(空燃比がリッチな)排気が排気浄化手段へ一度に供給される可能性がある。そのため、改質燃料の一部は、排気浄化手段の再生に利用されないまま排気浄化手段を通過して大気へ放出されるおそれがある。一方、改質燃料の沸点が高い場合は、改質燃料が気化するのに時間がかかる。そのため、排気浄化手段を再生するのに必要な所定の空燃比の排気が排気浄化手段へ供給されない可能性がある。   When the boiling point of the reformed fuel is low, the supplied reformed fuel is vaporized in a short time, so that the exhaust gas having a high reformed fuel concentration (rich in the air-fuel ratio) may be supplied to the exhaust purification unit at a time. There is. Therefore, a part of the reformed fuel may pass through the exhaust purification unit and be released to the atmosphere without being used for regeneration of the exhaust purification unit. On the other hand, when the boiling point of the reformed fuel is high, it takes time for the reformed fuel to vaporize. Therefore, there is a possibility that the exhaust gas having a predetermined air-fuel ratio necessary for regenerating the exhaust gas purification unit is not supplied to the exhaust gas purification unit.

本発明では、改質燃料の沸点が低い場合は改質燃料量を低減させるので、改質燃料が排気浄化手段を通過して大気に排出されることを防止できる。一方、改質燃料の沸点が高い場合は改質燃料量を増加させるので、排気浄化手段の再生に必要な空燃比の排気を排気浄化手段へ供給することができる。なお、本発明における「沸点の高低」の判断は、沸点の検出値から直接判断する場合と沸点をこれと相関する物理量に置き換えて検出した値から判断する場合とのいずれも含む概念である。   In the present invention, when the boiling point of the reformed fuel is low, the amount of the reformed fuel is reduced, so that the reformed fuel can be prevented from passing through the exhaust purification unit and being discharged to the atmosphere. On the other hand, when the reforming fuel has a high boiling point, the amount of the reforming fuel is increased, so that the air-fuel ratio exhaust gas required for regeneration of the exhaust purification means can be supplied to the exhaust purification means. In the present invention, the determination of “high or low boiling point” is a concept that includes both a case of directly judging from the detected value of the boiling point and a case of judging from the value detected by replacing the boiling point with a physical quantity that correlates with this.

本発明の排気浄化装置において、前記燃料改質手段は、前記内燃機関の排気を利用して燃料を改質し、前記性状判断手段は、改質に利用される排気の温度に基づいて前記改質燃料の性状を判断してもよい(請求項4)。この場合、燃料を改質するエネルギ供給源は排気となるので、排気の温度から燃料が改質されたときの温度を推定することができる。従って、排気の温度から改質燃料の性状を判断することができる。   In the exhaust emission control device according to the present invention, the fuel reforming means reforms the fuel using the exhaust gas of the internal combustion engine, and the property judging means determines the reforming based on the temperature of the exhaust gas used for reforming. The quality of the quality fuel may be judged (claim 4). In this case, since the energy supply source for reforming the fuel is exhaust, the temperature when the fuel is reformed can be estimated from the temperature of the exhaust. Therefore, the property of the reformed fuel can be determined from the exhaust temperature.

本発明の排気浄化装置は、前記燃料改質手段へ供給される燃料量を取得する燃料量取得手段と、前記燃料改質手段から前記改質燃料貯留手段へ送られる改質燃料量を取得する改質燃料量取得手段と、を備え、前記性状判断手段は、前記燃料量取得手段が取得する燃料量と前記改質燃料量取得手段が取得する改質燃料量とに基づいて前記改質燃料の性状を判断してもよい(請求項5)。改質される燃料量とこの燃料量から回収される改質燃料量との比(改質燃料回収比)と、燃料が改質されたときの温度と、の間には相関関係があることが知られている。従って、改質燃料回収比から燃料改質時の温度を推定することができるので、燃料量と改質燃料量とから改質燃料の性状を判断することができる。   The exhaust emission control device according to the present invention acquires a fuel amount acquisition means for acquiring a fuel amount supplied to the fuel reforming means, and a reformed fuel amount sent from the fuel reforming means to the reformed fuel storage means. A reformed fuel amount acquiring means, wherein the property determining means is based on the fuel amount acquired by the fuel amount acquiring means and the reformed fuel amount acquired by the reformed fuel amount acquiring means. May be determined (claim 5). There is a correlation between the ratio of the amount of fuel to be reformed and the amount of reformed fuel recovered from this amount of fuel (reformed fuel recovery ratio) and the temperature at which the fuel is reformed It has been known. Therefore, since the temperature at the time of fuel reforming can be estimated from the reformed fuel recovery ratio, the property of the reformed fuel can be determined from the fuel amount and the reformed fuel amount.

本発明によれば、改質燃料の性状に応じて供給する改質燃料量を調整するので、改質燃料の性状が安定していない場合でも、排気浄化手段の再生を安定的に実行することができる。   According to the present invention, since the amount of reformed fuel to be supplied is adjusted according to the property of the reformed fuel, the regeneration of the exhaust purification means can be stably performed even when the property of the reformed fuel is not stable. Can do.

図1に、本発明の一実施形態に係る排気浄化装置が適用される内燃機関の要部を示す。内燃機関1は、ディーゼルエンジンとして構成される。周知のように、内燃機関1には、吸気通路2及び排気通路3が接続されている。吸気通路2には、吸気量を調節するスロットルバルブ4と、排気エネルギを利用して吸気圧を高める過給機5のコンプレッサ5aとが設けられている。排気通路3には、過給機5のタービン5bと、排気浄化手段としての排気浄化装置6と、排気の温度に対応した信号を出力する排気温センサ7と、排気の空燃比に対応した信号を出力する空燃比センサ8と、が設けられている。排気浄化装置6は、例えばパティキュレートを捕集するためのフィルタ基材に吸蔵還元型NOx触媒物質を担持させた公知のものである。なお、NOxの吸蔵はNOxを保持できればよく、その形態は問わない。   FIG. 1 shows a main part of an internal combustion engine to which an exhaust gas purification apparatus according to an embodiment of the present invention is applied. The internal combustion engine 1 is configured as a diesel engine. As is well known, an intake passage 2 and an exhaust passage 3 are connected to the internal combustion engine 1. The intake passage 2 is provided with a throttle valve 4 that adjusts the intake air amount, and a compressor 5a of the supercharger 5 that uses the exhaust energy to increase the intake pressure. In the exhaust passage 3, a turbine 5 b of the supercharger 5, an exhaust purification device 6 as exhaust purification means, an exhaust temperature sensor 7 that outputs a signal corresponding to the temperature of the exhaust, and a signal corresponding to the air-fuel ratio of the exhaust And an air-fuel ratio sensor 8 for outputting. The exhaust purification device 6 is a known device in which, for example, a NOx storage reduction catalyst material is supported on a filter base material for collecting particulates. The NOx occlusion is not limited as long as it can hold NOx.

内燃機関1は、燃料(軽油)を貯留する燃料タンク9と、燃料タンク9の燃料をインジェクタ10へ供給するための燃料ポンプ11と、燃料ポンプ11により供給された燃料のうち余剰な燃料を燃料タンク9へ戻すリターン通路12と、を備えている。   The internal combustion engine 1 includes a fuel tank 9 for storing fuel (light oil), a fuel pump 11 for supplying the fuel in the fuel tank 9 to the injector 10, and surplus fuel out of the fuel supplied by the fuel pump 11. And a return passage 12 returning to the tank 9.

内燃機関1には、燃料を改質するための燃料改質装置13と、改質燃料供給装置14と、が設けられている。燃料改質装置13は、燃料改質手段としての分留通路15と、リターン通路12から分留通路15へ供給される燃料の流量を制御する流量制御バルブ16と、分留通路15により分留された軽質分の改質燃料を貯留する改質燃料貯留手段としての改質燃料容器17と、改質燃料容器17に貯留された改質燃料量に対応した信号を出力するレベルセンサ18と、を備えている。改質燃料供給装置14は、改質燃料を排気浄化装置6へ供給する改質燃料供給手段としての改質燃料供給用インジェクタ19と、改質燃料容器17の改質燃料を改質燃料供給用インジェクタ19へ送り出すフィードポンプ20とを備えている。   The internal combustion engine 1 is provided with a fuel reforming device 13 for reforming fuel and a reformed fuel supply device 14. The fuel reformer 13 includes a fractionation passage 15 as fuel reforming means, a flow rate control valve 16 for controlling the flow rate of fuel supplied from the return passage 12 to the fractionation passage 15, and a fractionation passage 15. A reformed fuel container 17 serving as a reformed fuel storage means for storing the reformed fuel for the light component, a level sensor 18 for outputting a signal corresponding to the amount of the reformed fuel stored in the reformed fuel container 17, It has. The reformed fuel supply device 14 is a reformed fuel supply injector 19 as a reformed fuel supply means for supplying reformed fuel to the exhaust gas purification device 6, and a reformed fuel in the reformed fuel container 17 is used for supplying reformed fuel. A feed pump 20 for feeding to the injector 19 is provided.

図2に示したように、分留通路15は、排気通路3内に水平方向に対して傾斜しつつ配置された分留区間15aと、分留区間15aにおいて排気熱により蒸発した軽質分の燃料を改質燃料容器17へ導く気相通路15bと、排気熱により蒸発しなかった重質分の燃料を燃料タンク9へ導く液相通路15cと、気相通路15bと液相通路15cとの分岐点15dの温度に対応した信号を出力する温度センサ21(図1参照)と、を備えている。なお、液相通路15cは、燃料タンク7に直接接続されていてもよいし、分留通路15が接続された位置よりも下流側のリターン通路12に接続されていてもよい。このように分留通路15は、内燃機関1の排気を利用して、燃料を軽質な改質燃料へ改質する。   As shown in FIG. 2, the fractionation passage 15 includes a fractionation section 15a disposed in the exhaust passage 3 while being inclined with respect to the horizontal direction, and a light fuel evaporated by exhaust heat in the fractionation section 15a. The gas phase passage 15b for guiding the fuel to the reformed fuel container 17, the liquid phase passage 15c for guiding the heavy fuel that has not evaporated due to the exhaust heat to the fuel tank 9, and the branching of the gas phase passage 15b and the liquid phase passage 15c And a temperature sensor 21 (see FIG. 1) that outputs a signal corresponding to the temperature of the point 15d. The liquid phase passage 15c may be directly connected to the fuel tank 7, or may be connected to the return passage 12 on the downstream side of the position where the fractionation passage 15 is connected. As described above, the fractionation passage 15 uses the exhaust gas of the internal combustion engine 1 to reform the fuel into a light reformed fuel.

内燃機関1の運転状態はエンジンコントロールユニット(ECU)22により制御される。ECU22は、マイクロプロセッサ及びその動作に必要なROM、RAM等の周辺装置を組み合わせたコンピュータとして構成されている。ECU22は、例えば空燃比センサ8の信号等を参照して改質燃料供給用インジェクタ19の動作を制御し、改質燃料を排気通路3へ供給することにより排気の空燃比をストイキ又はリッチにして排気浄化装置6の機能を再生させる処理を行う。ECU22には上述したセンサの他に、外気の温度に対応した信号する出力する外気温センサ23、燃料の温度に対応した信号を出力する燃温センサ24等が接続される。ECU22は、改質燃料供給用インジェクタ19の他に流量制御バルブ16等を制御している。   The operating state of the internal combustion engine 1 is controlled by an engine control unit (ECU) 22. The ECU 22 is configured as a computer in which a microprocessor and peripheral devices such as ROM and RAM necessary for its operation are combined. The ECU 22 controls the operation of the reformed fuel supply injector 19 with reference to, for example, a signal from the air-fuel ratio sensor 8 and supplies the reformed fuel to the exhaust passage 3 to make the air-fuel ratio of the exhaust stoichiometric or rich. A process for regenerating the function of the exhaust emission control device 6 is performed. In addition to the sensors described above, the ECU 22 is connected to an outside air temperature sensor 23 that outputs a signal corresponding to the temperature of the outside air, a fuel temperature sensor 24 that outputs a signal corresponding to the temperature of the fuel, and the like. The ECU 22 controls the flow rate control valve 16 and the like in addition to the reformed fuel supply injector 19.

改質燃料は、内燃機関1の排気温度により性状が変化する。例えば、排気温度が高い場合、沸点の高い重質分の燃料も蒸発して改質燃料容器17へ導かれる。そのため、改質燃料は重質になり、揮発性が低く、高沸点になる。一方、排気温度が低い場合は、軽質分の燃料のうちでも沸点の低い燃料のみが改質燃料容器17へ導かれる。そのため、改質燃料は軽質になり、揮発性が高く、低沸点になる。   The quality of the reformed fuel changes depending on the exhaust temperature of the internal combustion engine 1. For example, when the exhaust temperature is high, heavy fuel with a high boiling point is also evaporated and guided to the reformed fuel container 17. Therefore, the reformed fuel becomes heavy, has low volatility, and has a high boiling point. On the other hand, when the exhaust temperature is low, only the low boiling point fuel is led to the reformed fuel container 17 among the lighter fuels. Therefore, the reformed fuel is light, highly volatile, and has a low boiling point.

ECU22は、このような改質燃料の性状に応じて改質燃料供給用インジェクタ19から排気浄化装置6へ供給する改質燃料量を調整する。図3に、ECU22が改質燃料量を調整するために実行する改質燃料供給量制御ルーチンを示す。図3の制御ルーチンを実行することにより、ECU22は性状判断手段及び改質燃料供給制御手段として機能する。図3の制御ルーチンは、内燃機関1の運転中に所定の周期で繰り返し実行される。   The ECU 22 adjusts the amount of reformed fuel supplied from the reformed fuel supply injector 19 to the exhaust purification device 6 in accordance with the properties of the reformed fuel. FIG. 3 shows a reformed fuel supply amount control routine executed by the ECU 22 to adjust the reformed fuel amount. By executing the control routine of FIG. 3, the ECU 22 functions as a property determination unit and a reformed fuel supply control unit. The control routine of FIG. 3 is repeatedly executed at a predetermined cycle during the operation of the internal combustion engine 1.

図3の制御ルーチンにおいて、ECU22はまずステップS11で改質燃料容器17内の改質燃料の性状が、通常の添加制御で供給するのに適した性状(適正性状)であるか否かを判断する。適正性状であると判断した場合はステップS12へ進み、ECU22は改質燃料供給用インジェクタ19に通常供給制御を行わせる。その後、今回の制御ルーチンを終了する。図4に、通常供給制御時の改質燃料の供給パターンの一例を示す。図4から明らかなように、改質燃料は供給時間T内に供給量qずつ四回供給される。   In the control routine of FIG. 3, the ECU 22 first determines in step S11 whether or not the property of the reformed fuel in the reformed fuel container 17 is a property (proper property) suitable for being supplied by normal addition control. To do. If it is determined that the property is appropriate, the process proceeds to step S12, and the ECU 22 causes the reforming fuel supply injector 19 to perform normal supply control. Thereafter, the current control routine is terminated. FIG. 4 shows an example of a reformed fuel supply pattern during normal supply control. As is clear from FIG. 4, the reformed fuel is supplied four times by the supply amount q within the supply time T.

改質燃料が適正性状であるか否かは、例えば改質燃料の沸点の高低から判断される。改質燃料の沸点は、例えば温度センサ21の温度履歴から推定できる。分岐部15dの温度が適正性状の改質燃料が回収される所定の温度範囲(例えば220度付近の温度範囲)よりも高かった場合、改質燃料の沸点は高いと判断される。一方、所定の温度範囲よりも低かった場合、改質燃料の沸点は低いと判断される。   Whether or not the reformed fuel is appropriate is determined, for example, based on the boiling point of the reformed fuel. The boiling point of the reformed fuel can be estimated from the temperature history of the temperature sensor 21, for example. When the temperature of the branch portion 15d is higher than a predetermined temperature range (for example, a temperature range around 220 degrees) where the reformed fuel having proper properties is recovered, it is determined that the boiling point of the reformed fuel is high. On the other hand, when the temperature is lower than the predetermined temperature range, it is determined that the boiling point of the reformed fuel is low.

一方、改質燃料が適正性状ではないと判断した場合、ステップS13へ進み、ECU22は、改質燃料の性状に応じて改質燃料の供給パターンを変更する。その後、今回の制御ルーチンを終了する。図5に、ECU22が供給パターンを変更する際に使用する改質燃料の性状と改質燃料供給回数との関係の例を示す。図5から明らかなように、ECU22は、改質燃料が軽質(低沸点)になるほど供給回数を増加させる。また、ECU22は、供給回数を増加させるに伴い、改質燃料供給用インジェクタ19から一回に供給される改質燃料量(添加量)を低減させる。改質燃料が軽質と判断された場合の供給パターンの例を図6に、改質燃料が重質と判断された場合の供給パターンの例を図7に示す。   On the other hand, if it is determined that the reformed fuel does not have proper properties, the process proceeds to step S13, and the ECU 22 changes the reformed fuel supply pattern in accordance with the properties of the reformed fuel. Thereafter, the current control routine is terminated. FIG. 5 shows an example of the relationship between the properties of the reformed fuel used when the ECU 22 changes the supply pattern and the number of reformed fuel supplies. As is apparent from FIG. 5, the ECU 22 increases the number of times of supply as the reformed fuel becomes lighter (lower boiling point). Further, the ECU 22 reduces the amount of reformed fuel (added amount) supplied from the reformed fuel supply injector 19 at a time as the number of times of supply is increased. An example of a supply pattern when the reformed fuel is determined to be light is shown in FIG. 6, and an example of a supply pattern when the reformed fuel is determined to be heavy is shown in FIG.

図6(a)は、添加量を低減させ、供給回数を増加させた場合の供給パターンを示している。このように供給パターンを変更することで、改質燃料を排気通路3へ分散させて供給することができる。従って、空燃比のリッチな排気が一度に排気浄化装置6へ供給されることを防止できる。なお、改質燃料が軽質と判断された場合の供給パターンは、図6(a)の供給パターンに限定されない。例えば、図6(b)、(c)に示した供給パターンに変更してもよい。図6(b)は、添加量は図4の供給パターンと同じ(供給量qのまま)で、供給間隔を拡大させた場合の供給パターンを示している。図6(c)は、添加量を低減させつつ供給回数を増加させ、さらに供給間隔を拡大させた場合の供給パターンを示している。このように供給パターンを変更することでも、改質燃料を排気通路3へ分散させて供給することができる。   FIG. 6A shows a supply pattern when the addition amount is reduced and the supply frequency is increased. By thus changing the supply pattern, the reformed fuel can be distributed and supplied to the exhaust passage 3. Accordingly, it is possible to prevent exhaust gas rich in the air-fuel ratio from being supplied to the exhaust gas purification device 6 at a time. Note that the supply pattern when the reformed fuel is determined to be light is not limited to the supply pattern shown in FIG. For example, the supply pattern shown in FIGS. 6B and 6C may be changed. FIG. 6B shows the supply pattern when the addition amount is the same as the supply pattern of FIG. 4 (the supply amount q remains unchanged) and the supply interval is increased. FIG. 6C shows a supply pattern when the supply frequency is increased while the addition amount is reduced and the supply interval is further expanded. By changing the supply pattern in this way, the reformed fuel can be distributed and supplied to the exhaust passage 3.

一方、図7(a)では、添加量を増加させ、供給回数を低減させた場合の供給パターンを示している。このように供給パターンを変更し、気化する改質燃料量を増加させることで、沸点の高い重質な改質燃料でも排気浄化装置6を再生させるのに必要十分な、リッチな空燃比の排気を供給することができる。なお、改質燃料が重質と判断された場合の供給パターンは、図7(a)の供給パターンに限定されない。例えば、図7(b)、(c)の供給パターンに変更してもよい。図7(b)は、添加量は図4の供給パターンと同じ(供給量qのまま)で、供給間隔を縮小させた場合の供給パターンを示している。図7(c)は、添加量を増加させつつ供給回数を低減させ、さらに供給間隔を縮小させた場合の供給パターンを示している。このように変更することでも、図7(a)と同じ効果を得ることができる。   On the other hand, FIG. 7A shows a supply pattern when the addition amount is increased and the number of times of supply is reduced. By changing the supply pattern in this way and increasing the amount of reformed fuel to be vaporized, the exhaust gas having a rich air-fuel ratio sufficient and sufficient to regenerate the exhaust purification device 6 even with heavy reformed fuel having a high boiling point. Can be supplied. The supply pattern when the reformed fuel is determined to be heavy is not limited to the supply pattern shown in FIG. For example, the supply pattern shown in FIGS. 7B and 7C may be changed. FIG. 7B shows a supply pattern when the addition amount is the same as the supply pattern of FIG. 4 (the supply amount q remains unchanged) and the supply interval is reduced. FIG. 7C shows a supply pattern in the case where the number of times of supply is reduced while the addition amount is increased and the supply interval is further reduced. By changing in this way, the same effect as in FIG. 7A can be obtained.

このように図3の制御ルーチンを実行することにより、改質燃料の性状に応じて改質燃料の供給パターンを変更することができる。   By executing the control routine of FIG. 3 in this way, the reforming fuel supply pattern can be changed according to the properties of the reforming fuel.

図3のステップS11において、改質燃料の性状は、分岐部15dの温度以外の物理量から判断することもできる。例えば、流量制御バルブ16から分留通路15へ供給された燃料量とこの燃料量が分留されたときのレベルセンサ18の増加分との比(改質燃料回収比)から性状を判断することができる。図8に、分岐部15dの温度と改質燃料回収比との関係を示す。図8から明らかなように、分岐部15dの温度と改質燃料回収比との間には相関関係があるので、改質燃料回収比から改質燃料の性状を判断することができる。なお、流量制御バルブ16はECU22に制御されているので、分留通路15へ供給された燃料量はECU22に取得されている。この場合、ECU22は燃料量取得手段として機能し、レベルセンサ18は改質燃料量取得手段として機能する。   In step S11 of FIG. 3, the property of the reformed fuel can be determined from a physical quantity other than the temperature of the branch portion 15d. For example, the property is judged from the ratio (reformed fuel recovery ratio) of the amount of fuel supplied from the flow control valve 16 to the fractionation passage 15 and the increase in the level sensor 18 when this amount of fuel is fractionated. Can do. FIG. 8 shows the relationship between the temperature of the branch portion 15d and the reformed fuel recovery ratio. As is clear from FIG. 8, since there is a correlation between the temperature of the branching portion 15d and the reformed fuel recovery ratio, the property of the reformed fuel can be determined from the reformed fuel recovery ratio. Since the flow control valve 16 is controlled by the ECU 22, the amount of fuel supplied to the fractionation passage 15 is acquired by the ECU 22. In this case, the ECU 22 functions as a fuel amount acquisition unit, and the level sensor 18 functions as a reformed fuel amount acquisition unit.

また、分流通路15では排気の熱を利用して燃料を改質しているので、排気温度から分岐部15dの温度を推定することもできる。従って、排気温度から改質燃料の性状を判断することができる。排気温度と併せて、燃料改質時の燃料温度や分流通路15へ供給された燃料量を参照することで、分岐部15dの温度をより精度良く推定するができる。   Further, since the fuel is reformed using the heat of the exhaust gas in the diversion passage 15, the temperature of the branching portion 15d can be estimated from the exhaust gas temperature. Therefore, the property of the reformed fuel can be determined from the exhaust temperature. By referring to the fuel temperature at the time of fuel reforming and the amount of fuel supplied to the diversion passage 15 together with the exhaust gas temperature, the temperature of the branch portion 15d can be estimated with higher accuracy.

さらに、ECU22は、空燃比センサ8の信号を参照して供給パターンを変更してもよい。図9〜図12に、ECU22が空燃比センサ8の信号を参照して変更する供給パターンの例を示す。なお、図9〜図12の(c)には、比較例として通常供給制御時の供給パターンを示した。   Further, the ECU 22 may change the supply pattern with reference to the signal of the air-fuel ratio sensor 8. 9 to 12 show examples of supply patterns that are changed by the ECU 22 with reference to the signal from the air-fuel ratio sensor 8. 9C to 12C show supply patterns during normal supply control as comparative examples.

図9は、空燃比センサ8により排気浄化装置6の再生時に、排気浄化装置6を再生させるのに必要な空燃比よりもリッチな空燃比の排気が検出された場合、次回の排気浄化装置6の再生時にECU22が変更する供給パターンの例を示している。図9(a)は、添加量として供給量qの改質燃料が供給された時に、所定の空燃比よりもリッチな排気が長時間検出された場合の供給パターンの例を示している。改質燃料を供給量qで供給したときに長時間リッチな排気が検出された場合、改質燃料の沸点が低く一度に大量の改質燃料が蒸発したと推定される。そのため、添加間隔を拡大することにより改質燃料を分散させて排気浄化装置6へ供給する。図9(b)は、改質燃料の供給後、直ぐに空燃比センサ8がリッチな排気を検出した場合の供給パターンの例を示している。この場合も、改質燃料の沸点が低いと推定されるので、1回の添加量を低減させつつ、供給回数を増加させることで、改質燃料を分散させて排気浄化装置6へ供給することができる。   FIG. 9 shows that when the air-fuel ratio sensor 8 detects the exhaust gas having an air-fuel ratio richer than the air-fuel ratio necessary for regenerating the exhaust gas purification device 6 when the exhaust gas purification device 6 is regenerated, the next exhaust gas purification device 6 is used. The example of the supply pattern which ECU22 changes at the time of reproduction | regeneration of is shown. FIG. 9A shows an example of a supply pattern in the case where exhaust richer than a predetermined air-fuel ratio is detected for a long time when a reformed fuel of supply amount q is supplied as an addition amount. If rich exhaust gas is detected for a long time when the reformed fuel is supplied at the supply amount q, it is estimated that the reformed fuel has a low boiling point and a large amount of reformed fuel has evaporated at once. Therefore, the reformed fuel is dispersed and supplied to the exhaust purification device 6 by increasing the addition interval. FIG. 9B shows an example of a supply pattern when the air-fuel ratio sensor 8 detects rich exhaust gas immediately after the reformed fuel is supplied. Also in this case, since the boiling point of the reformed fuel is estimated to be low, the reformed fuel is dispersed and supplied to the exhaust emission control device 6 by increasing the number of times of supply while reducing the amount of addition once. Can do.

図10(a)は、改質燃料供給用インジェクタ19により改質燃料を供給している時に、排気浄化装置6の再生に必要な空燃比よりもリッチな排気が検出された場合、その供給時にECU22が変更する供給パターンの例を示している。図10(a)では、3回目と4回目の供給間隔を拡大することで、改質燃料を分散させて排気浄化装置6へ供給する。なお、図10(b)は、改質燃料が軽質と判断された場合の供給パターンの参考例を示している。この参考例では、4回目の添加量を低減させることにより、改質燃料が排気浄化装置6へ過剰に供給されるのを防止する。
FIG. 10 (a), when that supply reformed fuel by reforming the fuel supply injector 19, when the rich exhaust is detected than the air-fuel ratio required for regeneration of the exhaust gas purification device 6, at the time of supply The example of the supply pattern which ECU22 changes is shown. In FIG. 10 (a), the reformed fuel is dispersed and supplied to the exhaust purification device 6 by expanding the third and fourth supply intervals. In addition, FIG.10 (b) has shown the reference example of the supply pattern when it is judged that reformed fuel is light. In this reference example, an excessive amount of reformed fuel is prevented from being supplied to the exhaust purification device 6 by reducing the amount of addition for the fourth time.

図11は、排気浄化装置6の再生時においてストイキ又はリッチな空燃比の排気が検出されない場合に、次回の排気浄化装置6の再生時にECU22が変更する供給パターンの例を示している。改質燃料を供給してもストイキ又はリッチな空燃比の排気が検出されない場合、改質燃料は沸点の高い重質な性状であると推定される。そのため、図11(a)では、次回の供給時の供給間隔を縮小させ、所定時間内において気化する改質燃料量を増加させて排気の空燃比をストイキ又はリッチにさせる。また、図11(b)では、次回の排気浄化装置6の再生時に添加量を増加させることで、排気の空燃比をストイキ又はリッチにさせる。なお、図11(b)の供給パターンでは、供給回数を削減してもよい。   FIG. 11 shows an example of a supply pattern that the ECU 22 changes when the exhaust purification device 6 is regenerated next time when exhaust gas having a stoichiometric or rich air-fuel ratio is not detected during the regeneration of the exhaust purification device 6. If stoichiometric or rich air-fuel ratio exhaust is not detected even when the reformed fuel is supplied, it is estimated that the reformed fuel has a heavy property with a high boiling point. Therefore, in FIG. 11A, the supply interval at the next supply is reduced, and the amount of reformed fuel to be vaporized within a predetermined time is increased to make the air-fuel ratio of the exhaust stoichiometric or rich. Further, in FIG. 11B, the air-fuel ratio of the exhaust is made stoichiometric or rich by increasing the addition amount at the next regeneration of the exhaust purification device 6. In the supply pattern of FIG. 11B, the number of times of supply may be reduced.

図12(a)は、排気浄化装置6の再生時においてストイキ又はリッチな空燃比の排気が検出されない(改質燃料の沸点が高く重質である)場合、その再生時にECU22が変更する供給パターンの例を示している。図12(a)では3回目と4回目の供給間隔を縮小させることで排気の空燃比をストイキ又はリッチにさせる。なお、図12(b)は、改質燃料が重質と判断された場合の供給パターンの参考例を示している。この参考例では、4回目の添加量を増加させることで、排気の空燃比をストイキ又はリッチにさせる。 12 (a) is an exhaust gas purification device 6 is not detected exhaust stoichiometric or rich air-fuel ratio at the time of reproduction (which is a heavy high boiling point of the reformed fuel), the supply pattern of changing the ECU22 at the reproduction An example is shown. Figure 12 (a) in is the air-fuel ratio of exhaust to stoichiometric or rich by reducing the supply interval of the third and fourth. In addition, FIG.12 (b) has shown the reference example of the supply pattern when it is judged that reformed fuel is heavy. In this reference example, the air-fuel ratio of the exhaust is made stoichiometric or rich by increasing the amount of addition for the fourth time.

このように排気の空燃比を参照して供給パターンを変更することで、排気浄化装置6へ供給する改質燃料量をより精度よく調整することができる。なお、図9、図10に示した供給パターンに変更した後、所定の空燃比よりもリッチな空燃比の排気が検出されなくなった場合は通常供給制御時の供給パターンに戻す。また、図11、図12に示した供給パターンに変更した後、所定の空燃比よりもリッチな空燃比を検出した場合も通常供給制御時の供給パターンへ戻す。   In this way, by changing the supply pattern with reference to the air-fuel ratio of the exhaust, the amount of reformed fuel supplied to the exhaust purification device 6 can be adjusted with higher accuracy. In addition, after changing to the supply pattern shown in FIG. 9, FIG. 10, when the exhaust of air fuel ratio richer than a predetermined air fuel ratio is no longer detected, it returns to the supply pattern at the time of normal supply control. Further, after changing to the supply pattern shown in FIGS. 11 and 12, when the air-fuel ratio richer than the predetermined air-fuel ratio is detected, the supply pattern is returned to the normal supply control.

排気浄化装置6である吸蔵還元型NOx触媒の機能再生には、流入する排気の空燃比をストイキ又はリッチに設定して吸蔵されたNOxを放出させるNOx再生と、流入する排気の空燃比をストイキ又はリッチに設定するとともにNOx再生時よりも排気の温度を高温にして硫黄分(S)を放出させるS再生と、NOx触媒の温度を高温にして付着した粒子状物質(PM)を燃焼させるPM再生と、がある。NOx再生、S再生及びPM再生のいずれの場合においても改質燃料を排気通路3へ供給するので、改質燃料量の調整はこれらのいずれの再生時にも行われる。   For the functional regeneration of the NOx storage reduction catalyst which is the exhaust gas purification device 6, NOx regeneration for releasing the stored NOx by setting the air-fuel ratio of the inflowing exhaust to stoichiometric or rich, and the air-fuel ratio of the inflowing exhaust gas is stoichiometric. Alternatively, it is set to rich, and the S regeneration for releasing the sulfur content (S) by raising the temperature of the exhaust gas higher than the NOx regeneration, and the PM for burning the adhering particulate matter (PM) by raising the temperature of the NOx catalyst. There is playback. Since reformed fuel is supplied to the exhaust passage 3 in any of NOx regeneration, S regeneration, and PM regeneration, the amount of reformed fuel is adjusted at any of these regenerations.

本発明は、上述した実施形態に限定されることなく、種々の形態にて実施してよい。例えば、排気の空燃比を検出するのは空燃比センサに限定されず、酸素濃度センサを使用してもよい。   The present invention is not limited to the above-described embodiments, and may be implemented in various forms. For example, the air-fuel ratio of the exhaust gas is not limited to the air-fuel ratio sensor, and an oxygen concentration sensor may be used.

本発明の一実施形態に係る排気浄化装置が適用される内燃機関の要部を示す図。The figure which shows the principal part of the internal combustion engine to which the exhaust gas purification apparatus which concerns on one Embodiment of this invention is applied. 図1の燃料改質装置の一部を拡大して示す図。The figure which expands and shows a part of fuel reformer of FIG. 図1のECUが改質燃料量を調整するために実行する改質燃料量制御ルーチンを示す図。The figure which shows the reformed fuel quantity control routine which ECU of FIG. 1 performs in order to adjust the reformed fuel quantity. 改質燃料の通常添加時の供給パターンの一例を示す図。The figure which shows an example of the supply pattern at the time of normal addition of a reformed fuel. 改質燃料の性状と改質燃料供給回数との関係を示す図。The figure which shows the relationship between the property of a reformed fuel, and the frequency | count of reformed fuel supply. 改質燃料が軽質と判断された場合における改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of reformed fuel when it is judged that reformed fuel is light. 改質燃料が重質と判断された場合における改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of reformed fuel when it is judged that reformed fuel is heavy. 図2の分岐部の温度と改質燃料回収比との関係を示す図。The figure which shows the relationship between the temperature of the branch part of FIG. 2, and a reformed fuel recovery ratio. 改質燃料が軽質と判断された場合における、次回の排気浄化装置の再生時に変更される改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of the reformed fuel changed at the time of reproduction | regeneration of the next exhaust gas purification apparatus when it is judged that the reformed fuel is light. 改質燃料が軽質と判断された場合における、其の回の排気浄化装置の再生時に変更される改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of the reformed fuel changed at the time of the reproduction | regeneration of the exhaust gas purification device of the time when it is judged that the reformed fuel is light. 改質燃料が重質と判断された場合における、次回の排気浄化装置の再生時に変更される改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of the reformed fuel changed at the time of reproduction | regeneration of the next exhaust gas purification apparatus when it is judged that reformed fuel is heavy. 改質燃料が重質と判断された場合における、其の回の排気浄化装置の再生時に変更される改質燃料の供給パターンの例を示す図。The figure which shows the example of the supply pattern of the reformed fuel changed at the time of the reproduction | regeneration of the exhaust purification apparatus of the time when it is judged that reformed fuel is heavy.

符号の説明Explanation of symbols

1 内燃機関
6 排気浄化装置(排気浄化手段)
15 分留通路(燃料改質手段)
17 改質燃料容器(改質燃料貯留手段)
18 レベルセンサ(改質燃料量取得手段)
19 改質燃料供給用インジェクタ(改質燃料供給手段)
22 エンジンコントロールユニット(性状判断手段、改質燃料供給制御手段、燃料量取得手段)
1 Internal combustion engine 6 Exhaust purification device (exhaust purification means)
15 Fractionation passage (fuel reforming means)
17 Reformed fuel container (reformed fuel storage means)
18 Level sensor (reforming fuel quantity acquisition means)
19 Reformed fuel supply injector (reformed fuel supply means)
22 Engine control unit (property determination means, reformed fuel supply control means, fuel amount acquisition means)

Claims (5)

内燃機関の燃料を改質する燃料改質手段と、前記燃料改質手段により改質された改質燃料を貯留する改質燃料貯留手段と、前記改質燃料貯留手段の前記改質燃料を前記内燃機関の排気浄化手段へ供給する改質燃料供給手段と、前記改質燃料貯留手段に貯留された前記改質燃料の性状を判断する性状判断手段と、前記性状判断手段が判断した前記改質燃料の性状に応じて前記改質燃料供給手段から供給される改質燃料量が調整されるように前記改質燃料供給手段を制御する改質燃料供給制御手段と、を備え
前記改質燃料供給制御手段は、前記改質燃料の供給時に当該改質燃料が複数回に分けて供給され、かつ前記改質燃料が軽質と判断された場合は1回目の供給から最後の供給までの間の時間が所定時間より長くなり、前記改質燃料が重質と判断された場合は1回目の供給から最後の供給までの間の時間が前記所定時間より短くなるように前記改質燃料供給手段を制御することを特徴とする内燃機関の排気浄化装置。
Fuel reforming means for reforming the fuel of the internal combustion engine, reformed fuel storage means for storing the reformed fuel reformed by the fuel reforming means, and the reformed fuel of the reformed fuel storage means for the reformed fuel Reformed fuel supplying means for supplying to the exhaust gas purifying means of the internal combustion engine, property determining means for determining the property of the reformed fuel stored in the reformed fuel storing means, and the reforming determined by the property determining means Reformed fuel supply control means for controlling the reformed fuel supply means so that the amount of reformed fuel supplied from the reformed fuel supply means is adjusted according to the properties of the fuel ,
The reformed fuel supply control means supplies the reformed fuel in a plurality of times when the reformed fuel is supplied, and if the reformed fuel is determined to be light, the reformed fuel supply control means supplies the reformed fuel from the first supply to the last supply. When the reformed fuel is judged to be heavy, the reforming time is shorter than the predetermined time when the reformed fuel is judged to be heavy. An exhaust purification device for an internal combustion engine, characterized by controlling a fuel supply means .
前記燃料改質手段は、前記内燃機関の排気熱によって燃料を改質することを特徴とする請求項1に記載の内燃機関の排気浄化装置。   The exhaust gas purification apparatus for an internal combustion engine according to claim 1, wherein the fuel reforming means reforms the fuel by exhaust heat of the internal combustion engine. 前記性状判断手段は、前記改質燃料の性状として前記改質燃料の沸点の高低を判断し、
前記改質燃料供給制御手段は、前記改質燃料の沸点が低いほど前記改質燃料量を低減させることを特徴とする請求項1又は2に記載の内燃機関の排気浄化装置。
The property determining means determines the level of the boiling point of the reformed fuel as the property of the reformed fuel,
The exhaust gas purification apparatus for an internal combustion engine according to claim 1 or 2, wherein the reformed fuel supply control means reduces the reformed fuel amount as the boiling point of the reformed fuel is lower.
前記燃料改質手段は、前記内燃機関の排気を利用して燃料を改質し、
前記性状判断手段は、改質に利用される排気の温度に基づいて前記改質燃料の性状を判断することを特徴とする請求項1〜3のいずれか一項に記載の内燃機関の排気浄化装置。
The fuel reforming means reforms the fuel using the exhaust gas of the internal combustion engine,
The exhaust gas purification of an internal combustion engine according to any one of claims 1 to 3, wherein the property determining means determines the property of the reformed fuel based on the temperature of exhaust gas used for reforming. apparatus.
前記燃料改質手段へ供給される燃料量を取得する燃料量取得手段と、前記燃料改質手段から前記改質燃料貯留手段へ送られる改質燃料量を取得する改質燃料量取得手段と、を備え、
前記性状判断手段は、前記燃料量取得手段が取得する燃料量と前記改質燃料量取得手段が取得する改質燃料量とに基づいて前記改質燃料の性状を判断することを特徴とする請求項1〜4のいずれか一項に記載の内燃機関の排気浄化装置。
Fuel amount acquisition means for acquiring the amount of fuel supplied to the fuel reforming means; reformed fuel amount acquisition means for acquiring the amount of reformed fuel sent from the fuel reforming means to the reformed fuel storage means; With
The property determining means determines the property of the reformed fuel based on the fuel amount acquired by the fuel amount acquiring means and the reformed fuel amount acquired by the reformed fuel amount acquiring means. Item 5. An exhaust emission control device for an internal combustion engine according to any one of Items 1 to 4.
JP2003328882A 2003-09-19 2003-09-19 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4367065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003328882A JP4367065B2 (en) 2003-09-19 2003-09-19 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003328882A JP4367065B2 (en) 2003-09-19 2003-09-19 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005090462A JP2005090462A (en) 2005-04-07
JP4367065B2 true JP4367065B2 (en) 2009-11-18

Family

ID=34458321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003328882A Expired - Fee Related JP4367065B2 (en) 2003-09-19 2003-09-19 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4367065B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897649B1 (en) * 2006-02-17 2008-05-09 Renault Sas METHOD AND DEVICE FOR PURGING AN INJECTOR OF A FUEL INJECTION SYSTEM FOR AIDING THE REGENERATION OF A PARTICLE FILTER
JP6015685B2 (en) * 2014-01-30 2016-10-26 株式会社デンソー Reducing agent addition device

Also Published As

Publication number Publication date
JP2005090462A (en) 2005-04-07

Similar Documents

Publication Publication Date Title
JP5408345B2 (en) Ammonia combustion internal combustion engine
EP2184460B1 (en) Exhaust gas purification apparatus for internal combustion engine
US8266896B2 (en) Exhaust purification system for internal combustion engine
EP0896136A2 (en) Device for reactivating catalyst of engine
JP4924221B2 (en) Exhaust gas purification system for internal combustion engine
JP4311441B2 (en) Control device for internal combustion engine
JP2009103064A (en) Exhaust emission control device for internal combustion engine
JP4367065B2 (en) Exhaust gas purification device for internal combustion engine
JP4127295B2 (en) Throttle valve control device for internal combustion engine
JP2008069728A (en) Exhaust emission control device of internal combustion engine
JP2007077875A (en) Exhaust emission control system for internal combustion engine
JP7125664B2 (en) Exhaust purification device
JP2008202409A (en) Exhaust emission control device of internal combustion engine
JP2010005552A (en) Exhaust gas purifying apparatus of internal combustion engine
JP2005140011A (en) Fuel injection control device for internal combustion engine
JP2009103044A (en) Control device of internal combustion engine
JP2009275530A (en) Exhaust emission control device, internal combustion engine and recovering method of catalyst
JP2005069187A (en) Fuel injection control device for internal combustion engine
JP4200916B2 (en) Fuel reformer for internal combustion engine
JP2006348885A (en) Nox removing device
JP5062069B2 (en) Exhaust gas purification device for internal combustion engine
JP2010019171A (en) Exhaust emission control device for internal combustion engine
JP2008121596A (en) Exhaust emission control device for internal combustion engine
JP2010106770A (en) Compression ignition internal combustion engine
JP4259336B2 (en) Fuel fractionator for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120904

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130904

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees