JP4366507B2 - Method for quantifying oxidized protein - Google Patents

Method for quantifying oxidized protein Download PDF

Info

Publication number
JP4366507B2
JP4366507B2 JP2006077526A JP2006077526A JP4366507B2 JP 4366507 B2 JP4366507 B2 JP 4366507B2 JP 2006077526 A JP2006077526 A JP 2006077526A JP 2006077526 A JP2006077526 A JP 2006077526A JP 4366507 B2 JP4366507 B2 JP 4366507B2
Authority
JP
Japan
Prior art keywords
protein
labeling reagent
oxidized
dnph
oxidized protein
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006077526A
Other languages
Japanese (ja)
Other versions
JP2007255934A (en
Inventor
和雄 辻本
明生 林
孝明 川井
博行 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Advanced Institute of Science and Technology
Original Assignee
Japan Advanced Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Advanced Institute of Science and Technology filed Critical Japan Advanced Institute of Science and Technology
Priority to JP2006077526A priority Critical patent/JP4366507B2/en
Priority to US12/225,158 priority patent/US20090226884A1/en
Priority to PCT/JP2007/055617 priority patent/WO2007111193A1/en
Priority to DE112007000601T priority patent/DE112007000601T5/en
Publication of JP2007255934A publication Critical patent/JP2007255934A/en
Application granted granted Critical
Publication of JP4366507B2 publication Critical patent/JP4366507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6842Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins

Description

本発明は、酸化変性を受けたカルボニル化蛋白質を高感度に定量することが可能な酸化蛋白質の定量方法に関し、さらには前記酸化蛋白質の定量の際に使用する酸化蛋白質定量用標識試薬及び酸化蛋白質定量用標識試薬キットに関する。   The present invention relates to a method for quantifying an oxidized protein capable of highly sensitively quantifying a carbonylated protein that has undergone oxidative denaturation, and further, a labeled reagent for quantifying an oxidized protein and an oxidized protein used for quantifying the oxidized protein. The present invention relates to a quantitative labeling reagent kit.

蛋白質の酸化は、動脈硬化や慢性関節リウマチ、肺気腫、神経変性疾患(アルツハイマー病、パーキンソン病等)、老化、急性膵炎、癌等の疾患に関わっているものと推測され、酸化変性を受けた蛋白質の高感度な定量が要求されてきている。例えば、コレステロールを運搬する役割を有する低比重リポ蛋白質(LDL)の酸化変性が動脈硬化の引き金になるという説があり、LDLの酸化を引き起こす活性種の解明が待たれるところであるが、前記活性種を解明するためにはLDLの酸化部位の解明、さらには生成物の側からの情報が必要である。   Protein oxidation is presumed to be related to diseases such as arteriosclerosis, rheumatoid arthritis, emphysema, neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, etc.), aging, acute pancreatitis, cancer, etc. There is a demand for highly sensitive quantitative determination. For example, there is a theory that oxidative degeneration of low density lipoprotein (LDL) having a role of transporting cholesterol triggers arteriosclerosis, and elucidation of active species causing LDL oxidation is awaited. In order to elucidate, it is necessary to elucidate the oxidation site of LDL and further information from the product side.

蛋白質の定量技術としては、これまで分光分析等が主流であり、様々な定量方法が検討されている。例えば、2,4−ジニトロフェニルヒドラジン(DNPH)は、酸化変性を受けたカルボニル化蛋白質と安定なシッフ塩基を形成することから、その紫外波長光の吸収を測定することでカルボニル化蛋白質を定量するのに用いられてきた(例えば、非特許文献1を参照)。また、二次元電気泳動は、蛋白質を等電点、分子量の違いで展開する方法であり、クマシーブリリアントブルー色素等で染色した後、各スポット面積、色の濃さ等を数値化して定量する(例えば、非特許文献2を参照)。   As protein quantification techniques, spectroscopic analysis has been the mainstream, and various quantification methods have been studied. For example, 2,4-dinitrophenylhydrazine (DNPH) forms a stable Schiff base with a carbonylated protein that has undergone oxidative modification, and thus quantifies the carbonylated protein by measuring the absorption of ultraviolet light. (See, for example, Non-Patent Document 1). In addition, two-dimensional electrophoresis is a method in which proteins are developed with different isoelectric points and molecular weights. After staining with Coomassie Brilliant Blue dye, etc., each spot area, color intensity, etc. are quantified and quantified ( For example, refer nonpatent literature 2.).

前述のようにDNPHは酸化ストレスによる蛋白質のカルボニル化を検出する試薬として用いられてきたが、検出方法が紫外波長光の吸収、あるいは抗DNP抗体を用いた抗体検出であったことから、長く酸化部位に対する議論はなされていなかった。さらに、検出方法が前記紫外波長光の分光分析であるため、検出感度にも限界があった。   As described above, DNPH has been used as a reagent for detecting carbonylation of proteins due to oxidative stress, but since the detection method was absorption of ultraviolet light or antibody detection using an anti-DNP antibody, There was no discussion about the site. Furthermore, since the detection method is spectral analysis of the ultraviolet wavelength light, the detection sensitivity is limited.

一方、二次元電気泳動は、直線性に問題を抱えており、例えばスポットの大きさが実際の量を反映しないケースが多い。また、イメージ解析も電気泳動ゲルの厚さを考慮した三次元的な評価方法であるため、非常に労力と時間を要するという問題を抱えている。   On the other hand, two-dimensional electrophoresis has a problem with linearity, and for example, the size of a spot often does not reflect the actual amount. In addition, since image analysis is a three-dimensional evaluation method that takes into account the thickness of the electrophoresis gel, it has a problem that it requires much labor and time.

このような状況から、質量分析を利用した蛋白質の新たな解析方法が提案されている(例えば、特許文献1や特許文献2等を参照)。例えば特許文献1には、分子量の異なる同位体試薬によってラベリングされた複数の検体を含む試料を準備するステップ、試料をクロマトグラフィーにより分離するステップ、分離された試料を多段解離計測が可能なタンデム型質量分析計により質量分析するステップ、質量分析結果を実時間で解析するステップ、及び少なくとも1つの検体の解析結果を他の検体の質量分析に実時間で利用するステップを含む質量分析方法が開示されている。特許文献1記載の発明では、検体としてタンパク質やタンパク質を分解したペプチド等が挙げられており、生体高分子を精度良く、且つ高いスループットで同定・定量することを可能としている。   Under such circumstances, a new protein analysis method using mass spectrometry has been proposed (see, for example, Patent Document 1 and Patent Document 2). For example, Patent Document 1 discloses a step of preparing a sample including a plurality of specimens labeled with isotope reagents having different molecular weights, a step of separating the sample by chromatography, and a tandem type capable of performing multistage dissociation measurement of the separated sample. Disclosed is a mass spectrometry method comprising a step of performing mass analysis by a mass spectrometer, a step of analyzing a mass spectrometry result in real time, and a step of utilizing an analysis result of at least one sample in mass analysis of another sample in real time. ing. In the invention described in Patent Document 1, proteins, peptides obtained by degrading proteins, and the like are cited as specimens, and biopolymers can be identified and quantified with high accuracy and high throughput.

特許文献2記載の発明は、生体内で酸化傷害を受けたタンパク質の検出、定量及び酸化傷害部位の確定に用いられる酸化傷害タンパク質解析用タグ、及びこれを用いた酸化傷害タンパク質の解析方法に関するものである。特許文献2に開示される酸化傷害タンパク質の解析方法では、前記解析用タグ及び同位体標識した解析用タグを試料と混合し、混合物を解析用タグの親和性ペプチドタグと結合する金属原子を保持する担体と接触させ、この担体から酸化傷害タンパク質と解析用タグとの複合体を回収し、質量分析により分子量の相違によるタブレットピークを検出している。酸化傷害タンパク質解析用タグは、親和性ペプチド、リンカー及び反応基を有する少なくとも1つの残基からなり、少なくとも3個の(X−His)単位を有し、且つXは任意のアミノ酸またはアミノ酸誘導体である。
Methods Enzymol., 186: 464-478(1990) J. Biol. Chem. 250: 4007-4021 (1975) 特開2005−345332号公報 特開2005−315688号公報
The invention described in Patent Document 2 relates to a tag for oxidative damage protein analysis used for detection, quantification, and determination of an oxidative damage site in vivo, and a method for analyzing oxidative damage protein using the same It is. In the method for analyzing oxidative damage protein disclosed in Patent Document 2, the analysis tag and the isotope-labeled analysis tag are mixed with a sample, and the mixture retains a metal atom that binds to the affinity peptide tag of the analysis tag. The complex of the oxidatively damaged protein and the tag for analysis is recovered from this carrier, and the tablet peak due to the difference in molecular weight is detected by mass spectrometry. The tag for oxidative damage protein analysis comprises at least one residue having an affinity peptide, a linker and a reactive group, has at least 3 (X-His) units, and X is any amino acid or amino acid derivative. is there.
Methods Enzymol., 186: 464-478 (1990) J. Biol. Chem. 250: 4007-4021 (1975) JP 2005-345332 A JP 2005-315688 A

前記特許文献1記載の発明や特許文献2記載の発明は、いずれも同位体試薬でラベリングすることにより、質量分析で発現するピークのペア(ダブレットスペクトル)を利用して解析対象とするタンパク質の特定を行うというものであり、単に標識試薬でラベリングした場合に比べて特定が容易で且つ確実になるという利点を有する。   The invention described in Patent Document 1 and the invention described in Patent Document 2 both identify proteins to be analyzed using a pair of peaks (doublet spectrum) expressed by mass spectrometry by labeling with an isotope reagent. This has the advantage that identification is easier and more reliable than when labeling is simply performed with a labeling reagent.

しかしながら、蛋白質の質量分析においては、様々なピークが発現し、同位体試薬でラベリングしただけではピークのペアのいずれもが他のピークと重なる可能性を否定できず、必ずしも容易且つ確実に特定できるとは限らない。   However, in protein mass spectrometry, various peaks are expressed, and simply labeling with an isotope reagent cannot rule out the possibility that any pair of peaks overlaps with other peaks, and can be easily and reliably identified. Not necessarily.

また、特許文献1記載の発明について言えば、酸化変性を受けたカルボニル化蛋白質の解析には言及しておらず、例えばラベリングする同位体試薬についての具体的記載も見られない。一方、特許文献2記載の発明では、解析用タグにリンカー等が必要であり、解析用タグの合成が煩雑であるばかりでなく、フラグメントイオンの増加の要因となって分析精度が低下するおそれもある。また、特許文献2記載の発明では、解析用タグの親和性ペプチドタグと結合する金属原子を保持する担体と接触させる必要がある等、操作も煩雑である。   Regarding the invention described in Patent Document 1, no reference is made to the analysis of carbonylated protein that has undergone oxidative modification, and no specific description of, for example, the labeled isotope reagent is found. On the other hand, in the invention described in Patent Document 2, a linker or the like is required for the analysis tag, and not only the synthesis of the analysis tag is complicated, but also the analysis accuracy may decrease due to an increase in fragment ions. is there. Further, in the invention described in Patent Document 2, the operation is complicated because it is necessary to make contact with a carrier that holds a metal atom that binds to the affinity peptide tag of the analysis tag.

本発明は、このような従来技術の課題に鑑みて提案されたものであり、質量分析において標識された酸化蛋白質に由来するピークを容易に且つ確実に特定することが可能であり、高感度且つ迅速な定量が可能な酸化蛋白質の定量方法を提供することを目的とする。また、本発明は、合成が容易で、且つ酸化蛋白質(カルボニル化蛋白質)の特定の部位に特異的に結合してこれを標識し得る酸化蛋白質定量用標識試薬及び酸化蛋白質定量用標識試薬キットを提供することを目的とする。   The present invention has been proposed in view of such problems of the prior art, and it is possible to easily and reliably identify a peak derived from an oxidized protein labeled in mass spectrometry. It is an object of the present invention to provide a method for quantifying oxidized protein capable of rapid quantification. The present invention also provides an oxidized protein quantification labeling reagent and an oxidized protein quantification labeling reagent kit that are easy to synthesize and that can specifically bind to and label a specific site of an oxidized protein (carbonylated protein). The purpose is to provide.

本発明の酸化蛋白質の定量方法は、酸化変性を受けた酸化蛋白質を標識試薬によって標識し、質量分析により定量する酸化蛋白質の定量方法であって、前記標識試薬として、前記酸化蛋白質と反応する第1の標識試薬と、前記第1の標識試薬と同一の化学構造を有し構成原子の少なくとも一部が当該原子の同位体で置換された第2の標識試薬を用い、前記第1の標識試薬で標識された酸化蛋白質と第2の標識試薬で標識された酸化蛋白質とを混合し、且つこれらの混合比率を変え、各混合比率においてそれぞれ前記質量分析を行うことで酸化蛋白質に由来するピークを特定することを特徴とする。 The method for quantifying an oxidized protein of the present invention is a method for quantifying an oxidized protein in which oxidized protein that has undergone oxidative modification is labeled with a labeling reagent and quantified by mass spectrometry, wherein the labeled reagent reacts with the oxidized protein. Using the first labeling reagent and the second labeling reagent having the same chemical structure as the first labeling reagent and having at least some of the constituent atoms substituted with isotopes of the atoms, A peak derived from the oxidized protein is obtained by mixing the oxidized protein labeled with the oxidized protein labeled with the second labeling reagent, changing the mixing ratio, and performing the mass spectrometry at each mixing ratio. It is characterized by specifying .

第1の標識試薬で標識した酸化蛋白質と第2の標識試薬で標識した酸化蛋白質を混合して質量分析すると、第1の標識試薬と第2の標識試薬の質量差に対応した質量差を有するピーク対がスペクトルに表れる。ただし、これだけでは前記対ピークが他のピークと重なる可能性もあり、確実に判別することは難しい。そこで本発明では、第1の標識試薬で標識した酸化蛋白質と第2の標識試薬で標識した酸化蛋白質の比率を変えて前記質量分析を行う。例えば第1の標識試薬で標識した酸化蛋白質の比率を第2の標識試薬で標識した酸化蛋白質の比率よりも大として質量分析を行った場合と、第1の標識試薬で標識した酸化蛋白質の比率を第2の標識試薬で標識した酸化蛋白質の比率よりも小として質量分析を行った場合では、前記対ピークにおけるピーク高さの関係が逆転する。この対ピークの高さの逆転から標識された酸化蛋白質に由来するピークを特定し定量する。   When the oxidized protein labeled with the first labeling reagent and the oxidized protein labeled with the second labeling reagent are mixed and subjected to mass spectrometry, a mass difference corresponding to the mass difference between the first labeling reagent and the second labeling reagent is obtained. Peak pairs appear in the spectrum. However, this alone may cause the paired peaks to overlap with other peaks, and it is difficult to reliably determine them. Therefore, in the present invention, the mass spectrometry is performed by changing the ratio of the oxidized protein labeled with the first labeling reagent and the oxidized protein labeled with the second labeling reagent. For example, when mass spectrometry is performed with the ratio of the oxidized protein labeled with the first labeling reagent larger than the ratio of the oxidized protein labeled with the second labeling reagent, and the ratio of the oxidized protein labeled with the first labeling reagent Is smaller than the ratio of the oxidized protein labeled with the second labeling reagent, the relationship between the peak heights of the pair of peaks is reversed. The peak derived from the labeled oxidized protein is identified and quantified from the reversal of the height of the paired peak.

一方、本発明の酸化蛋白質定量用標識試薬は、フェニル基の6個の炭素原子が炭素同位体で置換された2,4−ジニトロフェニルヒドラジンを含むことを特徴とする。また、本発明の酸化蛋白質定量用標識試薬キットは、2,4−ジニトロフェニルヒドラジンを含む第1の標記試薬と、フェニル基の6個の炭素原子が炭素同位体で置換された2,4−ジニトロフェニルヒドラジンを含む第2の標識試薬とを備えたことを特徴とする。   On the other hand, the labeled reagent for quantifying oxidized protein of the present invention is characterized by containing 2,4-dinitrophenylhydrazine in which 6 carbon atoms of the phenyl group are substituted with carbon isotopes. Moreover, the labeled reagent kit for quantifying oxidized protein of the present invention includes a first title reagent containing 2,4-dinitrophenylhydrazine, and 2,4-diphenyl having 6 carbon atoms substituted with carbon isotopes. And a second labeling reagent containing dinitrophenylhydrazine.

2,4−ジニトロフェニルヒドラジン(DNPH)は、酸化ストレス等により酸化変性を受けた酸化蛋白質(カルボニル化蛋白質)と安定なシッフ塩基を形成し、カルボニル化蛋白質と結合してこれを標識する。この2,4−ジニトロフェニルヒドラジンのフェニル基の炭素を炭素同位体(13C)で置換すると、分子量だけが6異なる2,4−ジニトロフェニルヒドラジン(13−DNPH)となり、これによりカルボニル化蛋白質を標識した場合、例えばクロマトグラフィにおいてDNPHで標識した場合と同一ピークとして分離される。そこで、前記DNPHと13C−DNPHでカルボニル化蛋白質を標識し、クロマトグラフィで分離して質量分析すると、質量差6を持つピーク対がスペクトルに表れる。本発明の蛋白質定量用標識試薬(13−DNPH)は、リンカー等が必要ないことから合成が容易であり、分析精度を低下することもない。 2,4-dinitrophenylhydrazine (DNPH) forms a stable Schiff base with an oxidized protein (carbonylated protein) that has undergone oxidative modification due to oxidative stress or the like, and binds to and labels the carbonylated protein. When the carbon of the phenyl group of 2,4-dinitrophenylhydrazine is replaced with a carbon isotope ( 13 C), it becomes 2,4-dinitrophenylhydrazine ( 13 C 6 -DNPH) which differs only in molecular weight by 6 and thereby carbonylation. When the protein is labeled, it is separated as the same peak as when labeled with DNPH in chromatography, for example. Thus, when a carbonylated protein is labeled with the DNPH and 13 C-DNPH, separated by chromatography and subjected to mass spectrometry, a peak pair having a mass difference of 6 appears in the spectrum. Since the labeling reagent for protein quantification ( 13 C 6 -DNPH) of the present invention does not require a linker or the like, it is easy to synthesize and does not lower the analysis accuracy.

本発明によれば、酸化蛋白質(カルボニル化蛋白質)を高感度且つ迅速に定量することが可能であり、例えば蛋白質の酸化と疾患との因果関係を解析する上で有用な情報が提供可能になるものと期待される。また、本発明によれば、時間や労力を要することなく酸化蛋白質の定量を行うことが可能であり、熟練を要することなく再現性良く酸化蛋白質の定量を行うことが可能である。   According to the present invention, an oxidized protein (carbonylated protein) can be quantified with high sensitivity and speed, and for example, useful information can be provided for analyzing a causal relationship between protein oxidation and a disease. Expected. Further, according to the present invention, it is possible to quantify oxidized protein without requiring time and labor, and it is possible to quantify oxidized protein with good reproducibility without requiring skill.

以下、本発明を適用した酸化蛋白質の定量方法、及び酸化蛋白質定量用標識試薬、酸化蛋白質定量用標識試薬キットについて、詳細に説明する。   Hereinafter, a method for quantifying oxidized protein, a labeled reagent for quantifying oxidized protein, and a labeled reagent kit for quantifying oxidized protein will be described in detail.

本発明の酸化蛋白質の定量方法においては、酸化変性を受けた酸化蛋白質(例えばカルボニル化蛋白質)を標識試薬で標識し、質量分析を実施する。蛋白質は、酸化ストレス等により酸化変性を受け、アミノ酸の一部が酸化されて様々な酸化生成物が生成する。表1にアミノ酸の主な酸化生成物とそれによる質量変化を示す。   In the method for quantifying oxidized protein of the present invention, oxidized protein (for example, carbonylated protein) subjected to oxidative modification is labeled with a labeling reagent, and mass spectrometry is performed. Proteins undergo oxidative denaturation due to oxidative stress and the like, and some of the amino acids are oxidized to produce various oxidation products. Table 1 shows the main oxidation products of amino acids and their mass changes.

Figure 0004366507
Figure 0004366507

前記蛋白質が酸化変性を受けると、表1に示す通り、アミノ酸の酸化生成物に応じて質量が変化する。例えばアミノ酸がカルボニル化された場合、質量変化は+14である。したがって、質量分析すると、図1に示すように、対象となる蛋白質に由来するピークAに対して、酸化蛋白質(カルボニルタンパク質)に由来するピークBが+14の位置に出現する。   When the protein undergoes oxidative denaturation, as shown in Table 1, the mass changes according to the oxidation product of amino acids. For example, if the amino acid is carbonylated, the mass change is +14. Therefore, when mass spectrometry is performed, as shown in FIG. 1, a peak B derived from an oxidized protein (carbonyl protein) appears at a position of +14 with respect to a peak A derived from a target protein.

前記酸化蛋白質は、表1に示す通り酸化により各種官能基(例えばカルボニル基)が形成され、これと反応する標識試薬を作用させれば、標識試薬が結合して標識化蛋白質が形成される。この標識化蛋白質と標識されていない酸化蛋白質の質量差(分子質量差)Mは、前記標識試薬の分子質量から反応により失われる分子の分子質量を差し引いたものであり、図1に示すように、前記酸化蛋白質に由来するピークBに対して、標識化蛋白質に由来するピークCが+Mの位置に出現する。   As shown in Table 1, various functional groups (for example, carbonyl groups) are formed in the oxidized protein by oxidation. When a labeling reagent that reacts with the functional group is reacted, the labeled reagent is bound to form a labeled protein. The mass difference (molecular mass difference) M between the labeled protein and the unlabeled oxidized protein is obtained by subtracting the molecular mass of the molecule lost by the reaction from the molecular mass of the labeling reagent, as shown in FIG. The peak C derived from the labeled protein appears at the position of + M with respect to the peak B derived from the oxidized protein.

ここで、本発明においては、標識試薬として、酸化蛋白質と反応する第1の標識試薬と、前記第1の標識試薬と同一の化学構造を有し構成原子の少なくとも一部が当該原子の同位体で置換された第2の標識試薬とを用いて標識を行う。前記第2の標識試薬は、前記の第1の標識試薬と同一の化学構造を有し構成原子の少なくとも一部が当該原子の同位体で置換されたものであり、したがって置換された同位体の分だけ第1の標識試薬と分子質量が異なる。例えば、第2の標識試薬のフェニル基の6個の炭素原子が安定同位体である13Cに置換されているとすると、第1の標識試薬と第2の標識試薬の質量差は6となる。そして、前記第1の標識試薬と第2の標識試薬を用いて酸化蛋白質を標識すると、第1の標識試薬で標識された第1標識化蛋白質と、第2の標識試薬で標識された第2標識化蛋白質とが生成し、質量分析チャートには、第1標識化蛋白質に由来するピークCと、前記第2の標識化蛋白質に由来しピークCに由来するピークDとが出現する。これらピークCとピークDの質量差は6である。 Here, in the present invention, as the labeling reagent, the first labeling reagent that reacts with the oxidized protein, the chemical structure identical to that of the first labeling reagent, and at least a part of the constituent atoms is an isotope of the atom Labeling is carried out using the second labeling reagent substituted with. The second labeling reagent has the same chemical structure as the first labeling reagent, and at least a part of the constituent atoms is substituted with an isotope of the atom. Therefore, the substituted isotope The molecular mass differs from that of the first labeling reagent by the amount. For example, if 6 carbon atoms of the phenyl group of the second labeling reagent are substituted with 13 C, which is a stable isotope, the mass difference between the first labeling reagent and the second labeling reagent is 6. . When the oxidized protein is labeled using the first labeling reagent and the second labeling reagent, the first labeled protein labeled with the first labeling reagent and the second labeled with the second labeling reagent A labeled protein is generated, and a peak C derived from the first labeled protein and a peak D derived from the second labeled protein and derived from the peak C appear on the mass spectrometry chart. The mass difference between these peaks C and D is 6.

前述のように、第1の標識試薬と第2の標識試薬を用いることで、ピーク対(ピークCとピークD)が出現し、これらピーク対を確認することで酸化蛋白質に由来するピークを確認することができる。しかしながら、蛋白質の質量分析においては非常に多数のピークが出現することが多く、前記ピーク対がこれらピークの中に埋もれて正しく判別できない場合がある。   As described above, by using the first labeling reagent and the second labeling reagent, peak pairs (peak C and peak D) appear, and by confirming these peak pairs, the peak derived from the oxidized protein is confirmed. can do. However, in protein mass spectrometry, a very large number of peaks often appear, and the peak pair is buried in these peaks and may not be correctly identified.

そこで本発明においては、第1の標識試薬と第2の標識試薬の比率を変えて前記標識を行い、それぞれの場合について質量分析を行うことで、前記ピーク対を確実に確認できるようにする。具体的には、先ず、第1の標識試薬の比率を小、第2の標識試薬の比率を大として標識を行い、質量分析を行う。すると、図2(a)に示すように、第1の標識試薬で標識された第1標識化蛋白質に由来するピークCよりも第2の標識試薬で標識された第2標識化蛋白質に由来するピークDの方が高さ(ピーク強度)が高くなる。次に、先ず、第1の標識試薬の比率を大、第2の標識試薬の比率を小として標識を行い、質量分析を行う。すると、図2(b)に示すように、第1の標識試薬で標識された第1標識化蛋白質に由来するピークCよりも第2の標識試薬で標識された第2標識化蛋白質に由来するピークDの方が高さ(ピーク強度)が低くなる。   Therefore, in the present invention, the labeling is performed by changing the ratio of the first labeling reagent and the second labeling reagent, and mass spectrometry is performed in each case, so that the peak pair can be reliably confirmed. Specifically, first, labeling is performed with a small ratio of the first labeling reagent and a large ratio of the second labeling reagent, and mass spectrometry is performed. Then, as shown to Fig.2 (a), it originates in the 2nd labeled protein labeled with the 2nd labeling reagent rather than the peak C derived from the 1st labeled protein labeled with the 1st labeling reagent. Peak D has a higher height (peak intensity). Next, first, labeling is performed with the ratio of the first labeling reagent being large and the ratio of the second labeling reagent being small, and mass spectrometry is performed. Then, as shown in FIG. 2 (b), it is derived from the second labeled protein labeled with the second labeling reagent rather than the peak C derived from the first labeled protein labeled with the first labeling reagent. Peak D has a lower height (peak intensity).

したがって、前記2回の標識及び質量分析を行えば、高さが反転したピーク対を酸化蛋白質に由来するピークと特定することができる。前記ピーク高さの反転が認められれば、多数のピークが存在しても確実に対象となるピーク対を判別することが可能である。なお、前記第1の標識試薬と第2の標識試薬の比率を変えて前記標識を行う方法としては、例えば酸化蛋白質を第1の標識試薬、第2の標識試薬でそれぞれ標識した後、これら標識された酸化蛋白質を比率を変えて混合すればよい。また、ここでは2回の標識及び質量分析を行う場合について説明したが、第1の標識試薬と第2の標識試薬の比率を変えた標識及び質量分析を3回以上行うことも可能である。   Therefore, if the labeling and mass spectrometry are performed twice, a peak pair whose height is inverted can be identified as a peak derived from an oxidized protein. If the reversal of the peak height is recognized, it is possible to reliably determine the target peak pair even if there are many peaks. As a method for performing the labeling by changing the ratio of the first labeling reagent and the second labeling reagent, for example, after labeling the oxidized protein with the first labeling reagent and the second labeling reagent, these labels are used. What is necessary is just to mix the oxidized protein which changed the ratio. Although the case where the labeling and the mass spectrometry are performed twice is described here, the labeling and the mass spectrometry in which the ratio between the first labeling reagent and the second labeling reagent is changed can be performed three times or more.

前記質量分析は、標識された分析試料(標識化蛋白質)に対して何らの前処理を施さずに行うことも可能である。蛋白質の分子量が非常に大きい場合、例えば酵素消化を行って、ある程度分子量の小さな成分に分解してから行うことができる。前記分解によって複数成分についてピーク対が観察されることもあり、より明確にピーク対が確認できる場合もある。   The mass spectrometry can be performed without any pretreatment on the labeled analysis sample (labeled protein). When the molecular weight of a protein is very large, for example, enzymatic digestion can be performed after decomposition into a component having a small molecular weight to some extent. A peak pair may be observed for a plurality of components by the decomposition, and the peak pair may be confirmed more clearly.

また、前記質量分析においては、酸化蛋白質由来のピークについて、タンデム質量分析(MS/MS測定)を行い、酸化蛋白質の酸化部位を解析することも可能である。MS/MS測定においては、イオン源で生成した全イオンを第1の質量分析計で分離し、対象となるピークのみを選択的にフラグメント化して第2の質量分析計で分析する。ペプチドのMS/MS測定では、アミノ酸配列の解析が可能である。   Moreover, in the said mass spectrometry, it is also possible to perform the tandem mass spectrometry (MS / MS measurement) about the peak derived from an oxidation protein, and to analyze the oxidation site | part of an oxidation protein. In the MS / MS measurement, all ions generated in the ion source are separated by a first mass spectrometer, and only a target peak is selectively fragmented and analyzed by a second mass spectrometer. In MS / MS measurement of peptides, analysis of amino acid sequences is possible.

次に、前述の酸化蛋白質の定量方法に用いる標識試薬について説明する。前述の通り、本発明の酸化蛋白質の定量方法においては、酸化蛋白質を標識する標識試薬が必要である。ここで、標識試薬は、酸化蛋白質の酸化部位と反応する必要があり、表1に示すアミノ酸の酸化生成物に応じて選定する必要がある。本発明では、主に酸化変性を受けてカルボニル化されたカルボニル化蛋白質を測定対象としており、標識試薬として化1に示す2,4−ジニトロフェニルヒドラジン(DNPH)を用いる。   Next, the labeling reagent used in the above-described method for quantifying oxidized protein will be described. As described above, in the method for quantifying oxidized protein of the present invention, a labeling reagent for labeling the oxidized protein is required. Here, the labeling reagent needs to react with the oxidized site of the oxidized protein, and should be selected according to the oxidation product of the amino acid shown in Table 1. In the present invention, a carbonylated protein that has undergone oxidative denaturation and is carbonylated is mainly the subject of measurement, and 2,4-dinitrophenylhydrazine (DNPH) shown in Chemical Formula 1 is used as a labeling reagent.

Figure 0004366507
Figure 0004366507

前記DNPHは、図3(a)に示すように、酸化蛋白質(カルボニル化蛋白質)のカルボニル基と反応し、安定なシッフ塩基を形成してDNPH化蛋白質を生成する。このDNPH化蛋白質とカルボニル化蛋白質の質量数差は、DNPHの質量数(198)−HOの質量数(18)=180であり、DNPH化蛋白質とカルボニル化される前の蛋白質との質量数差は194である。前記DNPHを第1の標識試薬として用いるとともに、DNPHのフェニル基の6個の炭素原子を安定同位体(13C)で置き換えた2,4−ジニトロフェニルヒドラジン(13C−DNPH)を第2の標識試薬として用いる。 As shown in FIG. 3A, the DNPH reacts with a carbonyl group of an oxidized protein (carbonylated protein) to form a stable Schiff base to produce a DNPH protein. The difference in mass number between the DNPH protein and the carbonylated protein is the mass number of DNPH (198) −the mass number of H 2 O (18) = 180, and the mass between the DNPH protein and the protein before being carbonylated. The number difference is 194. While using the DNPH as a first labeling reagent, 2,4-dinitrophenylhydrazine ( 13 C-DNPH) in which 6 carbon atoms of the phenyl group of DNPH are replaced with a stable isotope ( 13 C) is used as the second labeling reagent. Used as a labeling reagent.

前記13C−DNPHは、図3(b)に示すように、DNPHと同様、カルボニル化蛋白質のカルボニル基と反応し、13C−DNPH化蛋白質を生成する。13C−DNPHはDNPHよりも質量数が6大きく、13C−DNPH化蛋白質とDNPH化蛋白質の質量数差は6である。したがって、前記DNPHにより標識したカルボニル化蛋白質と13C−DNPHにより標識したカルボニル化蛋白質とを混合して質量分析することにより、質量数差6のピーク対が観察される。なお、カルボニル化された蛋白質を前記質量分析により同定する際、トリプシン等の蛋白質分解酵素で分断し、小さなペプチドにしてから測定する方法が一般的である。 The 13 C-DNPH, as shown in FIG. 3 (b), similarly to the DNPH, reacts with the carbonyl group of the carbonylation protein, to generate a 13 C-DNPH of protein. 13 C-DNPH has a mass number 6 larger than that of DNPH, and the mass number difference between the 13 C-DNPH protein and the DNPH protein is 6. Therefore, when the carbonylated protein labeled with DNPH and the carbonylated protein labeled with 13 C-DNPH are mixed and subjected to mass spectrometry, a peak pair with a mass difference of 6 is observed. In general, when a carbonylated protein is identified by mass spectrometry, it is divided by a proteolytic enzyme such as trypsin to make a small peptide and then measured.

前記13C−DNPHは、本発明者らによって初めて合成されたものであり、6個の炭素原子が安定同位体(13C)で置換されたベンゼンを出発物質とし、常法にしたがって合成することができる。図4に13C−DNPHの合成スキームを示す。13C−DNPHを合成するには、ベンゼンを臭素化してブロモベンゼンとし、これにニトロ基を導入して2,4−ジニトロブロモベンゼンとする。合成された2,4−ジニトロブロモベンゼンにヒドラジンハイドレートを作用させ、2,4−ジニトロフェニルヒドラジンとする。出発物質に6個の炭素原子が安定同位体(13C)で置換されたベンゼンを使用することで、フェニル基の6個の炭素原子が安定同位体(13C)で置換された2,4−ジニトロフェニルヒドラジン(13C−DNPH)を合成することができる。 The 13 C-DNPH was synthesized for the first time by the present inventors, and synthesized according to a conventional method using benzene in which 6 carbon atoms are substituted with a stable isotope ( 13 C) as a starting material. Can do. FIG. 4 shows a synthesis scheme of 13 C-DNPH. To synthesize 13 C-DNPH, benzene is brominated to form bromobenzene, and a nitro group is introduced into this to form 2,4-dinitrobromobenzene. Hydrazine hydrate is allowed to act on the synthesized 2,4-dinitrobromobenzene to obtain 2,4-dinitrophenylhydrazine. By using benzene in which 6 carbon atoms are substituted with a stable isotope ( 13 C) as the starting material, 6 carbon atoms of the phenyl group are substituted with stable isotopes ( 13 C) 2,4 -Dinitrophenylhydrazine ( 13 C-DNPH) can be synthesized.

以下、本発明を適用した具体的な実施例について、実験結果に基づいて説明する。   Hereinafter, specific examples to which the present invention is applied will be described based on experimental results.

13 −DNPHの合成
6個の炭素が安定同位体(13C)で置換されたベンゼン(13)0.441g(5.65mモル)にFe1mg及びBr0.137ml(5.29mモル)を加え、55℃で15分間撹拌した。これを室温まで冷却した後、10%水酸化ナトリウム水溶液を加え、ジエチルエーテルで抽出した。水洗後、蒸留してブロモベンゼンを得た。
Synthesis of 13 C 6 -DNPH To 0.441 g (5.65 mmol) of benzene ( 13 C 6 ) in which 6 carbon atoms are substituted with a stable isotope ( 13 C), 0.1 mg of Fe and 0.137 ml of Br 2 (5.29 m) Mol) was added and stirred at 55 ° C. for 15 minutes. This was cooled to room temperature, 10% aqueous sodium hydroxide solution was added, and the mixture was extracted with diethyl ether. After washing with water, distillation was performed to obtain bromobenzene.

次に、硫酸(HSO)7.5mlと硝酸(HNO)5.0mlを混合し、撹拌しながら85℃まで加熱した後、先に合成したブロモベンゼンを加えた。さらに、85℃で撹拌を続けた後、室温まで冷却した。冷却後、氷冷してジエチルエーテルを用いて抽出した。水洗した後、減圧濃縮(エバポレート)し、薄層クロマトグラフィーにより展開して目的の化合物の分離条件を決定した。これをシリカゲルカラムを通して精製し、得られた生成物をH−NMRで解析したところ、ジニトロブロモベンゼンの生成が確認された。ジニトロブロモベンゼンの収量は316.3mg(1.25mモル)であり、ベンゼン(13)からの全収率は22.1%であった。 Next, 7.5 ml of sulfuric acid (H 2 SO 4 ) and 5.0 ml of nitric acid (HNO 3 ) were mixed, heated to 85 ° C. with stirring, and the bromobenzene synthesized earlier was added. Further, stirring was continued at 85 ° C., and then cooled to room temperature. After cooling, the mixture was ice-cooled and extracted with diethyl ether. After washing with water, the solution was concentrated under reduced pressure (evaporated) and developed by thin layer chromatography to determine the separation conditions for the target compound. This was purified through a silica gel column, and the resulting product was analyzed by 1 H-NMR. As a result, formation of dinitrobromobenzene was confirmed. The yield of dinitrobromobenzene was 316.3 mg (1.25 mmol), and the total yield from benzene ( 13 C 6 ) was 22.1%.

続いて、前記ジニトロブロモベンゼンにエタノール4.0mlを加え、65℃で撹拌しながらヒドラジンハイドレート(hydrazine hydrate)0.40ml(14.4mモル)及びエタノール1.50mlを加えた。65℃で撹拌を続けた後、室温まで冷却し、濾過した。これを冷却したエタノールで洗浄し、減圧乾燥して13−DNPHを得た。得られた13−DNPHの収量は201.0mg(0.99mモル)であり、本工程における収率は78.8%であった。また、原料であるベンゼン(13)からの全収率は17.4%であった。 Subsequently, 4.0 ml of ethanol was added to the dinitrobromobenzene, and 0.40 ml (14.4 mmol) of hydrazine hydrate and 1.50 ml of ethanol were added with stirring at 65 ° C. Stirring was continued at 65 ° C., and then cooled to room temperature and filtered. This was washed with cooled ethanol and dried under reduced pressure to obtain 13 C 6 -DNPH. The yield of 13 C 6 -DNPH obtained was 201.0 mg (0.99 mmol), and the yield in this step was 78.8%. The total yield from the raw material benzene ( 13 C 6 ) was 17.4%.

酸化ミオグロビンの標識及び質量分析
12C−DNPHによる標識)
0.1mM蛋白質(ミオグロビン)100nL(10nモル)に100mMPBS(pH7.4)及びNaOCl(1/100に希釈)2nLを加え、−85℃で30分間反応させた。これにより蛋白質を酸化(カルボニル化)した。
Labeling and mass spectrometry of oxidized myoglobin ( labeling with 12 C-DNPH)
100 mM PBS (pH 7.4) and 2 nL of NaOCl (diluted to 1/100) were added to 100 nL (10 nmol) of 0.1 mM protein (myoglobin) and reacted at -85 ° C for 30 minutes. As a result, the protein was oxidized (carbonylated).

次に、前記反応物をアセトンにより沈殿させ、下記の試薬を順次加え、暗室下、室温で30分間反応させた。これにより前記カルボニル化されたミオグロビンを12C−DNPH化た。
10mMTris−HCl(pH8.0):50μL
10%SDS:5μL
10mM12C−DNPH/2N−HCl:50μL
Next, the reaction product was precipitated with acetone, the following reagents were sequentially added, and the mixture was reacted at room temperature for 30 minutes in a dark room. Thus, the carbonylated myoglobin was converted to 12 C-DNPH.
10 mM Tris-HCl (pH 8.0): 50 μL
10% SDS: 5 μL
10 mM 12 C-DNPH / 2N-HCl: 50 μL

13C−DNPHによる標識)
0.1mM蛋白質(ミオグロビン)30nL(3nモル)に100mMPBS(pH7.4)及びNaOCl(1/100に希釈)2nLを加え、−85℃で30分間反応させた。これにより蛋白質を酸化(カルボニル化)した。
(Labeling with 13 C-DNPH)
100 mM PBS (pH 7.4) and 2 nL of NaOCl (diluted to 1/100) were added to 30 nL (3 nmol) of 0.1 mM protein (myoglobin), and reacted at -85 ° C for 30 minutes. As a result, the protein was oxidized (carbonylated).

次に、前記反応物をアセトンにより沈殿させ、下記の試薬を順次加え、暗室下、室温で30分間反応させた。これにより前記カルボニル化されたミオグロビンを13C−DNPH化た。
10mMTris−HCl(pH8.0):50μL
10%SDS:5μL
10mM13C−DNPH/2N−HCl:50μL
Next, the reaction product was precipitated with acetone, the following reagents were sequentially added, and the mixture was reacted at room temperature for 30 minutes in a dark room. Thus, the carbonylated myoglobin was converted to 13 C-DNPH.
10 mM Tris-HCl (pH 8.0): 50 μL
10% SDS: 5 μL
10 mM 13 C-DNPH / 2N-HCl: 50 μL

12C−DNPH化蛋白質と13C−DNPH化蛋白質の混合及び質量分析)
合成された12C−DNPH化蛋白質と13C−DNPH化蛋白質を混合(12C−DNPH化蛋白質:13C−DNPH化蛋白質=100:30)し、アセトンにより沈殿させた後、6M尿素/25mM炭酸水素アンモニウム50μL及び200mMDTT2μLを加え、37℃で1時間反応させた。次いで、25mM炭酸水素アンモニウム450μLとトリプシンを加え、37℃で一昼夜の間、酵素消化を行った。10μL〜20μLまで減圧濃縮した後、ZipTipC18(10μLで溶出)を用いて0.5μLを質量分析に供した。マトリクス溶媒にはCHCA/50%アセトニトリルを用いた。また、質量分析は、MALDI−TOF/MS(マトリクス支援レーザ脱離イオン化飛行時間型質量分析計)を用いて行った。
(Mixing and mass spectrometry of 12 C-DNPH protein and 13 C-DNPH protein)
The synthesized 12 C-DNPH protein and 13 C-DNPH protein were mixed ( 12 C-DNPH protein: 13 C-DNPH protein = 100: 30), precipitated with acetone, and then 6M urea / 25 mM. 50 μL of ammonium hydrogen carbonate and 2 μL of 200 mM DTT were added and reacted at 37 ° C. for 1 hour. Subsequently, 450 μL of 25 mM ammonium bicarbonate and trypsin were added, and enzyme digestion was performed at 37 ° C. for a whole day and night. After concentration under reduced pressure to 10 μL to 20 μL, 0.5 μL was subjected to mass spectrometry using ZipTipC18 (eluted with 10 μL). CHCA / 50% acetonitrile was used as the matrix solvent. Mass spectrometry was performed using MALDI-TOF / MS (matrix-assisted laser desorption / ionization time-of-flight mass spectrometer).

(質量分析結果)
図5は、MALDI−TOF/MSによる質量分析チャートである。図5には、質量786.461のピークと質量792.475のピーク、及び質量808.439のピークと質量814.489のピークの2組のピーク対が質量数差6のピーク対として観察された。また、いずれのピーク対においても、12C−DNPH化蛋白質に由来するピーク(質量786.461のピーク及び質量808.439のピーク)の方がピーク強度が大である。
(Results of mass spectrometry)
FIG. 5 is a mass spectrometry chart by MALDI-TOF / MS. In FIG. 5, two pairs of peaks, a peak with mass 786.461 and a peak with mass 792.475, and a peak with mass 808.439 and a peak with mass 8144.489 are observed as a peak pair with a mass number difference of 6. It was. In any peak pair, the peak derived from the 12 C-DNPH protein (the peak with mass 786.461 and the peak with mass 808.439) has a higher peak intensity.

そこで次に、12C−DNPH化蛋白質:13C−DNPH化蛋白質=30:100(モル比)となるように調整し、他は同様にして12C−DNPHによる標識、13C−DNPHによる標識、12C−DNPH化蛋白質と13C−DNPH化蛋白質の混合及び質量分析を行った。図6に、この場合の質量分析チャートを示す。 Thus, next, 12 C-DNPH protein: 13 C-DNPH protein = 30: 100 (molar ratio) was adjusted, and the others were similarly labeled with 12 C-DNPH and labeled with 13 C-DNPH. , 12 C-DNPH protein and 13 C-DNPH protein were mixed and mass analyzed. FIG. 6 shows a mass spectrometry chart in this case.

この場合にも、質量786.461のピークと質量792.475のピーク、及び質量808.439のピークと質量814.489のピークの2組のピーク対が質量数差6のピーク対として観察された。ただし、いずれのピーク対においても、12C−DNPH化蛋白質に由来するピーク(質量786.461のピーク及び質量808.439のピーク)の方がピーク強度が小である。 Also in this case, two pairs of peaks, a mass of 786.461 and a mass of 792.475, and a mass of 808.439 and a mass of 8144.489, were observed as a peak pair with a mass number difference of 6. It was. However, in any peak pair, the peak derived from 12 C-DNPH protein (the peak with mass 786.461 and the peak with mass 808.439) has a smaller peak intensity.

これらの事実から、前記2組のピーク対が酸化変性を受けたミオグロビンに由来するものと決定することができた。また、これらのピークについてMS/MS測定を行うことにより、ミオグロビンの酸化部位を解析することができた。   From these facts, it was possible to determine that the two pairs of peaks were derived from myoglobin that had undergone oxidative modification. Moreover, the oxidation site | part of myoglobin was able to be analyzed by performing MS / MS measurement about these peaks.

酸化リゾチームの標識及び質量分析
ミオグロビンと同様にして酸化を行い、12C−DNPHによる標識及び13C−DNPHによる標識を行った。さらにこれらを混合し、質量分析を行った。酸化方法、標識方法、混合、及び質量分析については、ミオグロビンの場合に準じて行った。
Labeling with oxidized lysozyme and mass spectrometry Oxidation was performed in the same manner as myoglobin, and labeling with 12 C-DNPH and labeling with 13 C-DNPH were performed. Furthermore, these were mixed and mass spectrometry was performed. The oxidation method, labeling method, mixing, and mass spectrometry were performed according to the case of myoglobin.

図7は12C−DNPH化蛋白質:13C−DNPH化蛋白質=100:30である場合の質量分析チャート、図8は12C−DNPH化蛋白質:13C−DNPH化蛋白質=30:100(モル比)である場合の質量分析チャートである。質量785.436のピークと質量791.455のピーク、質量807.43のピークと質量813.433のピーク、及び質量829.4のピークと質量835.421のピークの3組のピーク対が質量数差6のピーク対として観察された。また、これらピーク対は、図7に示す質量分析チャートと図8に示す質量分析チャートでピーク強度が反転しており、酸化リゾチームに由来するものと確認された。 FIG. 7 is a mass spectrometry chart when 12 C-DNPH protein: 13 C-DNPH protein = 100: 30, and FIG. 8 is 12 C-DNPH protein: 13 C-DNPH protein = 30: 100 (mole). Ratio) is a mass spectrometry chart. Three pairs of peaks, a mass 785.436 peak and a mass 791.455 peak, a mass 807.43 peak and a mass 813.433 peak, and a mass 829.4 peak and a mass 835.421 peak are mass pairs. It was observed as a peak pair with a number difference of 6. Further, these peak pairs were confirmed to be derived from oxidized lysozyme because the peak intensities were reversed in the mass spectrometry chart shown in FIG. 7 and the mass spectrometry chart shown in FIG.

標識により発現するピーク対を示す図である。It is a figure which shows the peak pair expressed by a label | marker. ピーク対のピーク強度の反転の様子を示す図である。It is a figure which shows the mode of inversion of the peak intensity of a peak pair. (a)は12C−DNPH化を示す模式図であり、(b)は13C−DNPH化を示す模式図である。(A) is a schematic diagram which shows 12 C-DNPH conversion, (b) is a schematic diagram which shows 13 C-DNPH conversion. 13C−DNPHの合成スキームの一例を示す図である。It is a figure which shows an example of the synthetic scheme of 13 C-DNPH. 12C−DNPH化及び13C−DNPH化した酸化ミオグロビンを酵素消化した試料の質量分析チャートであり、12C−DNPH化蛋白質:13C−DNPH化蛋白質=100:30(モル比)である場合の質量分析チャートである。 12 is a mass spectrometry chart of a sample obtained by enzymatic digestion of 12 C-DNPH and 13 C-DNPH oxidized myoglobin, where 12 C-DNPH protein: 13 C-DNPH protein = 100: 30 (molar ratio) It is a mass spectrometry chart. 12C−DNPH化及び13C−DNPH化した酸化ミオグロビンを酵素消化した試料の質量分析チャートであり、12C−DNPH化蛋白質:13C−DNPH化蛋白質=30:100(モル比)である場合の質量分析チャートである。 12 is a mass spectrometry chart of a sample obtained by enzymatic digestion of 12 C-DNPH and 13 C-DNPH oxidized myoglobin, where 12 C-DNPH protein: 13 C-DNPH protein = 30: 100 (molar ratio) It is a mass spectrometry chart. 12C−DNPH化及び13C−DNPH化した酸化リゾチームを酵素消化した試料の質量分析チャートであり、12C−DNPH化蛋白質:13C−DNPH化蛋白質=100:30(モル比)である場合の質量分析チャートである。 12 is a mass spectrometry chart of a sample obtained by enzymatic digestion of 12 C-DNPH and 13 C-DNPH oxidized lysozyme, where 12 C-DNPH protein: 13 C-DNPH protein = 100: 30 (molar ratio) It is a mass spectrometry chart. 12C−DNPH化及び13C−DNPH化した酸化リゾチームを酵素消化した試料の質量分析チャートであり、12C−DNPH化蛋白質:13C−DNPH化蛋白質=30:100(モル比)である場合の質量分析チャートである。 12 is a mass spectrometry chart of a sample obtained by enzymatic digestion of 12 C-DNPH and 13 C-DNPH oxidized lysozyme, where 12 C-DNPH protein: 13 C-DNPH protein = 30: 100 (molar ratio) It is a mass spectrometry chart.

Claims (7)

酸化変性を受けた酸化蛋白質を標識試薬によって標識し、質量分析により定量する酸化蛋白質の定量方法であって、
前記標識試薬として、前記酸化蛋白質と反応する第1の標識試薬と、前記第1の標識試薬と同一の化学構造を有し構成原子の少なくとも一部が当該原子の同位体で置換された第2の標識試薬を用い、
前記第1の標識試薬で標識された酸化蛋白質と第2の標識試薬で標識された酸化蛋白質とを混合し、且つこれらの混合比率を変え、各混合比率においてそれぞれ前記質量分析を行うことで酸化蛋白質に由来するピークを特定することを特徴とする酸化蛋白質の定量方法。
A method for quantifying oxidized protein, wherein the oxidized protein subjected to oxidative modification is labeled with a labeling reagent and quantified by mass spectrometry,
As the labeling reagent, a first labeling reagent that reacts with the oxidized protein, a second labeling having the same chemical structure as the first labeling reagent, and at least a part of the constituent atoms being substituted with an isotope of the atom Using the labeling reagent of
Oxidation by mixing the oxidized protein labeled with the first labeling reagent and the oxidized protein labeled with the second labeling reagent, changing the mixing ratio, and performing the mass spectrometry at each mixing ratio. A method for quantifying oxidized protein, characterized by identifying a peak derived from a protein.
前記第2の標識試薬は、炭素原子の一部が炭素同位体で置換されていることを特徴とする請求項1記載の酸化蛋白質の定量方法。   The method for quantifying an oxidized protein according to claim 1, wherein the second labeling reagent has a carbon atom partially substituted with a carbon isotope. 前記第2の標識試薬は、6個の炭素原子が炭素同位体で置換されたベンゼン環を含み、第1の標識試薬と第2の標識試薬の質量差が6であることを特徴とする請求項2記載の酸化蛋白質の定量方法。   The second labeling reagent includes a benzene ring in which six carbon atoms are substituted with carbon isotopes, and a mass difference between the first labeling reagent and the second labeling reagent is 6. Item 3. A method for quantifying an oxidized protein according to Item 2. 前記酸化蛋白質がカルボニル化蛋白質であることを特徴とする請求項1から3のいずれか1項記載の酸化蛋白質の定量方法。   The method for quantifying oxidized protein according to any one of claims 1 to 3, wherein the oxidized protein is a carbonylated protein. 前記第1の標識試薬が2,4−ジニトロフェニルヒドラジンであり、第2の標識試薬がフェニル基の6個の炭素原子が炭素同位体で置換された2,4−ジニトロフェニルヒドラジンであることを特徴とする請求項4記載の酸化蛋白質の定量方法。   The first labeling reagent is 2,4-dinitrophenylhydrazine, and the second labeling reagent is 2,4-dinitrophenylhydrazine in which 6 carbon atoms of the phenyl group are substituted with carbon isotopes. The method for quantifying an oxidized protein according to claim 4, 分析試料を酵素消化した後、前記質量分析を行うことを特徴とする請求項1から5のいずれか1項記載の酸化蛋白質の定量方法。   The method for quantifying oxidized protein according to any one of claims 1 to 5, wherein the mass spectrometry is performed after enzymatic digestion of the analysis sample. タンデム質量分析により前記酸化蛋白質の酸化部位を解析することを特徴とする請求項1から5のいずれか1項記載の酸化蛋白質の定量方法。   The method for quantifying an oxidized protein according to any one of claims 1 to 5, wherein the oxidized site of the oxidized protein is analyzed by tandem mass spectrometry.
JP2006077526A 2006-03-20 2006-03-20 Method for quantifying oxidized protein Active JP4366507B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006077526A JP4366507B2 (en) 2006-03-20 2006-03-20 Method for quantifying oxidized protein
US12/225,158 US20090226884A1 (en) 2006-03-20 2007-03-20 Method of Quantitative Analysis of Oxidized Protein, Labeling Reagents for Quantitative Analysis of Oxidized Protein and Labeling Reagent kit for Quantitative Analysis of Oxidized Protein
PCT/JP2007/055617 WO2007111193A1 (en) 2006-03-20 2007-03-20 Method of quantifying oxidized protein, labeling reagents for quantifying oxidized protein and labeling reagent kit for quantifying oxidized protein
DE112007000601T DE112007000601T5 (en) 2006-03-20 2007-03-20 A method for the quantitative analysis of an oxidized protein, labeling reagents for the quantitative analysis of an oxidized protein and labeling reagents kit for the quantitative analysis of an oxidized protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006077526A JP4366507B2 (en) 2006-03-20 2006-03-20 Method for quantifying oxidized protein

Publications (2)

Publication Number Publication Date
JP2007255934A JP2007255934A (en) 2007-10-04
JP4366507B2 true JP4366507B2 (en) 2009-11-18

Family

ID=38541113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006077526A Active JP4366507B2 (en) 2006-03-20 2006-03-20 Method for quantifying oxidized protein

Country Status (4)

Country Link
US (1) US20090226884A1 (en)
JP (1) JP4366507B2 (en)
DE (1) DE112007000601T5 (en)
WO (1) WO2007111193A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011072197A2 (en) 2009-12-11 2011-06-16 Purdue Research Foundation Detection of oxidized polypeptides
US11524015B2 (en) 2013-03-15 2022-12-13 Brigham Young University Methods for treating inflammation, autoimmune disorders and pain
JP6518230B2 (en) 2013-03-15 2019-05-22 ブリガム・ヤング・ユニバーシティBrigham Young University Methods of treating inflammation, autoimmune disease, and pain
US11690855B2 (en) 2013-10-17 2023-07-04 Brigham Young University Methods for treating lung infections and inflammation
US20150203527A1 (en) 2014-01-23 2015-07-23 Brigham Young University Cationic steroidal antimicrobials
US10441595B2 (en) 2014-06-26 2019-10-15 Brigham Young University Methods for treating fungal infections
US10226550B2 (en) 2016-03-11 2019-03-12 Brigham Young University Cationic steroidal antimicrobial compositions for the treatment of dermal tissue
US10959433B2 (en) 2017-03-21 2021-03-30 Brigham Young University Use of cationic steroidal antimicrobials for sporicidal activity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028658A2 (en) * 2001-10-02 2003-04-10 Rush-Presbyterian-St. Luke's Medical Center Oxidative stress in plasma
WO2004108948A2 (en) * 2003-06-04 2004-12-16 President And Fellows Of Harvard College Systems, methods and kits for characterizing phosphoproteomes
JP2005300430A (en) * 2004-04-14 2005-10-27 Shimadzu Corp Method for specifically detecting labeled peptide, and method for specifically detecting peak located to one side
JP2005315688A (en) * 2004-04-28 2005-11-10 Japan Science & Technology Agency Tag for oxidation-damaged protein analysis and detection method of oxidation-damaged protein using the tag
JP4317083B2 (en) 2004-06-04 2009-08-19 株式会社日立ハイテクノロジーズ Mass spectrometry method and mass spectrometry system
WO2006039456A1 (en) * 2004-09-29 2006-04-13 University Of Florida Research Foundation, Inc. Isotope labeled dinitrophenylhydrazines and methods for use

Also Published As

Publication number Publication date
US20090226884A1 (en) 2009-09-10
JP2007255934A (en) 2007-10-04
WO2007111193A1 (en) 2007-10-04
DE112007000601T5 (en) 2009-01-22

Similar Documents

Publication Publication Date Title
JP4366507B2 (en) Method for quantifying oxidized protein
JP6699645B2 (en) Analytical method and analytical reagent for amino-functional compounds
Chahrour et al. Stable isotope labelling methods in mass spectrometry-based quantitative proteomics
Holding XL-MS: Protein cross-linking coupled with mass spectrometry
Brittain et al. Enrichment and analysis of peptide subsets using fluorous affinity tags and mass spectrometry
JP4020310B2 (en) Mass defect labeling for oligomer sequence determination
AU2006290550B2 (en) Mass labels
Waliczek et al. Peptides labeled with pyridinium salts for sensitive detection and sequencing by electrospray tandem mass spectrometry
Zybailov et al. Large scale chemical cross-linking mass spectrometry perspectives
Feeney et al. Proteomic approaches to analyze protein tyrosine nitration
CN106596967B (en) A kind of quantitative approach of stable isotope phosphorylated labelled protein
JP5592057B2 (en) Labeled transition metal complex
US20050176085A1 (en) Method of selective peptide isolation for the identification and quantitative analysis of proteins in complex mixtures
WO2006073563A2 (en) Fluorescent affinity tag to enhance phosphoprotein detection
JP4659040B2 (en) In-gel labeling and in-gel isolation method for analysis of phosphorylated protein and protein phosphorylation site identification method using the same
Linke et al. Identification and relative quantification of phosphopeptides by a combination of multi‐protease digestion and isobaric labeling
Schöneich Proteomics in gerontological research
CN103980311B (en) Carbon-13 isotope-labeled phosphonium bromide compound as well as preparation method and application thereof
JP2010509569A (en) Use of arylboronic acids in protein labeling
US20060234314A1 (en) Selective binding and analysis of macromolecules
Niwayama et al. Synthesis of D-labeled naphthyliodoacetamide and application to quantitative peptide analysis by isotope differential mass spectrometry
KR100693111B1 (en) Selective labeling agent for phosphoproteome analysis and phosphorylated site analysis
US11764043B2 (en) Methods of mass spectrometry quantitation using cleavable isobaric tags and neutral loss fragmentation
JP2005232132A (en) Labeling reagent specific to dansyl group-bearing thiol group, method for producing the same and labeling method using the labeling reagent
CN115536714A (en) Liquid chromatography calibration method for rapidly-labeled N-glycan

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090224

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090224

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150