JP4366105B2 - Granular apatite aiming at DDS and its production method - Google Patents

Granular apatite aiming at DDS and its production method Download PDF

Info

Publication number
JP4366105B2
JP4366105B2 JP2003112520A JP2003112520A JP4366105B2 JP 4366105 B2 JP4366105 B2 JP 4366105B2 JP 2003112520 A JP2003112520 A JP 2003112520A JP 2003112520 A JP2003112520 A JP 2003112520A JP 4366105 B2 JP4366105 B2 JP 4366105B2
Authority
JP
Japan
Prior art keywords
granular
tcp
apatite
sample
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003112520A
Other languages
Japanese (ja)
Other versions
JP2004315299A (en
Inventor
洪二 井奥
誠史 後藤
宏高 藤森
麻奈美 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konoshima Chemical Co Ltd
Original Assignee
Konoshima Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konoshima Chemical Co Ltd filed Critical Konoshima Chemical Co Ltd
Priority to JP2003112520A priority Critical patent/JP4366105B2/en
Publication of JP2004315299A publication Critical patent/JP2004315299A/en
Application granted granted Critical
Publication of JP4366105B2 publication Critical patent/JP4366105B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Materials For Medical Uses (AREA)

Description

【0001】
【発明の属する技術分野】
骨充填材として実用化されており、近年では組織工学のスキャホールド等としても期待されている、代表的な生体活性セラミックスである水酸アパタイトにおいて、DDSを目指した顆粒状アパタイトおよびその作製法に関する技術である。
【0002】
【従来の技術】
水酸アパタイト(Ca10(PO4)6(OH)2 : 以後HAと略す)は、代表的な生体活性セラミックスであり、骨充填材として実用化されている。また近年では、組織工学のスキャホールド等としても期待されている。従来の作製技術は、Caを含む水溶液とPを含む水溶液を混合してリン酸カルシウム沈殿物を生じさせ、この沈殿物を約900℃以上の高温で過熱してHAとするもの、あるいはCaおよびPを含む固体を混合して、約900℃以上の高温で過熱してHAとするものである。高温加熱したHAは多結晶体であり、従来技術によるHA以上の吸着特性、特に選択性が必要になってきた。
【0003】
井奥ら(非特許文献1)は、高機能人工骨、培養骨のスキャホールド等としての応用が期待される、ユニークな構造(針状粒子、結晶面の制御、気孔径分布の二極化)を有するHA多孔体およびその製造法を報告している(非特許文献1)。多孔性アパタイトの作製法は、以下の通りである。細胞の進入しやすい気孔を作るために、α−TCP粉体にグリシン(H2NCH2COOH、粒子径約200μm、和光純薬)あるいは塩化ナトリウム(NaCl、粒子径約200μm、和光純薬)を、50〜75mass%添加した。この混合粉体を8mmφ×5mmLに加圧成形し、成形体を小型オートクレーブ(図1)に設置して30〜200℃、5〜20h、飽和蒸気圧下の条件で蒸気処理した。出発原料および作製した試料については、誘導結合プラズマ質量分析(ICP−MS)による化学分析を行い、粉末X線回折測定(XRD)、フーリエ変換赤外分光分析(FT−IR)、透過型電子顕微鏡観察(TEM)、走査型電子顕微鏡観察(SEM)、水銀圧入気孔径分布測定装置(MIP)、万能試験機等により評価した。α−TCPへの添加材として、グリシンを用いた場合について述べる。200℃、5hの水熱蒸気処理によって、グリシンは溶出した。その結果、材料中の結晶相はHAのみとなった。このHAは、Ca欠損HAであり、Ca/P=1.54であった。多孔体の気孔率、グリシンの添加量の増加にともなって増加し、約70〜90%に制御することが可能であった。SEM観察から、粒子の形状は針状であり、長軸長さ約10μm、アスペクト比30以上であった。MIPおよびSEM観察から、気孔径分布は二極化しており、細胞の侵入可能な100μm以上の大きな気孔と約0.1μmの微細な気孔から構成されていた。大きな気孔の形状および大きさは、グリシン粒子とほぼ一致しており、このことからグリシンの溶出によって気孔が形成されたと考えられる。一方、微細な気孔は、生成したHA針状粒子の絡み合いよって形成されたと考えられる。この針状粒子は、a面を多く露出しているため、物質の吸脱着に選択性を有することが推察できる。α−TCPへの添加剤としてNaClを用いた場合、グリシンを添加した前述の実験とほぼ同様の条件で気孔径の二極化した多孔構造が形成された。しかし、約100μmの気孔の形状はグリシンの場合と明らかに異なり、NaCl結晶の形状を反映した気孔が形成された。したがって、気孔の形状が細胞活動に及ぼす影響を調べるための材料となる可能性がある。
【0004】
HAは、タンパク質やアミノ酸の吸着に優れていることから、クロマトグラフィー充填材やDDS(Drug Delivery System)としての研究も進められている。DDSに関する特許の一例としては、「薬剤物質の担体としての多孔性ハイドロキシアパタイト粒子」という特許が公表されている(特許文献1)。この方法で使用されているHAセラミックスは、多結晶体であり、吸着の選択性および吸着の制御がなされていない。
【0005】
【特許文献1】
特表2001−524513
【非特許文献1】
井奥、三隅、藤森、三奈木、後藤;第15回秋季シンポジウム講演予稿集(日本セラミックス協会主催)、p.110,2002
【0006】
【発明が解決しようとする課題】
本発明では、現行のHA焼結多孔体よりも、吸着特性に優れた材料を作製することを目的とし、材料組織を構築する粒子形状および結晶面を制御した顆粒状高機能材料およびその作製法の開発を課題としている。
【0007】
【課題を解決するための手段】
本発明の顆粒状アパタイトは、主として、DDS用やクロマトグラフィー充填材としての利用に適した顆粒状アパタイトである。また、骨充填材や組織工学のスキャホールドとしても有用な顆粒状アパタイトである。従来の高温加熱により作製されたHAと比較して、本発明の顆粒状アパタイトは、従来技術によるHA以上の良好な吸着特性、特に選択性を有する顆粒状アパタイトであり、特にDDS用やクロマトグラフィー充填材としての利用に適している。
【0008】
従来技術によるHA以上の良好な吸着特性、特に選択性を有する顆粒状アパタイトは、試料中の結晶相がHAのみで構成されている顆粒状アパタイトであり、HA顆粒の大きさが約100μmであり、HA顆粒は針状粒子により構築されているという特徴を有している。特に、針状粒子の長軸長さが約10から100μm、アスペクト比20以上であって、HA針状粒子は結晶面が制御されており、特に結晶面としてa面を多く露出している顆粒状アパタイトが、物質の吸脱着の選択性という観点からは好ましい。
【0009】
従来の高温加熱により作製された多結晶体のHAに比較して、物質の吸脱着の選択性に優れる本発明のHAは、水熱法により作製できる。α―リン酸三カルシウム(α−TCP)粉体をゼラチン水溶液に加えてスラリー状とし、このスラリーを植物油に滴下し、攪拌して試料回収後、加熱してα−TCP顆粒状粒子を作製し、このα−TCP顆粒を、小型オートクレーブを用いて、飽和蒸気圧下の条件で蒸気処理することにより製造できる。
【0010】
顆粒状アパタイトの作製において、構成粒子を特定の結晶面を露出した針状とするために、水熱条件下において結晶成長させた。すなわち、α−リン酸三カルシウム(α-Ca3(PO4)2:α−TCP,太平化学産業)粉体を、ゼラチン(和光純薬工業)3〜30%水溶液に加えて30〜90℃のスラリー状とした。このスラリーを植物油に滴下し、1時間攪拌した。試料回収後、1190〜1300℃、30分から3時間加熱して、α−TCP顆粒状粒子を作製した。このα−TCP顆粒を、図1に示す小型オートクレーブを用いて、30〜200℃、5〜20時間、飽和蒸気圧下の条件で蒸気処理した。
【0011】
【発明の実施の形態】
発明の実施の形態を、実施例にもとづき図面を参照して説明する。
【0012】
【実施例】
本発明の顆粒状アパタイトの作製法の一例について述べる。α−リン酸三カルシウム(α-Ca3(PO4)2:α−TCP,太平化学産業)粉体を、ゼラチン(和光純薬工業)10%水溶液に加えて80℃のスラリー状とした。このスラリーを植物油に滴下し、1h攪拌した。試料回収後、1200℃、3h加熱して、α−TCP顆粒状粒子を作製した。このα−TCP顆粒を、図1に示す小型オートクレーブを用いて、200℃、10h、飽和蒸気圧下の条件で蒸気処理した。
【0013】
出発原料および作製した試料については、誘導結合プラズマ質量分析(ICP−MS)による化学分析を行い、粉末X線回折測定(XRD)、フーリエ変換赤外分光分析(FT−IR)、透過型電子顕微鏡観察(TEM)、走査型電子顕微鏡観察(SEM)、水銀圧入気孔径分布測定装置(MIP)、万能試験機等により評価した。
【0014】
α−TCP/ゼラチンスラリーの濃度および植物油の攪拌速度を調節することにより、試料の大きさを制御することが可能であった。試料を1190〜1300℃、30分から3h加熱することによってゼラチンは消失し、α−TCP顆粒状粒子が得られた。このα−TCP顆粒を120〜200℃、5〜20h水蒸気処理することにより、試料中の結晶相はHAのみとなった。
【0015】
200℃、20h水蒸気処理により得られた、HA顆粒状粒子の走査型電子顕微鏡(SEM)写真を図2に示した。HA顆粒の大きさは、約100μmであり(図2(a))、HA顆粒は針状粒子によって構築されていた(図2(b))。この針状粒子は、長軸長さ約50μm、アスペクト比40以上であった。また、HA針状粒子は、a面を多く露出していた。
【0016】
【発明の効果】
水熱プロセスによって、針状粒子から構築された顆粒状水酸アパタイトを作製した。結晶面が制御されていること、および気孔径が制御されていることから、本材料は吸着特性に優れた高機能性材料としての応用が期待される。
【図面の簡単な説明】
【図1】反応用の小型オートクレーブの概要を示す図である(チャンバーの内容積は、約100cm3)。
【図2】顆粒状アパタイトのSEMイメージを示す図である。
[0001]
BACKGROUND OF THE INVENTION
In relation to hydroxyapatite, which is a typical bioactive ceramic, which has been put to practical use as a bone filler and is also expected as a scaffold for tissue engineering in recent years, it relates to granular apatite aimed at DDS and a method for producing the same. Technology.
[0002]
[Prior art]
Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 : hereinafter abbreviated as HA) is a typical bioactive ceramic and has been put into practical use as a bone filler. In recent years, it is also expected as a scaffold for tissue engineering. In the conventional fabrication technique, an aqueous solution containing Ca and an aqueous solution containing P are mixed to form a calcium phosphate precipitate, and the precipitate is heated to a high temperature of about 900 ° C. or higher to form HA, or Ca and P are mixed. The contained solid is mixed and heated to about 900 ° C. or higher to make HA. HA heated at a high temperature is a polycrystal, and it has become necessary to have adsorption characteristics, particularly selectivity, higher than that of HA according to the prior art.
[0003]
Ioku et al. (Non-Patent Document 1) has a unique structure (acicular particles, control of crystal plane, bipolarization of pore size distribution), which is expected to be used as a scaffold for highly functional artificial bones and cultured bones. HA porous material having selenium and its production method have been reported (Non-patent Document 1). The method for producing the porous apatite is as follows. In order to create pores that are easy for cells to enter, α-TCP powder is coated with glycine (H 2 NCH 2 COOH, particle size of about 200 μm, Wako Pure Chemicals) or sodium chloride (NaCl, particle size of about 200 μm, Wako Pure Chemicals). 50-75 mass% was added. This mixed powder was pressure-molded to 8 mmφ × 5 mmL, and the compact was placed in a small autoclave (FIG. 1) and steam-treated at 30 to 200 ° C., 5 to 20 hours, and under saturated vapor pressure. The starting material and the prepared sample are subjected to chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS), powder X-ray diffraction measurement (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope Evaluation was made by observation (TEM), scanning electron microscope observation (SEM), mercury intrusion pore size distribution measuring device (MIP), universal testing machine, and the like. The case where glycine is used as an additive to α-TCP will be described. Glycine was eluted by hydrothermal steam treatment at 200 ° C. for 5 hours. As a result, the crystal phase in the material was only HA. This HA was a Ca-deficient HA and Ca / P = 1.54. As the porosity of the porous material and the amount of glycine added increased, it was possible to control to about 70 to 90%. From SEM observation, the shape of the particles was needle-like, the long axis length was about 10 μm, and the aspect ratio was 30 or more. From MIP and SEM observations, the pore size distribution was bipolar, and it was composed of large pores of 100 μm or more in which cells could enter and fine pores of about 0.1 μm. The shape and size of the large pores are almost the same as those of the glycine particles, which suggests that pores were formed by elution of glycine. On the other hand, it is considered that fine pores were formed by entanglement of the generated HA needle-like particles. It can be inferred that this acicular particle has selectivity for the adsorption and desorption of a substance because a lot of the a-plane is exposed. When NaCl was used as an additive to α-TCP, a porous structure having a bipolar pore diameter was formed under the same conditions as in the previous experiment in which glycine was added. However, the shape of pores of about 100 μm was clearly different from that of glycine, and pores reflecting the shape of NaCl crystals were formed. Therefore, it may be a material for investigating the influence of pore shape on cell activity.
[0004]
Since HA is excellent in adsorbing proteins and amino acids, research on chromatographic packing materials and DDS (Drug Delivery System) is also underway. As an example of a patent relating to DDS, a patent entitled “Porous Hydroxyapatite Particles as a Drug Substance Carrier” has been published (Patent Document 1). The HA ceramics used in this method are polycrystalline, and the adsorption selectivity and adsorption control are not performed.
[0005]
[Patent Document 1]
Special table 2001-524513
[Non-Patent Document 1]
Ioku, Misumi, Fujimori, Sanaki, Goto; Proceedings of the 15th Autumn Symposium (sponsored by the Ceramic Society of Japan), p. 110, 2002
[0006]
[Problems to be solved by the invention]
In the present invention, a granular high-functional material having a controlled particle shape and crystal plane for constructing a material structure, and a method for producing the same, for the purpose of producing a material having better adsorption characteristics than the current HA sintered porous body Development is the issue.
[0007]
[Means for Solving the Problems]
The granular apatite of the present invention is mainly a granular apatite suitable for use as a DDS or chromatographic filler. It is also a granular apatite that is useful as a scaffold for bone filler and tissue engineering. Compared with HA produced by conventional high-temperature heating, the granular apatite of the present invention is a granular apatite having better adsorption characteristics, particularly selectivity, than HA according to the prior art, and particularly for DDS and chromatography. Suitable for use as a filler.
[0008]
Granular apatite having good adsorption characteristics, particularly selectivity, over HA according to the prior art is a granular apatite in which the crystal phase in the sample is composed only of HA, and the size of the HA granule is about 100 μm. , HA granules are characterized by being constructed of acicular particles. In particular, the long axis length of the acicular particles is about 10 to 100 μm, the aspect ratio is 20 or more, and the HA acicular particles are controlled in crystal plane, and in particular, granules in which many a-planes are exposed as crystal planes. Apatite is preferable from the viewpoint of the selectivity of adsorption and desorption of substances.
[0009]
Compared with the polycrystalline HA prepared by conventional high-temperature heating, the HA of the present invention, which is excellent in selectivity of adsorption and desorption of substances, can be prepared by a hydrothermal method. α-Tricalcium phosphate (α-TCP) powder is added to an aqueous gelatin solution to form a slurry. The slurry is added dropwise to vegetable oil, stirred, recovered, and heated to produce α-TCP granular particles. The α-TCP granules can be produced by steam treatment under conditions of saturated vapor pressure using a small autoclave.
[0010]
In the production of granular apatite, crystals were grown under hydrothermal conditions in order to make the constituent particles acicular with a specific crystal plane exposed. That is, α-tricalcium phosphate (α-Ca 3 (PO 4 ) 2 : α-TCP, Taihei Chemical Industry) powder is added to a gelatin (Wako Pure Chemical Industries) 3 to 30% aqueous solution at 30 to 90 ° C. It was made into the slurry form. This slurry was dropped into vegetable oil and stirred for 1 hour. After collecting the sample, it was heated at 1190 to 1300 ° C. for 30 minutes to 3 hours to produce α-TCP granular particles. This α-TCP granule was steam-treated using a small autoclave shown in FIG. 1 at 30 to 200 ° C. for 5 to 20 hours under the conditions of saturated vapor pressure.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described with reference to the drawings based on examples.
[0012]
【Example】
An example of the method for producing the granular apatite of the present invention will be described. α-Tricalcium phosphate (α-Ca 3 (PO 4 ) 2 : α-TCP, Taihei Chemical Industry) powder was added to a gelatin (Wako Pure Chemical Industries) 10% aqueous solution to form a slurry at 80 ° C. This slurry was added dropwise to vegetable oil and stirred for 1 h. After collecting the sample, it was heated at 1200 ° C. for 3 hours to produce α-TCP granular particles. This α-TCP granule was steam-treated using a small autoclave shown in FIG. 1 under the conditions of 200 ° C., 10 hours, and saturated vapor pressure.
[0013]
The starting material and the prepared sample are subjected to chemical analysis by inductively coupled plasma mass spectrometry (ICP-MS), powder X-ray diffraction measurement (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscope Evaluation was made by observation (TEM), scanning electron microscope observation (SEM), mercury intrusion pore size distribution measuring device (MIP), universal testing machine, and the like.
[0014]
It was possible to control the sample size by adjusting the concentration of the α-TCP / gelatin slurry and the stirring speed of the vegetable oil. When the sample was heated at 1190-1300 ° C. for 30 minutes to 3 hours, the gelatin disappeared and α-TCP granular particles were obtained. This α-TCP granule was treated with water vapor at 120 to 200 ° C. for 5 to 20 hours, so that the crystal phase in the sample was only HA.
[0015]
A scanning electron microscope (SEM) photograph of the HA granular particles obtained by steam treatment at 200 ° C. for 20 hours is shown in FIG. The size of the HA granules was about 100 μm (FIG. 2 (a)), and the HA granules were constructed by acicular particles (FIG. 2 (b)). The acicular particles had a major axis length of about 50 μm and an aspect ratio of 40 or more. Moreover, HA needle-like particle | grains exposed many a surface.
[0016]
【The invention's effect】
Granular hydroxyapatite constructed from acicular particles was produced by a hydrothermal process. Since the crystal plane is controlled and the pore diameter is controlled, the material is expected to be applied as a highly functional material having excellent adsorption characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a small autoclave for reaction (the internal volume of a chamber is about 100 cm 3 ).
FIG. 2 is a view showing an SEM image of granular apatite.

Claims (4)

試料中の結晶相が水酸アパタイト(HA)のみである顆粒状アパタイトであって、
HA顆粒は針状粒子により構築され、
前記針状粒子の長軸長さが約10から100μm、アスペクト比20以上であって、HA針状粒子はa面を多く露出しているため物質の吸脱着に選択性を有する顆粒状アパタイト
Granular apatite whose crystal phase in the sample is only hydroxyapatite (HA) ,
HA granules are constructed of acicular particles,
Granular apatite having a long axis length of about 10 to 100 μm and an aspect ratio of 20 or more, and HA needle-like particles have a lot of a-faces, so that they have selectivity in adsorbing and desorbing substances .
HA顆粒の大きさが約100μmである請求項1に記載の顆粒状アパタイト。Granular apatite according to claim 1 size of HA granules is about 100 [mu] m. 試料中の結晶相が水酸アパタイト(HA)のみである顆粒状アパタイトの製造法であって、
α―リン酸三カルシウム(α−TCP)粉体をゼラチン3〜30%水溶液に加えてスラリー状とし、このスラリーを植物油に滴下し、1時間攪拌して試料回収後、1190〜1300℃、30分〜3時間加熱してα−TCP顆粒状粒子を作製し、このα−TCP顆粒を、小型オートクレーブを用いて、30〜200℃、5〜20h、飽和蒸気圧下の条件で蒸気処理する顆粒状アパタイトの製造法。
A method for producing granular apatite in which a crystal phase in a sample is only hydroxyapatite (HA),
α-Tricalcium phosphate (α-TCP) powder is added to an aqueous gelatin solution of 3 to 30% to form a slurry. The slurry is dropped into vegetable oil, stirred for 1 hour, sample recovered, 1190 to 1300 ° C., 30 min and heated to 3 hours to produce alpha-TCP granular particles, the alpha-TCP granules, using a small autoclave, 30 to 200 ° C., 5~20H, condyle you steamed at the conditions of saturated vapor pressure Production method of granular apatite.
試料中の結晶相が水酸アパタイト(HA)のみである顆粒状アパタイトの製造法であって、
α―リン酸三カルシウム(α−TCP)粉体をゼラチン10%水溶液に加えてスラリー状とし、このスラリーを植物油に滴下し、1時間攪拌して試料回収後、1190〜1300℃、30分〜3時間加熱してα−TCP顆粒状粒子を作製し、このα−TCP顆粒を、小型オートクレーブを用いて、30〜200℃、5〜20h、飽和蒸気圧下の条件で蒸気処理する顆粒状アパタイトの製造法。
A method for producing granular apatite in which a crystal phase in a sample is only hydroxyapatite (HA),
α-Tricalcium phosphate (α-TCP) powder is added to a gelatin 10% aqueous solution to form a slurry, and the slurry is dropped into vegetable oil, stirred for 1 hour, and after sample collection, 1190-1300 ° C., 30 minutes- and heated for 3 hours to prepare alpha-TCP granular particles, the alpha-TCP granules, using a small autoclave, 30 to 200 ° C., 5~20H, condyle granular apatite you steamed at the conditions of saturated vapor pressure Manufacturing method.
JP2003112520A 2003-04-17 2003-04-17 Granular apatite aiming at DDS and its production method Expired - Fee Related JP4366105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003112520A JP4366105B2 (en) 2003-04-17 2003-04-17 Granular apatite aiming at DDS and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003112520A JP4366105B2 (en) 2003-04-17 2003-04-17 Granular apatite aiming at DDS and its production method

Publications (2)

Publication Number Publication Date
JP2004315299A JP2004315299A (en) 2004-11-11
JP4366105B2 true JP4366105B2 (en) 2009-11-18

Family

ID=33472692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003112520A Expired - Fee Related JP4366105B2 (en) 2003-04-17 2003-04-17 Granular apatite aiming at DDS and its production method

Country Status (1)

Country Link
JP (1) JP4366105B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2011195C2 (en) 2013-07-18 2015-01-21 Xpand Biotechnology B V Method for producing an osteoinductive calcium phosphate and products thus obtained.

Also Published As

Publication number Publication date
JP2004315299A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
KR100898218B1 (en) Ceramic Particle Group and Method for Production Thereof and Use Thereof
Jiang et al. A facile microwave-assisted synthesis of mesoporous hydroxyapatite as an efficient adsorbent for Pb2+ adsorption
Kong et al. Nanosized hydroxyapatite powders derived from coprecipitation process
US5858318A (en) Methods of synthesizing hydroxyapatite powders and bulk materials
JP4540225B2 (en) Process for producing magnesium and carbonate substituted hydroxyapatite
Suetsugu et al. Configuration of carbonate ions in apatite structure determined by polarized infrared spectroscopy
JP2000500110A (en) Low temperature calcium phosphate apatite and method for producing the same
CN107185500B (en) A kind of preparation and application of hydridization hydroxyapatite porous material
Mahabole et al. Effect of incubation in simulated body fluid on dielectric and photoluminescence properties of nano-hydroxyapatite ceramic doped with strontium ions
JP2010208896A (en) Method of manufacturing plate-like hydroxyapatite single crystal
JP4366105B2 (en) Granular apatite aiming at DDS and its production method
Lu et al. Kinetics and thermodynamics studies on the BMP-2 adsorption onto hydroxyapatite surface with different multi-morphological features
Poinern et al. Kinetic and adsorption behaviour of aqueous cadmium using a 30 nm hydroxyapatite based powder synthesized via a combined ultrasound and microwave based technique
JP2756703B2 (en) Spherical apatite, method for producing the same, and molded article with porous structure
JP2004155596A (en) Manufacturing process of sheet-like hydroxyapatite particle
Ioku et al. Hydrothermal preparation of granular hydroxyapatite with controlled surface
JP7315160B2 (en) Fluorine insolubilizer, method for producing same, treated gypsum, method for treating fluorine-containing contaminated soil and contaminated water
JPH0624963B2 (en) Method for producing hydroxyapatite
JP6882816B1 (en) Aluminum phosphate compound and its production method, protein purification carrier and protein purification method using it
JP2011079697A (en) Spherical hydroxyapatite and method for producing the same
KR20040051381A (en) Sythesis of Hydroxyapatite Nanopowder
JPH0426509A (en) Hydroxyapatite fine crystal and its production
JPH10236806A (en) Hydroxyapatite and its production
Kamitakahara et al. Morphology and composition of hydroxyapatite particles synthesized hydrothermally from tricalcium phosphates
JP2003176111A (en) Controlled hydroxyapatite and method for synthesizing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060405

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060510

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees