JP4365581B2 - Method for activating electrode of heat storage device - Google Patents

Method for activating electrode of heat storage device Download PDF

Info

Publication number
JP4365581B2
JP4365581B2 JP2002376693A JP2002376693A JP4365581B2 JP 4365581 B2 JP4365581 B2 JP 4365581B2 JP 2002376693 A JP2002376693 A JP 2002376693A JP 2002376693 A JP2002376693 A JP 2002376693A JP 4365581 B2 JP4365581 B2 JP 4365581B2
Authority
JP
Japan
Prior art keywords
heat storage
storage material
storage device
electrode
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002376693A
Other languages
Japanese (ja)
Other versions
JP2004205153A (en
Inventor
健二 才田
信 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Original Assignee
Kansai Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc filed Critical Kansai Electric Power Co Inc
Priority to JP2002376693A priority Critical patent/JP4365581B2/en
Publication of JP2004205153A publication Critical patent/JP2004205153A/en
Application granted granted Critical
Publication of JP4365581B2 publication Critical patent/JP4365581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Description

【0001】
【発明の属する技術分野】
本発明は建造物の暖房等に用いられ、蓄熱材として酢酸ナトリウム3水塩を用いてなる放熱制御可能な蓄熱装置およびその電極の活性化処理方法に関する。
【0002】
【従来の技術】
放熱制御可能な蓄熱装置は建造物の暖房用に用いられている。該蓄熱装置は、料金の割安な深夜電力を用いて発生させた熱を蓄熱材を用いて蓄え、昼間に熱を徐々に放出させる暖房装置として用いられている。
【0003】
このような蓄熱材として、塩水和物である酢酸ナトリウム3水塩を用いた蓄熱装置が既に実用化されている。酢酸ナトリウム3水塩は相変化に伴う発熱量(凝固熱)が大きく、かつ暖房用に適当な相変化温度すなわち融点を有しているので蓄熱材として好適であるが、過冷却度が大きいという特徴がある。すなわち、融点以下まで温度が低下しても固化が生じないため潜熱の放熱が行われず、このままでは暖房として機能しないことがあるので、この過冷却度が大きいということは、これまで塩水和物の欠点とみなされ、過冷却防止剤の探索が長くなされてきた。
【0004】
しかし、この過冷却度が大きいことは、外部から過冷却の解除(固化の開始)を制御することにより潜熱の放熱時期を選ぶこと(このような制御を、以下、「放熱制御」と称することがある。)ができるという点では有利であり、例えば放熱させたいときに種結晶を添加する蓄熱装置は古くから提案されている。しかし、種結晶を繰り返し添加することによって蓄熱材の組成が変化することや、添加操作が頻繁な場合は煩雑であり実用的でないことなどの問題点があった。
【0005】
そこで、より簡便な放熱制御を行うことができる蓄熱装置として蓄熱材として酢酸ナトリウム3水塩を用い、該蓄熱材に銅−アマルガム電極を挿入し、過冷却状態で2.5Vの直流電圧を印加して固化させることのできる蓄熱装置が提案されている(例えば、特許文献1参照。)。しかしながら、蓄熱材を過冷却状態として電極に電圧を印加しても固化が生じない場合があり、この蓄熱装置は、固化開始の繰り返し安定性に乏しいという問題点があった。
【0006】
この問題点を解決し、固化開始の繰り返し安定性を向上させた蓄熱装置として、蓄熱材の酢酸ナトリウム3水塩に硝酸を0.1%添加し、その蓄熱材に1対の銀電極を接触させ、蓄熱材が過冷却状態となったときにその銀電極に電圧を加えることにより放熱制御を行うことができる蓄熱装置が提案されている(例えば、特許文献2参照)。しかしながら、硝酸は酢酸ナトリウム3水塩を酸化させるので長期使用により蓄熱材の蓄熱量が低下するという問題があった。
【0007】
【特許文献1】
特開昭57−174693号公報
【特許文献2】
特開昭63−230784号公報
【0008】
【発明が解決しようとする課題】
本発明の目的は、酢酸ナトリウム3水塩を主材として含有する蓄熱材を用いてなり、該蓄熱材に接触した少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置において、硝酸を蓄熱材に含有せず、固化開始の繰り返し安定性の高い蓄熱装置を提供することにある。また、本発明のもう一つの目的は、該蓄熱装置の固化開始の繰り返し安定性の高い運転を可能とする該蓄熱装置の電極の活性化処理方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明者は、酢酸ナトリウム3水塩を主材として含有する蓄熱材を用いてなり、該蓄熱材に接触した少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置およびその電極の活性化方法について鋭意検討し、蓄熱材に特定の金属ハロゲン化物を含有させた蓄熱装置により、上記課題が解決できる蓄熱装置となることを見出し、さらに、特定の手順で少なくとも1本の該銀電極への通電と蓄熱材の固化を行うことにより、上記課題が解決できる活性化処理が可能であることを見出した。
即ち本発明は、酢酸ナトリウム3水塩を主材として含有し、アルカリ金属、アルカリ土類金属および亜鉛のそれぞれの塩化物、臭化物およびヨウ化物からなる群より選ばれる1種以上の化合物を含有する蓄熱材を用いてなり、少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置を提供する。また本発明は、酢酸ナトリウム3水塩を主材とし、アルカリ金属、アルカリ土類金属および亜鉛のそれぞれの塩化物、臭化物およびヨウ化物からなる群より選ばれる1種以上の化合物を含有してなる蓄熱材を用いてなり、少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置において、融液状態の該蓄熱材と接触した少なくとも1本の該銀電極に通電し、その後に、該銀電極が該蓄熱材に接触した状態で該蓄熱材を固化させることを特徴とする該電極の活性化処理方法を提供する。
【0010】
【発明の実施の形態】
以下本発明について詳しく説明する。
本発明の蓄熱装置は、加熱・冷却によって固液相変化を示す酢酸ナトリウム3水塩を主材として含有する蓄熱材を用いてなる。該蓄熱材は通常、透湿性のない容器に充填して用いることが好ましい。容器の形状は特に限定されず、円筒状、コイル状、平板状など任意の形状のものを用いることができる。蓄熱装置が床内部に埋設されて使用される場合には、蓄熱材を充填した容器は荷重に耐える十分な強度を有することが好ましい。
【0011】
本発明の蓄熱材は、アルカリ金属、アルカリ土類金属および亜鉛のそれぞれの塩化物、臭化物およびヨウ化物からなる群より選ばれる1種以上を含有し、例えば、リチウム、ナトリウム、カリウム、マグネシウム、カルシウム、ストロンチウムおよび亜鉛のそれぞれの塩化物、臭化物およびヨウ化物の21種の化合物からなる群から選ばれる1種以上を含有する。これらの化合物は無水物でも水和物でもよい。含有量は通常は0.01〜40重量%、好ましくは0.02〜1重量%である。0.01重量%より低い場合は、融解−固化サイクルの繰り返し安定性の高い蓄熱装置とならないおそれがあり、40重量%より高いと蓄熱できる熱量が低下するおそれがある。
【0012】
さらに、本発明の蓄熱装置は少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である。銀電極とは、蓄熱材に接触しうる導電性部分の少なくとも一部が銀または銀合金からなるものをいう。他の極は銅、亜鉛、鉄、ニッケル、スズ、炭素などであってもよい。好ましくは全電極とも銀または銀合金の電極である。形状は線状、板状、棒状、管状などいかなるものでもよい。
【0013】
印加する電圧は電極の形状、電極間隔などにも依存するが、通常は0.3〜3V、好ましくは0.7〜1.5Vである。0.3Vより低いと安定して固化が開始できないおそれがあり、3Vより高いと電極から水素ガスを含んだ気泡が発生することがあるため好ましくない。周波数は直流または交流のいずれでもよく、好ましくは0.001〜1Hzの交流が用いられる。
【0014】
酢酸ナトリウム3水塩を主材として含有する蓄熱材には、水と固液分離防止剤とを含有させることができる。水の添加量は、酢酸ナトリウム3水塩の水和モル数の1/3程度以下である。固液分離防止剤としては、水溶性高分子、水膨潤性高分子、高吸水性樹脂、シリカ系増粘剤などが挙げられる。水溶性高分子としてはポリアクリル酸ナトリウム、ポリアクリルアミド、天然ガム類などが挙げられる。水膨潤性高分子としては架橋ポリアクリル酸ナトリウムなどが挙げられる。高吸水性樹脂としては架橋ポリアクリル酸塩、架橋ポリビニルアルコールなどが挙げられる。シリカ系増粘剤としては、煙霧状シリカなどが挙げられる。さらに融点調整剤、分散剤、消泡剤、腐食防止剤、着色剤などを含有させることができる。
【0015】
次に、本発明の活性化処理方法について以下に述べる。
本発明の蓄熱装置において、本発明の蓄熱材に電極を接触するように設置したあと、蓄熱材を加熱して溶融状態とした後に蓄熱材を冷却して過冷却状態とし、その後に少なくとも1本が銀電極である1対の電極に電圧を印加しても、固化が開始しない場合が多く、本発明の蓄熱装置を安定して繰り返して固化が開始できる蓄熱装置とするためには、蓄熱装置の運転を開始する前に、次に述べる前処理が必要であり、これを活性化処理と称する。活性化処理は次に述べる通電処理と固化処理をこの順で行うことにより行う。
【0016】
本発明の蓄熱材を融点以上に加熱して融解状態とし、これに電極を挿入するなどして接触させ、蓄熱材が融解状態(温度は融点以上)となっている状態において、必要であれば他の電極も接触させて該銀電極に電圧を印加して通電する通電処理を行う。電圧は通常は1〜3V程度であり、好ましくは1〜1.5Vである。通電時間は通常は0.1時間以上、好ましくは1〜8時間程度である。次に蓄熱材を冷却して融点以下とすると、過冷却状態となる。この状態で蓄熱材を固化させ、電極表面と結晶を接触させる。これを固化処理と称する。固化の方法は、種結晶を添加する、先鋭物を挿入する、液表面を乾燥させるなどいずれでもよい。このように通電処理と固化処理を共にこの順で行うことで活性化が実現される。このように通電処理と固化処理によって電極の活性化処理を行うことができるのは、通電処理によって電極表面が一部溶出して新たな表面が形成され、その新たな表面に酢酸ナトリウム3水塩の結晶が付着するためと思われる。
【0017】
【実施例】
以下実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0018】
実施例1
(溶液調製)
酢酸ナトリウム無水物58.8gと水46.2gを150mlビーカーに採取し、65℃水浴中で加熱して透明な溶液に調製した。これを50mlスクリュー管に50g採取し、塩化カリウム0.25g(0.5重量%)を添加、溶解し、62℃水浴中に保持した。
【0019】
(電極設置)
直径1mm、長さ65mmの銀線(純度99.9%)2本をゴム栓に挿入したあと、アセトンで洗浄、乾燥した。これを前記のスクリュー管に挿入し、銀線先端5mmが溶液に浸漬するように調整した。
【0020】
(活性化処理)
上記スクリュー管を62℃水浴中に保持し、電圧1.0V、周波数0.05Hzの交流を4時間通電した。銀電極は2本とも淡灰色化した。スクリュー管を20℃水中に浸漬し、1時間後に電極付ゴム栓を取り除いて酢酸ナトリウム3水塩の種結晶数粒を投入し、直ちにゴム栓を挿入した。スクリュー管中の溶液は全体が固化した。これを一夜静置した。
【0021】
(固化実験)
上記固化した試料を62℃水浴中に浸漬し、1.5時間後にマグネチックスターラーで2時間攪拌した結果、試料は透明溶液となった。これを20℃水中に30分浸漬して過冷却溶液とした。これに室温にて電圧1.0V、周波数0.05Hzの交流を印加したところ、1.5秒後に銀電極先端から固化が始まり、直ちに全体が固化した。固化した試料を上記同様に62℃融解し、20℃で冷却し、室温で電圧印加を行うことを繰り返した。30回の繰り返しで毎回3秒以内に固化が始まった。
【0022】
実施例2〜15
実施例1において塩化カリウムに代えて表1の添加物を含む試料について活性化処理と固化実験を実施例1と同様の実験を行った。表1に各々の条件と結果を示す。いずれも短時間で固化が始まり、かつ30回の繰り返しで毎回固化した。
【0023】
比較例1,2
実施例1において塩化カリウムを含まない試料について、活性化処理と固化実験を実施例1と同様の実験を行った。表1に示す如く、1.0Vでは固化せず、2.0Vでは固化したが電極表面に気泡が発生した。
【0024】
【表1】

Figure 0004365581
【0025】
比較例3〜6
実施例1と同様にして、塩化カリウムまたは塩化ナトリウムを0.5%添加した溶液を調製し、電極を設置した。これに活性化処理として通電処理あるいは固化処理を行わなかった試料に対して、実施例1と同様に固化実験を行った結果を表1に示す。通電処理あるいは固化処理のいずれかを行わなかった試料は固化しなかった。
【0026】
【発明の効果】
本発明の蓄熱装置は、酢酸ナトリウム3水塩を主材とする蓄熱材を用いてなり、該蓄熱材に接触した少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置であって、固化開始の繰り返し安定性の良い蓄熱装置であり、硝酸を含有していないので長期使用により蓄熱材の蓄熱量が低下するという問題もなく、電圧印加という簡便な操作で放熱時期を調整することが可能であり、また、本発明の活性化処理方法によれば、本発明の蓄熱装置において、蓄熱装置が備える銀電極を簡易に活性化することができ、固化開始の繰り返し安定性の高い蓄熱装置を実現することができるので、建造物の暖房として用いる場合に安定した運転が可能となり、本発明は工業的に極めて有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat storage device that can be used for heating a building or the like and that can control heat dissipation using sodium acetate trihydrate as a heat storage material, and an activation processing method for the electrode.
[0002]
[Prior art]
A heat storage device capable of controlling heat dissipation is used for heating a building. The heat storage device is used as a heating device that stores heat generated by using low-cost electric power at a low price using a heat storage material and gradually releases the heat in the daytime.
[0003]
As such a heat storage material, a heat storage device using sodium acetate trihydrate which is a salt hydrate has already been put into practical use. Sodium acetate trihydrate is suitable as a heat storage material because it has a large calorific value (solidification heat) due to phase change and has an appropriate phase change temperature for heating, that is, a melting point, but it has a high degree of supercooling. There are features. That is, even if the temperature falls below the melting point, solidification does not occur, so heat release of latent heat is not performed, and as it is, it may not function as heating, so that the degree of supercooling is large so far. It has been considered a drawback and the search for supercooling inhibitors has long been made.
[0004]
However, this large degree of supercooling means that the heat release timing of latent heat is selected by controlling the release of supercooling (start of solidification) from the outside (this control is hereinafter referred to as “heat dissipation control”). For example, a heat storage device that adds a seed crystal when it is desired to dissipate heat has been proposed for a long time. However, there are problems that the composition of the heat storage material is changed by repeatedly adding seed crystals, and that the addition operation is complicated and impractical when the addition operation is frequent.
[0005]
Therefore, sodium acetate trihydrate is used as a heat storage material as a heat storage device capable of performing simpler heat dissipation control, a copper-almalgam electrode is inserted into the heat storage material, and a DC voltage of 2.5 V is applied in a supercooled state. Thus, a heat storage device that can be solidified has been proposed (see, for example, Patent Document 1). However, solidification may not occur even when a voltage is applied to the electrodes in a supercooled state of the heat storage material, and this heat storage device has a problem that it is poor in repeated stability at the start of solidification.
[0006]
As a heat storage device that solves this problem and improves the repetitive stability at the start of solidification, 0.1% nitric acid is added to the sodium acetate trihydrate of the heat storage material, and a pair of silver electrodes are contacted with the heat storage material In addition, there has been proposed a heat storage device capable of performing heat radiation control by applying a voltage to the silver electrode when the heat storage material is in a supercooled state (see, for example, Patent Document 2). However, since nitric acid oxidizes sodium acetate trihydrate, there is a problem that the heat storage amount of the heat storage material is reduced by long-term use.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 57-174663 [Patent Document 2]
Japanese Patent Laid-Open No. 63-230784
[Problems to be solved by the invention]
An object of the present invention is a heat storage device comprising a heat storage material containing sodium acetate trihydrate as a main material, comprising at least one pair of electrodes in contact with the heat storage material, at least one of which is a silver electrode. An object of the present invention is to provide a heat storage device that does not contain nitric acid in the heat storage material and has high stability at the start of solidification. Another object of the present invention is to provide a method for activating an electrode of the heat storage device that enables a highly stable operation at the start of solidification of the heat storage device.
[0009]
[Means for Solving the Problems]
The present inventor uses a heat storage material containing sodium acetate trihydrate as a main material, and includes at least one pair of electrodes in contact with the heat storage material, at least one of which is a silver electrode, and its By intensively studying the electrode activation method, it is found that a heat storage device in which a specific metal halide is contained in the heat storage material can be a heat storage device that can solve the above-mentioned problems, and at least one of the above-mentioned methods is used in a specific procedure. It discovered that the activation process which can solve the said subject was possible by supplying with electricity to a silver electrode and solidifying a thermal storage material.
That is, the present invention contains sodium acetate trihydrate as a main material, and contains one or more compounds selected from the group consisting of chlorides, bromides and iodides of alkali metals, alkaline earth metals and zinc. Provided is a heat storage device comprising a heat storage material, comprising at least one pair of electrodes, at least one of which is a silver electrode. Further, the present invention comprises sodium acetate trihydrate as a main material, and contains at least one compound selected from the group consisting of chlorides, bromides and iodides of alkali metals, alkaline earth metals and zinc. In a heat storage device comprising at least one pair of electrodes, of which at least one is a silver electrode, energizing at least one silver electrode in contact with the heat storage material in a melt state, Further, the present invention provides a method for activating an electrode, wherein the heat storage material is solidified in a state where the silver electrode is in contact with the heat storage material.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described in detail below.
The heat storage device of the present invention uses a heat storage material containing sodium acetate trihydrate that shows a solid-liquid phase change by heating and cooling as a main material. It is preferable that the heat storage material is normally used by being filled in a container having no moisture permeability. The shape of the container is not particularly limited, and any shape such as a cylindrical shape, a coil shape, or a flat plate shape can be used. When the heat storage device is embedded in the floor and used, the container filled with the heat storage material preferably has sufficient strength to withstand the load.
[0011]
The heat storage material of the present invention contains one or more selected from the group consisting of chlorides, bromides and iodides of alkali metals, alkaline earth metals and zinc, for example, lithium, sodium, potassium, magnesium, calcium And one or more selected from the group consisting of 21 compounds of chloride, bromide and iodide of strontium and zinc. These compounds may be anhydrous or hydrated. The content is usually 0.01 to 40% by weight, preferably 0.02 to 1% by weight. If it is lower than 0.01% by weight, there is a possibility that the heat storage device will not be highly stable in the melting-solidification cycle, and if it is higher than 40% by weight, the amount of heat that can be stored may be reduced.
[0012]
Furthermore, the heat storage device of the present invention comprises at least one pair of electrodes, of which at least one is a silver electrode. A silver electrode means what at least one part of the electroconductive part which can contact a thermal storage material consists of silver or a silver alloy. Other poles may be copper, zinc, iron, nickel, tin, carbon, etc. Preferably, all the electrodes are silver or silver alloy electrodes. The shape may be any shape such as a linear shape, a plate shape, a rod shape, or a tubular shape.
[0013]
The voltage to be applied depends on the shape of the electrode, the electrode interval, and the like, but is usually 0.3 to 3 V, preferably 0.7 to 1.5 V. If it is lower than 0.3 V, solidification may not start stably, and if it is higher than 3 V, bubbles containing hydrogen gas may be generated from the electrode, which is not preferable. The frequency may be either direct current or alternating current, and preferably 0.001-1 Hz alternating current is used.
[0014]
The heat storage material containing sodium acetate trihydrate as a main material can contain water and a solid-liquid separation inhibitor. The amount of water added is about 3 or less of the number of moles of hydrated sodium acetate trihydrate. Examples of the solid-liquid separation inhibitor include water-soluble polymers, water-swellable polymers, highly water-absorbent resins, and silica-based thickeners. Examples of the water-soluble polymer include sodium polyacrylate, polyacrylamide, and natural gums. Examples of the water-swellable polymer include crosslinked sodium polyacrylate. Examples of the superabsorbent resin include crosslinked polyacrylate and crosslinked polyvinyl alcohol. Examples of the silica thickener include fumed silica. Further, a melting point adjusting agent, a dispersant, an antifoaming agent, a corrosion inhibitor, a colorant, and the like can be contained.
[0015]
Next, the activation processing method of the present invention will be described below.
In the heat storage device of the present invention, after the electrode is brought into contact with the heat storage material of the present invention, the heat storage material is heated to a molten state, and then the heat storage material is cooled to a supercooled state, and then at least one In many cases, solidification does not start even when a voltage is applied to a pair of electrodes that are silver electrodes, and in order to make the heat storage device of the present invention stable and repeatable to start solidification, Before starting the operation, the following pretreatment is required, which is called activation treatment. The activation process is performed by performing the following energization process and solidification process in this order.
[0016]
If necessary, in the state where the heat storage material of the present invention is heated to the melting point or higher and brought into a molten state and brought into contact with the heat storage material by inserting an electrode or the like, and the heat storage material is in a molten state (temperature is higher than the melting point). An energization process is performed in which other electrodes are also brought into contact with each other to apply a voltage to the silver electrodes to energize. The voltage is usually about 1 to 3 V, preferably 1 to 1.5 V. The energization time is usually 0.1 hours or longer, preferably about 1 to 8 hours. Next, when the heat storage material is cooled to the melting point or lower, it becomes a supercooled state. In this state, the heat storage material is solidified to bring the electrode surface into contact with the crystal. This is called a solidification process. The solidification method may be any method such as adding a seed crystal, inserting a sharp object, or drying the liquid surface. Thus, activation is realized by performing both the energization process and the solidification process in this order. In this way, the electrode activation process can be performed by the energization process and the solidification process. A part of the electrode surface is eluted by the energization process to form a new surface, and sodium acetate trihydrate is formed on the new surface. This seems to be due to the adhesion of crystals.
[0017]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
[0018]
Example 1
(Solution preparation)
Anhydrous sodium acetate 58.8 g and 46.2 g of water were collected in a 150 ml beaker and heated in a 65 ° C. water bath to prepare a clear solution. 50 g of this was collected in a 50 ml screw tube, and 0.25 g (0.5 wt%) of potassium chloride was added and dissolved, and kept in a 62 ° C. water bath.
[0019]
(Electrode installation)
Two silver wires (purity 99.9%) having a diameter of 1 mm and a length of 65 mm were inserted into a rubber stopper, washed with acetone and dried. This was inserted into the screw tube and adjusted so that the tip of the silver wire was immersed in the solution.
[0020]
(Activation process)
The screw tube was held in a 62 ° C. water bath, and an alternating current with a voltage of 1.0 V and a frequency of 0.05 Hz was applied for 4 hours. Both silver electrodes turned light gray. The screw tube was immersed in 20 ° C. water, and after 1 hour, the rubber plug with the electrode was removed, several seed crystals of sodium acetate trihydrate were added, and the rubber plug was immediately inserted. The entire solution in the screw tube solidified. This was left overnight.
[0021]
(Solidification experiment)
The solidified sample was immersed in a 62 ° C. water bath and stirred for 1.5 hours with a magnetic stirrer after 1.5 hours. As a result, the sample became a transparent solution. This was immersed in 20 ° C. water for 30 minutes to obtain a supercooled solution. When an AC voltage of 1.0 V and a frequency of 0.05 Hz was applied to this at room temperature, solidification started from the tip of the silver electrode 1.5 seconds later, and the whole solidified immediately. The solidified sample was melted at 62 ° C. as described above, cooled at 20 ° C., and voltage application was repeated at room temperature. Solidification started within 3 seconds each time after 30 repetitions.
[0022]
Examples 2-15
The same experiment as in Example 1 was performed for the activation treatment and the solidification experiment on the sample containing the additives in Table 1 instead of potassium chloride in Example 1. Table 1 shows the respective conditions and results. In any case, solidification started in a short time and solidified every time with 30 repetitions.
[0023]
Comparative Examples 1 and 2
For the sample not containing potassium chloride in Example 1, the activation treatment and the solidification experiment were performed in the same manner as in Example 1. As shown in Table 1, it was not solidified at 1.0 V and solidified at 2.0 V, but bubbles were generated on the electrode surface.
[0024]
[Table 1]
Figure 0004365581
[0025]
Comparative Examples 3-6
In the same manner as in Example 1, a solution containing 0.5% potassium chloride or sodium chloride was prepared, and an electrode was installed. Table 1 shows the results of solidification experiments performed on samples that were not subjected to energization treatment or solidification treatment as activation treatment in the same manner as in Example 1. Samples that were not subjected to either energization or solidification did not solidify.
[0026]
【The invention's effect】
The heat storage device of the present invention is a heat storage device that uses a heat storage material mainly composed of sodium acetate trihydrate and includes at least one pair of electrodes in contact with the heat storage material, at least one of which is a silver electrode. In addition, it is a heat storage device with good stability at the start of solidification, and since it does not contain nitric acid, there is no problem that the heat storage amount of the heat storage material decreases due to long-term use, and the heat release time can be adjusted with a simple operation of applying voltage In addition, according to the activation treatment method of the present invention, the silver electrode provided in the heat storage device can be easily activated in the heat storage device of the present invention, and the repetition stability of the start of solidification can be improved. Since a high heat storage device can be realized, stable operation is possible when used as heating for a building, and the present invention is extremely useful industrially.

Claims (1)

酢酸ナトリウム3水塩を主材とし、アルカリ金属、アルカリ土類金属および亜鉛のそれぞれの塩化物、臭化物およびヨウ化物からなる群から選ばれる1種以上の化合物0.02〜1重量%と、水および/または固液分離防止剤と、を含有する蓄熱材を用いてなり、少なくとも1対の電極を備え、そのうち少なくとも1本は銀電極である蓄熱装置を用いた電極の活性化処理方法であって、  Sodium acetate trihydrate as a main material, 0.02 to 1% by weight of one or more compounds selected from the group consisting of chlorides, bromides and iodides of alkali metals, alkaline earth metals and zinc, and water And / or a solid-liquid separation inhibitor, and an electrode activation treatment method using a heat storage device comprising at least one pair of electrodes, at least one of which is a silver electrode. And
融液状態の蓄熱材と接触した少なくとも1本の銀電極に通電し、その後に、この銀電極が前記蓄熱材に接触した状態で前記蓄熱材を固化させる事を特徴とする電極の活性化処理方法。  An activation process for an electrode characterized by energizing at least one silver electrode in contact with a heat storage material in a melt state and then solidifying the heat storage material in a state where the silver electrode is in contact with the heat storage material Method.
JP2002376693A 2002-12-26 2002-12-26 Method for activating electrode of heat storage device Expired - Fee Related JP4365581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376693A JP4365581B2 (en) 2002-12-26 2002-12-26 Method for activating electrode of heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376693A JP4365581B2 (en) 2002-12-26 2002-12-26 Method for activating electrode of heat storage device

Publications (2)

Publication Number Publication Date
JP2004205153A JP2004205153A (en) 2004-07-22
JP4365581B2 true JP4365581B2 (en) 2009-11-18

Family

ID=32814090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376693A Expired - Fee Related JP4365581B2 (en) 2002-12-26 2002-12-26 Method for activating electrode of heat storage device

Country Status (1)

Country Link
JP (1) JP4365581B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2950045B1 (en) * 2009-09-17 2012-10-12 Mcphy Energy STORAGE AND STORAGE TANK FOR HYDROGEN AND / OR HEAT
JP7176202B2 (en) * 2018-03-02 2022-11-22 東ソー株式会社 Composition, production method and use thereof
JP7425819B2 (en) 2022-03-30 2024-01-31 本田技研工業株式会社 heat storage material

Also Published As

Publication number Publication date
JP2004205153A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP2016108535A (en) Heat storage material composition, heat storage device and heat storage method
JP4365581B2 (en) Method for activating electrode of heat storage device
WO2013185538A1 (en) Electrolysis tank used for aluminum electrolysis and electrolysis process using the electrolyzer
US3368952A (en) Alloy for cathodic protection galvanic anode
JP4365580B2 (en) Method for activating electrode of heat storage device
JP4361266B2 (en) Method for activation treatment of electrode of heat storage device
CN104487537B (en) Heat storage material composition, auxiliary heat source using same, and heat supply method
JP4195283B2 (en) Heat storage heat dissipation control method
CN110564373A (en) Inorganic hydrated salt composite phase-change heat storage material and preparation and use method thereof
JP2018146173A (en) Thermal storage device
JP2004205149A (en) Activating method for electrode of heat accumulator
JP2007502769A (en) Apparatus and method for producing hydrogen
CN109706457B (en) Electronic anode protection anti-corrosion device and method for phase change heat storage equipment
JPH08245953A (en) Composition for thermal storage
US6152212A (en) Heat storage system and heat release control method
JPS61204293A (en) Heat-storing tank
JP4309990B2 (en) Thermal storage material composition and heating device using the same
JPH06172887A (en) Production of aluminum alloy
JP3857781B2 (en) Heat storage device capable of controlling heat dissipation and heat dissipation control method for heat storage device
JP2003070824A (en) Heat-accumulating device
Robertson et al. An observation of corrosion cracking without stress
US4626329A (en) Corrosion protection with sacrificial anodes
JPS628715B2 (en)
EP2655252A1 (en) Method and apparatus for producing silicon
JPS5945917B2 (en) heat storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090821

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees