JP4365170B2 - Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid - Google Patents

Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid Download PDF

Info

Publication number
JP4365170B2
JP4365170B2 JP2003306316A JP2003306316A JP4365170B2 JP 4365170 B2 JP4365170 B2 JP 4365170B2 JP 2003306316 A JP2003306316 A JP 2003306316A JP 2003306316 A JP2003306316 A JP 2003306316A JP 4365170 B2 JP4365170 B2 JP 4365170B2
Authority
JP
Japan
Prior art keywords
fluid
treated
cylinder
reaction
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306316A
Other languages
Japanese (ja)
Other versions
JP2005074279A (en
JP2005074279A5 (en
Inventor
喜裕 余米
研 川辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2003306316A priority Critical patent/JP4365170B2/en
Publication of JP2005074279A publication Critical patent/JP2005074279A/en
Publication of JP2005074279A5 publication Critical patent/JP2005074279A5/ja
Application granted granted Critical
Publication of JP4365170B2 publication Critical patent/JP4365170B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、周期的に圧縮及び膨張を繰り返して超臨界流体又は亜臨界流体による有機物質の反応装置における被処理材供給方法に関するものである。具体的には、反応装置における反応室内等へ導入する被処理材を吸気弁や噴霧弁のシート部の噛み込み等を生じさせることなく、被処理材を供給する超臨界流体又は亜臨界流体による有機物質の反応装置における被処理材供給方法に関するものである。 The present invention relates to treated material supplying method in repeat cyclically compressed and expanded reactor organic matter with supercritical fluid or subcritical fluid. Specifically, by the supercritical fluid or subcritical fluid that supplies the material to be processed without causing the material of the material to be introduced into the reaction chamber or the like in the reaction apparatus to bite the seat portion of the intake valve or the spray valve. it relates workpiece supply method in the reactor of the organic matter.

バイオマスなどの有機物質等の被処理材に対する処理方法としては、かつての薬品酸化法、光酸化法、燃焼法に代えて、超臨界水又は亜臨界水による分解の方法や装置が開発されている(特許文献1)。   As a treatment method for materials to be treated such as organic substances such as biomass, a method and apparatus for decomposition with supercritical water or subcritical water has been developed in place of the former chemical oxidation method, photooxidation method and combustion method. (Patent Document 1).

さらに、超臨界流体又は亜臨界流体による有機物質等の被処理材の反応方法として、例えば、水の臨界条件、すなわち、臨界温度374℃、臨界圧力218気圧を超えた条件の超臨界水が、その温度と圧力で制御可能となって、パラフィン系炭化水素やベンゼン等の被処理材を分解処理する方法も知られている(特許文献2)。   Furthermore, as a method for reacting a material to be treated such as an organic substance with a supercritical fluid or a subcritical fluid, for example, supercritical water under a critical condition of water, that is, a critical temperature of 374 ° C. and a critical pressure exceeding 218 atm. A method of decomposing a material to be treated such as paraffinic hydrocarbon and benzene, which can be controlled by the temperature and pressure, is also known (Patent Document 2).

特許文献2では、例えば、被処理材である木粉等の有機物質を分散させた高圧流体を急加熱して超臨界又は亜臨界の状態を保つことにより、流体蒸気の超臨界又は亜臨界の状態での化学反応により、木粉等を糖への糖化反応を行なわせることができる反応装置が開示されている。すなわち、圧縮して超臨界流体又は亜臨界流体を得る手段と、この超臨界流体又は亜臨界流体を有機物等の被処理材に接触させて化学反応を行わせる手段と、この化学反応によって生じる生成物を含む流体を膨張させて減圧させる手段とからなる反応装置である。   In Patent Document 2, for example, by maintaining a supercritical or subcritical state by rapidly heating a high-pressure fluid in which an organic substance such as wood powder as a material to be treated is dispersed, the supercritical or subcritical fluid vapor is maintained. A reaction apparatus capable of causing saccharification reaction of wood flour or the like to sugar by a chemical reaction in a state is disclosed. That is, a means for compressing to obtain a supercritical fluid or subcritical fluid, a means for bringing the supercritical fluid or subcritical fluid into contact with a material to be treated such as an organic substance, and a chemical reaction, and a production generated by the chemical reaction It is a reaction apparatus comprising means for expanding and depressurizing a fluid containing an object.

さらに、特許文献2においては、流体蒸気を圧縮して超臨界流体又は亜臨界流体を得る手段と、この超臨界流体又は亜臨界流体を有機物等の被処理材に接触させて化学反応を行わせる手段と、及びこの化学反応によって生じる生成物を含む流体を膨張させて減圧させる手段として、シリンダとこのシリンダに設けられたピストン(圧縮プランジャ)とからなり、このピストン(圧縮プランジャ)を動作させることにより流体蒸気を圧縮し、化学反応の終了後にピストン(圧縮プランジャ)を逆方向に動作させて温度及び圧力を下げ、得られた生成物を含む流体をシリンダ内から取り出して新たな流体蒸気をシリンダ内に吹き込むことにより周期的に動作させる方法、及びその装置が開示されている。   Furthermore, in Patent Document 2, a means for obtaining a supercritical fluid or subcritical fluid by compressing fluid vapor, and a chemical reaction is performed by bringing the supercritical fluid or subcritical fluid into contact with a material to be treated such as an organic substance. And a cylinder and a piston (compression plunger) provided in the cylinder as a means for expanding and depressurizing the fluid containing the product generated by the chemical reaction, and operating the piston (compression plunger) After the chemical reaction is completed, the fluid vapor is compressed, and the piston (compression plunger) is operated in the opposite direction to lower the temperature and pressure. The fluid containing the obtained product is taken out from the cylinder and new fluid vapor is removed from the cylinder. A method and apparatus for operating periodically by blowing into it are disclosed.

一方、超臨界流体又は亜臨界流体による有機物質等の反応装置においては、被処理材を超臨界流体又は亜臨界流体中に如何に均一に分散するかが重要であるが、従来の方法では、被処理材をシリンダ内へ分散導入させる方法として、ロータリーフィーダに被処理材を導入すると同時に、加圧水が送り込まれ、ロータリーフィーダで被処理材を水中に拡散しながらインジェクタにより被処理材が噴射され反応室内に供給されると示されているが、フィーダ部等の詳細については示されていない。
特公平1−38532号公報 特開2002−263465号公報
On the other hand, in a reaction apparatus such as an organic substance using a supercritical fluid or a subcritical fluid, it is important how the material to be treated is uniformly dispersed in the supercritical fluid or the subcritical fluid. In order to disperse and introduce the material to be treated into the cylinder, the material to be treated is introduced into the rotary feeder and at the same time pressurized water is fed, and the material to be treated is injected and reacted by the rotary feeder while diffusing the material to be treated in the rotary feeder. Although it is shown that it is supplied indoors, details of the feeder section and the like are not shown.
Japanese Patent Publication No. 1-38532 JP 2002-263465 A

従来の反応装置において、その超臨界流体又は亜臨界流体の反応容器内に直接、有機物質等の被処理材を導入しようとすると高圧ポンプを用いて被処理材を反応室内に噴射する必要があるが、従来の反応装置による場合、供給ノズル部における噴射弁のシート部で被処理材の噛み込みが生じたり、被処理材をロータリーフィーダに供給する際に被処理材が流体と分離したり、被処理材が集合して、反応装置におけるシリンダ内の反応室に被処理材を毎回均一にその一定量を分散させることが困難となる。   In a conventional reaction apparatus, if a material to be treated such as an organic substance is to be introduced directly into a reaction vessel of the supercritical fluid or subcritical fluid, the material to be treated must be injected into the reaction chamber using a high-pressure pump. However, in the case of the conventional reaction apparatus, the material to be processed is bitten by the sheet portion of the injection valve in the supply nozzle, or the material to be processed is separated from the fluid when the material to be processed is supplied to the rotary feeder. It becomes difficult to disperse a certain amount of the material to be treated uniformly every time in the reaction chamber in the cylinder of the reaction apparatus.

そこで、本発明は、上記した困難を解消して、被処理材の一定量を流体蒸気に分散させると共に反応機関におけるシート部等で噛み込みが生じることなく被処理材を導入できる超臨界流体又は亜臨界流体による有機物質の反応装置における被処理材供給方法を提供することを目的とした。 Therefore, the present invention eliminates the above-described difficulties, disperses a certain amount of the material to be treated in the fluid vapor, and can introduce the material to be treated without causing biting in the seat portion or the like in the reaction engine or It aimed at providing a material to be treated supply method in the reactor of organic matter by subcritical fluid.

上記の目的を達成するため、本発明の超臨界流体または亜臨界流体による有機物質等の反応装置における被処理材供給方法は、シリンダとこのシリンダに設けられた圧縮プランジャとからなり、圧縮プランジャを動作させることによりシリンダ内に導入した被処理材を伴う流体蒸気を圧縮し、この圧縮による被処理材の化学反応が終了した後に、圧縮プランジャを逆方向に動作させて流体蒸気の温度及び圧力を下げ、得られた生成物を含む流体をシリンダ内から取り出して新たな流体蒸気をシリンダ内に吹き込むことにより周期的に吸排気行程を行う反応機関を備える反応装置において、反応装置の反応室又は吸気ポートと連通するように低圧で被処理材を供給するラインと高圧で流体を噴霧するラインを併設し、該両ラインの一部を形成する切替弁を設け、該切替弁を移動させることにより、被処理材で満たされた該ラインの一部が流体の該高圧流体ラインに連通するようにシリンダ内に設け、流体蒸気を吸入する期間内に、被処理材を高圧の流体噴霧に乗せて、吸気ポート内に分散導入することを特徴とする。 In order to achieve the above object, a method for supplying a material to be processed in a reaction apparatus for an organic substance or the like using a supercritical fluid or a subcritical fluid according to the present invention comprises a cylinder and a compression plunger provided in the cylinder. By operating, the fluid vapor accompanying the material to be treated introduced into the cylinder is compressed, and after the chemical reaction of the material to be treated by this compression is completed, the temperature and pressure of the fluid vapor are adjusted by operating the compression plunger in the reverse direction. In a reaction apparatus comprising a reaction engine that periodically performs intake and exhaust strokes by taking out the fluid containing the obtained product from the cylinder and blowing new fluid vapor into the cylinder, the reaction chamber or intake air of the reaction apparatus A line for supplying the material to be processed at a low pressure and a line for spraying the fluid at a high pressure are provided so as to communicate with the port, and a part of both lines is formed. The switching valve is provided, by moving the switching valve is provided in the cylinder such that a portion of the line that was filled with the material to be treated is communicated to the high pressure fluid line in fluid, within the period for sucking fluid vapor Further, the material to be treated is placed in a high-pressure fluid spray and dispersedly introduced into the intake port.

上述したように本発明の超臨界流体又は亜臨界流体による有機物質の反応装置における被処理材供給方法では、次のような効果が発揮される。本発明に係る被処理材供給方法によれば、被処理材を高圧の流体の噴霧に乗せて、反応装置のシリンダ内又は吸気ポート内へ導入するため、シリンダ内に吸入された流体蒸気を概ね均一に分散することが可能となる。 The material to be treated supply method in the reactor of the organic matter with supercritical fluid or subcritical fluid of the present invention as described above, the following effects are exhibited. According to the method for supplying a material to be processed according to the present invention, since the material to be processed is put on a high-pressure fluid spray and introduced into the cylinder or the intake port of the reaction apparatus, the fluid vapor sucked into the cylinder is generally reduced. It becomes possible to disperse uniformly.

そして、高圧流体とともに噴射弁により被処理材をシリンダ内又は吸気ポート内に分散させる方法においては、被処理材は高圧圧縮状態からシリンダや吸気ポート内で急膨張するため、被処理材が爆砕効果で微細化され、反応機関内における被処理材の化学反応がより促進される。   In the method of dispersing the material to be treated in the cylinder or the intake port by the injection valve together with the high pressure fluid, the material to be treated expands rapidly from the high pressure compression state in the cylinder or the intake port. The chemical reaction of the material to be treated in the reaction engine is further promoted.

また、被処理材が、シリンダや吸気ポート内へ「流体−被処理材混入流体−流体」を1回の噴射量として噴射されるため、1回の被処理材の噴射導入の吹き終わり時に噴射弁のシート部への被処理材の噛み込みを防止することができる。   In addition, since the material to be treated is injected into the cylinder or the intake port as a single injection amount of “fluid-processed material mixed fluid-fluid”, injection is performed at the end of one injection of the material to be processed. Biting of the material to be processed into the valve seat can be prevented.

また、高圧噴射流体に乗せてシリンダや吸気ポート内へ導入する前の被処理材は、低圧で供給可能な機構としているため、水などの流体と分離しやすい被処理物でも濃度を概ね一定に保つことが可能となり、長時間にわたり被処理材の一定量を安定して供給することができる。   In addition, since the material to be processed before being introduced into the cylinder or intake port by being placed on the high-pressure jet fluid has a mechanism that can be supplied at a low pressure, the concentration of the material to be processed that is easily separated from the fluid such as water is almost constant. This makes it possible to maintain a constant amount of the material to be treated over a long period of time.

次に、本発明を実施するための最良の形態を図に基づいて説明する。図1に示すように、反応装置における反応機関1には、圧縮プランジャ4を備えるシリンダ2が設けられている。シリンダ2には、その上部にシリンダヘッド3が設けられている。シリンダヘッド3には、吸気ポート3a内に外部に設けた被処理材導入口7aに連通するように被処理材溜部7を設け、その近傍に流体噴霧弁8を設けている。この反応機関1では超臨界流体又は亜臨界流体を得るための流体として水を使用するが、この流体として、その他に二酸化炭素、亜酸化窒素、フレオン12、フレオン13、エタン、エチレン、プロパン、プロピレン、ブタン、ヘキサン、メタノール、ベンゼン、トルエン、アンモニア、その他の物質を選択して使用することも可能である。また被処理材としては、木粉等の有機物質などを挙げることができる。   Next, the best mode for carrying out the present invention will be described with reference to the drawings. As shown in FIG. 1, a reaction engine 1 in the reaction apparatus is provided with a cylinder 2 having a compression plunger 4. The cylinder 2 is provided with a cylinder head 3 at the top thereof. The cylinder head 3 is provided with a treated material reservoir 7 so as to communicate with a treated material introduction port 7a provided outside in the intake port 3a, and a fluid spray valve 8 is provided in the vicinity thereof. In this reaction engine 1, water is used as a fluid for obtaining a supercritical fluid or a subcritical fluid. In addition, carbon dioxide, nitrous oxide, freon 12, freon 13, ethane, ethylene, propane, propylene are used as the fluid. , Butane, hexane, methanol, benzene, toluene, ammonia, and other substances can be selected and used. Examples of the material to be treated include organic substances such as wood powder.

シリンダヘッド3の吸気ポート3a内の被処理材溜部7には、被処理材導入口7aから一定の流速又は間欠的に一定量の被処理材が導入される。5は吸気弁であり、6は吸気弁5の頭部に設けられたタペットである。   A treated material reservoir 7 in the intake port 3a of the cylinder head 3 is introduced with a constant flow rate or a constant amount of treated material from the treated material introduction port 7a. Reference numeral 5 denotes an intake valve, and reference numeral 6 denotes a tappet provided at the head of the intake valve 5.

図1に示すように、シリンダヘッド3の上部には、カム軸取付台9が設けられている。カム軸取付台9には図示されていないカム軸が吸気弁5に直交して設けられている。カム軸が回転し、カム軸に備えるカムが、カム軸の端部に設けられているタペット6を介して吸気弁5が開閉される。   As shown in FIG. 1, a cam shaft mounting base 9 is provided on the upper portion of the cylinder head 3. The camshaft mount 9 is provided with a camshaft (not shown) orthogonal to the intake valve 5. The cam shaft rotates, and the cam provided on the cam shaft opens and closes the intake valve 5 via the tappet 6 provided at the end of the cam shaft.

被処理材溜部7に一定量蓄積された被処理材は、シリンダ2の吸気弁5の開弁期間内に流体噴射弁8から高圧噴射流体に乗せて吸気ポート3a内に分散され、そのまま流体蒸気とともにシリンダ2内に導入される。   The treated material accumulated in the treated material reservoir 7 is dispersed in the intake port 3a by being put on the high-pressure jet fluid from the fluid jet valve 8 during the opening period of the intake valve 5 of the cylinder 2. It is introduced into the cylinder 2 together with the steam.

図1に示した被処理材供給方法は、被処理材を別に設けた流体噴霧弁8からの噴流で吸気ポート3a内に分散させる方法であるが、図2に示す被処理材供給方法は、直接被処理材を噴射弁11で流体と一緒に、シリンダ2や吸気ポート3a内に噴射する方法がある。   1 is a method in which a material to be treated is dispersed in the intake port 3a by a jet from a fluid spray valve 8 provided separately, but the material to be treated shown in FIG. There is a method in which the material to be treated is directly injected into the cylinder 2 and the intake port 3a together with the fluid by the injection valve 11.

ここではシリンダ2内に噴射する場合の事例で説明する。シリンダヘッド3には、噴射弁本体11が設けられており、噴射弁本体11の先端にはノズル本体11aが、更にノズル本体11aには噴口11bが設けられている。被処理材はこの噴射弁本体11を経由し、高圧流体とともに噴口11bから噴射されてシリンダ2内に導入される。シリンダ2内に導入された流体蒸気が圧縮プランシャ4により断熱的に急速圧縮されることにより超臨界流体又は亜臨界流体の状態に変化するため、被処理材とこの超臨界流体又は亜臨界流体との接触により、被処理材は加水分解反応や熱分解反応等により処理されることになる。   Here, a case where the fuel is injected into the cylinder 2 will be described. The cylinder head 3 is provided with an injection valve main body 11, a nozzle main body 11 a is provided at the tip of the injection valve main body 11, and a nozzle hole 11 b is provided in the nozzle main body 11 a. The material to be treated passes through the injection valve body 11 and is injected from the injection port 11 b together with the high-pressure fluid and introduced into the cylinder 2. Since the fluid vapor introduced into the cylinder 2 is rapidly adiabatically compressed by the compression planner 4 to change into a supercritical fluid or subcritical fluid state, the material to be treated and the supercritical fluid or subcritical fluid are changed. The material to be treated is treated by a hydrolysis reaction, a thermal decomposition reaction, or the like.

反応機関1においては、水噴弁本体11の噴口11bから被処理材が高圧流体と一緒に低圧のシリンダ2内に噴射されるが、噴射された流体や被処理材の粒径が大きいと噴射されてから短時間で処理温度に達することが困難となるため、高圧噴射による微粒化が必要となる。一方、流体を高圧で噴射すると、噴霧の到達距離を大きくし、シリンダ2の摺動面への被処理材の付着を招き、圧縮プランジャ4のスキマに入り込み、シリンダ2の摺動面の損傷や、時には焼付きに至る。しかし、被処理材がシリンダ2に噴射されるタイミングのシリンダ2内の圧力は低く、高圧噴射された被処理材は、体積が急膨張し、細かく粉砕されるため、被処理材の距離も短くなり、噴射方向を概ね圧縮プランジャ4が下死点近傍でのほぼシリンダ2の中心ねらいとすることにより、シリンダ2の摺動面への付着が防止できる。また高圧噴射による被処理材の微細化は質量に対する表面積が大きくなり、超臨界流体又は亜臨界流体による被処理材の化学反応が迅速に進み、被処理材の反応を効率的に行うことが可能となる。   In the reaction engine 1, the material to be treated is injected into the low-pressure cylinder 2 together with the high-pressure fluid from the nozzle hole 11b of the water nozzle body 11. However, if the particle size of the injected fluid or the material to be treated is large, the material is injected. Since it becomes difficult to reach the processing temperature in a short time after being made, atomization by high pressure injection is required. On the other hand, when the fluid is injected at high pressure, the spray reach distance is increased, the material to be treated adheres to the sliding surface of the cylinder 2, enters the clearance of the compression plunger 4, and the sliding surface of the cylinder 2 is damaged. , Sometimes leads to seizure. However, the pressure in the cylinder 2 at the timing when the material to be treated is injected into the cylinder 2 is low, and the material to be treated that has been injected at a high pressure rapidly expands in volume and is finely pulverized. Thus, when the compression plunger 4 is generally aimed at the center of the cylinder 2 in the vicinity of the bottom dead center, the adhesion to the sliding surface of the cylinder 2 can be prevented. In addition, miniaturization of the material to be processed by high pressure injection increases the surface area relative to mass, and the chemical reaction of the material to be processed by the supercritical fluid or subcritical fluid proceeds rapidly, allowing the reaction of the material to be processed efficiently. It becomes.

シリンダ2内に被処理材を高圧噴射する噴射弁本体11の縦断面図を図3に、また、断面平面図を図4に示す。共に部分的に外観図とする部分断面図で示している。   FIG. 3 shows a longitudinal sectional view of the injection valve main body 11 for injecting the material to be processed into the cylinder 2 at a high pressure, and FIG. 4 shows a sectional plan view thereof. Both are shown in partial cross-sectional views that are partially external views.

図示されていない流体圧送ポンプより送られてきた高圧流体は、流体導入口12から噴射弁本体11に導かれる。高圧流体は流体導入口12から経路(A)12aを経由し、噴射弁本体11の中央部の横方向に貫通する切替弁穴14に導かれ、経路(B)12bを経由しノズル本体11aに達し、噴口11bからシリンダ2内に噴射される。   The high-pressure fluid sent from a fluid pump not shown is guided from the fluid inlet 12 to the injection valve body 11. The high-pressure fluid is guided from the fluid inlet 12 via the path (A) 12a to the switching valve hole 14 penetrating in the lateral direction of the central portion of the injection valve body 11, and then to the nozzle body 11a via the path (B) 12b. And is injected into the cylinder 2 from the nozzle 11b.

噴射弁本体11には高圧流体用の流体導入口12以外に、被処理材導入口13と切替弁穴14に連通する経路(C)13aが高圧流体用の経路(A)12a及び経路(B)12bにほぼ並行に併設されている。しかし、被処理材の種類によっては被処理材を混入した流体を高圧で送ると時間とともに濃度が変化し、一定量送り続けることが困難となるため、被処理材導入口13及び経路(C)13aに対向し、排出用の経路(D)13b、被処理材排出用口13cを設け、被処理材を混入した流体を低圧でこれらの経路を循環させることで、一定の濃度を維持する。   In addition to the fluid inlet 12 for high-pressure fluid, the injection valve main body 11 has a path (C) 13a that communicates with the workpiece inlet 13 and the switching valve hole 14 as a path (A) 12a and a path (B) for high-pressure fluid. ) It is attached to 12b almost in parallel. However, depending on the type of the material to be treated, if the fluid mixed with the material to be treated is sent at a high pressure, the concentration changes with time, making it difficult to continue feeding a certain amount. Therefore, the material to be treated inlet 13 and the path (C) A discharge path (D) 13b and a processing material discharge port 13c are provided opposite to 13a, and the fluid mixed with the processing material is circulated through these paths at a low pressure to maintain a constant concentration.

切替弁穴14には切替弁15が内装されており、切替弁穴14の両端に設けられた作動流体注入穴14a、14bに加えられる流体の圧力により、切替弁15が移動するように設定されている。   A switching valve 15 is provided in the switching valve hole 14, and the switching valve 15 is set to move by the pressure of the fluid applied to the working fluid injection holes 14 a and 14 b provided at both ends of the switching valve hole 14. ing.

噴射弁本体11のほぼ中央部に設けた切替弁穴14に内装されている切替弁15の外周には、高圧流体の経路(A)12a、経路(B)12bと被処理材の経路(C)13a、経路(D)13bの開口部に対応し、溝(A)15a、溝(B)15bが設けられている。   On the outer periphery of the switching valve 15 built in the switching valve hole 14 provided in the substantially central portion of the injection valve body 11, there are a high-pressure fluid path (A) 12a, a path (B) 12b, and a path of the material to be processed (C ) 13a, corresponding to the openings of the path (D) 13b, grooves (A) 15a and grooves (B) 15b are provided.

被処理材を噴射しない場合は、切替弁穴14の作動流体注入穴14aに作動流体を注入し、図5に示すように、切替弁15を作動流体注入穴14b側に移動させる。この状態で、図示していない流体圧送ポンプにより、加圧された高圧流体は流体導入口12−経路(A)12a−切替弁溝(A)15a−経路(B)12b−ノズル本体11a−噴口11bを経由してシリンダ2内に噴射される。この時、被処理材は図示されていない被処理材貯蔵タンクから図示されていない被処理材圧送ポンプにより、低圧で送られ、被処理材導入口13−経路(C)13a−切替弁溝(B)15b−経路(D)13b−排出口13cを経由し被処理材貯蔵タンクに戻る。   When the material to be treated is not ejected, the working fluid is injected into the working fluid injection hole 14a of the switching valve hole 14, and the switching valve 15 is moved to the working fluid injection hole 14b side as shown in FIG. In this state, the high-pressure fluid pressurized by a fluid pump not shown in the figure is fluid introduction port 12-route (A) 12a-switching valve groove (A) 15a-route (B) 12b-nozzle body 11a-nozzle It is injected into the cylinder 2 via 11b. At this time, the material to be treated is sent from a material storage tank (not shown) by a material pressure feeding pump (not shown) at a low pressure, and the material inlet 13-path (C) 13a-switching valve groove ( B) 15b-Route (D) 13b-Return to the material storage tank via the discharge port 13c.

一方、被処理材を噴射する場合は、切替弁穴14の作動流体注入穴14bに作動流体を注入し、切替弁15を作動流体注入穴14a側に移動させる。この場合、その移動量は、図6に示すように、切替弁溝(B)15bが高圧流体の経路(A)12aの開口部に連通するだけの量である。従って、図示していない流体圧送ポンプにより加圧された高圧流体は流体導入口12−経路(A)12a−切替弁溝(B)12b−ノズル本体11a−噴射穴11bを経由してシリンダ2内に噴射される。この時、切替弁溝(A)15aには高圧流体が、また溝(B)15bには被処理材が満たされているため、噴射弁11の噴射口11bから噴射される高圧流体には、被処理材が含まれて噴射されると同時に、噴射される流体は「流体−被処理材混入流体−流体」と並んだ被処理材混入流体となり、噴射終了時のシート部に存在する流体には被処理材を含まない。すなわち、流体でシート部を洗浄した後に弁を着座させシート部に被処理材の噛み込みを防止している。また、各経路の容積と噴射量を適当に設定することで、1回の噴射量での流体と被処理材の割合が設定でき被処理材や流体の種類に適した条件設定が可能となる。   On the other hand, when injecting the material to be processed, the working fluid is injected into the working fluid injection hole 14b of the switching valve hole 14, and the switching valve 15 is moved to the working fluid injection hole 14a side. In this case, as shown in FIG. 6, the amount of movement is an amount that allows the switching valve groove (B) 15b to communicate with the opening of the high-pressure fluid path (A) 12a. Accordingly, the high-pressure fluid pressurized by a fluid pressure pump (not shown) passes through the fluid inlet 12-path (A) 12a-switching valve groove (B) 12b-nozzle body 11a-injection hole 11b. Is injected into. At this time, since the switching valve groove (A) 15a is filled with high-pressure fluid and the groove (B) 15b is filled with the material to be treated, the high-pressure fluid injected from the injection port 11b of the injection valve 11 is At the same time as the material to be treated is ejected, the fluid to be ejected becomes the material to be treated, which is aligned with "fluid-fluid to be treated-fluid", and the fluid present in the sheet portion at the end of ejection. Does not contain the material to be treated. That is, after the seat portion is washed with the fluid, the valve is seated to prevent the material to be treated from being caught in the seat portion. In addition, by appropriately setting the volume and the injection amount of each path, the ratio of the fluid and the material to be processed in one injection amount can be set, and the condition setting suitable for the type of the material to be processed and the fluid becomes possible. .

一方、この時被処理材は、図示されていない被処理材貯蔵タンクから図示されていない被処理材圧送ポンプにより、低圧で送られ、被処理材導入口13−経路(C)13aで行
き止まりとなるが、被処理材の噴霧が終了すれば、再度切替弁穴14の作動流体注入穴14aに作動流体が注入され、図5に示すように、切替弁15を作動流体注入穴14b側に移動するため、被処理材は被処理材導入口13−経路(C)13a−切替弁溝15b−経路(D)13b−被処理材排出口13cと流れ、切替弁溝15b内の流体を押し流し、切替弁溝15bには、再度被処理材が満たされる。しかし、押し流された被処理材を含まない流体が被処理材貯蔵タンクに混入してくるため、定期的な濃度のチェックと余剰の流体を分離する装置を設けることも可能である。
On the other hand, at this time, the material to be treated is sent at a low pressure from a material storage tank (not shown) by a material feeding pump (not shown), and is stopped at the material inlet 13-path (C) 13a. However, when the spraying of the material to be processed is completed, the working fluid is again injected into the working fluid injection hole 14a of the switching valve hole 14, and the switching valve 15 is moved to the working fluid injection hole 14b side as shown in FIG. Therefore, the material to be treated flows through the material to be treated inlet 13-path (C) 13a-switching valve groove 15b-path (D) 13b-processed material outlet 13c, and the fluid in the switching valve groove 15b is pushed away. The material to be processed is filled again in the switching valve groove 15b. However, since the fluid that does not contain the treated material that has been swept away enters the treated material storage tank, it is possible to provide a device for periodically checking the concentration and separating the excess fluid.

本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法の構成を説明する部分縦断正面図である。It is a partial longitudinal sectional front view illustrating the structure of the processed material supply method in the best reactors organic matter with supercritical fluid or subcritical fluid in the form for example of the present invention. 本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法での噴射弁本体の配設状態を説明する部分縦断正面図である。It is a partial longitudinal sectional front view illustrating the arrangement state of the injection valve body in the material to be treated supply method in the best reactors organic matter with supercritical fluid or subcritical fluid in the form for example of the present invention. 本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法での噴射弁本体の構成を説明する縦断面図である。It is a longitudinal sectional view illustrating the injector body structure in the processed material supplying method in a reactor organic matter with supercritical fluid or subcritical fluid in the best mode for carrying out the present invention. 本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法での噴射弁本体の構成を説明する平断面図である。A plan sectional view illustrating the injector body structure in the processed material supplying method in a reactor organic matter with supercritical fluid or subcritical fluid in the best mode for carrying out the present invention. 本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法での噴射弁本体における切替弁の機能を説明する部分断面平面図である。It is a partial cross-sectional plan view illustrating the function of the switching valve in the injection valve body in the material to be treated supply method in the reactor of the organic matter according to a preferred embodiment of a supercritical fluid or subcritical fluid for implementation of the present invention. 本発明に係る実施のため最良の形態の超臨界流体又は亜臨界流体による有機物 反応装置における被処理材供給方法での噴射弁本体における切替弁の機能を説明する部分断面平面図である。It is a partial cross-sectional plan view illustrating the function of the switching valve in the injection valve body in the material to be treated supply method in the reactor of the organic matter according to a preferred embodiment of a supercritical fluid or subcritical fluid for implementation of the present invention.

符号の説明Explanation of symbols

1 反応機関
2 シリンダ
3 シリンダヘッド
3a 吸気ポート
4 圧縮プランジャ
5 吸気弁
6 タペット
7 被処理材溜部
7a 被処理材導入口(A)
8 流体噴射弁
9 カム軸取付台
10 反応室
11 噴射弁本体
11a ノズル本体
11b 噴口
12 流体導入口
12a 経路(A)
12b 経路(B)
13 被処理材導入口
13a 経路(C)
13b 経路(D)
13c 被処理材排出口
14 切替弁穴
14a 作動流体注入穴(A)
14b 作動流体注入穴(B)
15 切替弁
15a 溝(A)
15b 溝(B)
DESCRIPTION OF SYMBOLS 1 Reaction engine 2 Cylinder 3 Cylinder head 3a Intake port 4 Compression plunger 5 Intake valve 6 Tappet 7 To-be-processed material storage part 7a To-be-processed material inlet (A)
8 Fluid injection valve 9 Cam shaft mount 10 Reaction chamber 11 Injection valve body 11a Nozzle body 11b Injection hole 12 Fluid introduction port 12a Route (A)
12b Route (B)
13 Processed material introduction port 13a Route (C)
13b Route (D)
13c Material discharge port 14 Switching valve hole 14a Working fluid injection hole (A)
14b Working fluid injection hole (B)
15 Switching valve 15a Groove (A)
15b Groove (B)

Claims (1)

シリンダとこのシリンダに設けられた圧縮プランジャとからなり、圧縮プランジャを動作させることによりシリンダ内に導入した被処理材を伴う流体蒸気を圧縮し、この圧縮による被処理材の化学反応が終了した後に、圧縮プランジャを逆方向に動作させて流体蒸気の温度及び圧力を下げ、得られた生成物を含む流体をシリンダ内から取り出して新たな流体蒸気をシリンダ内に吹き込むことにより周期的に吸排気行程を行う反応機関を備える反応装置において、反応装置の反応室又は吸気ポートと連通するように低圧で被処理材を供給するラインと高圧で流体を噴霧するラインを併設し、該両ラインの一部を形成する切替弁を設け、該切替弁を移動させることにより、被処理材で満たされた該ラインの一部が流体の該高圧流体ラインに連通するようにシリンダ内に設け、流体蒸気を吸入する期間内に、被処理材を高圧の流体噴霧に乗せて、吸気ポート内に分散導入することを特徴とする超臨界流体又は亜臨界流体による有機物質の反応装置における被処理材供給方法。 The cylinder is composed of a cylinder and a compression plunger provided in the cylinder, and the fluid vapor accompanying the material to be treated introduced into the cylinder is compressed by operating the compression plunger, and after the chemical reaction of the material to be treated by this compression is completed The compression plunger is operated in the opposite direction to lower the temperature and pressure of the fluid vapor, the fluid containing the obtained product is taken out from the cylinder, and a new fluid vapor is blown into the cylinder to periodically intake and exhaust strokes. In a reaction apparatus including a reaction engine for performing a reaction , a line for supplying a material to be treated at a low pressure and a line for spraying a fluid at a high pressure are provided in addition to a reaction chamber or an intake port of the reaction apparatus, and a part of both lines And a part of the line filled with the material to be treated is communicated with the high-pressure fluid line of the fluid by moving the switching valve. In provided in the cylinder such, within the period for sucking fluid vapor, put the workpiece to high pressure fluid spray, organic matter with supercritical fluid or subcritical fluid, characterized in that the dispersion introduced into the intake port To- be-processed material supply method in the reaction apparatus.
JP2003306316A 2003-08-29 2003-08-29 Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid Expired - Fee Related JP4365170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306316A JP4365170B2 (en) 2003-08-29 2003-08-29 Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306316A JP4365170B2 (en) 2003-08-29 2003-08-29 Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid

Publications (3)

Publication Number Publication Date
JP2005074279A JP2005074279A (en) 2005-03-24
JP2005074279A5 JP2005074279A5 (en) 2006-06-01
JP4365170B2 true JP4365170B2 (en) 2009-11-18

Family

ID=34409423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306316A Expired - Fee Related JP4365170B2 (en) 2003-08-29 2003-08-29 Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid

Country Status (1)

Country Link
JP (1) JP4365170B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9205350B2 (en) * 2008-11-12 2015-12-08 Waters Technologies Corporation Collection system for purification flowstreams

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4406970B2 (en) * 1998-12-14 2010-02-03 株式会社日立プラントテクノロジー Organic matter treatment system
JP4683748B2 (en) * 2001-03-07 2011-05-18 ヤンマー株式会社 Reactor reaction equipment with supercritical water or subcritical water
JP3964240B2 (en) * 2002-03-26 2007-08-22 新明和工業株式会社 Wet oxidation processing equipment

Also Published As

Publication number Publication date
JP2005074279A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
US20080093473A1 (en) Ultrasonic atomization and separation methods
JP4336197B2 (en) Piston compressor
JP4365170B2 (en) Method of supplying material to be processed in reaction device of organic substance by supercritical fluid or subcritical fluid
US7188586B2 (en) Fuel injection system for diesel engines
KR101885829B1 (en) Monopropellant thruster test model and assembly thereof
JP2007530847A5 (en)
WO2005121021A1 (en) Concurrent low-pressure manufacture of hypochlorite
JP3712588B2 (en) Jet collision device
KR20080005323U (en) Portable skin care tool
EP1258355A4 (en) Ink jet head, method of producing ink jet heads, and printer
JP6887099B2 (en) CO2 recovery device
KR20080008327A (en) Spray head
SU1755714A3 (en) Gas-fluid ejector operating method
KR101503405B1 (en) Spray apparatus of liquid substance
JP3133651U (en) Portable skin care device
KR102154364B1 (en) SCR System Using Reductant Powder
WO2004074688A8 (en) A hose pump feeding device
JP2007007525A (en) High temperature and high pressure reaction apparatus and method for treating organic substance using the same
JP2004292223A (en) Powder production apparatus
SU1735611A1 (en) Method of liquid-gas ejector operation
WO2003072926A3 (en) A micro-pump and fuel injector for combustible liquids
KR100389015B1 (en) CO2 snow decontamination equipments
CN221476726U (en) Fuel tank and vehicle
JP2003200034A (en) Hydrothermal reaction apparatus and its operating method
KR100367447B1 (en) The mousse supply device for the hair setting device

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090818

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees