JP4363285B2 - Resin-packed oil-in-water emulsified food and method for producing the same - Google Patents
Resin-packed oil-in-water emulsified food and method for producing the same Download PDFInfo
- Publication number
- JP4363285B2 JP4363285B2 JP2004268558A JP2004268558A JP4363285B2 JP 4363285 B2 JP4363285 B2 JP 4363285B2 JP 2004268558 A JP2004268558 A JP 2004268558A JP 2004268558 A JP2004268558 A JP 2004268558A JP 4363285 B2 JP4363285 B2 JP 4363285B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- container
- resin
- emulsified food
- water emulsified
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Seasonings (AREA)
- Laminated Bodies (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
Description
本発明は、食用油脂、食酢および卵黄を含有するマヨネーズ、タルタルソース、ドレッシング等の水中油型乳化食品であって、特に溶存酸素濃度を調節することにより風味を改善した樹脂製容器詰水中油型乳化食品に関する。 The present invention is an oil-in-water emulsified food such as mayonnaise, tartar sauce, and dressing containing edible fats and oils, vinegar and egg yolk, and is particularly a resin-packed oil-in-water type with improved flavor by adjusting the dissolved oxygen concentration It relates to emulsified food.
各種の食品が、空気中の酸素によって酸化されることにより風味の劣化をきたすことは広く知られており、そのため、各種食品は、流通および保存の際には、一般に、酸素を透過しない金属缶やガラス瓶、酸素透過性の低い樹脂製容器に封入されており、さらに、エチレンジアミン四酢酸(EDTA)やビタミンE等の酸化防止剤を含有させることが多く行われている。しかし、酸化防止剤を用いることは消費者に忌避される傾向にあり好ましくない。そこで、各種食品を製造する際に、原料中の溶存酸素量を減らしたり製造中に酸素が混入しないようにする技術が存在する。例えば、特許文献1には、実質的に酸素のない状態でコーヒーを抽出することにより、高品質のコーヒー飲料を得る技術が開示されており、また、特許文献2には、乳性飲料・果汁飲料の溶存酸素濃度を5ppm以下に低下せしめた状態で加熱処理することにより、風味の良い製品を得る技術が開示されている。
It is widely known that various foods are deteriorated in flavor by being oxidized by oxygen in the air. For this reason, various foods are generally metal cans that do not transmit oxygen during distribution and storage. In many cases, an antioxidant such as ethylenediaminetetraacetic acid (EDTA) or vitamin E is often contained. However, it is not preferable to use an antioxidant because it tends to be avoided by consumers. Therefore, there are techniques for reducing the amount of dissolved oxygen in raw materials and preventing oxygen from being mixed during production when various foods are produced. For example,
さらに、ドレッシング等の水中油型乳化食品中の溶存酸素を除去する技術としては、特許文献3に、特定の酵素を用いてサラダドレッシング中の溶存酸素を除去する技術が記載されている。 Furthermore, as a technique for removing dissolved oxygen in oil-in-water emulsified foods such as dressing, Patent Document 3 describes a technique for removing dissolved oxygen in salad dressing using a specific enzyme.
しかしながら、水中油型乳化食品は、マヨネーズのように粘度が高いものが多く、また、タルタルソースのように多くの固形具材を含有するものがあるため、それらの製造工程において製品中の溶存酸素を積極的に除去することは、装置が大掛かりになるなど製造コストが大幅に上昇するので一般的には行われていない。したがって、一般に市販されている水中油型乳化食品は、その製造の際に、製品になるべく空気中の酸素が混入しないように密閉系の製造ラインで原料の調合および搬送を行い(特許文献4)、容器への充填時には容器ヘッドスペースの窒素置換を行い、また、製品を充填密封する容器として、酸素を全く透過しないガラス瓶または酸素透過性の低減された樹脂製多層ボトル容器を採用する等の、製品への酸素の浸入を防ぐ工夫がなされているに過ぎない。 However, many oil-in-water emulsified foods have high viscosity like mayonnaise, and some contain many solid ingredients such as tartar sauce, so dissolved oxygen in products in their production process In general, it is not generally performed to remove the material since the manufacturing cost increases significantly, such as a large apparatus. Therefore, oil-in-water emulsified foods that are generally marketed are prepared and transported in a closed production line so that oxygen in the air is not mixed into the product as much as possible (Patent Document 4). When filling the container, nitrogen replacement of the container head space is performed, and as a container for filling and sealing the product, a glass bottle that does not transmit oxygen at all or a resin multilayer bottle container with reduced oxygen permeability is adopted. Only the device to prevent the invasion of oxygen into the product is made.
そのため、一般に市販されている水中油型乳化食品については、製造直後の溶存酸素濃度は、10〜15%O2 程度と比較的高くなっているのが現状であり、風味劣化を長期にわたって防止することが難しく、特に、樹脂製容器に充填する場合には風味劣化の防止が難しく、また、色調が褐色化し易いという傾向がある。 Therefore, for oil-in-water emulsified foods that are generally marketed, the dissolved oxygen concentration immediately after production is relatively high at about 10 to 15% O 2 , which prevents flavor deterioration over a long period of time. In particular, when filling a resin container, it is difficult to prevent flavor deterioration and the color tone tends to be browned.
このような状況において、マヨネーズ様食品の風味を長期間維持するために、特定の成分を添加することや(特許文献5)、酸素吸収能を有する樹脂製容器を使用することが提案されている(特許文献6、特許文献7)。
本発明者らは、より高品質の水中油型乳化食品を開発すべく、容器詰水中油型乳化食品の製造工程において、原料および製品中の溶存酸素を積極的に除去する研究を行った。
In such a situation, in order to maintain the flavor of mayonnaise-like food for a long period of time, it has been proposed to add a specific component (Patent Document 5) or use a resin container having an oxygen absorption capacity. (Patent Literature 6, Patent Literature 7).
In order to develop a higher quality oil-in-water emulsified food, the present inventors have conducted research to positively remove dissolved oxygen in raw materials and products in the manufacturing process of a container-packed oil-in-water emulsified food.
当初、本発明者らは、水中油型乳化食品中の溶存酸素を完全に除去すれば、食用油脂および各種香味成分の酸化を防止でき、極めて風味に優れた容器詰水中油型乳化食品を製造することができるものと予測したが、研究の結果、意外にも、水中油型乳化食品中の溶存酸素を除去し過ぎると、水中油型乳化食品の風味に悪影響が出ることがわかった。すなわち、水中油型乳化食品中の溶存酸素を過度に除去すると、食酢のツンとした刺激臭が強く感じられるようになり、食用油脂と食酢と卵黄の味のなじみが悪くなって風味のバランスが崩れてしまうのである。 Initially, the present inventors produced a container-packed oil-in-water emulsified food that is extremely flavorful by preventing oxidation of edible fats and various flavor components by completely removing dissolved oxygen in the oil-in-water emulsified food. However, as a result of research, it was unexpectedly found that if the dissolved oxygen in the oil-in-water emulsified food is excessively removed, the flavor of the oil-in-water emulsified food is adversely affected. In other words, excessive removal of dissolved oxygen in oil-in-water emulsified foods makes you feel a strong pungent odor of vinegar, worsening the familiarity of edible fats, vinegar, and egg yolk, resulting in a balanced flavor. It will collapse.
そこで、本発明は、樹脂製容器詰水中油型乳化食品中の溶存酸素量を低減し、最適濃度に調整することにより、保存中に水中油型乳化食品が過度に酸化することを防ぎ、風味や色調等の品質の劣化がなく、かつ風味のバランスに優れた樹脂製容器詰水中油型乳化食品を提供することを目的とする。 Therefore, the present invention reduces the amount of dissolved oxygen in the resin-packed oil-in-water emulsified food and adjusts it to the optimum concentration, thereby preventing the oil-in-water emulsified food from being excessively oxidized during storage and flavor. It is an object to provide a resin container-packed oil-in-water emulsified food that has no deterioration in quality such as color and color tone and has an excellent flavor balance.
本発明者らは、鋭意研究を重ねた結果、食用油脂、食酢および卵黄を含有する水中油型乳化食品を樹脂製容器に充填するに際し、水中油型乳化食品中の溶存酸素量をある一定の濃度範囲まで減じ、かつ樹脂製容器の酸素透過度を特定値以下とし、さらに樹脂製容器に水中油型乳化食品を充填する際には予め容器内を窒素等の不活性ガスで置換しておくことにより、保存中の酸化による劣化が少なく、かつ風味のバランスのとれた水中油型乳化食品を得ることができることを見出し本発明を完成した。 As a result of intensive studies, the present inventors have found that when an oil-in-water emulsified food containing edible fats and oils, vinegar and egg yolk is filled in a resin container, the amount of dissolved oxygen in the oil-in-water emulsified food is constant. Reduce to the concentration range, keep the oxygen permeability of the resin container below a specific value, and replace the container with an inert gas such as nitrogen before filling the resin container with oil-in-water emulsified food. As a result, it was found that an oil-in-water emulsified food with little deterioration due to oxidation during storage and having a well-balanced flavor can be obtained, thereby completing the present invention.
即ち、本発明は、食用油脂、食酢および卵黄を含有する水中油型乳化食品であって、平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器に充填密封され、製造直後の溶存酸素濃度が蛍光式酸素計の測定値として1.0〜7.1%O2 であることを特徴とする樹脂製容器詰水中油型乳化食品を提供する。 That is, the present invention is an oil-in-water emulsified food containing edible fats and oils, vinegar and egg yolk, which is filled and sealed in a resin container having an average oxygen permeability of 50 cc / m 2 · day · atm or less. Dissolved oxygen concentration is 1.0 to 7.1% O 2 as a measured value of a fluorescence oximeter, and provides an oil-in-water emulsified food in a resin container.
また、本発明は、食用油脂、食酢および卵黄を含有する水中油型乳化食品が樹脂製容器に充填された樹脂製容器詰水中油型乳化食品の製造方法であって、水中油型乳化食品又はその原料の脱酸素処理により水中油型乳化食品中の溶存酸素濃度を蛍光式酸素計の測定値として1.0〜7.1%O2に調整し、該水中油型乳化食品を、平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器に、該容器内を予め不活性ガスで置換した後に充填密封することを特徴とする樹脂製容器詰水中油型乳化食品の製造方法を提供する。 The present invention also relates to a method for producing a resin container-packed oil-in-water emulsified food in which a resin container is filled with an oil-in-water emulsified food containing edible fats, vinegar and egg yolk, The dissolved oxygen concentration in the oil-in-water emulsified food is adjusted to 1.0 to 7.1% O 2 as a measurement value of a fluorescence oximeter by deoxygenation of the raw material, and the oil-in-water emulsified food is average oxygen A method for producing an oil-in-water emulsified food in a resin container, comprising filling a resin container having a permeability of 50 cc / m 2 · day · atm or less with an inert gas and then sealing the container. I will provide a.
本発明の樹脂製容器詰水中油型乳化食品、又は本発明の製造方法により得られる樹脂製容器詰水中油型乳化食品は、食用油脂、食酢および卵黄を含有し、平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器に充填密封され、製造直後の溶存酸素濃度が蛍光式酸素計の測定値として1.0〜7.1%O2 に調整されており、例えば、製造後10日間20℃の暗所で保存した際の溶存酸素濃度が0.6〜5.7%O2 になる。この樹脂製容器詰水中油型乳化食品は、食酢由来のツンとした刺激臭が抑えられ、まろやかでコクの感じられる、バランスの良い優れた風味を有する。 The resin container-packed oil-in-water emulsified food of the present invention or the resin container-packed oil-in-water emulsified food obtained by the production method of the present invention contains edible fats and oils, vinegar and egg yolk, and has an average oxygen permeability of 50 cc / Filled and sealed in a resin container of m 2 · day · atm or less, and the dissolved oxygen concentration immediately after production is adjusted to 1.0 to 7.1% O 2 as a measurement value of the fluorescence oximeter, for example, production After 10 days, the dissolved oxygen concentration when stored in a dark place at 20 ° C. becomes 0.6 to 5.7% O 2 . This resin-filled oil-in-water emulsified food in a container has an excellent flavor with a well-balanced taste that can suppress the pungent odor derived from vinegar and is mellow and rich.
また、本発明の製造方法により、樹脂製容器内を予め不活性ガスで置換した後、その樹脂製容器に水中油型乳化食品を充填密封したものは、保存中に水中油型乳化食品が過度に酸化されることがないため、6カ月以上の長期間にわたって良好な風味を保持し、色調の褐色化を防止することができ、さらに樹脂製容器として、酸素吸収能を有するものも含め、平均酸素透過度が実質的にゼロの容器を使用した場合には、長期保存安定性をより一層向上させることができる。 In addition, when the resin container is previously replaced with an inert gas by the production method of the present invention, and the resin container is filled and sealed with an oil-in-water emulsified food, the oil-in-water emulsified food is excessive during storage. Because it is not oxidized, it can maintain a good flavor over a long period of 6 months or more, can prevent browning of the color tone, and further includes a resin container having an oxygen absorption capacity as an average. When a container having substantially zero oxygen permeability is used, long-term storage stability can be further improved.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
尚、本発明において特に限定しない場合には、「%」は「質量%」を意味する。 In the present invention, “%” means “mass%” unless otherwise specified.
本発明において水中油型乳化食品とは、水相原料と油相原料とが水中油型に乳化されてなる乳化物、すなわち、水相中に油滴が分散された状態にある乳化物であり、具体的には、マヨネーズ、タルタルソース、乳化状ドレッシング等が挙げられる。この際水相原料と油相原料との配合割合は、前者10〜90%に対して後者90〜10%程度でよいが、通常は前者20〜70%に対して後者80〜30%が一般的である。 In the present invention, the oil-in-water emulsified food is an emulsion in which an aqueous phase material and an oil phase material are emulsified in an oil-in-water type, that is, an emulsion in which oil droplets are dispersed in the aqueous phase. Specific examples include mayonnaise, tartar sauce, and emulsified dressing. At this time, the blending ratio of the water phase raw material and the oil phase raw material may be about 90 to 10% of the latter with respect to the former 10 to 90%, but usually the latter is 80 to 30% with respect to the former 20 to 70%. Is.
また、本発明における水中油型乳化食品は、食用油脂、食酢および卵黄を含有するものであるが、ここで食用油脂とは、水中油型乳化食品の原料として一般に使用可能な油脂であれば特に限定されることなく、例えば、菜種油、コーン油、綿実油、サフラワー油、オリーブ油、紅花油、大豆油、米油、パーム油等の植物性油脂、魚油等の動物性油脂、並びにMCT(中鎖脂肪酸トリグリセリド)、ジグリセリド等の化学的ないし酵素的処理を施して得られる油脂等を使用することができる。 In addition, the oil-in-water type emulsified food in the present invention contains edible fats and oils, vinegar and egg yolks. Here, the edible fats and oils are particularly fats and oils that can be used as a raw material for oil-in-water type emulsified foods. Without limitation, for example, vegetable oils such as rapeseed oil, corn oil, cottonseed oil, safflower oil, olive oil, safflower oil, soybean oil, rice oil and palm oil, animal oils such as fish oil, and MCT (medium chain) Fatty acids obtained by applying chemical or enzymatic treatments such as fatty acid triglycerides) and diglycerides can be used.
食酢としては、水中油型乳化食品の原料として一般に使用可能な食酢であれば特に限定されることなく、例えば、米酢等の穀物酢、果実酢等の使用が可能である。 The vinegar is not particularly limited as long as it can be generally used as a raw material for oil-in-water emulsified foods. For example, grain vinegar such as rice vinegar, fruit vinegar and the like can be used.
卵黄としては、卵を割卵して得られた全卵液から工業的に卵白を分離除去した生卵黄、または生卵黄をそのままあるいは砂糖や塩を添加して凍結した凍結卵黄、生卵黄を乾燥処理した乾燥卵黄の他、酵素処理、脱コレステロール処理あるいは脱糖処理等を施した加工卵黄等を用いることができる。また、卵黄そのものではないが、全卵液または全卵粉等の卵黄を含有する各種卵原料を用いることも可能である。 The egg yolk is a raw egg yolk that has been industrially separated and removed from the whole egg liquid obtained by splitting the egg, or a frozen egg yolk frozen by adding the raw egg yolk as it is or by adding sugar or salt, and the raw egg yolk is dried. In addition to the processed dried egg yolk, processed egg yolk or the like subjected to enzyme treatment, decholesterolization treatment, desugaring treatment or the like can be used. Moreover, although it is not egg yolk itself, it is also possible to use various egg raw materials containing egg yolk, such as whole egg liquid or whole egg powder.
本発明においては平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器を使用する。平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器とは、温度30℃、容器外部の相対湿度80%及び容器内部の相対湿度100%の条件下における容器壁面全体の酸素透過度の平均値が、50cc/m2・day・atm以下である樹脂製容器をいう。容器壁を透過して浸入して来る酸素をこの程度に少量にすることにより、浸入してきた酸素が品質に及ぼす影響を著しく低減させることができる。 In the present invention, a resin container having an average oxygen permeability of 50 cc / m 2 · day · atm or less is used. A resin container with an average oxygen permeability of 50cc / m 2 · day · atm or less means that the oxygen permeation of the entire wall of the container under the conditions of a temperature of 30 ° C, a relative humidity of 80% outside the container, and a relative humidity of 100% inside the container. This means a resin container having an average value of 50 cc / m 2 · day · atm or less. By reducing the amount of oxygen that permeates through the container wall to such a small amount, the influence of the invaded oxygen on the quality can be significantly reduced.
また、本発明の水中油型乳化食品を、賞味期間が3カ月を超えるような長期保存可能品とするには、平均酸素透過度が30cc/m2・day・atm以下の容器を使用することが好ましく、20cc/m2・day・atm以下の容器がより好ましく、特に平均酸素透過度が0cc/m2・day・atmの酸素を全く透過しない容器が好ましい。 In addition, in order to make the oil-in-water emulsified food of the present invention a product that can be stored for a long time with a shelf life exceeding 3 months, use a container having an average oxygen permeability of 30 cc / m 2 · day · atm or less. More preferred is a container of 20 cc / m 2 · day · atm or less, and particularly preferred is a container having an average oxygen permeability of 0 cc / m 2 · day · atm and not transmitting oxygen at all.
また、本発明で使用する樹脂製容器としては、上述のように平均酸素透過度が低いものである限り、酸素吸収能を有するものであってもよい。通常、酸素吸収能を有する樹脂製容器は平均酸素透過度が0cc/m2・day・atmであり、容器内への酸素の浸入を完全に遮断することができるので好ましい。 Moreover, as a resin container used by this invention, as long as the average oxygen permeability is low as mentioned above, it may have an oxygen absorption ability. Usually, a resin container having an oxygen absorption capacity is preferable because it has an average oxygen permeability of 0 cc / m 2 · day · atm and can completely block the ingress of oxygen into the container.
ここで、平均酸素透過度の測定は、次の(1)〜(5)の手順により行うことができる。
(1) 測定対象の容器に少量の清水を注入し、容器内を窒素置換し、常圧にして密封する。これにより容器内部の相対湿度は100%になる。
(2) 注射器を用いて、(1)の容器から気体を少量採取し、当該気体の酸素濃度C0 を酸素計(例えば、飯島電子工業株式会社製 微量酸素分圧計RO−102−SP)により測定する。
(3) (1)の容器を、温度30℃、相対湿度80%に調整した恒温恒湿度器に入れ、20日間保存する。この際、恒温恒湿度器の中は、通常の大気圧とし、通常の空気で満たす。
(4) 注射器を用いて、(3)の20日間保存後の容器から気体を少量採取し、当該気体の酸素濃度C1 を(2)と同様に測定する。
(5) (2)で得られた初期酸素濃度C0(%O2 )測定値と(4)で得られた保存後の酸素濃度C1 (%O2 )、容器の容積V(cc)、容器内面の表面積A(m2 )、保存期間T(day)(20日間)及び大気圧下における酸素分圧P(0.209atm)から次式により平均酸素透過度Q(cc/m2・day・atm)を算出する。
Here, the average oxygen permeability can be measured by the following procedures (1) to (5).
(1) Pour a small amount of fresh water into the container to be measured, purge the inside of the container with nitrogen, and seal it at normal pressure. As a result, the relative humidity inside the container becomes 100%.
(2) Using a syringe, a small amount of gas is collected from the container of (1), and the oxygen concentration C 0 of the gas is measured with an oximeter (for example, a trace oxygen partial pressure meter RO-102-SP manufactured by Iijima Electronics Co., Ltd.). taking measurement.
(3) The container of (1) is placed in a constant temperature and humidity chamber adjusted to a temperature of 30 ° C. and a relative humidity of 80%, and stored for 20 days. At this time, the constant temperature and humidity chamber is set to normal atmospheric pressure and filled with normal air.
(4) Using a syringe, a small amount of gas is collected from the container after storage for 20 days in (3), and the oxygen concentration C 1 of the gas is measured in the same manner as in (2).
(5) The measured value of the initial oxygen concentration C 0 (% O 2 ) obtained in (2), the stored oxygen concentration C 1 (% O 2 ) obtained in (4), and the volume V (cc) of the container The average oxygen permeability Q (cc / m 2 · day) from the surface area A (m 2 ) of the container inner surface, the storage period T (day) (20 days) and the oxygen partial pressure P (0.209 atm) • Calculate atm).
平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器の例としては、PET、ポリエチレン又はポリプロピレン製ブロー成形容器、エチレンビニルアルコール共重合体樹脂又はポリアミド(ナイロン等)をPET、ポリエチレン又はポリプロピレン等に積層したブロー成形容器、さらにこれらのブロー成形容器に中間層として酸素吸収層を積層して外部からの酸素の浸入を防ぐブロー成形容器、また、これらのブロー成形容器にシリカ、炭素等を蒸着したもの、PET、ポリアミドまたはアルミ薄膜をポリエチレン等に積層したシートからなる袋状容器(パウチ)、または、シリカ、酸化アルミ等の蒸着層を有する積層シートからなる袋状容器等がある。平均酸素透過度がさらに低い30cc/m2・day・atm以下、20cc/m2・day・atm以下、あるいは0cc/m2・day・atmの樹脂製容器は、上述の積層シートの酸素遮断層の層厚を厚くすること等により得ることができる。 Examples of resin containers having an average oxygen permeability of 50 cc / m 2 · day · atm or less include PET, polyethylene or polypropylene blow molded containers, ethylene vinyl alcohol copolymer resin or polyamide (nylon, etc.) PET, polyethylene Or blow molded containers laminated on polypropylene, etc., further blow molded containers that prevent oxygen from entering from outside by laminating an oxygen absorbing layer as an intermediate layer on these blow molded containers, and silica, carbon in these blow molded containers Etc., bag-like containers (pouches) made of sheets obtained by laminating PET, polyamide or aluminum thin films on polyethylene, etc., or bag-like containers made of laminated sheets having vapor-deposited layers of silica, aluminum oxide, etc. . The average oxygen permeability less lower 30cc / m 2 · day · atm , 20cc / m 2 · day · atm or less, or a resin container 0cc / m 2 · day · atm, the oxygen barrier layer of the laminated sheet of the above It can be obtained by increasing the layer thickness.
酸素吸収層を有する樹脂製容器の好ましい層構成としては、図1に示すように、耐湿性樹脂層2o 、酸素バリア性樹脂層3o 、酸素吸収性樹脂層4、酸素バリア性樹脂層3i 及び耐湿性樹脂層2i の積層構造1aを有するもの(特許文献6)、図2に示すように、容器外側から内側に向かって、耐湿性樹脂層2o、酸素バリア性樹脂層3o、酸素吸収性樹脂層4、耐湿性樹脂層2m、酸素バリア性樹脂層3i及び耐湿性樹脂層2iの積層構造1bを有するもの、図3に示すように、耐湿性樹脂層2o 、酸素吸収性酸素バリア性樹脂層5、耐湿性樹脂層2i の積層構造1cを有するもの(特許文献7)、図4に示すように、耐湿性樹脂層2o、酸素吸収性酸素バリア性樹脂層5o、耐湿性樹脂層2m、酸素吸収性酸素バリア性樹脂層5i、耐湿性樹脂層2iの積層構造1dを有するもの等をあげることができる。また、これらの各層間に接着層が設けられていてもよく、さらに酸素バリア性樹脂層等が設けられていてもよい。例えば、図3の積層構造1cや図4の積層構造1dにおいて、必要に応じて、耐湿性樹脂層と酸素吸収性酸素バリア性樹脂層との間に酸素バリア性樹脂層が設けられた積層構造をあげることができる。 As a preferred layer structure of the resin container having an oxygen absorbing layer, as shown in FIG. 1, a moisture resistant resin layer 2o, an oxygen barrier resin layer 3o, an oxygen absorbing resin layer 4, an oxygen barrier resin layer 3i and a moisture resistant resin layer are used. 2 having a laminated structure 1a of the water-soluble resin layer 2i (Patent Document 6), as shown in FIG. 2, from the outside to the inside of the container, the moisture-resistant resin layer 2o, the oxygen barrier resin layer 3o, and the oxygen-absorbing resin layer 4, one having a laminated structure 1b of a moisture resistant resin layer 2m, an oxygen barrier resin layer 3i and a moisture resistant resin layer 2i, as shown in FIG. 3, a moisture resistant resin layer 2o, an oxygen absorbing oxygen barrier resin layer 5 , Having a laminated structure 1c of moisture resistant resin layer 2i (Patent Document 7), as shown in FIG. 4, moisture resistant resin layer 2o, oxygen absorbing oxygen barrier resin layer 5o, moisture resistant resin layer 2m, oxygen absorbing Oxygen barrier resin layer 5i, moisture resistant tree Etc. can be mentioned those having a layered structure 1d layer 2i. Further, an adhesive layer may be provided between these layers, and an oxygen barrier resin layer or the like may be further provided. For example, in the laminated structure 1c in FIG. 3 or the laminated structure 1d in FIG. 4, a laminated structure in which an oxygen barrier resin layer is provided between a moisture-resistant resin layer and an oxygen-absorbing oxygen barrier resin layer as necessary. Can give.
酸素吸収層を有する図1〜図4の積層構造は、水中油型乳化食品の保管中、容器外部からの酸素の浸入を良好に遮断することができ、さらに、常温だけでなく、熱殺菌等の条件下においても容器内への酸素の浸入を遮断することができる。また、水中油型乳化食品の保管中、酸素吸収能力が低下あるいは消失した場合においても、樹脂製容器の平均酸素透過度を20cc/m2・day・atm以下にすることができる。 The laminated structure of FIGS. 1 to 4 having an oxygen absorbing layer can well block the entry of oxygen from the outside of the container during storage of oil-in-water emulsified foods. Even under these conditions, the infiltration of oxygen into the container can be blocked. Further, even when the oxygen absorption capacity is reduced or disappears during storage of the oil-in-water emulsified food, the average oxygen permeability of the resin container can be reduced to 20 cc / m 2 · day · atm or less.
ここで、容器内側、容器中央部また外側の耐湿性樹脂層2i、2m、2oは、エチレン−ビニルアルコール共重合体等の酸素バリア性樹脂が吸湿により酸素透過係数が増大するのに対し、この吸湿による酸素遮断性能の低下を防止するために設けられる。耐湿性樹脂層2i、2m、2oの形成には、オレフィン系樹脂や熱可塑性ポリエステル樹脂等が用いられる。成形時に生じた打ち抜き屑やスクラップ屑等を粉砕再生し、耐湿性樹脂等と溶融混合した、一般に「リプロ」と称される樹脂を使用してもよい。 Here, the moisture-resistant resin layers 2i, 2m, and 2o on the inner side, the middle part, and the outer side of the container have an oxygen permeability coefficient that increases due to moisture absorption by an oxygen barrier resin such as an ethylene-vinyl alcohol copolymer. It is provided to prevent a decrease in oxygen barrier performance due to moisture absorption. For the formation of the moisture-resistant resin layers 2i, 2m, and 2o, an olefin resin or a thermoplastic polyester resin is used. A resin generally referred to as “RIPRO”, which is obtained by pulverizing and recycling punched scraps or scrap scraps generated during molding and melt-mixing them with a moisture-resistant resin or the like, may be used.
酸素バリア性樹脂層3i 、3o の形成樹脂としては、エチレン−ビニルアルコール共重合体が好ましい。この他、ナイロン6、ナイロン6・6、ナイロン6/6・6共重合体、メタキシリレンジアジパミド、ナイロン6・10、ナイロン11、ナイロン12、ナイロン13等のポリアミド等を用いてもよい。 As the resin for forming the oxygen barrier resin layers 3i and 3o, an ethylene-vinyl alcohol copolymer is preferable. In addition, nylon 6, nylon 6,6, nylon 6 / 6,6 copolymer, metaxylylene adipamide, nylon 6,10, nylon 11, nylon 12, nylon 13, etc. may be used. .
酸素吸収性樹脂層4は、還元性鉄等の酸素吸収剤をポリプロピレン・ポリエチレン混合樹脂等の熱可塑性樹脂に配合したものや、酸化性樹脂と遷移金属系触媒とを含有する樹脂等から形成することができる。酸化性樹脂とは、遷移金属系触媒の作用で、空気中の酸素により酸化される樹脂であり、(i)炭素側鎖を含む樹脂、(ii)キシリレン基含有ポリアミド樹脂、(iii)エチレン系不飽和基含有重合体などをあげることができる。また、遷移金属系触媒としては、遷移金属の低価数の無機酸塩、有機酸塩或いは錯塩等をあげることができ、ここで用いる遷移金属としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属、銅、銀等の第I族金属、錫、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族金属、クロム等のVI族金属、マンガン等のVII族金属を挙げることができる。これらの中でも、酸素吸収速度が大きい点からコバルトが好ましい。 The oxygen-absorbing resin layer 4 is formed from a material in which an oxygen absorbent such as reducing iron is blended with a thermoplastic resin such as a polypropylene / polyethylene mixed resin, or a resin containing an oxidizing resin and a transition metal catalyst. be able to. An oxidizing resin is a resin that is oxidized by oxygen in the air by the action of a transition metal catalyst, (i) a resin containing a carbon side chain, (ii) a xylylene group-containing polyamide resin, and (iii) an ethylene-based resin. Examples thereof include unsaturated group-containing polymers. Examples of the transition metal catalyst include low-valent inorganic acid salts, organic acid salts, and complex salts of transition metals, and the transition metal used here includes a periodic table of iron, cobalt, nickel, and the like. List Group VIII metals, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V metals such as vanadium, Group VI metals such as chromium, and Group VII metals such as manganese. Can do. Among these, cobalt is preferable because of its high oxygen absorption rate.
酸素吸収性酸素バリア性樹脂5、5i 、5o は、上述の酸素バリア性樹脂に、酸化性樹脂及び遷移金属系触媒を配合したものから形成することができる。酸素バリア性樹脂としてはエチレン−ビニルアルコール共重合体が好ましく、酸化性樹脂としては水素の引き抜きが容易に行えるような活性な炭素原子を有するものが好ましい。活性な炭素原子としては、炭素−炭素二重結合に隣接する炭素原子、炭素側鎖の結合した第三級炭素原子、活性メチレン基が挙げられる。中でも、酸化性樹脂としては、エチレン系不飽和基含有重合体が好ましい。 The oxygen-absorbing oxygen barrier resin 5, 5i, 5o can be formed from the above-described oxygen barrier resin blended with an oxidizing resin and a transition metal catalyst. The oxygen-barrier resin is preferably an ethylene-vinyl alcohol copolymer, and the oxidizing resin is preferably one having an active carbon atom that can easily extract hydrogen. Examples of the active carbon atom include a carbon atom adjacent to the carbon-carbon double bond, a tertiary carbon atom having a carbon side chain bonded thereto, and an active methylene group. Among these, as the oxidizing resin, an ethylenically unsaturated group-containing polymer is preferable.
接着層は必要に応じて設けられ、マレイン酸、イタコン酸、フマール酸等のカルボン酸、或いは、これらカルボン酸の無水物、アミド、エステル等によりグラフト変性されたグラフト変性オレフィン樹脂などから形成される。 The adhesive layer is provided as necessary, and is formed from a carboxylic acid such as maleic acid, itaconic acid or fumaric acid, or a graft-modified olefin resin graft-modified with an anhydride, amide or ester of these carboxylic acids. .
本発明においては、水中油型乳化食品の溶存酸素濃度を示す単位として、物質中の酸素分圧を指標として溶存酸素濃度を示す「%O2 」を用いる。この「%O2 」単位においては、1気圧の大気中で液体に酸素が飽和状態まで溶けている状態では、液体の種類にかかわらず、大気中の酸素分圧と同じ20.9%O2 であり、例えば、1気圧の大気中における25℃の純水および40℃の食用油の溶存酸素の飽和濃度を、質量百万分率で表わせば、夫々約8.1ppm、約37.9ppmであるが、「%O2 」単位では、純水および食用油共に20.9%O2 である。 In the present invention, “% O 2 ” indicating the dissolved oxygen concentration using the oxygen partial pressure in the substance as an index is used as a unit indicating the dissolved oxygen concentration of the oil-in-water emulsified food. In this “% O 2 ” unit, in a state where oxygen is dissolved in a liquid in a 1 atmosphere, the liquid is 20.9% O 2, which is the same as the partial pressure of oxygen in the atmosphere, regardless of the type of liquid. For example, if the saturated oxygen concentration of pure water at 25 ° C. and edible oil at 40 ° C. in an atmosphere of 1 atm is expressed in parts by mass, they are about 8.1 ppm and about 37.9 ppm, respectively. However, in “% O 2 ” units, both pure water and cooking oil are 20.9% O 2 .
本発明において「%O2 」単位を用いた理由は、水中油型乳化食品の溶存酸素濃度を表わすには、「%O2 」単位による表示が正確であり、かつ汎用的だからである。 The reason why the “% O 2 ” unit is used in the present invention is that the display by the “% O 2 ” unit is accurate and versatile in order to express the dissolved oxygen concentration of the oil-in-water emulsion food.
すなわち、液体中の溶存酸素濃度は、一般に酸素計を用いて測定するが、酸素計の検知部(センサー)は酸素分圧に応じて測定信号を発生する構造になっており、この測定信号と「%O2 」単位による溶存酸素濃度は比例関係にあることから、直接的に「%O2 」単位の測定結果が得られるのである。そのため、溶存酸素濃度を質量百万分率(ppm)単位等で表わそうとすると、酸素計による測定結果から得られた「%O2 」単位のデータを、個別の試料液、測定温度に応じた換算表を用いて質量百万分率(ppm)単位等に換算する必要があるが、そもそも、水中油型乳化食品のような多くの種類の原料を含有する混合物については、公式あるいは汎用的な換算表が存在しないため、換算を必要とする質量百万分率単位等では、却って正確な測定結果を表示し難いのである。 That is, the dissolved oxygen concentration in the liquid is generally measured using an oximeter, but the detector (sensor) of the oximeter generates a measurement signal according to the oxygen partial pressure. Since the dissolved oxygen concentration in units of “% O 2 ” is proportional, a measurement result in “% O 2 ” units can be obtained directly. Therefore, if the dissolved oxygen concentration is expressed in units of mass parts per million (ppm), etc., the data of “% O 2 ” units obtained from the results of measurement with an oximeter are converted into individual sample solutions and measurement temperatures. It is necessary to convert to parts per million by mass (ppm) using a conversion table, but in the first place, for mixtures containing many types of raw materials such as oil-in-water emulsified foods, official or general purpose Since there is no specific conversion table, it is difficult to display accurate measurement results in parts per million parts that require conversion.
本発明では、溶存酸素濃度の値を限定するにあたり、蛍光式酸素計の測定値を使用する。蛍光式酸素計によれば、水中油型乳化食品を容器に充填した状態のままで溶存酸素濃度を簡便に測定できるからである。この蛍光式酸素計による測定では、次の(1)〜(3)の手順により溶存酸素濃度を測定する。なお、以下の測定法において、蛍光式酸素計としては、米国OxySense社製 OxySense 101を使用することができ、酸素検知蛍光染料フィルムとしては、このOxySense 101専用の検知フィルムであるOxyDotを使用することができる。 In the present invention, the measured value of the fluorescence oximeter is used to limit the value of the dissolved oxygen concentration. This is because according to the fluorescence oximeter, the dissolved oxygen concentration can be easily measured while the container is filled with the oil-in-water emulsified food. In the measurement with this fluorescent oximeter, the dissolved oxygen concentration is measured by the following procedures (1) to (3). In the following measurement methods, OxySense 101 manufactured by OxySense in the United States can be used as the fluorescence oximeter, and OxyDot, a detection film dedicated to OxySense 101, should be used as the oxygen detection fluorescent dye film. Can do.
(1) 樹脂製の透明又は半透明の容器の内壁面に、酸素検知蛍光染料フィルムを専用シリコーン系接着剤を用いて貼着する。
(2) 酸素検知蛍光染料フィルムを貼着した容器に試料を充填し、ヘッドスペースを窒素で置換した後、密封する。
(3) 容器外部から容器壁を通して容器内の酸素検知蛍光染料フィルムに光を照射し、そのフィルムから発せられる蛍光を、容器壁を通して容器外部のセンサーで検知することにより、試料の溶存酸素濃度を測定する。
(1) An oxygen-sensing fluorescent dye film is attached to the inner wall surface of a resin-made transparent or translucent container using a special silicone adhesive.
(2) The sample is filled in a container with an oxygen-sensing fluorescent dye film, and the headspace is replaced with nitrogen, followed by sealing.
(3) The oxygen detection fluorescent dye film in the container is irradiated with light from the outside of the container through the container wall, and the fluorescence emitted from the film is detected by a sensor outside the container through the container wall, thereby reducing the dissolved oxygen concentration of the sample. taking measurement.
なお、溶存酸素濃度の測定方法としては、ポーラログラフ式酸素計(例えば、東亜ディーケーケー株式会社製 DOL−40)を使用する方法もある。このポーラログラフ式酸素計を用いる方法は、次の(1)〜(4)の手順により行う。
(1) 窒素を通気させる窒素置換(窒素バブリング法)により脱酸素処理した脱酸素水(溶存酸素濃度b)を用い、測定の対象である水中油型乳化食品を3倍に希釈し、試料を調製する。
(2) 上部が開口したガラス瓶(100ml容フラン瓶)に、予め攪拌子(スターラー)を入れ、(1)の試料を瓶の開口部まで目一杯に満たし、酸素計の検知部を取り付けた蓋体で、ガラス瓶内にヘッドスペースが残らないように密封する。
(3) 瓶内底部で攪拌子を回転させて試料を攪拌しながら溶存酸素濃度aを測定する。
(4) 試料の溶存酸素濃度aおよび脱酸素水の溶存酸素濃度bの値を次式に当て嵌め、水中油型乳化食品の溶存酸素濃度DO(%O2 )を次式により算出する。
In addition, as a measuring method of dissolved oxygen concentration, there is also a method of using a polarographic oxygen meter (for example, DOL-40 manufactured by Toa DKK Corporation). The method using the polarographic oximeter is performed according to the following procedures (1) to (4).
(1) Using deoxygenated water (dissolved oxygen concentration b) deoxygenated by nitrogen substitution (nitrogen bubbling method) to ventilate nitrogen, dilute the oil-in-water emulsified food to be measured three times, Prepare.
(2) A glass bottle (100 ml Flan bottle) with an open top is filled with a stirrer (stirrer) in advance, and the sample in (1) is fully filled up to the opening of the bottle. The body is sealed so that no headspace remains in the glass bottle.
(3) The dissolved oxygen concentration a is measured while rotating the stirring bar at the bottom of the bottle and stirring the sample.
(4) The dissolved oxygen concentration a of the sample and the dissolved oxygen concentration b of the deoxygenated water are fitted to the following equation, and the dissolved oxygen concentration DO (% O 2 ) of the oil-in-water emulsified food is calculated by the following equation.
このポーラログラフ式酸素計を使用する方法において、水中油型乳化食品を脱酸素水で3倍に希釈する理由は、マヨネーズ等の水中油型乳化食品は粘度が高いため、そのまま試料として用いたのでは、酸素計の検知部が正確に作動し難いからである。また、脱酸素水による希釈の程度は3倍に限らず、2〜5倍とすることが好ましい。 In the method using this polarographic oxygen meter, the reason why the oil-in-water emulsified food is diluted three times with deoxygenated water is that the oil-in-water emulsified food such as mayonnaise has a high viscosity. This is because the detection unit of the oximeter is difficult to operate accurately. Further, the degree of dilution with deoxygenated water is not limited to 3 times, and is preferably 2 to 5 times.
以上のポーラログラフ式酸素計を用いて得られる溶存酸素濃度の測定値と、前述の蛍光式酸素計を用いて得られる測定値は近似した測定値を示す。 The measured value of the dissolved oxygen concentration obtained using the above polarographic oximeter and the measured value obtained using the aforementioned fluorescent oximeter show approximate measured values.
本発明の樹脂製容器詰水中油型乳化食品は、食用油脂、食酢および卵黄を含有し、平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器に充填密封され、製造直後の溶存酸素濃度を蛍光式酸素計の測定値として1.0〜7.1%O2 としているため、バランスのとれた、優れた風味を有し、また、保存中に水中油型乳化食品が過度に酸化することを防止できるため、長期間にわたって良好な風味を保持し得る。 The resin container-packed oil-in-water emulsified food of the present invention contains edible oil and fat, vinegar and egg yolk, and is filled and sealed in a resin container having an average oxygen permeability of 50 cc / m 2 · day · atm or less. Since the dissolved oxygen concentration is 1.0 to 7.1% O 2 as a measurement value of the fluorescence oximeter, it has a balanced and excellent flavor, and the oil-in-water emulsified food during storage is excessive. Therefore, it is possible to maintain a good flavor over a long period of time.
ここで、製造直後の溶存酸素濃度を1.0〜7.1%O2 としているのは、1.0%O2 未満であると、食酢のツンとした刺激臭が強く感じられ、食用油脂と食酢と卵黄の味のなじみが悪くなるため、水中油型乳化食品全体の風味のバランスが崩れてしまうからであり、一方、7.1%O2 を超えるものは、従来の脱酸素処理を行っていない水中油型乳化食品に対して製造直後の風味は有意差が少ないが、長期間保存した場合に、食用油脂の過度の酸化による酸化臭が発生したり、各種香味成分の酸化分解等による風味の劣化が認められるからである。 Here, the dissolved oxygen concentration immediately after production is 1.0 to 7.1% O 2 , and if it is less than 1.0% O 2 , the pungent odor of vinegar is strongly felt, and edible fats and oils This is because the taste balance of vinegar and egg yolk deteriorates, and the balance of the flavor of the whole oil-in-water emulsified food is lost. On the other hand, those that exceed 7.1% O 2 are treated with the conventional deoxygenation treatment. The flavor immediately after production is not significantly different from the oil-in-water type emulsified food that has not been used, but when stored for a long time, oxidative odor due to excessive oxidation of edible oils and fats, oxidative decomposition of various flavor components, etc. This is because the deterioration of the flavor due to the above is recognized.
尚、水中油型乳化食品の製造直後の溶存酸素濃度を1.0%O2 未満に低減することにより、食酢のツンとした刺激臭が強く感じられるようになる等、風味のバランスが崩れてしまう理由は定かでないが、溶存酸素濃度が過度に低いと、原料の食酢中に存在する酢酸分子が水中油型食品中で均一に分散せず、多数集まって集合体を形成するからであると推察される。 In addition, by reducing the dissolved oxygen concentration immediately after the production of the oil-in-water emulsified food to less than 1.0% O 2 , the irritating odor of vinegar becomes stronger, and the balance of flavor is lost. The reason for this is not clear, but if the dissolved oxygen concentration is too low, the acetic acid molecules present in the raw vinegar will not be uniformly dispersed in the oil-in-water food, and many will gather to form an aggregate. Inferred.
すなわち、食酢の中で酢酸分子が水分子と混ざらず集合したままであると、ツンとした刺激臭がより強く発現することが知られているが、酸素分子は、酢酸分子と水分子のクラスター形成を促進して、酢酸分子の集合体の生成を阻害するのではないかと考えられる。したがって、本発明においては、水中油型乳化食品中に酸素を1.0%O2 以上残すことにより、食酢由来のツンとした刺激臭を効果的に抑制することができるものと思われる。 In other words, it is known that acetic acid molecules in vinegar remain gathered without mixing with water molecules, but the pungent irritating odor is more strongly expressed, but oxygen molecules are a cluster of acetic acid molecules and water molecules. It is thought that it may promote the formation and inhibit the formation of acetic acid molecule aggregates. Therefore, in the present invention, it is considered that the irritating odor derived from vinegar can be effectively suppressed by leaving oxygen in the oil-in-water emulsified food at 1.0% O 2 or more.
これに対し、一旦製造した後は、水中油型乳化食品は、できるだけ酸素を透過し難い容器で保存することが好ましい。本発明の容器詰水中油型乳化食品は、製造後10日間20℃の暗所で保存することにより、概ね、溶存酸素濃度が0.6〜5.7%O2 に低下したものとなるが、このような保存状態を維持することにより、バランスのよい良好な風味を3カ月以上の長期間にわたって保持することが可能となる。 In contrast, once manufactured, the oil-in-water emulsified food is preferably stored in a container that is as difficult to permeate oxygen as possible. Although the container-packed oil-in-water emulsified food of the present invention is stored in a dark place at 20 ° C. for 10 days after production, the dissolved oxygen concentration is generally reduced to 0.6 to 5.7% O 2. By maintaining such a preserved state, it becomes possible to maintain a well-balanced and good flavor for a long period of 3 months or more.
次に、本発明の樹脂製容器詰水中油型乳化食品の製造方法について説明する。 Next, the manufacturing method of the resin container-packed oil-in-water emulsified food of the present invention will be described.
本発明の樹脂製容器詰水中油型乳化食品の製造方法は、製造工程中で脱酸素処理を行って溶存酸素量を所定の範囲とし、また、水中油型乳化食品を充填する容器内を予め不活性ガスで置換しておく以外は、一般の水中油型乳化食品の製法と同様とすることができる。したがって、水中油型乳化食品自体は、食酢、卵黄、清水および各種調味料等からなる水相原料を混合し、これに油相原料を加え攪拌して乳化させることにより製造することができる。 The method for producing a resin container-packed oil-in-water emulsified food of the present invention includes deoxidizing in the production process so that the amount of dissolved oxygen is within a predetermined range, and the inside of the container filled with the oil-in-water emulsified food is preliminarily provided. Except for substituting with an inert gas, the production method can be the same as that for a general oil-in-water emulsified food. Therefore, the oil-in-water emulsified food itself can be produced by mixing an aqueous phase material composed of vinegar, egg yolk, fresh water, various seasonings and the like, adding the oil phase material to this, stirring and emulsifying.
ここで脱酸素処理の方法としては、製品中の溶存酸素量を低減し、1.0〜7.1%O2 に濃度調整できるものであれば特に限定されることなく、あらゆる既知の脱酸素処理法を採用することができる。例えば、原料の食用油脂、食酢、卵黄または清水等を保存するタンクの中、あるいは配管の中において、窒素、アルゴン等の不活性ガスを原料中に吹込み、溶存酸素を不活性ガスに置換するバブリング法、同様に容器詰め前の水中油型乳化食品中に不活性ガスを吹込むバブリング法、各種原料をミキサーで混合する際に減圧して溶存酸素を除去する減圧脱気法、さらに、前記特表平11−504963号公報に開示されているような酵素を用いる方法等を適宜採用すればよい。 Here, the deoxygenation method is not particularly limited as long as the amount of dissolved oxygen in the product can be reduced and the concentration can be adjusted to 1.0 to 7.1% O 2. Treatment methods can be employed. For example, an inert gas such as nitrogen or argon is blown into the raw material in a tank for storing raw edible fats, vinegar, egg yolk or fresh water, or in a pipe, and the dissolved oxygen is replaced with the inert gas. A bubbling method, a bubbling method in which an inert gas is blown into an oil-in-water emulsified food before filling into a container, a vacuum degassing method in which dissolved oxygen is removed by reducing pressure when mixing various raw materials with a mixer, What is necessary is just to employ | adopt suitably the method using an enzyme etc. which are indicated by Japanese translations of PCT publication No. 11-504963 gazette.
尚、不活性ガスのうち窒素は、空気中に大量に存在し、比較的コストが低く、また水中油型乳化食品の風味および品質に影響を与えることがないため、不活性ガスとして特に好適である。 Of the inert gases, nitrogen is particularly suitable as an inert gas because it is present in large amounts in the air, is relatively low in cost, and does not affect the flavor and quality of oil-in-water emulsified foods. is there.
さらに、製造中の水中油型乳化食品に空気中の酸素が混入しないように、密閉系の製造ラインを採用することが望ましい。 Furthermore, it is desirable to employ a closed production line so that oxygen in the air is not mixed into the oil-in-water emulsified food being produced.
本発明の水中油型乳化食品の原料には、上記の食酢、卵黄、食用油脂等の他、製造する食品の種類に応じて様々な原料を用いることができる。例えば、マヨネーズまたはドレッシングであれば、食塩、砂糖等の調味料、柑橘類の果汁、クエン酸、酒石酸、乳酸等の酸味料、グルタミン酸ソーダ等の呈味料、辛子粉、オイルマスタード、コショウ等の香辛料等が挙げられ、タルタルソースであれば、細断したピクルス、オニオン等の具材を加えればよい。また、食用油の使用量を減らした低カロリータイプの食品であれば、卵白、大豆蛋白質、澱粉、デキストリン、セルロース、その他増粘多糖類等を配合すればよい。 In addition to the above vinegar, egg yolk, edible oil and fat, etc., various raw materials can be used as the raw material for the oil-in-water emulsified food of the present invention, depending on the type of food to be produced. For example, for mayonnaise or dressing, seasonings such as salt and sugar, citrus juice, citric acid, tartaric acid, acid such as lactic acid, flavors such as sodium glutamate, spices such as pepper powder, oil mustard and pepper In the case of tartar sauce, ingredients such as chopped pickles and onions may be added. In addition, egg white, soy protein, starch, dextrin, cellulose, other thickening polysaccharides, and the like may be blended if it is a low calorie type food with a reduced amount of edible oil.
次いで、上記製法により得られた、溶存酸素濃度を1.0〜7.1%O2 に低減した水中油型乳化食品を、平均酸素透過度が50cc/m2・day・atm以下の酸素バリア性を有する容器に充填密封するが、充填前には容器内に酸素を含んだ空気が極力残存しないように、予め容器を窒素等の不活性ガスで置換することが必要である。また、袋状容器においてはヘッドスペースが残存しないように充填し、成形容器のように容器口部にヘッドスペースが残るものについては、そのヘッドスペース中の空気を窒素等の不活性ガスで置換することが望ましい。 Next, an oil-in-water emulsified food with a dissolved oxygen concentration reduced to 1.0 to 7.1% O 2 obtained by the above production method is used as an oxygen barrier having an average oxygen permeability of 50 cc / m 2 · day · atm or less. However, before filling, it is necessary to replace the container with an inert gas such as nitrogen in advance so that oxygen-containing air does not remain in the container as much as possible. In addition, in a bag-like container, the head space is filled so that it does not remain, and the air in the head space is replaced with an inert gas such as nitrogen for those in which the head space remains in the container mouth, such as a molded container. It is desirable.
以上の本発明の容器詰水中油型乳化食品の製造法によれば、食用油脂、食酢および卵黄を含有し、製造直後の溶存酸素濃度が1.0〜7.1%O2 に調整されており、例えば、製造後10日間20℃の暗所で保存した際の溶存酸素濃度が0.6〜5.7%O2 となる、風味および品質の優れた容器詰水中油型乳化食品を製造することができる。 According to the above method for producing a container-packed oil-in-water emulsified food of the present invention, edible oil and fat, vinegar and egg yolk are contained, and the dissolved oxygen concentration immediately after production is adjusted to 1.0 to 7.1% O 2. For example, a container-packed oil-in-water emulsified food with excellent flavor and quality is produced in which the dissolved oxygen concentration is 0.6 to 5.7% O 2 when stored in a dark place at 20 ° C. for 10 days after production. can do.
実施例1
マヨネーズを充填する樹脂製ボトル容器として、ポリエチレンとエチレン−ビニルアルコール共重合体樹脂を5層に積層してブロー成形法により製造した、高さ20cmで上端が開口したボトル形状の容器を用意した。この容器の平均酸素透過度は30cc/m2・day・atmであった。また、エチレンビニルアルコール共重合体樹脂層の層厚を変えることにより、同様にして平均酸素透過度が10cc/m2・day・atm、20cc/m2・day・atm、30cc/m2・day・atm、50cc/m2・day・atm、100cc/m2・day・atmの樹脂製ボトル容器を用意した(試験例1-1〜1-5)。
Example 1
As a resin bottle container filled with mayonnaise, a bottle-shaped container having a height of 20 cm and an open top was prepared by laminating polyethylene and ethylene-vinyl alcohol copolymer resin in five layers and manufacturing by blow molding. The average oxygen permeability of this container was 30 cc / m 2 · day · atm. Similarly, by changing the thickness of the ethylene vinyl alcohol copolymer resin layer, the average oxygen permeability is 10 cc / m 2 · day · atm, 20 cc / m 2 · day · atm, 30 cc / m 2 · day. -Resin bottle containers of atm, 50 cc / m 2 · day · atm, 100 cc / m 2 · day · atm were prepared (Test Examples 1-1 to 1-5).
また、図2の積層構造1bを有する樹脂製容器であって、その具体的層構成が、(外側)ポリエチレン(層比10.2wt%)/エチレン−ビニルアルコール共重合体(層比2.9wt%)/ポリエチレンにコバルトを配合した酸素吸収性樹脂(層比4.6wt%)/リプロ(層比46.3wt%)/エチレン−ビニルアルコール共重合体(層比2.5wt%)/ポリエチレン(内側)(層比33.4wt%)であるものを作製した(試験例1-6)。この容器は、作製直後の平均酸素透過度が0cc/m2・day・atmであり、作製直後の酸素吸収能力を6ヶ月以上維持し得るものである。 Further, it is a resin container having the laminated structure 1b of FIG. 2, and its specific layer structure is (outside) polyethylene (layer ratio 10.2 wt%) / ethylene-vinyl alcohol copolymer (layer ratio 2.9 wt%). / Oxygen-absorbing resin in which cobalt is blended with polyethylene (layer ratio 4.6 wt%) / Repro (layer ratio 46.3 wt%) / Ethylene-vinyl alcohol copolymer (layer ratio 2.5 wt%) / Polyethylene (inside) (layer ratio 33.4 wt%) was produced (Test Example 1-6). This container has an average oxygen permeability of 0 cc / m 2 · day · atm immediately after production, and can maintain the oxygen absorption capacity immediately after production for 6 months or more.
各容器の内壁面には、マヨネーズの充填前に、酸素検知蛍光染料フィルム(OxyDot:米国OxySense社製 OxySense 101専用の検知フィルム)を専用シリコーン系接着剤により3箇所(容器上端から下方に約5cmの位置の内壁面に1箇所、同じく約14cmの位置の内壁面に2箇所)貼着しておいた。 Before filling mayonnaise on the inner wall of each container, oxygen detection fluorescent dye film (OxyDot: OxySense 101 dedicated detection film made by OxySense, USA) is placed in three locations (about 5cm downward from the top of the container) with a dedicated silicone adhesive. (1 place on the inner wall surface at the position of 2) and 2 places on the inner wall surface at the position of about 14 cm).
一方、表1の配合原料を用いてマヨネーズを次のように製造した。まず、窒素バブリング法により原料の植物油および清水の脱酸素処理を行い、植物油および清水の溶存酸素濃度を共に約2.0%O2 まで低減した。次に、脱酸素処理済みの清水およびその他の水性原料を、密閉型ミキサー(特殊機化工業(株)製 商品名:TKアジホモミクサー)に投入し、密閉した後脱気してミキサー内圧を20kPaまで減じて攪拌した。約2分間攪拌した後、20kPaの減圧状態を維持したまま脱酸素処理済みの植物油を少しずつ注入しながら約8分間攪拌し、水相原料と植物油を乳化させてマヨネーズとし、ミキサー内に窒素を導入して常圧に戻した。 On the other hand, mayonnaise was produced as follows using the blended raw materials shown in Table 1. First, the raw material vegetable oil and fresh water were deoxygenated by a nitrogen bubbling method, and both the dissolved oxygen concentrations of the vegetable oil and fresh water were reduced to about 2.0% O 2 . Next, deoxygenated fresh water and other aqueous raw materials are put into a closed mixer (trade name: TK Ajihomomixer manufactured by Tokushu Kika Kogyo Co., Ltd.), sealed, degassed, and the internal pressure of the mixer is reduced. The mixture was reduced to 20 kPa and stirred. After stirring for about 2 minutes, while maintaining the reduced pressure of 20 kPa, the deoxygenated vegetable oil is poured little by little and stirred for about 8 minutes to emulsify the aqueous phase raw material and vegetable oil to make mayonnaise, and nitrogen is added to the mixer. It was introduced and returned to normal pressure.
次に、上述の平均酸素透過度が異なる6種の樹脂製ボトル容器内をそれぞれ予め窒素置換し、そこに常圧に戻したマヨネーズをなるべく外気を巻き込まないように500gずつ充填し、さらにヘッドスペースを窒素置換した後、アルミ層を有する積層樹脂フィルムを口部に溶着して密封した。この際、ヘッドスペースは約22mlであった。 Next, the inside of each of the six types of resin bottle containers having different average oxygen permeability described above was previously replaced with nitrogen, and mayonnaise returned to normal pressure was filled with 500 g each so as not to involve outside air as much as possible. Was replaced with nitrogen, and then a laminated resin film having an aluminum layer was welded to the mouth and sealed. At this time, the head space was about 22 ml.
こうして得られた樹脂製ボトル容器詰マヨネーズの製造直後の溶存酸素濃度(DO)は、いずれも約5%O2 であった。なお、溶存酸素濃度は、予め各容器に貼着しておいた3箇所の酸素検知蛍光染料フィルムの蛍光を測定し、それを平均することにより求めた。また、試食したところ、食酢のツンとした刺激臭は感じられず、まろやかでコクのある、風味バランスの優れたものであった。 The dissolved oxygen concentration (DO) immediately after the production of the resin bottled container mayonnaise thus obtained was about 5% O 2 . The dissolved oxygen concentration was determined by measuring the fluorescence of three oxygen-sensing fluorescent dye films that had been attached to each container in advance and averaging them. Moreover, when it tasted, the pungent smell of vinegar was not felt, and it was mellow and rich, and had an excellent flavor balance.
各樹脂製ボトル容器詰マヨネーズについて、20℃の暗所で製造後10日間、3カ月間、6カ月間、又は1年間保存した後に同様に試食により風味を調べた。 About each resin bottled container mayonnaise, after manufacturing in a dark place of 20 ° C. for 10 days, it was stored for 3 months, 6 months, or 1 year, and then the flavor was examined by tasting.
また、製造直後、製造後3カ月、6カ月及び1年の時点で、マヨネーズの色調を測定し、各時点の色調の製造直後の色調に対する色差(ΔE)を求めた。 In addition, the color tone of mayonnaise was measured immediately after production, at 3 months, 6 months and 1 year after production, and the color difference (ΔE) of the color tone at each time point with respect to the color tone immediately after production was determined.
ここで、マヨネーズの色調の測定は、分光測色計(ミノルタカメラ社、CM−508d)を用いて、容器上端から下方に約14cmの位置において、容器外から容器壁を通してマヨネーズを測色することにより行った。なお、容器壁の測色部位における光線透過率(波長450nm)は、平均酸素透過度100、50、30cc/m2・day・atmの容器は約85%、平均酸素透過度20、10、0cc/m2・day・atmの容器は約84%であった。 Here, the color of the mayonnaise is measured by measuring the mayonnaise from the outside of the container through the container wall at a position of about 14 cm downward from the upper end of the container using a spectrocolorimeter (Minolta Camera, CM-508d). It went by. The light transmittance (wavelength 450 nm) at the colorimetric part of the container wall is about 85% for containers with an average oxygen permeability of 100, 50, 30 cc / m 2 · day · atm, and an average oxygen permeability of 20, 10, 0 cc. The container of / m 2 · day · atm was about 84%.
また、このマヨネーズの色調の測定は、平均酸素透過度が異なる6種の容器を3個ずつ用意してそれぞれについて行い、平均酸素透過度が異なる容器ごとにマヨネーズの色調の平均値を求めた。結果を表2に示す。 In addition, this mayonnaise color tone was measured by preparing three containers of 6 types each having different average oxygen permeability, and obtaining an average value of mayonnaise color tone for each container having different average oxygen permeability. The results are shown in Table 2.
表2から、容器の平均酸素透過度を50cc/m2・day・atm以下にすると、製造後3カ月たっても、食酢のツンとした刺激臭は感じられず、まろやかでコクがあり、風味バランスが優れており、また、酸化臭も無かったが、さらに良好な風味バランスと酸化臭の無い状態を長期間保持するためには、容器の平均酸素透過度を30cc/m2・day・atm以下とするのが好ましく、さらに容器の平均酸素透過度を20cc/m2・day・atm以下とすると、製造後6ヶ月たっても風味バランスがよく、酸化臭もなく、酸素吸収能を有する樹脂製容器を使用したものは(試験例1-6)、より一層長期保存性が向上していることがわかる。 From Table 2, if the average oxygen permeability of the container is 50cc / m 2 · day · atm or less, the pungent odor of vinegar is not felt even after 3 months of manufacture, it is mellow and rich, and the flavor balance In addition, although there was no oxidation odor, in order to maintain a better flavor balance and no oxidation odor for a long period of time, the average oxygen permeability of the container should be 30cc / m 2 · day · atm or less Furthermore, if the average oxygen permeability of the container is 20 cc / m 2 · day · atm or less, the resin container has good flavor balance, no oxidation odor, and oxygen absorption ability even after 6 months of manufacture. (Test Example 1-6) using the slag further improves the long-term storage stability.
また、一般に、色差(ΔE)が2.0以下の場合には、色調の変化により商品価値が損なわれることはないところ、容器の平均酸素透過度が50cc/m2・day・atm以下の樹脂製容器の場合には、製造後6カ月経過しても色差が十分に低く、商品価値が維持される色調を有していることがわかる。 In general, when the color difference (ΔE) is 2.0 or less, there is no loss of commercial value due to changes in color tone, but the resin has an average oxygen permeability of 50 cc / m 2 · day · atm or less. In the case of the container made, it can be seen that the color difference is sufficiently low even after 6 months have passed since the production, and the product has a color tone that maintains the commercial value.
実施例2
製造直後のマヨネーズの溶存酸素濃度を、マヨネーズの製造時において原料の植物油及び清水に対する窒素バブリング時間を適宜変更することにより、表3のように調整する以外は、実施例1の試験例1-3と同様にして、樹脂製ボトル容器詰マヨネーズを製造し、各樹脂製ボトル容器詰マヨネーズについて、製造直後、20℃の暗所で製造後10日間、又は約3カ月間保存した後に、溶存酸素濃度(DO)を測定し、また試食により風味を調べた。結果を表3に示す。なお、表3には試験例1-3の結果も合わせて示す。
Example 2
Test Example 1-3 of Example 1 except that the dissolved oxygen concentration of mayonnaise immediately after production is adjusted as shown in Table 3 by appropriately changing the nitrogen bubbling time for the raw material vegetable oil and fresh water at the time of mayonnaise production In the same manner as above, resin bottled container mayonnaise was produced, and each of the bottled mayonnaise made of resin was dissolved immediately after production, in a dark place at 20 ° C. for 10 days after production, or for about 3 months, and then dissolved oxygen concentration (DO) was measured and the flavor was examined by tasting. The results are shown in Table 3. Table 3 also shows the results of Test Example 1-3.
表3より、製造直後の溶存酸素濃度が1.0〜7.1%O2 であり、あるいは、製造後10日間20℃の暗所で保存した際の溶存酸素濃度が0.6〜5.7%O2 である試験例2-2〜2-4が、製造直後から風味バランスが良好で、3カ月保存後にも酸化臭が生ずることなく、品質が優れていることがわかる。 From Table 3, the dissolved oxygen concentration immediately after the production is 1.0 to 7.1% O 2 , or the dissolved oxygen concentration when stored in a dark place at 20 ° C. for 10 days after the production is 0.6 to 5. It can be seen that Test Examples 2-2 to 2-4, which are 7% O 2 , have a good flavor balance immediately after production, and have excellent quality without oxidization odor even after storage for 3 months.
また、製造直後のマヨネーズの溶存酸素濃度を、マヨネーズの製造時において原料の植物油及び清水に対する窒素バブリング時間を適宜変更することにより、表4、表5のように調整する以外は、実施例1の試験例1-5、試験例1-6と同様にして、樹脂製ボトル容器詰マヨネーズを製造し、各樹脂製ボトル容器詰マヨネーズについて、製造直後、20℃の暗所で製造後10日間、又は約3カ月間保存した後、更に約6カ月間、約1年間保存した後に、溶存酸素濃度(OD)を測定し、また試食により風味を調べた。結果を表4、表5に示す。なお、表4、表5には試験例1-5、試験例1-6の結果も合わせて示す。 Further, the dissolved oxygen concentration of mayonnaise immediately after production was adjusted as shown in Table 4 and Table 5 by appropriately changing the nitrogen bubbling time for the raw material vegetable oil and fresh water at the time of mayonnaise production. In the same manner as in Test Example 1-5 and Test Example 1-6, resin bottled container mayonnaise was produced, and for each resin bottled container mayonnaise, immediately after production, in the dark at 20 ° C. for 10 days, or After storing for about 3 months, and further storing for about 6 months for about 1 year, the dissolved oxygen concentration (OD) was measured, and the flavor was examined by tasting. The results are shown in Tables 4 and 5. Tables 4 and 5 also show the results of Test Examples 1-5 and 1-6.
表4、表5より、製造直後の溶存酸素濃度が1.0〜7.1%O2であり、あるいは、製造後10日間20℃の暗所で保存した際の溶存酸素濃度が0.6〜5.7%O2である試験例3-2〜3-4、試験例4-2〜4-4が、製造直後から風味バランスが良好で、3カ月保存後にも酸化臭が生ずることなく、品質が優れていることがわかる。また、製造後6カ月たっても風味バランスがよく、酸化臭もなく、酸素吸収能を有する樹脂製容器を使用したものは、より一層長期保存性が向上していることがわかる。 From Tables 4 and 5, the dissolved oxygen concentration immediately after production is 1.0 to 7.1% O 2 , or the dissolved oxygen concentration when stored in a dark place at 20 ° C. for 10 days after production is 0.6. Test Examples 3-2 to 3-4 and Test Examples 4-2 to 4-4, which are ˜5.7% O 2 , have a good flavor balance immediately after production, and no oxidative odor occurs even after storage for 3 months , You can see that the quality is excellent. Further, it can be seen that even when 6 months have passed since the production, a product using a resin container having a good flavor balance, no oxidative odor, and an oxygen absorbing ability is further improved in long-term storage.
本発明の水中油型乳化食品及びその製造法は、食用油脂、食酢および卵黄を含有するマヨネーズ、タルタルソース、ドレッシング等の水中油型乳化食品であって、樹脂製容器に充填するものに広く適用することができる。 The oil-in-water emulsified food of the present invention and the method for producing the same are widely applied to oil-in-water emulsified foods such as mayonnaise, tartar sauce, and dressing containing edible oils and fats, vinegar and egg yolk, and filled in a resin container. can do.
1a、1b、1c、1d 積層構造
2i 、2m 、2o 耐湿性樹脂層
3i 、3o 酸素バリア性樹脂層
4 酸素吸収性樹脂層
5、5i 、5o 酸素吸収性酸素バリア性樹脂層
1a, 1b, 1c, 1d Laminated structure 2i, 2m, 2o Moisture resistant resin layer 3i, 3o Oxygen barrier resin layer 4 Oxygen absorbing resin layer 5, 5i, 5o Oxygen absorbing oxygen barrier resin layer
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004268558A JP4363285B2 (en) | 2003-09-17 | 2004-09-15 | Resin-packed oil-in-water emulsified food and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003325207 | 2003-09-17 | ||
JP2004268558A JP4363285B2 (en) | 2003-09-17 | 2004-09-15 | Resin-packed oil-in-water emulsified food and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005110674A JP2005110674A (en) | 2005-04-28 |
JP4363285B2 true JP4363285B2 (en) | 2009-11-11 |
Family
ID=34554533
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004268558A Expired - Fee Related JP4363285B2 (en) | 2003-09-17 | 2004-09-15 | Resin-packed oil-in-water emulsified food and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4363285B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5008889B2 (en) * | 2006-04-14 | 2012-08-22 | 三菱樹脂株式会社 | Gas barrier stretched film and gas barrier package using the film |
JP5346599B2 (en) * | 2009-01-16 | 2013-11-20 | キユーピー株式会社 | Multilayer plastic container and container-filled acidic oil-in-water emulsified food using the container |
JP5833807B2 (en) * | 2009-10-20 | 2015-12-16 | キユーピー株式会社 | Multi-layer plastic container filling products |
JP5952639B2 (en) * | 2012-05-18 | 2016-07-13 | 花王株式会社 | Containerized oil-in-water emulsified food |
WO2015199094A1 (en) * | 2014-06-24 | 2015-12-30 | 花王株式会社 | Manufacturing method for liquid seasoning containing oil phase and water phase |
JP6631025B2 (en) * | 2015-03-26 | 2020-01-15 | 凸版印刷株式会社 | Dressing container, container body, method of using container, and container with dressing |
JP6691745B2 (en) * | 2015-06-23 | 2020-05-13 | 花王株式会社 | Method for producing liquid seasoning containing oil phase and water phase |
JP6790428B2 (en) * | 2016-04-06 | 2020-11-25 | 凸版印刷株式会社 | Dressing container, container body, container usage, and dressing container |
CN107752047B (en) * | 2016-08-17 | 2022-06-03 | 丘比株式会社 | Stuffing for container |
JP2020023339A (en) * | 2018-08-07 | 2020-02-13 | 東洋製罐株式会社 | Container and its manufacturing method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52103481A (en) * | 1976-02-27 | 1977-08-30 | Mitsui Petrochem Ind Ltd | Drawn laminated hollow articles and production thereof |
JP2971430B2 (en) * | 1998-02-13 | 1999-11-08 | 株式会社ポッカコーポレーション | Container deformation prevention method |
JP4082023B2 (en) * | 2000-12-08 | 2008-04-30 | 東洋製罐株式会社 | Oxygen-absorbing resin composition, packaging material and multilayer container for packaging |
JP3864709B2 (en) * | 2001-02-13 | 2007-01-10 | 東洋製罐株式会社 | Oxygen-absorbing container with excellent storage stability in an empty container |
WO2003077677A1 (en) * | 2002-03-18 | 2003-09-25 | Q.P.Corporation | Packaged oil-in-water type emulsion food and process for producing the same |
-
2004
- 2004-09-15 JP JP2004268558A patent/JP4363285B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005110674A (en) | 2005-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alfei et al. | Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns | |
Vermeiren et al. | Developments in the active packaging of foods | |
Ros-Chumillas et al. | Quality and shelf life of orange juice aseptically packaged in PET bottles | |
CA2630673C (en) | Milk-type food and drink packed in transparent container and process for producing the same | |
JP4363285B2 (en) | Resin-packed oil-in-water emulsified food and method for producing the same | |
JP4530916B2 (en) | Processed high-quality tomato products and process for producing processed tomato products using the same | |
JP4235767B2 (en) | Containerized oil-in-water emulsified food and process for producing the same | |
WO2003067254A1 (en) | Method of evaluating qualities of food or drink and indicator therefor | |
AU2005211629A1 (en) | Plastic bag comprising ready-to-cook fresh vegetables and a pouch comprising a flavouring composition | |
Pettersen et al. | Oxidative stability of cream cheese stored in thermoformed trays as affected by packaging material, drawing depth and light | |
JP4749821B2 (en) | Containerized emulsified food | |
JP2008061591A (en) | Method for packaging intermediate moisture food | |
Sablani et al. | Food–Packaging Interactions | |
Cheenkaew et al. | Southern-style Pad Thai sauce: From traditional culinary treat to convenience food in retortable pouches | |
Marcos et al. | Innovations in packaging of fermented food products | |
JP5952639B2 (en) | Containerized oil-in-water emulsified food | |
KR100206196B1 (en) | Kimchi maturity indicator | |
JP2009213393A (en) | Control of off-flavor in sulfurous acid-free wine | |
JP2018028102A (en) | Flavor improver of miso or miso-containing food and drink | |
Ozdemir | Antimicrobial releasing edible whey protein films and coatings | |
KR102173799B1 (en) | A container of dipping alcoholic drink for distinguishing the drinking time of the dipping alcoholic drink and the method for distinguishing the drinking time of the dipping alcoholic drink | |
Sonar | In-Package Thermal Pasteurization: Evaluating Performance of Flexible Packaging and Oxygen Sensitivity of Food Components | |
JP4771960B2 (en) | Potato processed product and its manufacturing method | |
JP3649429B2 (en) | Retort food cooked rice using oxygen absorbent container | |
JP4948384B2 (en) | Liquid seasoning in containers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070502 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090512 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090707 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090810 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4363285 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150828 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |