JP4363124B2 - Light emission evaluation method - Google Patents

Light emission evaluation method Download PDF

Info

Publication number
JP4363124B2
JP4363124B2 JP2003300372A JP2003300372A JP4363124B2 JP 4363124 B2 JP4363124 B2 JP 4363124B2 JP 2003300372 A JP2003300372 A JP 2003300372A JP 2003300372 A JP2003300372 A JP 2003300372A JP 4363124 B2 JP4363124 B2 JP 4363124B2
Authority
JP
Japan
Prior art keywords
wavelength
light emission
spectral
light
insect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003300372A
Other languages
Japanese (ja)
Other versions
JP2005065601A (en
Inventor
達清 内田
真 山田
慎一 青木
修 倉光
謙太郎 蟻川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003300372A priority Critical patent/JP4363124B2/en
Publication of JP2005065601A publication Critical patent/JP2005065601A/en
Application granted granted Critical
Publication of JP4363124B2 publication Critical patent/JP4363124B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catching Or Destruction (AREA)

Description

本発明は、光放射による夜行性昆虫の行動抑制効果を評価する光放射評価方法に関するものである。   The present invention relates to a light radiation evaluation method for evaluating the effect of suppressing the behavior of nocturnal insects by light radiation.

従来より、主に果樹園や農地などの農業分野において、夜蛾類のもたらす農作物への被害が問題とされてきた。例えば夜蛾は夜間に果樹園に飛来して、くちばしで果実に穿孔し、吸汁するため、その箇所を中心に果実が腐敗し、商品価値が低下するという問題があった。また農地では、夜蛾の幼虫が野菜や花卉の花芽や葉を食い荒らすために、収穫量が減少するという問題があった。   Conventionally, damage to crops caused by night moss has been a problem mainly in the agricultural field such as orchards and farmland. For example, a night owl flew to an orchard at night, pierced the fruit with a beak, and sucked the juice, so that there was a problem that the fruit rotted mainly at that point and the commercial value was lowered. Moreover, in farmland, there was a problem that the yield decreased because the night larva larvae eaten and damaged the buds and leaves of vegetables and flowers.

このような夜蛾類による農作物への被害を低減するために、夜蛾類が夜行性で、周囲が暗くなる夜間には活発に活動するが、周囲が明るい昼間は殆ど活動しないという習性を利用し、果樹園や農地に防蛾灯を設置して、夜蛾を防除する対策が実施されていた。その原理は、夜間に果樹園や農地を防蛾灯で照明し、夜蛾の複眼を昼同様に明順応させることによって、吸汁や交尾や産卵などの活動を抑制するというものである(例えば特許文献1参照)。   In order to reduce the damage to crops caused by such night moss, the habit is that nocturnal moss is nocturnal and is active in the night when the surroundings are dark, but hardly active in the daytime when the surroundings are bright However, measures were taken to control night lanterns by installing lantern lights in orchards and farmland. The principle is to illuminate orchards and farmland at night with a lantern, and to lighten the compound of the night lantern in the same way as in the daytime to suppress activities such as sucking, mating and laying eggs (for example, patents) Reference 1).

ところで、防蛾灯に用いる光源としてどのような光源が適当かを検証した実験が行われており、野村らの研究(野村健一:電燈照明による吸蛾類の防除、日本応用動物昆虫学会誌別刷第9巻第3号,pp.179-186,1965)によれば、黄色蛍光ランプがアカエグリバ複眼を比較的短時間で明順応させることができると判明した。図6は5種類の蛍光ランプ(ブラックライト蛍光ランプ、青色カラードランプ、黄色カラードランプ、白色蛍光ランプ、赤色カラードランプ)による吸汁性夜蛾(Ap,Cp,As,Os)の明順応所要時間を示しており、所要時間のデータは短波長側から見てブラックライト蛍光ランプ、青色カラードランプ、黄色カラードランプ、白色蛍光ランプ、赤色カラードランプの順番となっている。ここで明順応の所要時間が短いということは、短時間で夜蛾の活動を抑制できることを意味するので、黄色蛍光ランプ(短波長側から3番目のデータ群)は他の蛍光ランプに比べて行動抑制効果が高いと言える。また圃場での実用試験(例えば八瀬らの試験:黄色蛍光灯によるカーネーション、バラ、キクのタバコガ・ヨトウムシ類防除技術,近畿中国農研,93,pp.10-14,1997)によっても、黄色蛍光ランプによる行動抑制効果が確認された。このような試験結果を踏まえ、従来は防蛾灯に用いる光源として、波長580nmに分光放射エネルギーのピークを持つ黄色蛍光ランプが使用されてきた。   By the way, an experiment was conducted to verify what kind of light source is suitable as a light source used in a lantern, and a study by Nomura et al. (Kenichi Nomura: Control of suckers by electric lighting, printed by the Japanese Society of Applied Entomology) According to Vol. 9, No. 3, pp. 179-186, 1965), it was found that the yellow fluorescent lamp can bright-adapt the red sea bream compound eye in a relatively short time. Fig. 6 shows the time required for light adaptation of absorptive night lamp (Ap, Cp, As, Os) by five types of fluorescent lamps (black light fluorescent lamp, blue colored lamp, yellow colored lamp, white fluorescent lamp, red colored lamp). The required time data are in the order of a black light fluorescent lamp, a blue colored lamp, a yellow colored lamp, a white fluorescent lamp, and a red colored lamp as viewed from the short wavelength side. Here, the short time required for light adaptation means that the nighttime activity can be suppressed in a short time, so the yellow fluorescent lamp (the third data group from the short wavelength side) is compared to other fluorescent lamps. It can be said that the action suppression effect is high. It is also yellow in practical tests in the field (for example, Yase et al. Test: carnation with yellow fluorescent lights, rose and chrysanthemum control technology, Kinki Chugoku Agricultural Research Institute, 93, pp.10-14, 1997). The action suppression effect by the fluorescent lamp was confirmed. Based on such test results, conventionally, a yellow fluorescent lamp having a peak of spectral radiant energy at a wavelength of 580 nm has been used as a light source used for a flashlight.

また近年になって、特許文献2、3に示されるように防蛾灯に使用する目的で様々な光源が開発されてきた。
特開2001−258454号公報 特開平11−307054号公報 特開2000−125746公報
In recent years, various light sources have been developed for the purpose of use as a lamp as shown in Patent Documents 2 and 3.
JP 2001-258454 A Japanese Patent Laid-Open No. 11-307054 JP 2000-125746 A

上述のように防蛾灯に使用する目的で様々な光源が開発されているが、これらの光源は黄色蛍光ランプと分光特性が異なるために、野村らの研究成果から対象昆虫の複眼の明順応の時間を推定することはできず、圃場での実用試験を行う以外に、これら光源の防蛾灯としての効果を評価する方法がなかった。   As described above, various light sources have been developed for the purpose of use as a lantern light. However, these light sources have different spectral characteristics from yellow fluorescent lamps. It was not possible to estimate the duration of the light, and there was no way to evaluate the effect of these light sources as a flashlight other than conducting a practical test in the field.

本発明は上記問題点に鑑みて為されたものであり、その目的とするところは、圃場実験を行うことなく、夜蛾をはじめとする夜行性昆虫に対する行動抑制効果を簡単に評価できる光放射評価方法を提供することにある。   The present invention has been made in view of the above problems, and its object is to provide light radiation that can easily evaluate the action-suppressing effect on nocturnal insects such as night owls without conducting field experiments. To provide an evaluation method.

ところで、夜蛾をはじめとする夜行性昆虫の明順応とは、昆虫の複眼内に存在する色素細胞における色素顆粒の移動を指す。これらの色素細胞は、複眼を構成する個眼内にある円錐晶体や個眼網膜の外側を取り囲むように存在し、網膜に到達する光量を調節するために、明暗に応じて色素細胞内で凝集したり、拡散したりする所謂色素移動を行う。   By the way, the light adaptation of nocturnal insects such as night moths refers to the movement of pigment granules in pigment cells existing in the compound eyes of insects. These pigment cells exist around the conic crystals in the single eye composing the compound eye and the outside of the single eye retina, and aggregate in the pigment cells according to light and darkness to adjust the amount of light reaching the retina. Or so-called dye movement that diffuses or diffuses.

このように色素移動は光量調節のために行われるので、昆虫複眼を効率的に明順応させるためには、光受容器である視細胞を効率的に興奮させる光を照射する必要がある。   Thus, since pigment movement is performed to adjust the amount of light, it is necessary to irradiate light that efficiently excites the photoreceptors, which are photoreceptors, in order to efficiently light-adapt the insect compound eye.

ところで、視細胞の興奮の度合いを測定する手段としては、網膜電図(Electroretinogram,ERG)を測定する方法がある。これは視細胞の興奮が、細胞膜にあるイオンチャネルを通した細胞内外のイオン交換により生じる電位変動であることから、細胞外の電位変動を測定して視細胞の興奮の度合いを測るものであり、ERGは多くの視細胞の反応の総和である。   By the way, as means for measuring the degree of excitation of photoreceptor cells, there is a method of measuring an electroretinogram (ERG). This is because the excitement of the photoreceptor cell is a potential fluctuation caused by ion exchange inside and outside the cell through the ion channel in the cell membrane, and the degree of excitement of the photoreceptor cell is measured by measuring the extracellular potential fluctuation. , ERG is the sum of many photoreceptor responses.

しかしながら、防蛾灯の主な対象昆虫については、これまで分光感度を測定する目的でERGを記録した例が無く、本発明者らは防蛾灯の主な対象昆虫に対して、そのERGを記録することで、複眼網膜の分光感度を測定した。   However, there has been no example of recording ERG for the purpose of measuring the spectral sensitivity of the main target insect of the lantern light, and the present inventors applied the ERG to the main target insect of the lantern light. By recording, the spectral sensitivity of the compound eye retina was measured.

これにより昆虫の網膜における分光感度と、光放射の分光特性との積をとることで、複眼網膜全体の興奮の度合いを簡易的に計算できるようになり、ひいては光放射の分光特性を知るだけで、複眼網膜を効率的に興奮させ、明順応を引き起こすことができる光放射特性を知ることができるようになった。   As a result, the product of the spectral sensitivity of the insect retina and the spectral characteristics of the light emission makes it possible to easily calculate the degree of excitement of the entire compound-eye retina, and by simply knowing the spectral characteristics of the light emission. It has become possible to know the light emission characteristics that can efficiently excite the compound eye retina and cause light adaptation.

本願発明は上述のような昆虫の視覚系の仕組みを利用して光放射による夜行性昆虫の行動抑制効果を評価する方法であり、請求項1の発明は、少なくとも光源を含む光放射部の光放射による夜行性昆虫の行動抑制効果を評価する光放射評価方法であって、λを光放射の波長、S(λ)を防除対象の昆虫の網膜における分光感度を示す関数、Φe(λ)を光放射部による放射強度の分光特性を示す関数、visをS(λ)>0となるような波長λの範囲、Eを評価指数とした場合に、
E=∫visS(λ)Φe(λ)dλ
なる式で求めた評価指数が大きいほど、行動抑制効果が高いと判断することを特徴とする。
The invention of the present application is a method for evaluating the effect of suppressing the behavior of nocturnal insects by light radiation using the mechanism of the visual system of insects as described above. The invention of claim 1 is directed to light of a light emitting part including at least a light source. A light emission evaluation method for evaluating the behavioral inhibition effect of nocturnal insects by radiation, wherein λ is a wavelength of light emission, S (λ) is a function indicating spectral sensitivity in the retina of an insect to be controlled, and Φe (λ) When the function indicating the spectral characteristics of the radiation intensity by the light emitting part, the range of wavelength λ such that S (λ)> 0, and E as the evaluation index,
E = ∫ vis S (λ) Φe (λ) dλ
It is characterized by determining that the action suppression effect is higher as the evaluation index obtained by the following formula is larger.

ここで、防除対象の昆虫の網膜における分光感度S(λ)は各単色光を照射した際のERGをもとに導出されるもので、波長λの光放射が引き起こす網膜の興奮の大きさを示している。   Here, the spectral sensitivity S (λ) in the retina of the insect to be controlled is derived based on the ERG when each monochromatic light is irradiated, and the magnitude of the retina excitement caused by the light emission of the wavelength λ. Show.

したがって、ある分光特性Φe(λ)を持つ光放射によって引き起こされる網膜の興奮の大きさの総和は、分光特性Φe(λ)と分光感度S(λ)との積を、分光感度S(λ)>0となる範囲で積分した値となる。これを表したのが上記の式であり、この式で求めた評価指数Eが網膜における視細胞の興奮の大きさを示しているので、この評価指数Eを求めることによって、光放射による行動抑制効果を直接的に評価することができ、且つ光放射の分光特性が分かれっていれば評価が行えるため、圃場での実用試験などを必要とせず、簡易的に行動抑制効果を評価することができる。   Therefore, the sum of the magnitudes of excitement of the retina caused by light radiation having a certain spectral characteristic Φe (λ) is the product of the spectral characteristic Φe (λ) and the spectral sensitivity S (λ). It becomes an integrated value in a range where> 0. This is expressed by the above equation, and the evaluation index E obtained by this equation indicates the magnitude of the excitation of photoreceptors in the retina. The effect can be evaluated directly, and if the spectral characteristics of the light emission are separated, the evaluation can be performed. Therefore, it is possible to easily evaluate the action suppression effect without requiring a practical test in the field. it can.

また請求項2の発明は、少なくとも光源を含む光放射部の光放射による夜行性昆虫の行動抑制効果を評価する光放射評価方法であって、λを光放射の波長、S(λ)を防除対象の昆虫の網膜における分光感度を示す関数、Φe(λ)を光放射部による放射強度の分光特性を示す関数、V(λ)を人間の分光視感効率を示す関数、visをS(λ)>0となるような波長λの範囲、vis1を波長λが約380nm以上且つ約780nm以下の範囲、E’を光放射部の測光値に乗算するための補正係数とした場合に、
E’=∫visS(λ)Φe(λ)dλ/∫vis1V(λ)Φe(λ)dλ
なる式で求めた補正係数E’を光放射部の測光値に乗じた値を評価指数とし、この評価指数が大きいほど、行動抑制効果が高いと判断することを特徴とする。ここに、測光値(測光量)とは光束およびそれから導き出される諸量のことをいい、光度、輝度、照度、光量などがある。
The invention of claim 2 is a light emission evaluation method for evaluating the effect of suppressing the behavior of nocturnal insects by light emission of a light emission part including at least a light source, wherein λ is a wavelength of light emission and S (λ) is controlled. A function indicating the spectral sensitivity in the retina of the target insect, Φe (λ) is a function indicating the spectral characteristic of the radiation intensity by the light emitting portion, V (λ) is a function indicating the human spectral luminous efficiency, and vis is S (λ )> 0 in the range of wavelength λ, vis1 is the wavelength λ is in the range of about 380 nm to about 780 nm, and E ′ is the correction coefficient for multiplying the photometric value of the light emitting part,
E '= ∫ vis S (λ ) Φe (λ) dλ / ∫ vis1 V (λ) Φe (λ) dλ
A value obtained by multiplying the photometric value of the light emitting unit by the correction coefficient E ′ obtained by the following formula is used as an evaluation index, and it is determined that the action suppression effect is higher as the evaluation index is larger. Here, the photometric value (photometric amount) refers to the luminous flux and various quantities derived from it, and includes luminous intensity, luminance, illuminance, and quantity of light.

現状では光放射の分光特性を測定する機器よりも、照度、輝度、光束等の測光値を測定する機器の方が普及している。このため、光源毎にこれらの測光値に対する補正係数を予め計算しておき、測光値に対し補正係数を乗じて行動抑制効果を評価する方が、実用上は便利な場合もある。そこで、請求項2の発明では、測光値(例えば単位光束、照度、輝度など)あたりの昆虫網膜の興奮の大きさを示す補正係数E’を求め、この補正係数E’を測光値に乗じることで評価指数を求めており、例えば蛍光ランプや白熱灯などの光源の種類ごとに補正係数E’を計算しておくことで、照度計や輝度計と言った普及率の高い計器で測定した測光値から評価指数を求めることができ、この評価指数をもとに光放射による行動抑制効果を直接的に評価することができる。また、光放射の測光値を求めれば評価が可能なため、圃場での実用試験などを必要とせず、簡単に行動抑制効果を評価することができる。   Currently, devices that measure photometric values such as illuminance, luminance, and luminous flux are more prevalent than devices that measure the spectral characteristics of light radiation. For this reason, it may be practically convenient to calculate correction coefficients for these photometric values for each light source in advance and evaluate the action suppression effect by multiplying the photometric values by the correction coefficient. Accordingly, in the invention of claim 2, a correction coefficient E ′ indicating the magnitude of the excitement of the insect retina per photometric value (for example, unit luminous flux, illuminance, luminance, etc.) is obtained, and the photometric value is multiplied by this correction coefficient E ′. For example, by calculating the correction coefficient E 'for each type of light source such as a fluorescent lamp or an incandescent lamp, photometry is performed using a highly popular instrument such as an illuminometer or luminance meter. An evaluation index can be obtained from the value, and the action suppression effect by light emission can be directly evaluated based on the evaluation index. Moreover, since evaluation is possible if the photometric value of light emission is calculated | required, a practical test etc. in a field are not required, and a behavior inhibitory effect can be evaluated easily.

また請求項3の発明は、請求項1又は2の発明において、S(λ)が、検出対象の複数種類の昆虫の網膜における分光感度の平均であることを特徴とする。   The invention of claim 3 is characterized in that, in the invention of claim 1 or 2, S (λ) is an average of spectral sensitivities in retinas of a plurality of types of insects to be detected.

果樹園や農地では複数種類の昆虫から被害を受ける場合があるが、この発明によれば複数種類の昆虫の網膜における分光感度の平均をS(λ)として、請求項1又は2の評価式から評価指数又は補正係数を求めているので、複数種類の昆虫に対する行動抑制効果を実用試験なしで直接的に評価することができる。   In an orchard or farmland, damage may be caused by multiple types of insects. According to the present invention, the average spectral sensitivity of the retinas of multiple types of insects is defined as S (λ). Since the evaluation index or the correction coefficient is obtained, it is possible to directly evaluate the action suppressing effect on a plurality of types of insects without a practical test.

また請求項4の発明は、請求項3の発明において、S1(λ),S2(λ),…,Sn(λ)をそれぞれ各種類の昆虫の網膜における分光感度を示す関数、k1,k2,…,knをそれぞれ各種類の昆虫の分光感度に対する重み係数とし、この重み係数として各種類の昆虫の存在する割合又は各種類の昆虫によって発生する被害の大きさの割合の何れかを用い、
S(λ)=(k11(λ)+k22(λ)+…+knn(λ))/(k1+k2+…+kn
なる式でS(λ)を求めたこと特徴とする。
According to a fourth aspect of the present invention, in the third aspect of the present invention, S 1 (λ), S 2 (λ),..., S n (λ) are functions representing spectral sensitivity in the retina of each type of insect, k 1 , k 2 ,..., K n are weighting factors for the spectral sensitivity of each type of insect, and the weighting factor is a ratio of the percentage of each type of insect or the percentage of damage caused by each type of insect. Use either
S (λ) = (k 1 S 1 (λ) + k 2 S 2 (λ) + ... + k n S n (λ)) / (k 1 + k 2 + ... + k n)
S (λ) is obtained by the following formula.

果樹園や農地において複数種類の昆虫から被害を受ける場合、昆虫の種類によって果樹園や農地に存在する個体数に偏りがあったり、受ける被害の大きさに差がある場合があるが、この発明によれば、複数種類の昆虫の存在する割合又は複数種類の昆虫によって発生する被害の大きさの割合の何れかを重み係数として用い、複数種類の昆虫の分光感度の加重平均をとることで、より重要な昆虫に的を絞った評価を行うことができ、複数種類の昆虫に対する行動抑制効果を、種毎の昆虫の数や被害の大きさに合わせて、実用試験なしで直接的に評価することができる。   When damage is caused by multiple types of insects in an orchard or farmland, the number of individuals present in the orchard or farmland may be biased depending on the type of insect, or the amount of damage received may vary. According to the above, by using as a weighting factor either the proportion of multiple types of insects present or the proportion of the magnitude of damage caused by multiple types of insects, the weighted average of the spectral sensitivities of multiple types of insects is obtained. It is possible to perform evaluations focusing on more important insects, and directly evaluate the behavioral inhibition effect on multiple types of insects without practical tests according to the number of insects and the degree of damage for each species. be able to.

また請求項5の発明は、請求項1乃至4の何れか1つの発明において、R(λ)を波長毎の誘虫性を示す分光特性、rをR(λ)>0となるような波長λの範囲、Kを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−K∫R(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, R (λ) is a spectral characteristic indicating an insecticidal property for each wavelength, and r is a wavelength λ such that R (λ)> 0. range, when the K constants, obtained by adding the above equation terms (∫ vis S (λ) Φe (λ) dλ) to (-K∫ r R (λ) Φe (λ) dλ) becomes the correction term It is characterized by that.

光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する効果も有しており、特に波長が360nm付近の紫外領域の光放射は、昼行性の昆虫を誘引する効果が高くなっている。果樹園や農地では、光放射に集まる昆虫が農作物に被害を与えることもあるため、防蛾灯としては昆虫を誘引する波長の光をできるだけ放射しないことが好ましい。この発明によれば、波長毎の誘虫性を示す分光特性R(λ)と、光放射の分光特性Φe(λ)との積を、R(λ)>0となるような波長の範囲rで積分した結果に、(−K)をかけた値(−K∫R(λ)Φe(λ)dλ)を補正項として、上式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、他の昼行性昆虫を誘引しやすい光放射は、その評価指数を割り引くことで、誘虫性を加味した形で行動抑制効果を実用試験なしに評価できる。 While light radiation suppresses the behavior of nocturnal insects such as night moths, it also has the effect of attracting other diurnal insects. In particular, light radiation in the ultraviolet region near a wavelength of 360 nm The effect of attracting sexual insects is high. In an orchard or farmland, insects gathering in the light radiation may cause damage to the crops. Therefore, it is preferable that the light with a wavelength that attracts insects is not emitted as much as possible. According to the present invention, the product of the spectral characteristic R (λ) indicating the attracting property for each wavelength and the spectral characteristic Φe (λ) of the light emission is within a wavelength range r such that R (λ)> 0. the integration result, (- K) value obtained by multiplying the (-K∫ r R (λ) Φe (λ) dλ) as correction term, term of the above equation (∫ vis S (λ) Φe (λ) dλ) Even if the retina of a nocturnal insect is greatly excited to obtain a high action suppression effect, light radiation that easily attracts other nocturnal insects can be attracted by discounting its evaluation index. The behavioral inhibitory effect can be evaluated without a practical test in a form that incorporates sex.

また請求項6の発明は、請求項1乃至4の何れか1つの発明において、Pr(λ)を波長λにおける植物に含まれるフィトクロム色素の吸収スペクトル、prをPr(λ)>0となるような波長λの範囲、Lを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−L∫prPr(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする。 The invention of claim 6 is the invention according to any one of claims 1 to 4, wherein Pr (λ) is an absorption spectrum of a phytochrome pigment contained in a plant at a wavelength λ, and pr is Pr (λ)> 0. a range of wavelengths lambda, is L constant, the above equation the term (∫ vis S (λ) Φe (λ) dλ) to (-L∫ pr Pr (λ) Φe (λ) dλ) becomes the correction term Is added.

光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、光に敏感な植物に対しては花芽の形成に悪影響を与える場合がある。多くの植物は、日長(昼間の時間)の変化に反応して花芽を形成する光周期を有し、日長が一定時間(限界日長)よりも短くなると花芽を形成するものを短日植物、反対に長くなると花芽を形成するものを長日植物という。キクやイチゴなどの短日植物の場合は、防蛾灯を終夜点灯させると花芽が形成されないなどして、収穫量が減少することがある。またホウレン草などの長日植物の場合は、花芽の形成が促進され(抽苔)、菜食部である葉が固くなって、商品価値が低下する場合がある。   While light radiation suppresses the behavior of nocturnal insects such as night moths, it can adversely affect flower bud formation for light sensitive plants. Many plants have a photoperiod that forms flower buds in response to changes in day length (daytime), and those that form flower buds when the day length is shorter than a certain time (limit day length). A plant that, on the other hand, forms a flower bud when it is long is called a long-day plant. In the case of short-day plants such as chrysanthemum and strawberries, if the lantern is turned on all night, flower buds may not be formed and the yield may decrease. In addition, in the case of long-day plants such as spinach, the formation of flower buds is promoted (brushing), the leaves that are vegetarian parts become hard, and the commercial value may decrease.

ところで植物の光周性には、植物に含まれるフィトクロム色素が関係していることが知られている(例えば、夜間照明影響研究調査委員会報告書、照明学会、1985)。フィトクロム色素にはPr(赤色光吸収型)とPfr(遠赤色光吸収型)とがあり、Prに赤色光を照射するとPfrに転換し、逆にPfrに遠赤色光を照射するとPrに転換する。また、光の照射を遮断すると徐々にPfrからPrに転換する特性がある(暗転換)。このため全フィトクロム色素中のPfrの量は日長が長いと増加し、短くなると減少する傾向にあり、このPfrの量が植物の開花時期を制御すると言われている。つまり光放射が植物の花芽形成に悪影響を与える原因は、本来ならフィトクロム色素が暗転換されなければならない夜間に、光放射に含まれる赤色光がフィトクロム色素に作用することで、暗転換が発生せず、Pfrの量が減少しないことにある。   By the way, it is known that the phytochrome pigment contained in a plant is related to the photoperiodicity of the plant (for example, the report of the Research Committee on Illumination Effects on Lighting, The Illuminating Society of Japan, 1985). There are two types of phytochrome pigments: Pr (red light absorption type) and Pfr (far red light absorption type). When Pr is irradiated with red light, it is converted to Pfr. Conversely, when Pfr is irradiated with far red light, it is converted to Pr. . Moreover, when light irradiation is interrupted, there is a characteristic of gradually changing from Pfr to Pr (dark conversion). For this reason, the amount of Pfr in the total phytochrome pigment tends to increase when the day length is long, and decreases when the day length is short, and this amount of Pfr is said to control the flowering time of the plant. In other words, the cause of light radiation adversely affecting plant flower bud formation is that dark conversion occurs because the red light contained in the light radiation acts on the phytochrome pigment at night when the phytochrome pigment must be darkly converted. In other words, the amount of Pfr does not decrease.

この発明によれば、波長λにおける植物に含まれるフィトクロム色素の吸収スペクトルPr(λ)と、光放射の分光特性Φe(λ)との積を、Pr(λ)>0となるような波長の範囲prで積分した結果に、(−L)をかけた値(−L∫prPr(λ)Φe(λ)dλ)を補正項として、上式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、植物の花芽形成に悪影響を与える光放射は、その評価指数を引くことで、花芽形成に与える悪影響を加味した形で行動抑制効果を実用試験なしに評価できる。 According to the present invention, the product of the absorption spectrum Pr (λ) of the phytochrome pigment contained in the plant at the wavelength λ and the spectral characteristic Φe (λ) of the light emission is such that Pr (λ)> 0. the result of integrating the range pr, (- L) as a correction term a value obtained by multiplying the (-L∫ pr Pr (λ) Φe (λ) dλ), term of the above equation (∫ vis S (λ) Φe (λ ) Dλ) is added, and even if the retina of a nocturnal insect is greatly excited and a high behavior suppressing effect is obtained, the light radiation that adversely affects the flower bud formation is subtracted from the evaluation index, The behavioral inhibitory effect can be evaluated without a practical test in consideration of the adverse effect on flower bud formation.

また請求項7の発明は、請求項1乃至4の何れか1つの発明において、R(λ)を波長毎の誘虫性を示す分光特性、rをR(λ)>0となるような波長λの範囲、Pr(λ)を波長λにおける植物に含まれるフィトクロム色素の吸収スペクトル、prをPr(λ)>0となるような波長λの範囲、K,Lを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−K∫R(λ)Φe(λ)dλ−L∫prPr(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする。 Further, the invention of claim 7 is the invention according to any one of claims 1 to 4, wherein R (λ) is a spectral characteristic indicating an attracting property for each wavelength, and r is a wavelength λ such that R (λ)> 0. , Pr (λ) is the absorption spectrum of the phytochrome pigment contained in the plant at wavelength λ, pr is the range of wavelength λ such that Pr (λ)> 0, and K and L are constants, terms obtained by adding the (∫ vis S (λ) Φe (λ) dλ) to (-K∫ r R (λ) Φe (λ) dλ-L∫ pr Pr (λ) Φe (λ) dλ) becomes the correction term It is characterized by that.

光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する場合や、光に敏感な植物に対しては花芽の形成に悪影響を与える場合がある。この発明によれば、波長毎の誘虫性を示す分光特性R(λ)と光放射の分光特性Φe(λ)との積を、R(λ)>0となるような波長の範囲rで積分した結果に、(−K)をかけた値(−K∫R(λ)Φe(λ)dλ)と、波長λにおける植物に含まれるフィトクロム色素の吸収スペクトルPr(λ)と光放射の分光特性Φe(λ)との積を、Pr(λ)>0となるような波長の範囲prで積分した結果に、(−L)をかけた値(−L∫prPr(λ)Φe(λ)dλ)との和(−K∫R(λ)Φe(λ)dλ−L∫prPr(λ)Φe(λ)dλ)を補正項として、上式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、他の昼行性昆虫を誘引しやすい光放射や、植物の花芽形成に悪影響を与える光放射は、その評価指数を割り引くことで、誘虫性や花芽形成に与える悪影響を加味した形で行動抑制効果を実用試験なしに評価できる。 While light radiation suppresses the behavior of nocturnal insects such as night moths, it can attract other diurnal insects and can adversely affect flower bud formation for light-sensitive plants. is there. According to the present invention, the product of the spectral characteristic R (λ) indicating the attracting property for each wavelength and the spectral characteristic Φe (λ) of the light emission is integrated in a wavelength range r such that R (λ)> 0. the result, (- K) was subjected values (-K∫ r R (λ) Φe (λ) dλ) and the spectral light emission and absorption spectra Pr phytochrome dye contained in the plant at a wavelength lambda (lambda) the product of the characteristic .PHI.e (lambda), the Pr (λ)> 0 and becomes such a wavelength integrating the results within the range pr of, (- L) was subjected values (-L∫ pr Pr (λ) Φe (λ ) d [lambda]) and the sum of (a -K∫ r R (λ) Φe ( λ) dλ-L∫ pr Pr (λ) Φe (λ) dλ) the correction term, term of the above equation (∫ vis S (lambda) Φe (λ) dλ), and even if the retina of a nocturnal insect is greatly excited to obtain a high action suppression effect, light radiation that easily attracts other nocturnal insects and plant flowers Optical radiation adversely affect the formation, by discounting the evaluation index, it can be evaluated without practical test action inhibiting effect in a form in consideration of the adverse effects on insect attractancy or flower bud formation.

また請求項8の発明は、請求項5又は7の発明において、分光特性R(λ)にBickfordによる昆虫の走光性曲線を用いたことを特徴とする。   The invention of claim 8 is characterized in that, in the invention of claim 5 or 7, an insect phototactic curve according to Bickford is used for the spectral characteristic R (λ).

昆虫の走光性の分光特性としては、Bickfordによる走光性曲線(Bickford,E.D.:Average insect vision function,National Technical Conference,IES of North America,No.2,1964)がよく知られている。この走光性曲線は一部の昆虫について調べられたものではあるが、多くの昆虫に適用できることが知られている。この発明によれば分光特性R(λ)にBickfordの走光性曲線を用いており、多くの昆虫の光放射に対する誘虫性を加味した形で行動抑制効果を直接的に評価できる。   As a spectral characteristic of insect phototaxis, the phototaxis curve by Bickford (Bickford, ED: Average insect vision function, National Technical Conference, IES of North America, No. 2, 1964) is well known. Although this phototaxis curve has been investigated for some insects, it is known to be applicable to many insects. According to the present invention, Bickford's phototactic curve is used for the spectral characteristic R (λ), and the action suppression effect can be directly evaluated in a form that takes into account the irritability of many insects to light radiation.

以上説明したように、請求項1の発明では、ある分光特性Φe(λ)を持つ光放射によって引き起こされる網膜の興奮の大きさの総和は、分光特性Φe(λ)と分光感度S(λ)との積を、分光感度S(λ)>0となる範囲で積分した値となり、この式で求めた評価指数Eが網膜における視細胞の興奮の大きさを示しているので、この評価指数Eを求めることによって、光放射による行動抑制効果を直接的に評価することができ、且つ光放射の分光特性が分かっていれば評価が可能なため、圃場での実用試験などを必要とせず、簡単に評価することができる。   As described above, in the first aspect of the present invention, the sum of the magnitudes of excitement of the retina caused by light radiation having a certain spectral characteristic Φe (λ) is the spectral characteristic Φe (λ) and the spectral sensitivity S (λ). Is obtained by integrating the product with the spectral sensitivity S (λ)> 0, and the evaluation index E obtained by this formula indicates the magnitude of the excitation of photoreceptors in the retina. Therefore, it is possible to evaluate the action suppression effect by light radiation directly, and it is possible to evaluate it if the spectral characteristics of light radiation are known. Can be evaluated.

また請求項2の発明では、測光値(例えば単位光束、照度、輝度など)あたりの昆虫網膜の興奮の大きさを示す補正係数E’を求め、この補正係数E’を測光値に乗じることで評価指数を求めており、例えば蛍光ランプや白熱灯などの光源の種類ごとに補正係数E’を計算しておくことで、照度計や輝度計と言った普及率の高い計器で測定した測光値から評価指数を求めることができ、この評価指数をもとに光放射による行動抑制効果を直接的に評価することができる。また、光放射の測光値を求めれば評価が可能なため、圃場での実用試験などを必要とせず、簡単に行動抑制効果を評価することができる。   In the invention of claim 2, a correction coefficient E ′ indicating the magnitude of excitement of the insect retina per photometric value (for example, unit luminous flux, illuminance, luminance, etc.) is obtained, and the photometric value is multiplied by this correction coefficient E ′. An evaluation index is obtained, and for example, by calculating a correction coefficient E ′ for each type of light source such as a fluorescent lamp or an incandescent lamp, a photometric value measured with a high penetration meter such as an illuminometer or luminance meter An evaluation index can be obtained from the above, and the action suppression effect by light emission can be directly evaluated based on this evaluation index. Moreover, since evaluation is possible if the photometric value of light emission is calculated | required, a practical test etc. in a field are not required, and a behavior inhibitory effect can be evaluated easily.

また果樹園や農地では複数種類の昆虫から被害を受ける場合があるが、請求項3の発明によれば複数種類の昆虫の網膜における分光感度の平均をS(λ)として、請求項1又は2の評価式から評価指数又は補正係数を求めているので、複数種類の昆虫に対する行動抑制効果を実用試験なしで直接的に評価することができる。   In the orchard or farmland, there are cases where damage is caused by a plurality of types of insects. According to the invention of claim 3, the average spectral sensitivity of the retinas of the plurality of types of insects is defined as S (λ). Since the evaluation index or the correction coefficient is obtained from the evaluation formula, it is possible to directly evaluate the action suppressing effect on a plurality of types of insects without a practical test.

また更に、果樹園や農地において複数種類の昆虫から被害を受ける場合、昆虫の種類によって果樹園や農地に存在する個体数に偏りがあったり、受ける被害の大きさに差がある場合があるが、請求項4の発明によれば、複数種類の昆虫の存在する割合又は複数種類の昆虫によって発生する被害の大きさの割合の何れかを重み係数として用い、複数種類の昆虫の分光感度の加重平均をとることで、より重要な昆虫に的を絞った評価を行うことができ、複数種類の昆虫に対する行動抑制効果を、種毎の昆虫の数や被害の大きさに合わせて、実用試験なしで直接的に評価することができる。   Furthermore, when multiple types of insects are damaged in an orchard or farmland, the number of individuals present in the orchard or farmland may be biased depending on the type of insect, or the amount of damage may vary. According to the invention of claim 4, the weighting of the spectral sensitivity of a plurality of types of insects is performed using either the ratio of the presence of a plurality of types of insects or the ratio of the magnitude of damage caused by the plurality of types of insects as a weighting factor. By taking the average, it is possible to perform evaluations focusing on more important insects, and there is no practical test on the action suppression effect on multiple types of insects according to the number of insects and the degree of damage for each species Can be evaluated directly.

また光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する場合もあるが、請求項5の発明によれば、波長毎の誘虫性を示す分光特性R(λ)と、光放射の分光特性Φe(λ)との積を、R(λ)>0となるような波長の範囲rで積分した結果に、(−K)をかけた値(−K∫R(λ)Φe(λ)dλ)を補正項として、請求項1又は2の式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、他の昼行性昆虫を誘引しやすい光放射は、その評価指数を割り引くことで、誘虫性を加味した形で行動抑制効果を実用試験なしに評価できる。 In addition, while light radiation suppresses the behavior of nocturnal insects such as night moths, it sometimes attracts other diurnal insects. The product of the spectral characteristic R (λ) shown and the spectral characteristic Φe (λ) of light emission is integrated over a wavelength range r such that R (λ)> 0, and (−K) is applied. as the correction term a value (-K∫ r R (λ) Φe (λ) dλ), have been added to the formula of claim claim 1 or 2 (∫ vis S (λ) Φe (λ) dλ), if Even if the retina of a nocturnal insect is greatly excited and a high action suppression effect is obtained, the light radiation that easily attracts other nocturnal insects acts by discounting the evaluation index, and acts in a form that incorporates the insecticidal properties The inhibitory effect can be evaluated without a practical test.

さらに光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、光に敏感な植物に対しては花芽の形成に悪影響を与える場合があるが、請求項6の発明によれば、波長λにおける植物に含まれるフィトクロム色素の吸収スペクトルPr(λ)と、光放射の分光特性Φe(λ)との積を、Pr(λ)>0となるような波長の範囲prで積分した結果に、(−L)をかけた値(−L∫prPr(λ)Φe(λ)dλ)を補正項として、請求項1又は2の式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、植物の花芽形成に悪影響を与える光放射は、その評価指数を引くことで、花芽形成に与える悪影響を加味した形で行動抑制効果を実用試験なしに評価できる。 Furthermore, while light radiation suppresses the behavior of nocturnal insects such as night moths, it may adversely affect the formation of flower buds for light-sensitive plants. The result of integrating the product of the absorption spectrum Pr (λ) of the phytochrome pigment contained in the plant at the wavelength λ and the spectral characteristic Φe (λ) of the light emission in the wavelength range pr such that Pr (λ)> 0 in, (- L) was subjected values (-L∫ pr Pr (λ) Φe (λ) dλ) as correction term, equation of claims 1 or 2 (∫ vis S (λ) Φe (λ) dλ), and even if the retina of a nocturnal insect is greatly excited to obtain a high behavior suppressing effect, the light emission that adversely affects the flower bud formation is subtracted from its evaluation index. The behavioral inhibitory effect can be evaluated without a practical test in consideration of the adverse effect on the formation.

また更に光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する場合や、光に敏感な植物に対しては花芽の形成に悪影響を与える場合があるが、請求項7の発明によれば、波長毎の誘虫性を示す分光特性R(λ)と光放射の分光特性Φe(λ)との積を、R(λ)>0となるような波長の範囲rで積分した結果に、(−K)をかけた値(−K∫R(λ)Φe(λ)dλ)と、波長λにおける植物に含まれるフィトクロム色素の吸収スペクトルPr(λ)と光放射の分光特性Φe(λ)との積を、Pr(λ)>0となるような波長の範囲prで積分した結果に、(−L)をかけた値(−L∫prPr(λ)Φe(λ)dλ)との和(−K∫R(λ)Φe(λ)dλ−L∫prPr(λ)Φe(λ)dλ)を補正項として、請求項1又は2の式の項(∫visS(λ)Φe(λ)dλ)に加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、他の昼行性昆虫を誘引しやすい光放射や、植物の花芽形成に悪影響を与える光放射は、その評価指数を割り引くことで、誘虫性や花芽形成に与える悪影響を加味した形で行動抑制効果を実用試験なしに評価できる。 In addition, light radiation suppresses the behavior of nocturnal insects such as night moths, while attracting other nocturnal insects and adversely affects flower bud formation for light-sensitive plants. In some cases, according to the seventh aspect of the invention, the product of the spectral characteristic R (λ) showing the irritant property for each wavelength and the spectral characteristic Φe (λ) of the light emission is R (λ)> 0. the wavelength integrating the results within the range r of such, - and (K) was subjected values (-K∫ r R (λ) Φe (λ) dλ), the absorption spectrum Pr of phytochrome dye contained in the plant at a wavelength lambda A value obtained by multiplying the product of (λ) and the spectral characteristic Φe (λ) of the light emission in a wavelength range pr such that Pr (λ)> 0 is multiplied by (−L) (−L∫ pr Pr (lambda) the sum of the Φe (λ) dλ) (-K∫ r R (λ) Φe (λ) dλ-L∫ pr Pr (λ) Φe a (λ) dλ) as a correction term,請Claim 1 or 2 of formula term (∫ vis S (λ) Φe (λ) dλ) have been added to, be obtained a high action inhibiting effect by even excited retinal nocturnal insects large, the other Light radiation that easily attracts diurnal insects and light radiation that adversely affects plant flower bud formation is practically used to suppress behavior by taking into account the negative effect on insect attractivity and flower bud formation by discounting the evaluation index Can be evaluated without testing.

また請求項8の発明によれば分光特性R(λ)にBickfordによる昆虫の走光性曲線を用いており、多くの昆虫の光放射に対する誘虫性を加味した形で行動抑制効果を直接的に評価できる。   Further, according to the invention of claim 8, the insect phototactic curve by Bickford is used for the spectral characteristic R (λ), and the action suppression effect is directly evaluated in consideration of the attracting property to the light radiation of many insects. it can.

以下に本発明の実施の形態を図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(実施形態1)
図1は本発明に係る光放射評価方法を用いた評価装置のブロック図である。本装置は入力部1と、演算部2と、出力部3と、記憶部4とで構成され、光放射による夜行性昆虫の行動抑制効果を評価するために用いられる。
(Embodiment 1)
FIG. 1 is a block diagram of an evaluation apparatus using a light emission evaluation method according to the present invention. This apparatus is composed of an input unit 1, a calculation unit 2, an output unit 3, and a storage unit 4, and is used for evaluating the behavioral inhibitory effect of nocturnal insects by light radiation.

入力部1は、光放射の分光特性や対象昆虫の分光特性を入力するためのもので、例えば光放射の分光特性を測定する機器や、対象昆虫のERGを測定する装置から測定データを取り込む入力装置によって実現される。   The input unit 1 is for inputting the spectral characteristics of light radiation and the spectral characteristics of the target insect. For example, the input unit 1 inputs measurement data from a device that measures the spectral characteristics of the light radiation or a device that measures the ERG of the target insect. Realized by the device.

記憶部2は例えばパーソナルコンピュータの記憶装置により実現され、入力部1から入力された光放射の分光特性や対象昆虫の分光特性のデータ、及び、演算部3の動作プログラムなどを格納する。   The storage unit 2 is realized by, for example, a storage device of a personal computer, and stores the spectral characteristics of light emission and the spectral characteristics of target insects input from the input unit 1, the operation program of the arithmetic unit 3, and the like.

演算部3は例えばパーソナルコンピュータの演算装置により実現され、記憶部2に組み込まれた動作プログラムを実行し、記憶部2に記憶されたデータをもとに後述する演算式を用いて、光放射による行動抑制効果の評価指数を算出する。   The calculation unit 3 is realized by, for example, a calculation device of a personal computer, executes an operation program incorporated in the storage unit 2, and uses light emission by using an arithmetic expression described later based on data stored in the storage unit 2. Calculate an evaluation index of the action suppression effect.

出力部4は例えばディスプレイ装置やプリンタなどの表示装置によって構成され、演算部3の演算によって求められた行動抑制効果の評価指数を出力するものである。   The output unit 4 is configured by a display device such as a display device or a printer, and outputs an action suppression effect evaluation index obtained by the calculation of the calculation unit 3.

次に、3種類の防蛾灯L1〜L3について2種類の昆虫(オオタバコガおよびハスモンヨトウ)に対する行動抑制効果を評価する方法について以下に説明する。なお以下の各実施形態ではオオタバコガ(以下昆虫Aと言う)とハスモンヨトウ(以下昆虫Bと言う)の2種類の昆虫に対して、光放射による行動抑制効果の評価指数を求めているが、対象昆虫が上記の2種類に限定される趣旨のものではなく、対象昆虫の網膜における分光分布Φe(λ)が分かっていれば、どのような種類の昆虫に対しても光放射による行動抑制効果を評価することができる。   Next, a method for evaluating the action suppression effect on two types of insects (Otobacco moth and Spodoptera litura) for the three types of protection lights L1 to L3 will be described below. In each of the following embodiments, the evaluation index of the action suppression effect by light radiation is obtained for two types of insects, the giant moth (hereinafter referred to as insect A) and the common insect (hereinafter referred to as insect B). Is not limited to the above two types, and if the spectral distribution Φe (λ) in the retina of the target insect is known, the action suppression effect by light radiation is evaluated for any type of insect can do.

図2は防蛾灯L1〜L3の分光特性を示し、同図中のイは防蛾灯L1の分光特性、ロは防蛾灯L2の分光特性、ハは防蛾灯L3の分光特性である。防蛾灯L1とL2の分光分布はよく似ているが、防蛾灯L1は580nm付近にピークを有し、防蛾灯L2は550nm付近にピークを有している。一方、防蛾灯L3の分光分布は防蛾灯L1,L2に比べて短波長側に分布しており、530nm付近にピークを有している。   FIG. 2 shows the spectral characteristics of the protection lamps L1 to L3. In FIG. 2, B is the spectral characteristics of the protection lamp L1, B is the spectral characteristics of the protection lamp L2, and C is the spectral characteristics of the protection lamp L3. . The spectral distributions of the protection lamps L1 and L2 are very similar, but the protection lamp L1 has a peak near 580 nm, and the protection lamp L2 has a peak near 550 nm. On the other hand, the spectral distribution of the protection lamp L3 is distributed on the shorter wavelength side than the protection lamps L1 and L2, and has a peak near 530 nm.

また図3はERGから求めた2種類の昆虫A,Bの複眼網膜の分光感度を示し、同図中のa(□)が昆虫Aの分光感度、b(○)が昆虫Bの分光感度である。昆虫A,Bの分光感度は、20nm間隔の単色光を照射して得られたERGをもとに計算されたため、20nm間隔のデータとして入力部1に入力されており、演算部3では入力部1から入力された分光感度のデータを補間して5nmのデータに変換し、記憶部2に記憶させている。同様に演算部3では、入力部1から入力された防護灯L1〜L3の分光特性のデータを補間することで5nmのデータに変換して、記憶部2に記憶させており、両者のサンプリング間隔を揃えている。   Fig. 3 shows the spectral sensitivities of the compound eye retinas of two types of insects A and B obtained from ERG, where a (□) is the spectral sensitivity of insect A and b (○) is the spectral sensitivity of insect B. is there. Since the spectral sensitivities of the insects A and B are calculated based on ERG obtained by irradiating monochromatic light at 20 nm intervals, they are input to the input unit 1 as data at 20 nm intervals. The spectral sensitivity data input from 1 is interpolated to be converted into 5 nm data and stored in the storage unit 2. Similarly, the arithmetic unit 3 converts the spectral characteristics data of the protective lights L1 to L3 input from the input unit 1 into 5 nm data by interpolation, and stores the data in the storage unit 2 and stores them in the sampling interval. Are aligned.

ここで記憶部2には、光放射の分光特性と対象昆虫の分光特性のデータをもとに以下の式(1)を用いて、光放射による行動抑制効果を表す評価指数Eを求めるプログラムが組み込まれている。   Here, the storage unit 2 has a program for obtaining an evaluation index E representing an action suppression effect by light emission using the following formula (1) based on the data of the light emission spectral characteristic and the target insect spectral characteristic. It has been incorporated.

E=∫visS(λ)Φe(λ)dλ …(1)
但し、λは光放射の波長、S(λ)は対象昆虫の網膜における分光感度を示す関数、Φe(λ)は防蛾灯L1〜L3による放射強度の分光特性を示す関数、visはS(λ)>0となるような波長λの範囲である。
E = ∫ vis S (λ) Φe (λ) dλ ... (1)
Where λ is the wavelength of light radiation, S (λ) is a function indicating the spectral sensitivity in the retina of the target insect, Φe (λ) is a function indicating the spectral characteristics of the radiation intensity of the guard lights L1 to L3, and vis is S ( The range of the wavelength λ is such that λ)> 0.

そして演算部3は記憶部2に組み込まれたプログラムを実行し、対象昆虫の複眼網膜における分光感度S(λ)と、光放射の分光特性Φe(λ)との積を各波長毎(5nm毎)に計算し、複眼網膜の分光感度がある波長の範囲(つまり分光感度S(λ)の値が正の値となる波長の範囲)visで得られた積の総和をとり、この総和にサンプリング間隔(この場合は5nm)を乗じて評価指数Eを算出しており、この算出結果を出力部4に出力する。   Then, the calculation unit 3 executes a program incorporated in the storage unit 2, and calculates the product of the spectral sensitivity S (λ) in the compound eye retina of the target insect and the spectral characteristic Φe (λ) of the light emission for each wavelength (every 5 nm). ), The sum of the products obtained in the range of wavelengths where the spectral sensitivity of the compound eye retina has a certain spectral range (that is, the range of wavelengths where the value of the spectral sensitivity S (λ) is a positive value) is sampled into this sum The evaluation index E is calculated by multiplying the interval (in this case, 5 nm), and the calculation result is output to the output unit 4.

ここで、対象昆虫の複眼網膜の分光感度S(λ)は単色光を照射した際のERGをもとに導出され、波長λの光放射が引き起こす網膜の興奮の大きさを示している。したがって、ある分光特性Φe(λ)を持つ光放射によって引き起こされる網膜の興奮の大きさの総和は、分光特性Φe(λ)と分光感度S(λ)との積を、S(λ)>0となる波長λの範囲で積分した値となり、これを表したのが上記の式(1)で、この式(1)から求めた評価指数Eが、光放射による対象昆虫の網膜における視細胞の興奮の大きさを示している。   Here, the spectral sensitivity S (λ) of the compound eye retina of the target insect is derived based on the ERG when the monochromatic light is irradiated, and indicates the magnitude of the retina excitement caused by the light emission of the wavelength λ. Therefore, the sum of the magnitudes of excitement of the retina caused by light radiation having a certain spectral characteristic Φe (λ) is the product of the spectral characteristic Φe (λ) and the spectral sensitivity S (λ), and S (λ)> 0. This is an integrated value in the range of the wavelength λ, which is expressed by the above equation (1), and the evaluation index E obtained from this equation (1) is the visual cell in the retina of the target insect due to light emission. Shows the magnitude of excitement.

したがって、評価担当者は出力部4に出力された評価指数Eの演算結果をもとに、評価指数Eが大きいほど、行動抑制効果が高いと判断することができ、光源の光放射の分光特性が分かっていれば、圃場での実用試験などを必要とせずに、行動抑制効果を直接的に評価することができる。なお表1は防蛾灯L1〜L3の光放射による対象昆虫A,Bについての行動抑制効果の評価指数Eの算出結果を示し、何れの昆虫A,Bに対しても防蛾灯L3による行動抑制効果が高いことが判る。   Therefore, based on the calculation result of the evaluation index E output to the output unit 4, the evaluation person can determine that the larger the evaluation index E is, the higher the action suppression effect is, and the spectral characteristics of the light emission of the light source If it is known, the action suppression effect can be directly evaluated without requiring a practical test in the field. Table 1 shows the calculation result of the evaluation index E of the action suppression effect on the target insects A and B by the light radiation of the guard lights L1 to L3, and the action by the guard light L3 for any insect A and B It can be seen that the suppression effect is high.

Figure 0004363124
Figure 0004363124

なお本実施形態では防蛾灯L1〜L3の全放射について夜行性昆虫の行動抑制効果を評価しているが、評価対象の光放射が光源或いは照明器具の全放射に限定されるものではなく、面或いは空間に入射する全放射、光源或いは光源の光を反射する反射面から所定の方向への単位面積当たりの放射、光源或いは照明器具などから所定の単位立体角内への放射の何れかを評価対象とし、上述の光放射評価方法を用いて行動抑制効果を評価するようにしても良いことは言うまでもない。   In the present embodiment, the nocturnal insect behavior suppression effect is evaluated for the total radiation of the protective lights L1 to L3, but the light radiation to be evaluated is not limited to the total radiation of the light source or the lighting fixture, Either total radiation incident on a surface or space, radiation per unit area in a predetermined direction from a light source or a reflecting surface that reflects light from the light source, or radiation into a predetermined unit solid angle from a light source or a luminaire It goes without saying that the action suppression effect may be evaluated using the above-described light emission evaluation method.

(実施形態2)
実施形態1では、光放射の分光感度S(λ)を測定し、光放射の分光感度S(λ)と対象昆虫の網膜における分光感度Φe(λ)とをもとに、上述の式(1)を用いて評価指数Eを算出しているが、光放射の分光感度S(λ)を測定するには大掛かりな測定装置が必要になる。現状では光放射の分光感度を測定する装置に比べて、照度・輝度・光束などの人間の分光視感効率に基づいた測光値を測定する装置の方がより普及しているので、本実施形態の光放射評価方法を用いる評価装置では、上記の測光値から行動抑制効果の評価指数を求めるための補正係数を光源毎に予め計算しておき、測定装置から入力された測光値に補正係数を掛け合わせることで、光放射による行動抑制効果の評価指数を算出している。なお評価装置の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Embodiment 2)
In the first embodiment, the spectral sensitivity S (λ) of light emission is measured, and based on the spectral sensitivity S (λ) of light radiation and the spectral sensitivity Φe (λ) in the retina of the target insect, the above equation (1) ) Is used to calculate the evaluation index E, but a large measuring device is required to measure the spectral sensitivity S (λ) of the light emission. At present, compared to devices that measure the spectral sensitivity of light radiation, devices that measure photometric values based on human spectral luminous efficiency such as illuminance, brightness, and luminous flux are more prevalent. In the evaluation apparatus using the light emission evaluation method, a correction coefficient for obtaining an evaluation index of the action suppression effect is calculated in advance for each light source from the above photometric value, and the correction coefficient is applied to the photometric value input from the measurement apparatus. By multiplying, the evaluation index of the action suppression effect by light radiation is calculated. Since the configuration of the evaluation apparatus is the same as that of the first embodiment, common components are denoted by the same reference numerals and description thereof is omitted.

以下に、図2に示す防蛾灯L1〜L3の分光特性が光束1000lm当たりの分光放射強度である場合に、各々の防蛾灯L1〜L3について実施形態1で説明した対象昆虫Aに対する補正係数E’を求め、この補正係数E’を用いて行動抑制効果を評価する方法について説明を行う。   In the following, when the spectral characteristics of the protection lamps L1 to L3 shown in FIG. 2 are the spectral radiant intensity per 1000 lm of light flux, the correction coefficient for the target insect A described in the first embodiment for each of the protection lamps L1 to L3. A method for obtaining E ′ and evaluating the action suppression effect using the correction coefficient E ′ will be described.

図3のa(□)はERGから求めた昆虫Aの複眼網膜の分光感度を示している。この分光感度は、20nm間隔の単色光を照射して得られたERGをもとに計算されたため、20nm間隔のデータとして入力部1に入力されており、演算部3では入力部1から入力された分光感度のデータを補間して5nm間隔のデータに変換し、記憶部2に記憶させている。また記憶部2には、予め測定しておいた防護灯L1〜L3の放射強度の分光特性のデータや人間の分光視感効率のデータが登録されており、演算部3では、これらのデータを補間することで5nm間隔のデータに変換し、サンプリング間隔を揃えている。   In FIG. 3, a (□) indicates the spectral sensitivity of the insect A compound eye retina determined from ERG. Since this spectral sensitivity is calculated based on ERG obtained by irradiating monochromatic light at intervals of 20 nm, it is input to the input unit 1 as data at intervals of 20 nm, and is input from the input unit 1 to the calculation unit 3. The spectral sensitivity data is interpolated to be converted into data at intervals of 5 nm and stored in the storage unit 2. The storage unit 2 stores pre-measured data of spectral characteristics of radiation intensity of the protective lights L1 to L3 and human spectral luminous efficiency data. The arithmetic unit 3 stores these data. Interpolation converts the data to 5 nm intervals and aligns the sampling intervals.

ここで記憶部2には、光放射の分光特性と対象昆虫の分光特性のデータと人間の分光視感効率のデータをもとに以下の式(2)を用いて補正係数E’を求めるプログラムが組み込まれている。   Here, in the storage unit 2, a program for obtaining the correction coefficient E ′ using the following equation (2) based on the spectral characteristics of the light emission, the spectral characteristics of the target insect, and the human spectral luminous efficiency data. Is incorporated.

E’=∫visS(λ)Φe(λ)dλ/∫vis1V(λ)Φe(λ)dλ …(2)
但し、λは光放射の波長、S(λ)は対象昆虫の網膜における分光感度を示す関数、Φe(λ)は防蛾灯L1〜L3による放射強度の分光特性を示す関数、V(λ)は人間の分光視感効率を示す関数、visはS(λ)>0となるような波長λの範囲、vis1は波長λが380nm以上且つ780nm以下の範囲(可視光の波長域)である。
E '= ∫ vis S (λ ) Φe (λ) dλ / ∫ vis1 V (λ) Φe (λ) dλ ... (2)
Where λ is the wavelength of the light radiation, S (λ) is a function indicating the spectral sensitivity in the retina of the target insect, Φe (λ) is a function indicating the spectral characteristics of the radiation intensity by the guard lights L1 to L3, and V (λ) Is a function indicating human spectral luminous efficiency, vis is a wavelength λ range such that S (λ)> 0, and vis1 is a wavelength λ range of 380 nm to 780 nm (visible wavelength range).

そして演算部3は記憶部2に組み込まれたプログラムを実行し、対象昆虫の複眼網膜における分光感度S(λ)と、光放射の分光特性Φe(λ)との積を各波長毎(5nm毎)に計算して、複眼網膜の分光感度がある波長の範囲(つまり分光感度S(λ)>0となる波長の範囲)visで得られた積の総和をとり、この総和にサンプリング間隔(この場合は5nm)を乗じて式(2)の分子を計算する。また演算部3は、人間の分光視感効率V(λ)と、光放射の分光特性Φe(λ)との積を各波長毎(5nm毎)に計算し、上記の波長の範囲vis1で得られた積の総和をとり、この総和にサンプリング間隔(この場合は5nm)を乗じて式(2)の分母を計算する。そして演算部3は上述の演算で得られた分子の項を分母の項で除して補正係数E’を求める。演算部3は各々の防蛾灯L1〜L3について上述の計算を行って補正係数E’を求めており、これらの算出結果を記憶部2に記憶させる。なお表2は防蛾灯L1〜L3について対象昆虫Aに対する補正係数E’を算出した結果を示している。   Then, the calculation unit 3 executes a program incorporated in the storage unit 2, and calculates the product of the spectral sensitivity S (λ) in the compound eye retina of the target insect and the spectral characteristic Φe (λ) of light emission for each wavelength (every 5 nm). ), The sum of the products obtained in the wavelength range where the spectral sensitivity of the compound eye retina has a certain spectral range (that is, the spectral range where the spectral sensitivity S (λ)> 0) vis, and the sampling interval (this In the case of 5 nm), the numerator of the formula (2) is calculated. The calculation unit 3 calculates the product of the human spectral luminous efficiency V (λ) and the spectral characteristic Φe (λ) of the light emission for each wavelength (every 5 nm), and obtains it in the above wavelength range vis1. The sum of the obtained products is taken, and this sum is multiplied by the sampling interval (in this case, 5 nm) to calculate the denominator of equation (2). Then, the calculation unit 3 obtains a correction coefficient E ′ by dividing the numerator term obtained by the above calculation by the denominator term. The calculation unit 3 calculates the correction coefficient E ′ by performing the above-described calculation for each of the protection lights L <b> 1 to L <b> 3, and stores these calculation results in the storage unit 2. Table 2 shows the result of calculating the correction coefficient E ′ for the target insect A for the guard lights L1 to L3.

Figure 0004363124
Figure 0004363124

ここで、ある農地における上記の防蛾灯L1〜L3による最低照度が下記の表3に示すような値となる場合に、本実施形態の評価装置を用いて各防蛾灯L1〜L3による行動抑制効果を評価する際は、測光値として照度計(図示せず)から各防蛾灯L1〜L3の最低照度の測定値が入力部1に入力されると、演算部3は入力部1に入力された最低照度の測定値に、予め記憶部2に記憶させておいた各防蛾灯L1〜L3毎の補正係数E’を乗じて、各防蛾灯L1〜L3による行動抑制効果を評価指数を求め、評価指数の算出結果を出力部4に出力している。評価担当者は出力部4に出力された評価指数の演算結果をもとに、評価指数が大きいほど、行動抑制効果が高いと判断することができ、この場合は防蛾灯L3の補正係数E’が最も大きいため、照度の最も低い防蛾灯L3が他の防蛾灯L1,L2よりも行動抑制効果が高くなっている。   Here, when the minimum illuminance by the above-described protective lights L1 to L3 in a certain farmland has a value as shown in Table 3 below, the behavior by each of the protective lights L1 to L3 using the evaluation device of the present embodiment. When evaluating the suppression effect, when the measured values of the minimum illuminance of each of the protective lights L1 to L3 are input to the input unit 1 from the illuminance meter (not shown) as the photometric value, the calculation unit 3 Multiply the input measurement value of the minimum illuminance by the correction coefficient E ′ for each of the protection lights L1 to L3 stored in advance in the storage unit 2 to evaluate the action suppression effect of each of the protection lights L1 to L3. An index is obtained, and the calculation result of the evaluation index is output to the output unit 4. Based on the calculation result of the evaluation index output to the output unit 4, the evaluator can determine that the larger the evaluation index is, the higher the action suppression effect is. In this case, the correction coefficient E of the protection light L3 Since 'is the largest, the protective light L3 having the lowest illuminance has a higher action suppressing effect than the other protective lights L1 and L2.

Figure 0004363124
Figure 0004363124

このように本実施形態では、照度・輝度・光束などの人間の分光視感効率に基づいた測光値が測定可能な簡易な装置を用いて測光値を測定すれば、予め求めた補正係数E’を用いて、圃場での実用試験などを必要とせずに行動抑制効果の評価指数を簡単に求めることができる。   As described above, in the present embodiment, if a photometric value is measured using a simple device capable of measuring a photometric value based on human spectral luminous efficiency such as illuminance, luminance, and luminous flux, a correction coefficient E ′ obtained in advance is obtained. Can be used to easily obtain an evaluation index of the action suppression effect without requiring a practical test or the like in the field.

(実施形態3)
上述の実施形態1では2種類の昆虫A,Bに対し、光放射による行動抑制効果の評価指数Eをそれぞれ求めているが、本実施形態ではある作物に対して複数種類の昆虫による被害がある場合に、複数種類の昆虫の網膜における分光感度の平均をS(λ)として、行動抑制効果の評価指数Eを求めている。なお評価装置の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Embodiment 3)
In the first embodiment described above, the evaluation index E of the action suppression effect by light radiation is obtained for the two types of insects A and B, respectively, but in this embodiment, there is damage to a certain crop by a plurality of types of insects. In this case, the evaluation index E of the action suppression effect is obtained with the average of the spectral sensitivities of the retinas of a plurality of insects being S (λ). Since the configuration of the evaluation apparatus is the same as that of the first embodiment, common components are denoted by the same reference numerals and description thereof is omitted.

以下では、ある作物に対して昆虫Aによる被害と昆虫Bによる被害の割合が3:1の場合について、実施形態1で説明した防蛾灯L1〜L3による行動抑制効果の評価指数Eを求める方法を説明する。   In the following, a method for obtaining the evaluation index E of the action suppression effect by the fence lights L1 to L3 described in the first embodiment in the case where the ratio of damage by insect A and damage by insect B to a certain crop is 3: 1. Will be explained.

実施形態1で説明したように、記憶部2には2種類の昆虫A,Bの分光感度S1(λ),S2(λ)のデータが格納されており、演算部3は、各波長毎に昆虫A,Bの分光感度S1(λ),S2(λ)にそれぞれ昆虫A,Bによる被害の大きさの割合を示す重み係数k1,k2(k1=0.75,k2=0.25)を乗じて和をとることで、分光感度の加重平均を求めて、この加重平均をS(λ)とし、記憶部2に記憶させている。而して加重平均S(λ)は以下の式で表される。 As described in the first embodiment, the storage unit 2 stores data of the spectral sensitivities S 1 (λ) and S 2 (λ) of two types of insects A and B. For each of the spectral sensitivities S 1 (λ) and S 2 (λ) of the insects A and B, weighting factors k 1 and k 2 (k 1 = 0.75, respectively) indicating the ratio of the magnitude of damage by the insects A and B, respectively. The weighted average of spectral sensitivity is obtained by multiplying by k 2 = 0.25), and this weighted average is set to S (λ) and stored in the storage unit 2. Thus, the weighted average S (λ) is expressed by the following equation.

S(λ)=k11(λ)+k22(λ) …(3)
このようにして分光感度S(λ)が求まると、演算部3は実施形態1と同様の方法で評価指数Eを算出しており、その算出結果を以下の表4に示す。
S (λ) = k 1 S 1 (λ) + k 2 S 2 (λ) (3)
When the spectral sensitivity S (λ) is obtained in this way, the calculation unit 3 calculates the evaluation index E by the same method as in the first embodiment, and the calculation result is shown in Table 4 below.

Figure 0004363124
Figure 0004363124

本実施形態では複数種の昆虫の網膜における分光感度の平均をS(λ)とし、この分光感度S(λ)から行動抑制効果の評価指数Eを求めているので、複数種の昆虫に対する行動抑制効果を実用試験なしで直接的に評価することができる。   In this embodiment, the average of spectral sensitivities in the retinas of a plurality of insects is S (λ), and the evaluation index E of the action suppression effect is obtained from the spectral sensitivities S (λ). The effect can be directly evaluated without a practical test.

なお本実施形態では、2種の昆虫A,Bの網膜における分光感度S1(λ),S2(λ)と、昆虫A,Bによる被害の大きさの割合を示す重み係数k1,k2とから分光感度の加重平均を求めているが、3種類以上の昆虫の場合には、以下の式(4)を用いて分光感度の加重平均を求めればよい。但し、S1(λ),S2(λ),…,Sn(λ)はそれぞれ複数種の昆虫の網膜における分光感度、k1,k2,…,knは各々の昆虫の重み係数である、
S(λ)=k11(λ)+k22(λ)+…+knn(λ) …(4)
また本実施形態では、複数種の昆虫の分光感度S1(λ)…に対する重み係数k1…として複数種の昆虫による被害の大きさの割合を用いているが、重み係数k1…として複数種の昆虫の存在する割合を用いても良く、特定の昆虫に的を絞って行動抑制指数を求めることができる。なお重みを付けずに、複数種の昆虫の分光感度S1(λ)…の平均をとって分光感度S(λ)としても良い。
In this embodiment, the spectral sensitivities S 1 (λ) and S 2 (λ) in the retinas of the two types of insects A and B and the weighting factors k 1 and k indicating the ratio of the magnitude of damage caused by the insects A and B are shown. The weighted average of the spectral sensitivity is obtained from 2. In the case of three or more kinds of insects, the weighted average of the spectral sensitivity may be obtained using the following equation (4). However, S 1 (λ), S 2 (λ), ..., spectral sensitivity in the retina of S n (lambda) is the more, respectively insects, k 1, k 2, ... , k n are the weighting coefficients of the insect Is,
S (λ) = k 1 S 1 (λ) + k 2 S 2 (λ) + ... + k n S n (λ) ... (4)
In the present embodiment uses the ratio of the size of the damage caused by the plurality of types of insects as the weighting coefficient k 1 ... by the spectral sensitivity of a plurality of types of insects S 1 (λ) ..., a plurality as the weighting coefficient k 1 ... The proportion of insect species may be used, and the behavioral inhibition index can be obtained by focusing on a specific insect. The spectral sensitivity S (λ) may be obtained by taking the average of the spectral sensitivities S 1 (λ)...

また実施形態2において、測光値に対する補正係数E’を求める際に用いる分光感度S(λ)を、複数種の昆虫の分光感度S1(λ)…の平均や加重平均としても良いことは言うまでもない。 In the second embodiment, it is needless to say that the spectral sensitivity S (λ) used when obtaining the correction coefficient E ′ for the photometric value may be an average or a weighted average of the spectral sensitivities S 1 (λ)... Yes.

(実施形態4)
ところで光放射は夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する場合や、光に敏感な植物に対しては花芽の形成に悪影響を与える場合があるので、本実施形態では誘虫性や花芽形成に与える悪影響を加味した形で行動抑制効果の評価指数を求めている。なお評価装置の構成は実施形態1と同様であるので、共通する構成要素には同一の符号を付して、その説明は省略する。
(Embodiment 4)
By the way, while light radiation suppresses the behavior of nocturnal insects such as night moths, it may attract other diurnal insects and may adversely affect flower bud formation for light-sensitive plants. Therefore, in this embodiment, the evaluation index of the action suppression effect is obtained in a form that takes into account the adverse effect on insect attractance and flower bud formation. Since the configuration of the evaluation apparatus is the same as that of the first embodiment, common components are denoted by the same reference numerals and description thereof is omitted.

上述のように光放射は、夜蛾などの夜行性昆虫の行動を抑制する一方で、他の昼行性の昆虫を誘引する効果も有しており、特に波長が360nm付近の紫外領域の光放射は、昼行性の昆虫を誘引する効果が高くなっている。果樹園や農地では、光放射に集まる昆虫が農作物に被害を与えることもあるため、防蛾灯L1〜L3としては昼行性の昆虫を誘引する光をできるだけ放射しないことが好ましい。   As described above, light radiation suppresses the behavior of nocturnal insects such as night moths, while also having an effect of attracting other diurnal insects, particularly in the ultraviolet region having a wavelength of around 360 nm. Radiation has a high effect of attracting diurnal insects. In an orchard or farmland, insects gathering in the light radiation may damage the crops. Therefore, it is preferable that the guard lights L1 to L3 do not emit light that attracts diurnal insects as much as possible.

また光放射は、光に敏感な植物に対しては花芽の形成に悪影響を与える場合がある。多くの植物は、日長(昼間の時間)の変化に反応して花芽を形成する光周期を有し、一般に、日長が一定時間(限界日長)よりも短くなると花芽を形成するものを短日植物、反対に長くなると花芽を形成するものを長日植物という。キクやイチゴなどの短日植物の場合は、防蛾灯を終夜点灯させると花芽が形成されないなどして、収穫量が減少することがある。またホウレン草などの長日植物の場合は、花芽の形成が促進され(抽苔)、菜食部である葉が固くなって、商品価値が低下する場合がある。したがって、防蛾灯L1〜L3としては花芽形成に悪影響を与える光をできるだけ放射しないことが好ましい。   Light radiation can also adversely affect flower bud formation for light sensitive plants. Many plants have a photoperiod that forms flower buds in response to changes in day length (daytime), and generally those that form flower buds when the day length is shorter than a certain time (limit day length). Short-day plants, on the other hand, those that form flower buds when they are long are called long-day plants. In the case of short-day plants such as chrysanthemum and strawberries, if the lantern is turned on all night, flower buds may not be formed and the yield may decrease. In addition, in the case of long-day plants such as spinach, the formation of flower buds is promoted (brushing), the leaves that are vegetarian parts become hard, and the commercial value may decrease. Therefore, it is preferable that the lamps L1 to L3 emit as little light as possible that adversely affects flower bud formation.

そこで、本実施形態では誘虫性を評価する補正項A1と、花芽形成に対する悪影響を評価する補正項A2とをそれぞれ求めて、上記の式(1)の行動抑制効果を表す項A0(=∫visS(λ)Φe(λ)dλ)に加算しており、評価指数Eは以下の式で表される。 Therefore, in the present embodiment, a correction term A1 for evaluating the attracting ability and a correction term A2 for evaluating the adverse effect on flower bud formation are obtained, respectively, and the term A0 (= ∫ vis ) representing the action suppression effect of the above equation (1). S (λ) Φe (λ) dλ), and the evaluation index E is expressed by the following equation.

E=∫visS(λ)Φe(λ)dλ+A1+A2 …(5)
ここで、誘虫性を評価する補正項A1は、R(λ)を波長毎の誘虫性を示す分光特性、rをR(λ)>0となるような波長λの範囲、Kを定数とすると、以下の式(6)で表される。
E = ∫ vis S (λ) Φe (λ) dλ + A1 + A2 ... (5)
Here, the correction term A1 for evaluating the attracting property is such that R (λ) is a spectral characteristic indicating the attracting property for each wavelength, r is a range of the wavelength λ such that R (λ)> 0, and K is a constant. It is represented by the following formula (6).

A1=−K∫R(λ)Φe(λ)dλ …(6)
なお分光特性R(λ)としては図4に示すようなBickfordによる昆虫の走光性曲線を用いており、記憶部2には、Bickfordによる昆虫の走光性曲線のデータと、上記の式(6)を用いて補正項A1を求めるプログラムが組み込まれている。また定数Kは例えばK=1としている。
A1 = -K∫ r R (λ) Φe (λ) dλ ... (6)
As the spectral characteristic R (λ), an insect phototactic curve by Bickford as shown in FIG. 4 is used, and the data of the insect phototactic curve by Bickford and the above formula (6) are stored in the storage unit 2. The program which calculates | requires correction | amendment term A1 using is incorporated. The constant K is, for example, K = 1.

而して演算部3は記憶部2に組み込まれたプログラムを実行し、昆虫の走光性曲線のデータを5nm間隔でサンプリングしたものをR(λ)とし、この分光特性R(λ)と光放射の分光特性Φe(λ)との積を各波長毎(5nm毎)に計算して、上記の範囲rで得られた積の総和をとり、この総和にサンプリング間隔(5nm)を乗じ(つまり分光特性R(λ)と分光特性Φe(λ)との積を範囲rで積分し)、さらに(−1)を乗じることで補正項A1を求めている。   Thus, the calculation unit 3 executes a program incorporated in the storage unit 2, and R (λ) is obtained by sampling insect phototactic curve data at intervals of 5 nm, and this spectral characteristic R (λ) and light emission Is calculated for each wavelength (every 5 nm), the sum of the products obtained in the above range r is taken, and this sum is multiplied by the sampling interval (5 nm) (that is, spectroscopic). The product of the characteristic R (λ) and the spectral characteristic Φe (λ) is integrated over the range r), and further multiplied by (−1) to obtain the correction term A1.

一方、花芽形成に対する悪影響を評価する補正項A2は以下のようにして求めている。植物の光周性には、植物に含まれるフィトクロム色素が関係していることが知られている。フィトクロム色素にはPr(赤色光吸収型)とPfr(遠赤色光吸収型)とがあり、本来ならPfrがPrに暗転換されなければならない夜間に、光放射に含まれる赤色光がフィトクロム色素に作用することで暗転換が発生せず、Pfrの量が減少しないために、花芽形成に悪影響を与えるものと考えられる。   On the other hand, the correction term A2 for evaluating the adverse effect on flower bud formation is obtained as follows. It is known that phytochrome pigments contained in plants are related to the photoperiodicity of plants. There are Pr (red light absorption type) and Pfr (far red light absorption type) phytochrome pigments. Originally, red light contained in light radiation is converted into phytochrome pigments at night when Pfr must be darkly converted to Pr. By acting, dark conversion does not occur and the amount of Pfr does not decrease, which is considered to adversely affect flower bud formation.

そこで、花芽形成に対する悪影響を評価する補正項A2は、Pr(λ)を波長λにおける植物に含まれるフィトクロム色素Prの吸収スペクトル、prをPr(λ)>0となるような波長λの範囲、Lを定数とすると以下の式(7)で表される。   Therefore, the correction term A2 for evaluating the adverse effect on flower bud formation includes Pr (λ) as the absorption spectrum of the phytochrome pigment Pr contained in the plant at the wavelength λ, and pr as a range of the wavelength λ such that Pr (λ)> 0, When L is a constant, it is expressed by the following equation (7).

A2=−L∫prPr(λ)Φe(λ)dλ …(7)
図5はフィトクロム色素Prの吸収スペクトルの分布特性を示し、記憶部2にはフィトクロム色素Prの吸収スペクトルの分布特性のデータと、上記の式(7)を用いて補正項A2を求めるプログラムが組み込まれている。また定数Lは例えばL=1としている。
A2 = −L∫ pr Pr (λ) Φe (λ) dλ (7)
FIG. 5 shows the distribution characteristics of the absorption spectrum of the phytochrome dye Pr, and the storage unit 2 incorporates data on the distribution characteristics of the absorption spectrum of the phytochrome dye Pr and a program for obtaining the correction term A2 using the above equation (7). It is. The constant L is, for example, L = 1.

而して演算部3は記憶部2に組み込まれたプログラムを実行し、フィトクロム色素Prの吸収スペクトルの分布特性を5nm間隔でサンプリングしたものをPr(λ)として、このPr(λ)と光放射の分光特性Φe(λ)との積を各波長毎(5nm毎)に計算し、上記の範囲prで得られた積の総和をとって、この総和にサンプリング間隔(5nm)を乗じ(つまりPr(λ)と分光特性Φe(λ)との積を範囲prで積分し)、さらに(−1)を乗じることで補正項A2を求めている。   Thus, the calculation unit 3 executes a program incorporated in the storage unit 2 and samples the distribution characteristics of the absorption spectrum of the phytochrome dye Pr at intervals of 5 nm as Pr (λ). Is calculated for each wavelength (every 5 nm), the sum of the products obtained in the above range pr is taken, and this sum is multiplied by the sampling interval (5 nm) (that is, Pr). The product of (λ) and the spectral characteristic Φe (λ) is integrated in the range pr), and further multiplied by (−1) to obtain the correction term A2.

そして、演算部3では以上のようにして求めた補正項A1,A2を、実施形態1で説明した手順で求めた行動抑制効果を評価する項A0に加算して評価指数Eを求めており、評価指数Eの演算結果を出力部4に出力する。ここで、下記の表5は評価指数Eの演算結果を示しており、表5の左から2番目の列より順番に行動抑制効果の評価項A0と補正項A1と補正項A2とを示し、右端の列に上記の式(5)で求めた評価指数Eを示す。   Then, the calculation unit 3 adds the correction terms A1 and A2 obtained as described above to the term A0 for evaluating the action suppression effect obtained by the procedure described in the first embodiment, and obtains the evaluation index E. The calculation result of the evaluation index E is output to the output unit 4. Here, Table 5 below shows the calculation result of the evaluation index E, showing the evaluation term A0, the correction term A1, and the correction term A2 of the action suppression effect in order from the second column from the left of Table 5, The evaluation index E obtained by the above equation (5) is shown in the rightmost column.

Figure 0004363124
Figure 0004363124

このように本実施形態では式(1)の項(∫visS(λ)Φe(λ)dλ)に補正項A1,A2を加算しており、たとえ夜行性昆虫の網膜を大きく興奮させて高い行動抑制効果が得られても、他の昼行性昆虫を誘引しやすい光放射や、植物の花芽形成に悪影響を与える光放射は、その評価指数を割り引くことで、誘虫性や花芽形成に与える悪影響を加味した形で行動抑制効果を実用試験なしに直接的に評価できる。 As described above, in this embodiment, the correction terms A1 and A2 are added to the term (∫ vis S (λ) Φe (λ) dλ) of the expression (1), and the retina of the nocturnal insect is greatly excited and increased. Even if a behavioral suppression effect is obtained, light radiation that easily attracts other diurnal insects and light radiation that adversely affects the flower bud formation of plants is discounted on its evaluation index and given to insect attractivity and flower bud formation The action suppression effect can be directly evaluated without a practical test in a form taking into account the adverse effects.

尚、誘虫性又は花芽形成に与える悪影響の何れかを加味した形で評価指数Eを求める場合は、式(1)の行動抑制効果を評価する項A0に補正項A1,A2の何れか一方のみを加算すれば良く、補正項A1のみを加算した評価指数Eの演算結果(E=A0+A1)と、補正項A2のみを加算した評価指数Eの演算結果(E=A0+A2)も表5に示している。   In addition, when calculating | requiring the evaluation index | exponent E in consideration of either the insecticidal property or the bad influence on flower bud formation, only one of the correction terms A1 and A2 is added to the term A0 for evaluating the action suppression effect of the formula (1). Table 5 also shows the calculation result of the evaluation index E (E = A0 + A1) in which only the correction term A1 is added and the calculation result of the evaluation index E (E = A0 + A2) in which only the correction term A2 is added. Yes.

また本実施形態では実施形態1において行動抑制効果の評価項A0に補正項A1,A2を加算して評価指数Eを求めているが、実施形態2において、演算部3が上述の式(2)を用いて補正係数E’を算出する際に、式(2)の行動抑制効果を評価する項A0(=∫visS(λ)Φe(λ)dλ)に本実施形態で用いた補正項A1,A2を加算し、以下の式(8)から補正係数E’を求めるようにしても良く、誘虫性や花芽形成に与える悪影響を加味した形で補正係数E’を求めることができる。 In the present embodiment, the evaluation index E is obtained by adding the correction terms A1 and A2 to the evaluation term A0 of the action suppression effect in the first embodiment, but in the second embodiment, the calculation unit 3 performs the above equation (2). When calculating the correction coefficient E ′ using, the correction term A1 used in the present embodiment for the term A0 (= ∫ vis S (λ) Φe (λ) dλ) for evaluating the action suppression effect of the equation (2). , A2 may be added and the correction coefficient E ′ may be obtained from the following equation (8), and the correction coefficient E ′ can be obtained in a form that takes into consideration the adverse effect on insect attractance and flower bud formation.

E’=(∫visS(λ)Φe(λ)dλ+A1+A2)/∫vis1V(λ)Φe(λ)dλ …(8)
尚、誘虫性又は花芽形成に与える悪影響の何れかを加味した形で補正係数E’を求める場合は、式(2)の行動抑制効果を評価する項A0(=∫visS(λ)Φe(λ)dλ)に補正項A1,A2の何れか一方のみを加算すれば良い。その場合の演算式は以下の式(9)又は(10)のようになる。
E '= (∫ vis S ( λ) Φe (λ) dλ + A1 + A2) / ∫ vis1 V (λ) Φe (λ) dλ ... (8)
In addition, when calculating | requiring the correction coefficient E 'in consideration of either the insecticidal property or the adverse effect on flower bud formation, the term A0 (= ∫ vis S (λ) Φe () Only one of the correction terms A1 and A2 may be added to λ) dλ). In this case, the arithmetic expression is as shown in the following expression (9) or (10).

E’=(∫visS(λ)Φe(λ)dλ+A1)/∫vis1V(λ)Φe(λ)dλ …(9)
E’=(∫visS(λ)Φe(λ)dλ+A2)/∫vis1V(λ)Φe(λ)dλ …(10)
E '= (∫ vis S ( λ) Φe (λ) dλ + A1) / ∫ vis1 V (λ) Φe (λ) dλ ... (9)
E '= (∫ vis S ( λ) Φe (λ) dλ + A2) / ∫ vis1 V (λ) Φe (λ) dλ ... (10)

防蛾灯などに使用する目的で光放射により夜行性昆虫の行動を抑制するための光源が種々開発されているが、本発明に係る光放射評価方法を用いて行動抑制効果の評価指数を求めることによって、圃場での実用試験を行うことなく、対象昆虫の行動抑制効果を簡易的に評価することができる。   Various light sources for suppressing the behavior of nocturnal insects by light radiation have been developed for the purpose of use in a lantern, etc., and the evaluation index of the behavior suppression effect is obtained using the light radiation evaluation method according to the present invention. This makes it possible to simply evaluate the action-inhibiting effect of the target insect without performing a practical test in the field.

実施形態1の光放射評価装置のブロック図である。It is a block diagram of the optical radiation evaluation apparatus of Embodiment 1. 評価対象の防蛾灯の分光特性を示す図である。It is a figure which shows the spectral characteristic of the evaluation lamp. 防除対象の昆虫の分光感度を示す図である。It is a figure which shows the spectral sensitivity of the insect of control object. Bickfordによる昆虫の走光性曲線を示す図である。It is a figure which shows the phototaxis curve of the insect by Bickford. フィトクロム色素Prの吸収スペクトルの分布特性である。It is a distribution characteristic of the absorption spectrum of the phytochrome dye Pr. 各種の蛍光ランプによる吸汁性夜蛾の明適応化所要時間の説明図である。It is explanatory drawing of the time required for light adaptation of the succulent night jar by various fluorescent lamps.

符号の説明Explanation of symbols

1 入力部
2 記憶部
3 演算部
4 出力部
1 Input unit 2 Storage unit 3 Calculation unit 4 Output unit

Claims (8)

少なくとも光源を含む光放射部の光放射による夜行性昆虫の行動抑制効果を評価する光放射評価方法であって、λを光放射の波長、S(λ)を防除対象の昆虫の網膜における分光感度を示す関数、Φe(λ)を光放射部による放射強度の分光特性を示す関数、visをS(λ)>0となるような波長λの範囲、Eを評価指数とした場合に、
E=∫visS(λ)Φe(λ)dλ
なる式で求めた評価指数が大きいほど、行動抑制効果が高いと判断することを特徴とする光放射評価方法。
A light emission evaluation method for evaluating a nocturnal insect behavior suppression effect by light emission of a light emission part including at least a light source, wherein λ is a wavelength of light emission, and S (λ) is a spectral sensitivity in a retina of an insect to be controlled Φe (λ) is a function indicating spectral characteristics of radiation intensity by the light emitting part, vis is a wavelength λ range such that S (λ)> 0, and E is an evaluation index,
E = ∫ vis S (λ) Φe (λ) dλ
The light emission evaluation method characterized by judging that the action suppression effect is so high that the evaluation index calculated | required by the type | formula which becomes is large.
少なくとも光源を含む光放射部の光放射による夜行性昆虫の行動抑制効果を評価する光放射評価方法であって、λを光放射の波長、S(λ)を防除対象の昆虫の網膜における分光感度を示す関数、Φe(λ)を光放射部による放射強度の分光特性を示す関数、V(λ)を人間の分光視感効率を示す関数、visをS(λ)>0となるような波長λの範囲、vis1を波長λが約380nm以上且つ約780nm以下の範囲、E’を光放射部の測光値に乗算するための補正係数とした場合に、
E’=∫visS(λ)Φe(λ)dλ/∫vis1V(λ)Φe(λ)dλ
なる式で求めた補正係数E’を光放射部の測光値に乗じた値を評価指数とし、この評価指数が大きいほど、行動抑制効果が高いと判断することを特徴とする光放射評価方法。
A light emission evaluation method for evaluating a nocturnal insect behavior suppression effect by light emission of a light emission part including at least a light source, wherein λ is a wavelength of light emission, and S (λ) is a spectral sensitivity in a retina of an insect to be controlled Φe (λ) is a function indicating the spectral characteristics of the radiation intensity by the light emitting part, V (λ) is a function indicating the human spectral luminous efficiency, and vis is a wavelength such that S (λ)> 0 When λ is a range, vis1 is a wavelength λ of about 380 nm or more and about 780 nm or less, and E ′ is a correction coefficient for multiplying the photometric value of the light emitting unit,
E '= ∫ vis S (λ ) Φe (λ) dλ / ∫ vis1 V (λ) Φe (λ) dλ
A value obtained by multiplying the photometric value of the light emitting part by the correction coefficient E ′ obtained by the following formula is used as an evaluation index, and the larger the evaluation index is, the higher the action suppression effect is determined.
前記S(λ)が、検出対象の複数種類の昆虫の網膜における分光感度の平均であることを特徴とする請求項1又は2記載の光放射評価方法。   3. The light emission evaluation method according to claim 1, wherein S (λ) is an average of spectral sensitivities in retinas of a plurality of types of insects to be detected. 1(λ),S2(λ),…,Sn(λ)をそれぞれ前記各種類の昆虫の網膜における分光感度を示す関数、k1,k2,…,knをそれぞれ前記各種類の昆虫の分光感度に対する重み係数とし、この重み係数として前記各種類の昆虫の存在する割合又は前記各種類の昆虫によって発生する被害の大きさの割合の何れかを用い、
S(λ)=(k11(λ)+k22(λ)+…+knn(λ))/(k1+k2+…+kn
なる式で前記S(λ)を求めたこと特徴とする請求項3記載の光放射評価方法。
S 1 (λ), S 2 (λ), ..., function indicating a spectral sensitivity in the retina of S n (lambda) of each of the respective types of insects, k 1, k 2, ... , respectively k n each type As a weighting factor for the spectral sensitivity of the insects, using either the proportion of each type of insect present or the proportion of the magnitude of damage caused by each type of insect as the weighting factor,
S (λ) = (k 1 S 1 (λ) + k 2 S 2 (λ) + ... + k n S n (λ)) / (k 1 + k 2 + ... + k n)
The light emission evaluation method according to claim 3, wherein the S (λ) is obtained by the following formula.
R(λ)を波長毎の誘虫性を示す分光特性、rをR(λ)>0となるような波長λの範囲、Kを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−K∫R(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする請求項1乃至4の何れか1つに記載の光放射評価方法。 When R (λ) is a spectral characteristic indicating the attracting property for each wavelength, r is a range of wavelength λ such that R (λ)> 0, and K is a constant, the term of the above formula (∫ vis S (λ ) Φe (λ) dλ) to (-K∫ r R (λ) Φe (λ) light emission evaluation according to any one of claims 1 to 4, characterized in that the sum of d [lambda]) becomes the correction term Method. Pr(λ)を波長λにおける植物に含まれるフィトクロム色素の吸収スペクトル、prをPr(λ)>0となるような波長λの範囲、Lを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−L∫prPr(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする請求項1乃至4の何れか1つに記載の光放射評価方法。 When Pr (λ) is an absorption spectrum of a phytochrome pigment contained in a plant at a wavelength λ, pr is a wavelength λ range such that Pr (λ)> 0, and L is a constant, the term (∫ vis S (λ) Φe (λ) dλ) to (-L∫ pr Pr (λ) Φe (λ) dλ) becomes the correction term to according to any one of claims 1 to 4, characterized in that the sum Light emission evaluation method. R(λ)を波長毎の誘虫性を示す分光特性、rをR(λ)>0となるような波長λの範囲、Pr(λ)を波長λにおける植物に含まれるフィトクロム色素の吸収スペクトル、prをPr(λ)>0となるような波長λの範囲、K,Lを定数とした場合に、上式の項(∫visS(λ)Φe(λ)dλ)に(−K∫R(λ)Φe(λ)dλ−L∫prPr(λ)Φe(λ)dλ)なる補正項を加算したことを特徴とする請求項1乃至4の何れか1つに記載の光放射評価方法。 R (λ) is a spectral characteristic indicating the attracting property for each wavelength, r is a wavelength λ range such that R (λ)> 0, Pr (λ) is an absorption spectrum of a phytochrome pigment contained in a plant at a wavelength λ, pr the Pr (λ)> 0 and becomes such a range of wavelength lambda, K, is L constant, the term of the above equation (∫ vis S (λ) Φe (λ) dλ) (-K∫ r R (λ) Φe (λ) dλ-L∫ pr Pr (λ) Φe (λ) light emission evaluation according to any one of claims 1 to 4, characterized in that the sum of d [lambda]) becomes the correction term Method. 分光特性R(λ)にBickfordによる昆虫の走光性曲線を用いたことを特徴とする請求項5又は7記載の光放射評価方法。   8. The light emission evaluation method according to claim 5, wherein an insect phototactic curve according to Bickford is used as the spectral characteristic R (λ).
JP2003300372A 2003-08-25 2003-08-25 Light emission evaluation method Expired - Lifetime JP4363124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003300372A JP4363124B2 (en) 2003-08-25 2003-08-25 Light emission evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003300372A JP4363124B2 (en) 2003-08-25 2003-08-25 Light emission evaluation method

Publications (2)

Publication Number Publication Date
JP2005065601A JP2005065601A (en) 2005-03-17
JP4363124B2 true JP4363124B2 (en) 2009-11-11

Family

ID=34405323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003300372A Expired - Lifetime JP4363124B2 (en) 2003-08-25 2003-08-25 Light emission evaluation method

Country Status (1)

Country Link
JP (1) JP4363124B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725209B2 (en) * 2005-06-22 2011-07-13 パナソニック電工株式会社 Biological attraction system and biology attraction method using the same
JP2007024632A (en) * 2005-07-14 2007-02-01 Matsushita Electric Works Ltd Evaluate method of insect attracting property and illumination system having weak insect attracting property
JP6422261B2 (en) * 2014-08-06 2018-11-14 国立大学法人浜松医科大学 Insect brightness / illuminance meter
KR20230154273A (en) * 2021-04-12 2023-11-07 코니카 미놀타 가부시키가이샤 Calibration devices, measuring instruments, calibration methods and programs

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4019400B2 (en) * 1998-04-17 2007-12-12 岩崎電気株式会社 High pressure sodium lamp for insect repellent
JP4224612B2 (en) * 1998-10-28 2009-02-18 エヌビイテイ株式会社 Insect repellent light source and method for producing insect repellent light source
JP2001258454A (en) * 2000-03-17 2001-09-25 N Bii T Kk Mothproofing tool comprising light source for suppressing behavior of insect
JP2003009744A (en) * 2001-07-04 2003-01-14 Iwasaki Electric Co Ltd Insect-mooring system for illumination
JP2003070402A (en) * 2001-09-07 2003-03-11 Toyoda Gosei Co Ltd Insect-capturing tool

Also Published As

Publication number Publication date
JP2005065601A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
Owens et al. The impact of artificial light at night on nocturnal insects: a review and synthesis
RU2701947C2 (en) Light device for counting sea lice
US20080127545A1 (en) Method of preventing and controlling insect pests
Endler Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions
Endler On the measurement and classification of colour in studies of animal colour patterns
Barghini et al. UV radiation as an attractor for insects
Paris et al. Evidence of behavior-based utilization by the Asian citrus psyllid of a combination of UV and green or yellow wavelengths
JP4725209B2 (en) Biological attraction system and biology attraction method using the same
Brehm et al. Moths are strongly attracted to ultraviolet and blue radiation
Bitton et al. Red fluorescence of the triplefin Tripterygion delaisi is increasingly visible against background light with increasing depth
Murata et al. In the presence of red light, cucumber and possibly other host plants lose their attractability to the melon thrips Thrips palmi (Thysanoptera: Thripidae)
JP4363124B2 (en) Light emission evaluation method
Chuang et al. Deceptive color signaling in the night: a nocturnal predator attracts prey with visual lures
Barry et al. Spectral sensitivity of the Hawaiian saddle wrasse, Thalassoma duperrey, and implications for visually mediated behaviour on coral reefs
Fleishman et al. Illumination geometry, detector position and the objective determination of animal signal colours in natural light
WO2020159913A1 (en) System for early detection of plant disease
Sakura et al. Diurnal and circadian rhythm in compound eye of cricket (Gryllus bimaculatus): changes in structure and photon capture efficiency
JP2006208111A (en) Optical radiation evaluation apparatus
Liu et al. Photo-induced visual response of western flower thrips attracted and repulsed by their phobotaxis spectrum light
Wu et al. Photobiology eye safety for horticultural LED lighting: Transmittance performance of eyewear protection using high-irradiant monochromatic LEDs
Liebgold et al. The right light: tiger salamander capture rates and spectral sensitivity
Ben-Yakir Optical manipulation of arthropod pests and beneficials
JP4621891B2 (en) Method and apparatus for estimating grain weight of grain
Cane et al. Surveying ultraviolet reflectance in moths: A method and workflow for data capture using open-source tools
Schofield et al. The colour temperature and placement of LED lighting near rivers can reduce attraction of flying adult caddisflies

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4363124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

EXPY Cancellation because of completion of term