JP4363036B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4363036B2
JP4363036B2 JP2002368266A JP2002368266A JP4363036B2 JP 4363036 B2 JP4363036 B2 JP 4363036B2 JP 2002368266 A JP2002368266 A JP 2002368266A JP 2002368266 A JP2002368266 A JP 2002368266A JP 4363036 B2 JP4363036 B2 JP 4363036B2
Authority
JP
Japan
Prior art keywords
change
expansion valve
valve
degree
valve opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002368266A
Other languages
Japanese (ja)
Other versions
JP2004198048A (en
Inventor
匡 富川
憲嗣 紀ノ上
卓史 森
謙一 正木
徳夫 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2002368266A priority Critical patent/JP4363036B2/en
Publication of JP2004198048A publication Critical patent/JP2004198048A/en
Application granted granted Critical
Publication of JP4363036B2 publication Critical patent/JP4363036B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍装置に関する。
【0002】
【従来の技術】
従来より、容量可変型の圧縮機と、凝縮器と、電動膨張弁と、蒸発器とを順次接続した冷凍装置では、上記電動膨張弁の開度を、上記圧縮機への吸入冷媒の過熱度に基いたPI(比例・積分)制御によって制御するものがある。従来、上記PI制御では、所定の乗数を用いたPI演算式を用いて上記電動膨張弁の駆動量を算出している。
【0003】
しかしながら、上記電動膨張弁の開度をPI制御によって制御する場合、弁開度の変化と、これによって生ずる吸入冷媒の過熱度の変化とに時間遅れがあるため、ハンチングが生じ易い。このハンチングを防止するためには、PI制御における乗数としての積分時間を長くして安定を図る必要があり、そうすると応答特性が悪化して、上記圧縮機の容量の変化に対する上記電動膨張弁の制御遅れが生じるという問題がある。
【0004】
そこで、圧縮機の容量に応じた電動膨張弁の開度を記憶手段に予め記憶しておいて、この記憶された開度を用いて電動膨張弁がなすべき開度を算出するようにしたものがある(例えば特許文献1参照)。この冷凍装置は、上記圧縮機の容量が変化すると、この変化前後の圧縮機の容量に応じた上記電動膨張弁の開度を上記記憶手段から読み出し、この読み出された弁開度と現在の弁開度とから、上記電動膨張弁の開度変化量を算出する。この算出された開度変化量だけ上記電動膨張弁の開度を変更することによって、上記圧縮機の運転容量の変化に対して大きな制御遅れが生じること無く、上記蒸発器における過熱度を制御するようにしている。
【0005】
【特許文献1】
特公平5−2901号公報(第1図)
【0006】
【発明が解決しようとする課題】
しかしながら、上記記憶手段に予め記憶された弁開度を用いる従来の冷凍装置は、例えば上記圧縮機の容量以外の他の運転条件が変化した場合、この他の運転条件に対応して上記電動膨張弁を制御できないので、上記他の運転条件の変化に起因する過熱度の変化に適切に対応できないという問題がある。
【0007】
そこで、本発明の目的は、蒸発器の過熱度の変化に対して、迅速かつ適切に膨張弁の開度を制御できる冷凍装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明の冷凍装置は、
圧縮機と、凝縮器と、膨張弁と、蒸発器とを順に接続してなる冷凍回路を備える冷凍装置において、
上記蒸発器の過熱度を検出する過熱度検出手段と、
上記過熱度検出手段によって検出された過熱度に基いて、上記膨張弁の弁開度を算出する弁開度算出手段と、
運転条件の所定の変化を検出する変化検出手段と、
上記変化検出手段が検出した運転条件の所定の変化に基いて、所定時間の間、補正を行なうように上記弁開度算出手段に弁開度を算出させる補正手段と、
上記弁開度算出手段が算出した弁開度になるように、上記膨張弁を駆動する膨張弁駆動手段と
を備え、
上記変化検出手段が運転条件の変化を検出した場合、上記過熱度検出手段が検出した上記過熱度によらず、上記弁開度算出手段が、上記補正手段の指示により補正した弁開度になるように、上記膨張弁駆動手段による上記膨張弁の駆動動作を、上記運転条件の変化に応じて閉じ動作または開き動作のいずれか一方に制限する一方、上記変化検出手段が運転条件の変化を検出しなかった場合、上記過熱度検出手段が検出した上記過熱度に基づいて、上記膨張弁がなすべき弁開度を算出し、上記膨張弁駆動手段に、上記算出した駆動量だけ上記膨張弁を駆動させる制限手段を備えることを特徴としている。
【0009】
請求項1に記載の冷凍装置によれば、上記過熱度検出手段によって、上記蒸発器の過熱度が検出され、上記過熱度検出手段によって検出された過熱度に基いて、上記弁開度算出手段によって、上記膨張弁がなすべき弁開度が算出される。上記変化検出手段によって、例えば圧縮機の容量の変化等のような運転条件の所定の変化が検出される。上記弁開度算出手段は、上記補正手段によって、所定時間の間、上記変化検出手段が検出した運転条件の所定の変化に基いて補正を行なうように弁開度が算出させられる。この弁開度算出手段が算出した弁開度になるように、上記膨張弁駆動手段によって上記膨張弁が駆動される。したがって、例えば圧縮機の容量の変化のみならず、例えばファン風量、冷媒のバイパス量、あるいは、被冷却または加熱媒体の流量などの他の運転条件に所定の変化が生じた場合においても、従来におけるような過熱度の変化に対する膨張弁の制御の応答遅れが殆ど生じない。したがって、この冷凍装置は、上記蒸発器の過熱度の変化に対して、迅速かつ適切に膨張弁の開度が制御される。
【0010】
【0011】
また、請求項1の冷凍装置によれば、上記制限手段によって、上記膨張弁の動作が、上記運転条件の変化に応じて閉じ動作または開き動作のいずれか一方に制限される。例えば、上記圧縮機の吸入冷媒の過熱度が目標過熱度よりも小さくて、上記膨張弁駆動手段によって上記膨張弁が閉じ方向に駆動されているときに、例えば圧縮機の容量の増大という弁開度を増大することが必要な運転条件の変化が生じた場合、この運転条件の変化に応じた開き方向の制御が、それ以前の膨張弁を閉じる方向の制御よりも重視されて、運転条件の変化に応じた開き動作のみに限定される。もし、膨張弁の閉じ動作の制御中に、開き動作を必要とする運転条件の変化が生じた場合、弁駆動量の絶対値のみの制御をすると、より大きな閉じ動作が生じてしまうのである。つまり、上記運転条件の変化が生じる直前の運転条件の影響を受けること無く、上記運転条件の変化に対応して、上記膨張弁が適切な方向に駆動される。
【0012】
請求項2の発明の冷凍装置は、請求項1に記載の冷凍装置において、
上記変化検出手段が検出する運転条件の所定の変化は、上記圧縮機の運転容量の変化、上記凝縮器または蒸発器に風を送るファンの風量の変化、被冷却または加熱媒体の流量の変化、あるいは、上記冷凍回路の部分に設けられたバイパス路への冷媒流量の変化であることを特徴としている。
【0013】
請求項2の冷凍装置によれば、上記圧縮機の運転容量の変化、上記凝縮器または蒸発器に風を送るファンの風量の変化、被冷却または加熱媒体の流量の変化、あるいは、上記冷凍回路の部分に設けられたバイパス路への冷媒流量の変化に対応して、弁開度算出手段は、上記補正手段によって、例えば算出式の係数を増大することによって補正を行なうように弁開度が算出させられる。したがって、上記運転条件の変化に対応する適切な弁開度が算出され、この弁開度に上記膨張弁が迅速に駆動される。その結果、上記駆動弁は、上記運転条件の変化に対する応答遅れや、ハンチングを生じることなく、適切に駆動される。
【0014】
【発明の実施の形態】
以下、本発明を図示の実施の形態により詳細に説明する。
【0015】
図1は、参考例の冷凍装置を示す図である。この冷凍装置は、水の温度を制御するチラーであり、被冷却または加熱媒体としての水が供給されて蒸発器として働く水側熱交換器1と、圧縮機としてのスクリュー圧縮機2と、凝縮器として働く空気側熱交換器3と、膨張弁4とを順に接続してなる冷媒回路を備える。
【0016】
上記膨張弁4には膨張弁駆動手段6が設けられており、この膨張弁駆動手段6は、後述の制御装置11の制御の下で上記膨張弁4の開度を変更するようになっている。
【0017】
上記水側熱交換器1とスクリュー圧縮機2の吸入口とを接続する冷媒配管には、上記スクリュー圧縮機2に吸入される冷媒の温度を検出する吸入温度センサ8と、この冷媒の圧力を検出する吸入圧力センサ9とが設けられている。
【0018】
上記スクリュー圧縮機2は、上記水熱交換器1が調節すべき水の目標温度に基いて、図示しない容量制御機構によって運転容量が変更されるようになっている。
【0019】
上記水側熱交換器1は、冷媒と熱交換すべき水が供給される入口配管13と、冷媒と熱交換された水を排出する出口配管14とを備える。
【0020】
上記空気側熱交換器3は、モータで駆動されるファン16によって所定風量の空気が供給されるようになっている。
【0021】
この冷凍装置は、上記膨張弁4の弁開度を制御する制御装置11を備える。この制御装置11は、上記吸入温度センサ8および吸入圧力センサ9のからの信号を受けて、上記吸入温度センサ8の検出値と上記吸入圧力センサ9の検出値から、上記スクリュー圧縮機2が吸入する冷媒の過熱度を検出する。つまり、過熱度検出手段として機能する。また、この制御装置11は、上記検出した過熱度に基いて、上記膨張弁4が駆動されるべき駆動量を算出することによって、上記膨張弁4がなすべき弁開度を算出する。具体的には、上記スクリュー圧縮機2の吸入冷媒がなすべき目標の過熱度(以下目標SHという)に対する上記吸入冷媒の現在の過熱度(以下現SHという)の偏差を算出し、この偏差を、所定の乗数を用いるPI(比例・積分)演算式に代入して、上記膨張弁4が駆動されるべき駆動量を算出する。なお、上記PI演算式に用いる乗数は、比例乗数および積分時間乗数である。そして、上記制御装置11は、上記膨張弁駆動手段6に、上記算出した駆動量だけ上記膨張弁4を駆動させるようになっている。
【0022】
また、上記制御装置11は、上記スクリュー圧縮機2の容量制御機構に接続されて、このスクリュー圧縮機2の運転容量が検知可能になっている。また、上記制御装置11は、上記ファン16を駆動するモータに接続されて、このモータの回転数が検知可能になっている。あるいは、空気側熱交換器3に、モータおよびファンを複数台設け、この複数台のファンのうちの運転台数を検知してもよい。また、上記制御装置11は、冷媒回路の一部に設けられた図示しないバイパス回路を流れる冷媒量が検知および演算可能になっている。
【0023】
上記構成の冷凍装置の動作を説明する。図2は、上記構成の冷凍装置が動作する際、上記制御装置11で実行される処理を示したフロー図である。
【0024】
上記冷凍装置の動作が開始されると、図2のフロー図に示すように、制御装置11は、冷凍装置の運転条件に所定の変化が生じたか否かを判断する(ステップS1)。ここで、運転条件の所定の変化とは、スクリュー圧縮機2の運転容量の増大または減少である。ここにおいて、このステップS1は変化検出手段として機能している。なお、図示しないが、冷凍装置の運転条件の所定の変化として、空気側熱交換器3に風を送るファン16の回転数の増大または減少、空気側熱交換器3に風を送る複数のファンうちの運転台数の増大または減少、被冷却または加熱媒体としての水の流量の変化、あるいは、冷媒回路の一部に設けられた図示しないバイパス回路を流れる冷媒量の増大または減少を検出する変化検出手段を設けてもよい。
【0025】
冷凍装置の運転条件に所定の変化が生じていない場合、上記制御装置11は、上記膨張弁4の弁開度を算出するためのPI演算式に用いる乗数を、通常の乗数にする(ステップS2)。この通常乗数を用いたPI演算式によって、上記目標SHに対する現SHの偏差に基いて、膨張弁4の駆動量を算出する。ここにおいて、上記ステップS2は弁開度算出手段として機能している。この後、ステップS5に移る。
【0026】
上記ステップS1において、冷凍装置の運転条件に所定の変化が生じたと判断した場合、上記制御装置11は、この制御装置11内に備えるタイマーを起動する(ステップS3)。
【0027】
続いて、上記膨張弁4の弁開度を算出するためのPI演算式に用いる乗数を、過渡時乗数に変更する(ステップS4)。この過渡時乗数を用いたPI演算式によって、上記目標SHに対する現SHの偏差に基いて、膨張弁4の弁駆動量を算出する。このように、上記制御装置11は、ステップS2において通常乗数を用いて弁駆動量を算出したのに対して、上記運転条件の所定の変化に基いて補正を行なうように、過渡時乗数を用いて駆動量を算出する。すなわち、ステップS4は補正手段として機能している。
【0028】
そして、上記スクリュー圧縮機2の吸入冷媒について、目標SH値Aと、現SH値Bとについて、A<Bの関係が成立するか否か判断する(ステップS5)。
【0029】
上記目標SH値Aと現SH値Bとについて、A<Bの関係が成立する場合、上記膨張弁駆動手段6に指令を与えて、上記膨張弁4を上記算出された弁駆動量だけ開方向に駆動させる(ステップS6)。
【0030】
上記ステップS5において、上記目標SH値Aと現SH値Bとについて、A<Bの関係が成立しない場合、A>Bの関係が成立するか否かを判断する(ステップS7)。
【0031】
上記目標SH値Aと現SH値Bとについて、A>Bの関係が成立する場合、上記膨張弁駆動手段6に指令を与えて、上記膨張弁4を閉方向に上記算出された弁駆動量だけ駆動させる(ステップS8)。
【0032】
上記ステップS7において、上記目標SH値Aと現SH値Bとについて、A>Bが成立しない場合、膨張弁4の駆動は行なわない(ステップS9)。
【0033】
上記ステップS6,S8,S9の後、制御装置11内のタイマが所定時間の経過を計時したか否かを判断する(ステップS10)。
【0034】
上記タイマが所定時間の経過を計時していない場合、ステップS4に戻って、このS4以下の処理を行なう。
【0035】
上記タイマが所定時間の経過を計時した場合、ステップS1に戻って、所定の運転条件の変化が生じた否かを検知する。
【0036】
このように、本参考例の冷凍装置は、運転条件に所定の変化が生じた場合、所定時間の間、PI演算式の乗数を過渡時乗数に変更することによって、上記過熱度の偏差に基いた膨張弁4の駆動量を増大させる。すなわち、所定時間の間、制御感度を敏感にする。その結果、この冷凍装置は、運転条件が急激に変化しても、この運転条件の急激な変化に適切に追従して、応答遅れやハンチングなどを生じることなく、適切に膨張弁4の弁開度を制御できる。
【0037】
図3は、本参考例の冷凍装置について、運転条件の所定の変化としてのスクリュー圧縮機2の容量の増加が生じた際、上記制御装置11によって制御される膨張弁4の弁開度と、上記スクリュー圧縮機2の吸入冷媒の目標SHに対する現SHの偏差とについて生じる変化を示した図である。図3の横軸は時間の経過を示す。図3の左側の縦軸は、スクリュー圧縮機2の吸入冷媒の目標SHに対する現SHの偏差を示している。図3の右側の縦軸は、上記スクリュー圧縮機2の容量(%)と、上記膨張弁4の弁開度(%)とを示している。
【0038】
図3に示すように、時間0から時間t1の間、スクリュー圧縮機2の運転容量が所定量に保持されて、現SHの偏差が正の値をなすと共に緩やかに減少している。これに伴って、上記制御装置11は、通常の乗数を用いたPI演算式によって膨張弁4の弁駆動量を算出し、この算出された弁駆動量をなすように上記膨張弁駆動手段6によって上記膨張弁4を駆動する。その結果、上記膨張弁4の開度が緩やかに増加する。
【0039】
次に、時間t1において、運転条件の所定の変化としてのスクリュー圧縮機2の容量の増加が生じる。これに対応して、上記制御装置は、過渡時乗数を用いたPI演算式によって膨張弁4の弁駆動量を算出し、この弁駆動量をなすように上記膨張弁駆動手段6によって膨張弁4を駆動する。これによって、上記膨張弁4の開度は、時間t1以後、時間t1までよりも大きい割合で増加する。その結果、時間t1以後、現SHの目標SHに対する偏差の増加量が比較的少量に抑えられる。ここで、従来におけるように、スクリュー圧縮機2の容量の増加後においても乗数を変えないでPI制御を行なうと、膨張弁4の弁開度は、曲線イで示すように、時間t1以後においても比較的小さい割合で増加する。その結果、現SHの偏差は、曲線ロで示すように、急激に増大してしまう。
【0040】
このように、本参考例の冷凍装置によれば、運転条件の変化に対応して、従来よりも迅速かつ適切に膨張弁4の弁開度を制御でき、これによって、スクリュー圧縮機2の吸入冷媒が安定して目標過熱度になるように制御できる。その結果、上記冷凍装置は、安定して適切な冷凍性能が得られる。
【0041】
図4は、本発明の第実施形態の冷凍装置の制御装置が実行する処理を示すフロー図である。第実施形態の冷凍装置は、参考例の冷凍装置と同一の構成部分を有し、参考例の冷凍装置とは、制御装置11が実行する処理のみが異なる。第実施形態において、参考例と異なる点のみを説明する。
【0042】
上記冷凍装置の動作が開始されると、図4のフロー図に示すように、制御装置11は、冷凍装置の運転条件に所定の変化が生じたか否かを判断する(ステップS11)。ここで、運転条件の所定の変化とは、スクリュー圧縮機2の運転容量の増大または減少である。このステップS11は、変化検出手段として機能している。
【0043】
冷凍装置の運転条件に所定の変化が生じていない場合、上記制御装置11は、上記膨張弁4の弁開度を算出するPI演算式に用いる乗数を、通常の乗数にする(ステップS12)。この通常乗数を用いたPI演算式によって、上記目標SHに対する現SHの偏差に基いて、膨張弁4の弁駆動量を算出する。ここにおいて、ステップS12は弁開度算出手段として機能している。この後、ステップS16に移る。
【0044】
上記ステップS11において、冷凍装置の運転条件に所定の変化が生じたと判断した場合、上記制御装置11はタイマーを起動する(ステップS13)。
【0045】
続いて、上記膨張弁4の弁開度を算出するPI演算式に用いる乗数を、過渡時乗数に変更する(ステップS14)。この過渡時乗数を用いたPI演算式によって、上記目標SHに対する現SHの偏差に基いて、膨張弁4の弁駆動量を算出する。上記ステップS14は、補正手段として機能している。
【0046】
次に、上記制御装置11は、上記ステップS11で検出した運転条件の所定の変化について、この運転条件の変化は、膨張弁4の閉動作が禁止である変化か否かを判断する(ステップS15)。具体的には、運転条件の所定の変化が、スクリュー圧縮機2の運転容量の増大であるとき、膨張弁4の閉動作が禁止される。
【0047】
上記ステップS15において、上記運転条件の変化が、上記膨張弁4の閉動作禁止の変化であると判断した場合、後述のステップS20に進む。
【0048】
上記ステップS15において、上記運転条件の変化が、上記膨張弁4の閉動作禁止の変化でないと判断した場合、上記スクリュー圧縮機2の吸入冷媒について、目標SH値Aと、現SH値Bとについて、A>Bの関係が成立するか否か判断する(ステップS16)。
【0049】
上記目標SH値Aと現SH値Bとについて、A>Bの関係が成立する場合、上記膨張弁駆動手段6に指令を与えて、上記膨張弁4を上記算出された弁駆動量だけ閉方向に駆動させる(ステップS17)。
【0050】
上記ステップS16において、上記目標SH値Aと現SH値Bとについて、A>Bの関係が成立しない場合、上記運転条件の変化は、膨張弁4の開動作が禁止である変化か否かを判断する(ステップS18)。具体的には、運転条件の所定の変化が、スクリュー圧縮機2の運転容量の減少であるとき、膨張弁4の開動作が禁止される。
【0051】
上記ステップS18において、上記運転条件の変化は、膨張弁4の開動作禁止の変化であると判断した場合、上記膨張弁4は駆動しない(ステップS19)。
【0052】
上記ステップS18において、上記運転条件の変化は、膨張弁4の開動作禁止の変化でないと判断した場合、目標SH値Aと現SH値Bとについて、A<Bの関係が成立するか否かを判断する(ステップS20)。
【0053】
上記目標SH値Aと現SH値Bとについて、A<Bの関係が成立する場合、上記膨張弁駆動手段6に指令を与えて、上記膨張弁4を上記算出された弁駆動量だけ開方向に駆動させる(ステップS21)。
【0054】
上記ステップS20において、上記目標SH値Aと現SH値Bとについて、A<Bが成立しない場合、膨張弁4の駆動は行なわない(ステップS22)。
【0055】
上記ステップS17,S19,S21,S22の後、制御装置11内のタイマが所定時間の経過を計時したか否かを判断する(ステップS23)。
【0056】
上記タイマが所定時間の経過を計時していない場合、ステップS14に戻って、このステップS14以下の処理を行なう。
【0057】
上記タイマが所定時間の経過を計時した場合、ステップS11に戻って、所定の運転条件の変化が生じた否かを検知する。
【0058】
このように、本実施形態の冷凍装置は、運転条件に所定の変化が生じた場合、この運転条件の変化に対応して、膨張弁4の駆動を閉じ動作または開き動作のいずれか一方に制限する。つまり、上記ステップS15,S18が制御手段として機能する。これによって、現SHが目標SHよりも小さくて膨張弁4を閉じ制御しているときに、スクリュー圧縮機2の運転容量が増大した場合、この増大した運転容量に対応してPI演算式で算出された駆動量が増大し、この増大した駆動量で閉じ方向に膨張弁4が駆動されてしまうような不都合が防止できる。
【0059】
図5は、本実施形態の冷凍装置について、膨張弁4を閉じ方向に駆動しているときに、運転条件の所定の変化としてのスクリュー圧縮機2の容量の増加が生じた際、上記制御装置11によって制御される膨張弁4の弁開度と、上記スクリュー圧縮機2の吸入冷媒の目標SHに対する現SHの偏差とについて生じる変化を示した図である。図5の横軸および縦軸は、図3の横軸および縦軸と同一である。
【0060】
図5に示すように、時間0から時間t2の間、スクリュー圧縮機2の運転容量は所定量に保持されていると共に、現SHの偏差が負の値であり、これによって、膨張弁4が閉じ方向に駆動されている。ここで、時間t2において、運転条件の所定の変化としてのスクリュー圧縮機2の運転容量の増加が生じる。これに対応して、上記制御装置11は、過渡時乗数を用いたPI演算式によって膨張弁の弁駆動量を算出し、この弁駆動量をなすように上記膨張弁駆動手段6によって膨張弁4を駆動する。このとき、制御装置11は、上記膨張弁4の動作を開動作のみに制限する。したがって、上記膨張弁4は、時間t2の直前に閉じ方向に駆動されていたにも拘らず、この閉じ方向の制御の影響を受けること無く、確実に開き方向に駆動できる。
【0061】
ここにおいて、上記運転条件の変化に対応して膨張弁4の駆動方向を制限しないと、膨張弁4は、曲線ハで示すように、時間t2の直前の運転条件に応じた閉じ制御のまま、過渡時乗数を用いて算出された弁駆動量で駆動されてしまう。そうすると、現SHの偏差は、曲線ニで示すように急激に増大してしまう。
【0062】
このように、本実施形態の冷凍装置によれば、運転条件の変化に対応して、適切に膨張弁4の駆動方向を制御でき、その結果、スクリュー圧縮機2の吸入冷媒が迅速に目標過熱度になるように制御できる。これによって、上記冷凍装置は、安定して適切な冷凍性能が得られる。
【0063】
上記参考例および第実施形態において、冷凍装置の運転条件の所定の変化は、スクリュー圧縮機2の運転容量の増大であったが、スクリュー圧縮機2の運転容量の減少でもよく、あるいは、空気側熱交換器3に風を送るファン16の回転数の増大または減少、空気側熱交換器3に風を送る複数のファンの運転台数の増加または減少、被冷却または加熱媒体としての水の流量の変化、または、冷媒回路の一部に設けられた図示しないバイパス回路を流れる冷媒量の増大または減少であってもよい。
【0064】
また、上記実施形態において、上記制御装置11が過熱度検出手段として働いたが、スクリュー圧縮機2の吸入冷媒の過熱度を直接検出する過熱度検出手段を別個に設けてもよい。また、上記制御装置11が実行する処理について、ステップS2,S12が弁開度算出手段として機能し、ステップS1,S11が変化検出手段として機能し、ステップS4,S14が補正手段として機能したが、他の処理のステップが過熱度検出手段、弁開度算出手段、変化検出手段および補正手段として機能してもよい。
【0065】
また、上記冷凍装置は、水側熱交換器1に導かれる被冷却または加熱媒体としての水の温度を調節するチラーであったが、他の被冷却または加熱媒体の温度調節をする冷凍装置であってもよい。また、チラー以外の他の冷凍装置であってもよい。
【0066】
また、上記実施形態において、圧縮機としてスクリュー圧縮機2を用いたが、他の容量可変型の圧縮機を用いてもよい。
【0067】
また、上記実施形態において、上記水側熱交換器1は蒸発器として働くと共に、上記空気側熱交換器3は凝縮器として働いたが、上記水側熱交換器2が凝縮機として働くと共に、上記空気側熱交換器1が蒸発器として働いてもよい。
【0068】
【発明の効果】
以上より明らかなように、請求項1の発明の冷凍装置によれば、圧縮機と、凝縮器と、膨張弁と、蒸発器とを順に接続してなる冷凍回路を備える冷凍装置において、上記蒸発器の過熱度を検出する過熱度検出手段と、上記過熱度検出手段によって検出された過熱度に基いて、上記膨張弁の弁開度を算出する弁開度算出手段と、運転条件の所定の変化を検出する変化検出手段と、上記変化検出手段が検出した運転条件の所定の変化に基いて、所定時間の間、補正を行なうように上記弁開度算出手段に弁開度を算出させる補正手段と、上記弁開度算出手段が算出した弁開度になるように、上記膨張弁を駆動する膨張弁駆動手段とを備えるので、例えば圧縮機の容量の変化等のような運転条件の所定の変化が生じた場合においても、従来におけるような過熱度の変化に対する応答遅れが殆ど生じることなく、膨張弁の開度を迅速かつ適切に制御できる。
【0069】
また、請求項1の発明の冷凍装置によれば、請求項1に記載の冷凍装置において、上記変化検出手段が検出した運転条件の変化に応じて、上記膨張弁駆動手段による上記膨張弁の駆動動作を、閉じ動作または開き動作のいずれか一方に制限する制限手段を備えるので、上記運転条件の変化が生じる直前の運転条件の影響を受けることなく、この運転条件の変化に対応して、上記膨張弁を適切な方向に駆動できる。
【0070】
請求項2の発明の冷凍装置によれば、請求項1または2に記載の冷凍装置において、上記変化検出手段が検出する運転条件の所定の変化は、上記圧縮機の運転容量の変化、上記凝縮器または蒸発器に風を送るファンの風量の変化、被冷却または加熱媒体の流量の変化、あるいは、上記冷凍回路の部分に設けられたバイパス路への冷媒流量の変化であるので、上記駆動弁を、上記運転条件の変化に対する応答遅れやハンチングを生じることなく、適切に駆動できる。
【図面の簡単な説明】
【図1】 参考例の冷凍装置を示す図である。
【図2】 制御装置で実行される処理を示したフロー図である。
【図3】 スクリュー圧縮機の容量の増加が生じた際、膨張弁の弁開度と、吸入冷媒の現SHの偏差とについて生じる変化を示した図である。
【図4】 本発明の第実施形態の冷凍装置の制御装置が実行する処理を示すフロー図である。
【図5】 スクリュー圧縮機の容量の増加が生じた際、膨張弁の弁開度と、吸入冷媒の現SHの偏差とについて生じる変化を示した図である。
【符号の説明】
1 水側熱交換器
2 スクリュー圧縮機
3 空気側熱交換器
4 膨張弁
6 膨張弁駆動手段
8 吸入温度センサ
9 吸入圧力センサ
11 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus.
[0002]
[Prior art]
Conventionally, in a refrigeration apparatus in which a variable capacity compressor, a condenser, an electric expansion valve, and an evaporator are sequentially connected, the opening degree of the electric expansion valve is determined by the degree of superheat of the refrigerant sucked into the compressor. Some are controlled by PI (proportional / integral) control based on. Conventionally, in the PI control, the driving amount of the electric expansion valve is calculated using a PI arithmetic expression using a predetermined multiplier.
[0003]
However, when the opening degree of the electric expansion valve is controlled by PI control, hunting is likely to occur because there is a time delay between the change in the valve opening degree and the change in the degree of superheat of the intake refrigerant caused thereby. In order to prevent this hunting, it is necessary to stabilize by increasing the integration time as a multiplier in PI control, so that the response characteristic deteriorates and the control of the electric expansion valve with respect to the change in the capacity of the compressor is performed. There is a problem that a delay occurs.
[0004]
Therefore, the opening degree of the electric expansion valve corresponding to the capacity of the compressor is stored in advance in the storage means, and the opening degree that the electric expansion valve should perform is calculated using the stored opening degree. (See, for example, Patent Document 1). When the capacity of the compressor changes, the refrigeration apparatus reads the opening degree of the electric expansion valve according to the capacity of the compressor before and after the change from the storage means, and reads the read valve opening degree and the current From the valve opening, the opening change amount of the electric expansion valve is calculated. By changing the opening of the electric expansion valve by the calculated opening change amount, the degree of superheat in the evaporator is controlled without causing a large control delay with respect to the change in the operating capacity of the compressor. I am doing so.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 5-2901 (Fig. 1)
[0006]
[Problems to be solved by the invention]
However, the conventional refrigeration apparatus using the valve opening degree stored in advance in the storage means, for example, when the operating conditions other than the capacity of the compressor change, the electric expansion corresponding to the other operating conditions. Since the valve cannot be controlled, there is a problem that it is not possible to appropriately cope with the change in the degree of superheat caused by the change in the other operating conditions.
[0007]
Accordingly, an object of the present invention is to provide a refrigeration apparatus capable of controlling the opening degree of an expansion valve quickly and appropriately with respect to changes in the degree of superheat of an evaporator.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the refrigeration apparatus of the invention of claim 1 comprises:
In a refrigeration apparatus comprising a refrigeration circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order,
Superheat degree detection means for detecting the superheat degree of the evaporator;
A valve opening degree calculating means for calculating a valve opening degree of the expansion valve based on the degree of superheat detected by the superheat degree detecting means;
Change detection means for detecting a predetermined change in operating conditions;
Correction means for causing the valve opening calculation means to calculate the valve opening so as to perform correction for a predetermined time based on a predetermined change in the operating condition detected by the change detection means;
Expansion valve driving means for driving the expansion valve so that the valve opening calculated by the valve opening calculating means is obtained;
With
When the change detection means detects a change in operating conditions, regardless of the degree of superheat detected by the superheat degree detection means, The valve opening calculation means is set to the valve opening corrected by the instruction of the correction means, The expansion valve drive operation by the expansion valve drive means is limited to either a closing operation or an opening operation in accordance with a change in the operating condition. On the other hand, if the change detection means does not detect a change in operating conditions, the valve opening degree to be performed by the expansion valve is calculated based on the superheat degree detected by the superheat degree detection means, and the expansion valve drive The means drives the expansion valve by the calculated drive amount. It is characterized by comprising a limiting means.
[0009]
According to the refrigeration apparatus of claim 1, the superheat degree of the evaporator is detected by the superheat degree detecting means, and the valve opening degree calculating means is based on the superheat degree detected by the superheat degree detecting means. Thus, the valve opening that the expansion valve should make is calculated. The change detecting means detects a predetermined change in operating conditions such as a change in compressor capacity. The valve opening calculation means calculates the valve opening so that the correction means performs correction based on a predetermined change in the operating condition detected by the change detection means for a predetermined time. The expansion valve is driven by the expansion valve driving means so that the valve opening calculated by the valve opening calculation means is obtained. Therefore, for example, not only in the change in the capacity of the compressor, but also in the case where a predetermined change occurs in other operating conditions such as the fan air volume, the refrigerant bypass volume, or the flow rate of the cooling target or the heating medium, There is almost no delay in the response of the expansion valve control to such a change in the degree of superheat. Therefore, in this refrigeration apparatus, the opening degree of the expansion valve is controlled quickly and appropriately with respect to the change in the degree of superheat of the evaporator.
[0010]
[0011]
According to the refrigeration apparatus of the first aspect, the operation of the expansion valve is restricted by the restricting means to either a closing operation or an opening operation in accordance with a change in the operating condition. For example, when the superheat degree of the refrigerant sucked into the compressor is smaller than the target superheat degree and the expansion valve is driven in the closing direction by the expansion valve driving means, for example, an increase in the compressor capacity is opened. When there is a change in operating conditions that requires an increase in the degree of control, the control in the opening direction according to the change in operating conditions is more important than the control in the previous direction in which the expansion valve is closed. It is limited only to the opening operation according to the change. If a change in operating conditions that require an opening operation occurs during the control of the closing operation of the expansion valve, a larger closing operation will occur if only the absolute value of the valve drive amount is controlled. That is, the expansion valve is driven in an appropriate direction in response to the change in the operation condition without being affected by the operation condition immediately before the change in the operation condition occurs.
[0012]
The refrigerating apparatus according to claim 2 is the refrigerating apparatus according to claim 1,
The predetermined change in the operating condition detected by the change detecting means is a change in the operating capacity of the compressor, a change in the air volume of the fan that sends air to the condenser or the evaporator, a change in the flow rate of the object to be cooled or the heating medium, Or it is the change of the refrigerant | coolant flow rate to the bypass path provided in the part of the said freezing circuit, It is characterized by the above-mentioned.
[0013]
According to the refrigeration apparatus of claim 2, the change in the operating capacity of the compressor, the change in the air volume of the fan that sends air to the condenser or the evaporator, the change in the flow rate of the object to be cooled or the heating medium, or the refrigeration circuit In response to the change in the refrigerant flow rate to the bypass passage provided in the portion, the valve opening degree calculation means is adjusted so that the valve opening degree is corrected by, for example, increasing the coefficient of the calculation formula by the correction means. Be calculated. Therefore, an appropriate valve opening corresponding to the change in the operating condition is calculated, and the expansion valve is driven quickly to this valve opening. As a result, the drive valve is appropriately driven without causing a response delay or hunting with respect to changes in the operating conditions.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0015]
FIG. 1 is a diagram illustrating a refrigerating apparatus of a reference example. This refrigeration apparatus is a chiller that controls the temperature of water. A water-side heat exchanger 1 that is supplied with water as a cooled or heating medium and functions as an evaporator, a screw compressor 2 as a compressor, and a condenser The refrigerant circuit which comprises the air side heat exchanger 3 which works as a container, and the expansion valve 4 in order is provided.
[0016]
The expansion valve 4 is provided with expansion valve driving means 6, and the expansion valve driving means 6 changes the opening degree of the expansion valve 4 under the control of a control device 11 described later. .
[0017]
A refrigerant pipe connecting the water-side heat exchanger 1 and the suction port of the screw compressor 2 has a suction temperature sensor 8 for detecting the temperature of the refrigerant sucked into the screw compressor 2 and a pressure of the refrigerant. A suction pressure sensor 9 for detection is provided.
[0018]
The operating capacity of the screw compressor 2 is changed by a capacity control mechanism (not shown) based on the target temperature of water to be adjusted by the water heat exchanger 1.
[0019]
The water-side heat exchanger 1 includes an inlet pipe 13 to which water to be heat-exchanged with the refrigerant is supplied, and an outlet pipe 14 for discharging the water heat-exchanged with the refrigerant.
[0020]
The air-side heat exchanger 3 is supplied with a predetermined amount of air by a fan 16 driven by a motor.
[0021]
The refrigeration apparatus includes a control device 11 that controls the valve opening degree of the expansion valve 4. The control device 11 receives signals from the suction temperature sensor 8 and the suction pressure sensor 9, and the screw compressor 2 suctions from the detection value of the suction temperature sensor 8 and the detection value of the suction pressure sensor 9. The degree of superheat of the refrigerant to be detected is detected. That is, it functions as a superheat degree detection means. Further, the control device 11 calculates a valve opening degree that the expansion valve 4 should perform by calculating a driving amount that the expansion valve 4 should be driven based on the detected degree of superheat. Specifically, the deviation of the current superheat degree (hereinafter referred to as current SH) of the suction refrigerant with respect to the target superheat degree (hereinafter referred to as target SH) to be performed by the suction refrigerant of the screw compressor 2 is calculated. Then, by substituting into a PI (proportional / integral) equation using a predetermined multiplier, a drive amount for driving the expansion valve 4 is calculated. Note that the multipliers used in the PI arithmetic expression are a proportional multiplier and an integration time multiplier. Then, the control device 11 causes the expansion valve drive means 6 to drive the expansion valve 4 by the calculated drive amount.
[0022]
The control device 11 is connected to the capacity control mechanism of the screw compressor 2 so that the operating capacity of the screw compressor 2 can be detected. The control device 11 is connected to a motor that drives the fan 16 so that the number of rotations of the motor can be detected. Alternatively, the air-side heat exchanger 3 may be provided with a plurality of motors and fans, and the number of operating units among the plurality of fans may be detected. Further, the control device 11 can detect and calculate the amount of refrigerant flowing through a bypass circuit (not shown) provided in a part of the refrigerant circuit.
[0023]
The operation of the refrigeration apparatus having the above configuration will be described. FIG. 2 is a flowchart showing processing executed by the control device 11 when the refrigeration apparatus having the above configuration operates.
[0024]
When the operation of the refrigeration apparatus is started, as shown in the flowchart of FIG. 2, the control apparatus 11 determines whether or not a predetermined change has occurred in the operating conditions of the refrigeration apparatus (step S1). Here, the predetermined change in the operating condition is an increase or decrease in the operating capacity of the screw compressor 2. Here, this step S1 functions as a change detecting means. Although not shown, as a predetermined change in the operating conditions of the refrigeration apparatus, an increase or decrease in the rotational speed of the fan 16 that sends air to the air-side heat exchanger 3, and a plurality of fans that send air to the air-side heat exchanger 3 Change detection to detect an increase or decrease in the number of units operated, a change in the flow rate of water to be cooled or heated, or an increase or decrease in the amount of refrigerant flowing through a bypass circuit (not shown) provided in a part of the refrigerant circuit Means may be provided.
[0025]
When a predetermined change has not occurred in the operating conditions of the refrigeration apparatus, the control device 11 sets the multiplier used in the PI calculation formula for calculating the valve opening degree of the expansion valve 4 to a normal multiplier (step S2). ). The drive amount of the expansion valve 4 is calculated based on the deviation of the current SH from the target SH by the PI calculation formula using the normal multiplier. Here, the step S2 functions as a valve opening degree calculation means. Thereafter, the process proceeds to step S5.
[0026]
When it is determined in step S1 that a predetermined change has occurred in the operating conditions of the refrigeration apparatus, the control apparatus 11 starts a timer provided in the control apparatus 11 (step S3).
[0027]
Subsequently, the multiplier used in the PI calculation formula for calculating the valve opening degree of the expansion valve 4 is changed to a transient multiplier (step S4). Based on the deviation of the current SH from the target SH, the valve drive amount of the expansion valve 4 is calculated by the PI calculation formula using the transient multiplier. Thus, the control device 11 calculates the valve drive amount using the normal multiplier in step S2, but uses the transient multiplier so as to perform correction based on the predetermined change in the operation condition. To calculate the driving amount. That is, step S4 functions as a correction unit.
[0028]
Then, it is determined whether or not the relationship of A <B is established between the target SH value A and the current SH value B for the suction refrigerant of the screw compressor 2 (step S5).
[0029]
When the relationship of A <B is established between the target SH value A and the current SH value B, a command is given to the expansion valve driving means 6 to open the expansion valve 4 by the calculated valve driving amount. (Step S6).
[0030]
In step S5, when the relationship of A <B is not established for the target SH value A and the current SH value B, it is determined whether or not the relationship of A> B is established (step S7).
[0031]
When the relationship of A> B is established between the target SH value A and the current SH value B, a command is given to the expansion valve driving means 6 to close the expansion valve 4 in the closing direction. Is driven only (step S8).
[0032]
In step S7, when A> B is not established for the target SH value A and the current SH value B, the expansion valve 4 is not driven (step S9).
[0033]
After steps S6, S8, and S9, it is determined whether or not the timer in the control device 11 has elapsed the predetermined time (step S10).
[0034]
If the timer has not counted the lapse of the predetermined time, the process returns to step S4, and the processes after S4 are performed.
[0035]
When the timer counts the elapse of the predetermined time, the process returns to step S1 to detect whether or not a predetermined operating condition has changed.
[0036]
As described above, the refrigeration apparatus of the present reference example is based on the deviation of the superheat degree by changing the multiplier of the PI calculation expression to the multiplier at the time of transition when a predetermined change occurs in the operating condition. The drive amount of the expansion valve 4 that has been increased is increased. That is, the control sensitivity is made sensitive for a predetermined time. As a result, this refrigeration apparatus appropriately follows the sudden change in the operating condition even if the operating condition changes suddenly, and appropriately opens the expansion valve 4 without causing a response delay or hunting. You can control the degree.
[0037]
FIG. 3 shows the valve opening degree of the expansion valve 4 controlled by the control device 11 when the increase in the capacity of the screw compressor 2 occurs as a predetermined change in the operating conditions for the refrigeration apparatus of this reference example. It is the figure which showed the change which arises about the deviation of the present SH with respect to target SH of the suction | inhalation refrigerant | coolant of the said screw compressor. The horizontal axis of FIG. 3 shows the passage of time. The vertical axis on the left side of FIG. 3 shows the deviation of the current SH from the target SH of the refrigerant sucked in the screw compressor 2. The vertical axis on the right side of FIG. 3 indicates the capacity (%) of the screw compressor 2 and the valve opening (%) of the expansion valve 4.
[0038]
As shown in FIG. 3, the operating capacity of the screw compressor 2 is maintained at a predetermined amount from time 0 to time t1, and the deviation of the current SH is positive and gradually decreases. Along with this, the control device 11 calculates the valve drive amount of the expansion valve 4 by a PI arithmetic expression using a normal multiplier, and the expansion valve drive means 6 makes the calculated valve drive amount. The expansion valve 4 is driven. As a result, the opening degree of the expansion valve 4 gradually increases.
[0039]
Next, at time t1, an increase in the capacity of the screw compressor 2 occurs as a predetermined change in operating conditions. Correspondingly, the control device calculates the valve drive amount of the expansion valve 4 by the PI calculation formula using the transient multiplier, and the expansion valve drive means 6 makes the valve drive amount so as to make the valve drive amount. Drive. Thereby, the opening degree of the expansion valve 4 increases after the time t1 at a rate larger than that until the time t1. As a result, after time t1, the amount of increase in the deviation of the current SH from the target SH is suppressed to a relatively small amount. Here, when PI control is performed without changing the multiplier even after the increase in the capacity of the screw compressor 2 as in the prior art, the valve opening degree of the expansion valve 4 is after time t1, as shown by the curve a. Increases at a relatively small rate. As a result, the deviation of the current SH increases rapidly as shown by the curve (b).
[0040]
As described above, according to the refrigeration apparatus of the present reference example, the valve opening degree of the expansion valve 4 can be controlled more quickly and appropriately than the conventional method in response to changes in operating conditions. Control can be performed so that the refrigerant reaches a target degree of superheat stably. As a result, the refrigeration apparatus can stably obtain appropriate refrigeration performance.
[0041]
FIG. 4 shows the first aspect of the present invention. 1 It is a flowchart which shows the process which the control apparatus of the freezing apparatus of embodiment performs. First 1 The refrigeration apparatus of the embodiment has the same components as the refrigeration apparatus of the reference example, and differs from the refrigeration apparatus of the reference example only in the process executed by the control device 11. First 1 In the embodiment, only differences from the reference example will be described.
[0042]
When the operation of the refrigeration apparatus is started, as shown in the flowchart of FIG. 4, the control apparatus 11 determines whether or not a predetermined change has occurred in the operating conditions of the refrigeration apparatus (step S11). Here, the predetermined change in the operating condition is an increase or decrease in the operating capacity of the screw compressor 2. This step S11 functions as a change detecting means.
[0043]
When the predetermined change does not occur in the operating conditions of the refrigeration apparatus, the control device 11 sets the multiplier used in the PI calculation formula for calculating the valve opening degree of the expansion valve 4 to a normal multiplier (step S12). Based on the deviation of the current SH from the target SH, the valve drive amount of the expansion valve 4 is calculated by the PI calculation formula using this normal multiplier. Here, step S12 functions as valve opening degree calculation means. Thereafter, the process proceeds to step S16.
[0044]
When it is determined in step S11 that a predetermined change has occurred in the operating conditions of the refrigeration apparatus, the control apparatus 11 starts a timer (step S13).
[0045]
Subsequently, the multiplier used in the PI calculation formula for calculating the valve opening degree of the expansion valve 4 is changed to a transient multiplier (step S14). Based on the deviation of the current SH from the target SH, the valve drive amount of the expansion valve 4 is calculated by the PI calculation formula using the transient multiplier. Step S14 functions as a correction unit.
[0046]
Next, the control device 11 determines whether or not the change in the operation condition detected in step S11 is a change that prohibits the closing operation of the expansion valve 4 (step S15). ). Specifically, when the predetermined change in the operating condition is an increase in the operating capacity of the screw compressor 2, the closing operation of the expansion valve 4 is prohibited.
[0047]
If it is determined in step S15 that the change in the operating condition is a change in prohibiting the closing operation of the expansion valve 4, the process proceeds to step S20 described later.
[0048]
If it is determined in step S15 that the change in the operating condition is not a change in prohibition of the closing operation of the expansion valve 4, the target SH value A and the current SH value B for the refrigerant sucked in the screw compressor 2 are determined. , A> B is determined (step S16).
[0049]
When the relationship of A> B is established between the target SH value A and the current SH value B, a command is given to the expansion valve drive means 6 to close the expansion valve 4 by the calculated valve drive amount. (Step S17).
[0050]
In step S16, if the relationship of A> B is not established for the target SH value A and the current SH value B, the change in the operating condition indicates whether or not the opening operation of the expansion valve 4 is prohibited. Judgment is made (step S18). Specifically, when the predetermined change in the operating condition is a decrease in the operating capacity of the screw compressor 2, the opening operation of the expansion valve 4 is prohibited.
[0051]
If it is determined in step S18 that the change in operating condition is a change in prohibition of opening operation of the expansion valve 4, the expansion valve 4 is not driven (step S19).
[0052]
If it is determined in step S18 that the change in the operating condition is not a change in prohibition of the opening operation of the expansion valve 4, whether or not the relationship of A <B is established for the target SH value A and the current SH value B. Is determined (step S20).
[0053]
When the relationship of A <B is established between the target SH value A and the current SH value B, a command is given to the expansion valve driving means 6 to open the expansion valve 4 by the calculated valve driving amount. (Step S21).
[0054]
In step S20, when A <B is not established for the target SH value A and the current SH value B, the expansion valve 4 is not driven (step S22).
[0055]
After the steps S17, S19, S21, S22, it is determined whether or not the timer in the control device 11 has timed a predetermined time (step S23).
[0056]
If the timer has not counted the lapse of the predetermined time, the process returns to step S14 to perform the processes after step S14.
[0057]
When the timer times the predetermined time, the process returns to step S11 to detect whether or not a predetermined operating condition has changed.
[0058]
As described above, the refrigeration apparatus of the present embodiment restricts the drive of the expansion valve 4 to either the closing operation or the opening operation in response to the change in the operating condition when a predetermined change occurs in the operating condition. To do. That is, the steps S15 and S18 function as control means. As a result, when the operating capacity of the screw compressor 2 increases when the current SH is smaller than the target SH and the expansion valve 4 is closed and controlled, the PI calculation formula is calculated corresponding to the increased operating capacity. Thus, it is possible to prevent the inconvenience that the driven amount is increased and the expansion valve 4 is driven in the closing direction by the increased drive amount.
[0059]
FIG. 5 shows the refrigeration apparatus of the present embodiment, in which when the expansion valve 4 is driven in the closing direction and the capacity of the screw compressor 2 is increased as a predetermined change in the operating conditions, the control apparatus 11 is a diagram showing changes that occur with respect to the valve opening degree of the expansion valve 4 controlled by 11 and the deviation of the current SH from the target SH of the refrigerant sucked in the screw compressor 2. The horizontal and vertical axes in FIG. 5 are the same as the horizontal and vertical axes in FIG.
[0060]
As shown in FIG. 5, the operating capacity of the screw compressor 2 is maintained at a predetermined amount from time 0 to time t2, and the deviation of the current SH is a negative value. It is driven in the closing direction. Here, at time t2, the operating capacity of the screw compressor 2 increases as a predetermined change in operating conditions. Correspondingly, the control device 11 calculates the valve drive amount of the expansion valve by the PI calculation formula using the transient multiplier, and the expansion valve drive means 6 makes the expansion valve 4 so as to make this valve drive amount. Drive. At this time, the control device 11 restricts the operation of the expansion valve 4 to only the opening operation. Therefore, the expansion valve 4 can be reliably driven in the opening direction without being affected by the control in the closing direction, although it has been driven in the closing direction immediately before time t2.
[0061]
Here, if the driving direction of the expansion valve 4 is not limited in response to the change in the operating condition, the expansion valve 4 remains closed according to the operating condition immediately before time t2, as indicated by the curve C. The valve is driven with the valve drive amount calculated using the multiplier at the time of transition. Then, the deviation of the current SH increases rapidly as shown by the curve D.
[0062]
As described above, according to the refrigeration apparatus of the present embodiment, the drive direction of the expansion valve 4 can be appropriately controlled in response to a change in operating conditions, and as a result, the suction refrigerant of the screw compressor 2 can be quickly heated to the target overheat. It can be controlled to a degree. As a result, the refrigeration apparatus can stably obtain appropriate refrigeration performance.
[0063]
The above reference example and the first 1 In the embodiment, the predetermined change in the operating condition of the refrigeration apparatus is an increase in the operating capacity of the screw compressor 2, but the operating capacity of the screw compressor 2 may be decreased, or the air-side heat exchanger 3 Increase or decrease in the number of rotations of the fan 16 that sends wind, increase or decrease in the number of operating fans that send wind to the air-side heat exchanger 3, change in the flow rate of water as a cooling or heating medium, or refrigerant It may be an increase or decrease in the amount of refrigerant flowing through a bypass circuit (not shown) provided in a part of the circuit.
[0064]
Moreover, in the said embodiment, although the said control apparatus 11 worked as a superheat degree detection means, you may provide the superheat degree detection means which directly detects the superheat degree of the suction | inhalation refrigerant | coolant of the screw compressor 2. FIG. Regarding the processing executed by the control device 11, steps S2 and S12 function as valve opening calculation means, steps S1 and S11 function as change detection means, and steps S4 and S14 function as correction means. Other processing steps may function as superheat degree detection means, valve opening degree calculation means, change detection means, and correction means.
[0065]
In addition, the refrigeration apparatus is a chiller that adjusts the temperature of water to be cooled or heated as the heating medium guided to the water-side heat exchanger 1, but is a refrigeration apparatus that adjusts the temperature of other cooling or heating medium. There may be. Moreover, other refrigeration apparatuses other than a chiller may be used.
[0066]
Moreover, in the said embodiment, although the screw compressor 2 was used as a compressor, you may use another capacity variable type compressor.
[0067]
Moreover, in the said embodiment, while the said water side heat exchanger 1 worked as an evaporator, and the said air side heat exchanger 3 worked as a condenser, while the said water side heat exchanger 2 worked as a condenser, The air side heat exchanger 1 may serve as an evaporator.
[0068]
【The invention's effect】
As apparent from the above, according to the refrigeration apparatus of the first aspect of the present invention, in the refrigeration apparatus comprising a refrigeration circuit in which a compressor, a condenser, an expansion valve, and an evaporator are connected in order, the evaporation is performed. A superheat degree detecting means for detecting the superheat degree of the vessel, a valve opening degree calculating means for calculating the valve opening degree of the expansion valve based on the superheat degree detected by the superheat degree detecting means, and a predetermined operating condition. A change detecting means for detecting a change, and a correction for causing the valve opening calculating means to calculate the valve opening so as to perform correction for a predetermined time based on a predetermined change in the operating condition detected by the change detecting means. And an expansion valve driving means for driving the expansion valve so as to achieve the valve opening calculated by the valve opening calculating means, for example, a predetermined operating condition such as a change in the capacity of the compressor, etc. Even if a change occurs, Without response delay most results for Do superheat change, the opening degree of the expansion valve can be quickly and appropriately controlled.
[0069]
According to the refrigeration apparatus of the first aspect of the invention, in the refrigeration apparatus of the first aspect, the expansion valve driving means drives the expansion valve in accordance with a change in the operating condition detected by the change detection means. Since the limiting means for limiting the operation to either one of the closing operation or the opening operation is provided, the above-described change in the operation condition is not affected by the operation condition immediately before the change in the operation condition occurs. The expansion valve can be driven in an appropriate direction.
[0070]
According to a refrigeration apparatus of a second aspect of the present invention, in the refrigeration apparatus according to the first or second aspect, the predetermined change in the operating condition detected by the change detecting means is a change in the operating capacity of the compressor, the condensation. Change in the air flow rate of the fan that sends air to the evaporator or the evaporator, change in the flow rate of the cooling target or heating medium, or change in the refrigerant flow rate to the bypass path provided in the refrigeration circuit portion. Can be appropriately driven without causing a response delay or hunting with respect to the change in the operating conditions.
[Brief description of the drawings]
FIG. 1 is a diagram showing a refrigerating apparatus of a reference example.
FIG. 2 is a flowchart showing processing executed by a control device.
FIG. 3 is a diagram showing changes that occur with respect to the valve opening of the expansion valve and the deviation of the current SH of the suction refrigerant when an increase in the capacity of the screw compressor occurs.
FIG. 4 shows the first aspect of the present invention. 1 It is a flowchart which shows the process which the control apparatus of the freezing apparatus of embodiment performs.
FIG. 5 is a diagram showing changes that occur with respect to the valve opening of the expansion valve and the deviation of the current SH of the suction refrigerant when an increase in the capacity of the screw compressor occurs.
[Explanation of symbols]
1 Water-side heat exchanger
2 Screw compressor
3 Air-side heat exchanger
4 Expansion valve
6 Expansion valve drive means
8 Suction temperature sensor
9 Suction pressure sensor
11 Control device

Claims (2)

圧縮機(2)と、凝縮器(3)と、膨張弁(4)と、蒸発器(1)とを順に接続してなる冷凍回路を備える冷凍装置において、
上記蒸発器(1)の過熱度を検出する過熱度検出手段(11)と、
上記過熱度検出手段(11)によって検出された過熱度に基いて、上記膨張弁(4)の弁開度を算出する弁開度算出手段(S2,S12)と、
運転条件の所定の変化を検出する変化検出手段(S1,S11)と、
上記変化検出手段(S1,S11)が検出した運転条件の所定の変化に基いて、所定時間の間、補正を行なうように上記弁開度算出手段(S2,S12)に弁開度を算出させる補正手段(S4,S14)と、
上記弁開度算出手段(S2,S12)が算出した弁開度になるように、上記膨張弁(4)を駆動する膨張弁駆動手段(6)と
を備え、
上記変化検出手段(S11)が運転条件の変化を検出した場合、上記過熱度検出手段(11)が検出した上記過熱度によらず、上記弁開度算出手段(S2,S12)が、上記補正手段(S4,S14)の指示により補正した弁開度になるように、上記膨張弁駆動手段(6)による上記膨張弁(4)の駆動動作を、上記運転条件の変化に応じて閉じ動作または開き動作のいずれか一方に制限する一方、上記変化検出手段(S11)が運転条件の変化を検出しなかった場合、上記過熱度検出手段(11)が検出した上記過熱度に基づいて、上記膨張弁(4)がなすべき弁開度を算出し、上記膨張弁駆動手段(6)に、上記算出した駆動量だけ上記膨張弁(4)を駆動させる制限手段(S15,S17,S18)を備えることを特徴とする冷凍装置。
In a refrigeration apparatus including a refrigeration circuit in which a compressor (2), a condenser (3), an expansion valve (4), and an evaporator (1) are connected in order,
Superheat degree detection means (11) for detecting the superheat degree of the evaporator (1);
Valve opening degree calculation means (S2, S12) for calculating the valve opening degree of the expansion valve (4) based on the degree of superheat detected by the superheat degree detection means (11);
Change detecting means (S1, S11) for detecting a predetermined change in operating conditions;
Based on the predetermined change in the operating condition detected by the change detecting means (S1, S11), the valve opening calculating means (S2, S12) is made to calculate the valve opening so as to correct for a predetermined time. Correction means (S4, S14);
Expansion valve drive means (6) for driving the expansion valve (4) so that the valve opening degree calculation means (S2, S12) has the calculated valve opening degree,
When the change detection means (S11) detects a change in operating conditions, the valve opening degree calculation means (S2, S12) does not depend on the degree of superheat detected by the superheat degree detection means (11). The expansion valve (4) is driven by the expansion valve drive means (6) according to the change in the operating conditions so that the valve opening is corrected by the instructions of the means (S4, S14). If the change detection means (S11) detects no change in operating conditions while limiting to one of the opening operations, the expansion is performed based on the degree of superheat detected by the superheat degree detection means (11). Limiting means (S15, S17, S18) for calculating the valve opening to be performed by the valve (4) and driving the expansion valve (4) by the calculated driving amount is provided in the expansion valve driving means (6). Refrigeration equipment characterized by .
請求項1に記載の冷凍装置において、
上記変化検出手段(S1,S11)が検出する運転条件の所定の変化は、上記圧縮機(2)の運転容量の変化、上記凝縮器(3)または蒸発器(1)に風を送るファン(16)の風量の変化、被冷却または加熱媒体の流量の変化、あるいは、上記冷凍回路の部分に設けられたバイパス路への冷媒流量の変化であることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
The predetermined change in the operating condition detected by the change detecting means (S1, S11) is a change in the operating capacity of the compressor (2), a fan that sends wind to the condenser (3) or the evaporator (1) ( 16) A refrigeration apparatus characterized by the change in the air volume, the change in the flow rate of the object to be cooled or the heating medium, or the change in the refrigerant flow rate to the bypass provided in the refrigeration circuit.
JP2002368266A 2002-12-19 2002-12-19 Refrigeration equipment Expired - Fee Related JP4363036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368266A JP4363036B2 (en) 2002-12-19 2002-12-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368266A JP4363036B2 (en) 2002-12-19 2002-12-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2004198048A JP2004198048A (en) 2004-07-15
JP4363036B2 true JP4363036B2 (en) 2009-11-11

Family

ID=32764885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368266A Expired - Fee Related JP4363036B2 (en) 2002-12-19 2002-12-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4363036B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080073475A (en) * 2007-02-06 2008-08-11 삼성전자주식회사 An air conditioner and control method of electronic expansion valve thereof
CN102242996B (en) * 2011-07-05 2013-06-12 海尔集团公司 Method for controlling opening of electronic expansion valve in central air-conditioning unit
JP6036783B2 (en) * 2014-10-08 2016-11-30 ダイキン工業株式会社 Air conditioning indoor unit
US20200232683A1 (en) * 2017-03-29 2020-07-23 Mitsubishi Electric Corporation Air-conditioning device, railway vehicle air-conditioning device, and method for controlling air-conditioning device

Also Published As

Publication number Publication date
JP2004198048A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP3347103B2 (en) How to run a compressor in steady state
JP4341093B2 (en) Air conditioner
JP2004218879A (en) Air conditioner and its control method
WO2018110185A1 (en) Refrigerant circuit system and method for controlling refrigerant circuit system
JP2007100699A (en) Method of controlling variable capacity compressor of air conditioner
CN111928454A (en) Air conditioner and control method thereof
JP3461633B2 (en) Air conditioner
CN109341125B (en) A kind of refrigeration system and control method
JP4363036B2 (en) Refrigeration equipment
JP4150870B2 (en) Control method of air conditioner
EP3412482B1 (en) Method for controlling vehicle grille device
JP2004225929A (en) Air conditioner and control method of air conditioner
JP2004156844A (en) Air conditioner and its control method
JP2021055931A (en) Heat pump cycle device
JP2003269174A (en) Air conditioning device
JP3651536B2 (en) Control method of air conditioner
US11221165B2 (en) Temperature regulating refrigeration systems for varying loads
JP4252184B2 (en) Refrigerant flow control device for air conditioner
JP2951043B2 (en) Air conditioner
JP2003294327A (en) Cooling system
JP3306958B2 (en) Lubricating oil adjusting device for refrigerator
JP4301546B2 (en) Refrigeration equipment
JP7443887B2 (en) air conditioner
JP2000074504A (en) Method and device for controlling air conditioner
WO2022163267A1 (en) Dehumidification device, and method for controlling dehumidification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051025

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090423

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090810

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4363036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120828

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130828

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees