JP4362238B2 - Painted inorganic building materials - Google Patents

Painted inorganic building materials Download PDF

Info

Publication number
JP4362238B2
JP4362238B2 JP2001012375A JP2001012375A JP4362238B2 JP 4362238 B2 JP4362238 B2 JP 4362238B2 JP 2001012375 A JP2001012375 A JP 2001012375A JP 2001012375 A JP2001012375 A JP 2001012375A JP 4362238 B2 JP4362238 B2 JP 4362238B2
Authority
JP
Japan
Prior art keywords
solid content
water repellent
weight
base material
alkoxysilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001012375A
Other languages
Japanese (ja)
Other versions
JP2002220293A (en
Inventor
誠史 岡山
英隆 本田
幸雄 嶋田
康雄 藪中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KMEW Co Ltd
Original Assignee
Kubota Matsushitadenko Exterior Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Matsushitadenko Exterior Works Ltd filed Critical Kubota Matsushitadenko Exterior Works Ltd
Priority to JP2001012375A priority Critical patent/JP4362238B2/en
Publication of JP2002220293A publication Critical patent/JP2002220293A/en
Application granted granted Critical
Publication of JP4362238B2 publication Critical patent/JP4362238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finishing Walls (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)
  • Sealing Material Composition (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Paints Or Removers (AREA)

Description

【0001】
【発明の属する技術分野】
この出願の発明は、塗装無機質建材に関するものである。さらに詳しくは、この出願の発明は、切削部が補強され、高い塗膜密着性、防水性、および耐凍害性を有する塗装無機質建材に関するものである。
【0002】
【従来の技術とその課題】
塗装無機質建材は、住宅等の外壁材、屋根材などの外装材として広く用いられており、多種多様の意匠を有するものが提供されている。これらの塗装無機質建材は、通常、セメントや無機フィラー等を主成分とする原料スラリーから抄造法、注型法、圧縮法、押出し法などにより得られる窯業系基材を用途に応じた大きさや形状に刃物切削し、さらに意匠性を高めたり、防水性や耐凍害性等の耐候性を付与したりするために上塗り塗装を施して得られる。
【0003】
窯業系基材の切削方法には、端部を垂直に切削する切断加工と、窯業系建材間の接合部の強度を高めるために厚み方向を凹凸状や階段状に切削し、隣接する窯業系建材間の接合部でこれらの凹凸や階段どうしがはめ込まれるようにする実加工がある。しかし、いずれの方法においても、窯業系基材の切削部では、表層よりも密度の低い内層が表面に現れるため、強度が低いという問題があった。とくに、実加工によって得られる切削部の表面では密度の低さが顕著であり、強度のみならず、防水性も著しく低いという問題があった。
【0004】
また、窯業系基材の切削部には切削粉が残存しやすく、しばしば切削部周辺に脆弱層ができるという問題があった。このような脆弱層では、窯業系基材の剥離や割れが生じやすく、窯業系基材全体の強度が低下したり、美麗さが損なわれたり、あるいは切削部が破損したりしやすい。そして、このような窯業系基材に上塗り塗装を施した塗装無機質建材では、短期間で破損や上塗り塗装の剥離が起こり易いという問題があった。
【0005】
そこで、これまでに、窯業系基材の切削部に下地として比較的分子量の大きな高分子を含有するシーラーを塗布し、切削部を補強する方法が提案されてきた。
【0006】
【発明が解決しようとする課題】
しかしながら、上記提案技術は、窯業系基材切削部の補強には高い効果を示したものの、塗装無機質建材における防水性は十分に得られなかったのが実情である。つまり、降雨、湿気、凍結等により切削部から窯業系基材内部に水が浸透しやすく、長期の使用により窯業系基材の膨潤とそれに伴う上塗り塗装の剥離が生じやすいという問題があったのである。
【0007】
このような問題を解決するものとして、撥水剤の使用が検討された。しかし撥水剤単独では窯業系基材の補強効果や上塗り塗装との密着性が得られず、撥水剤を塗布した後にシーラーを塗布する方法では、工程数が増加するために塗装無機質建材の製造コストが高くなる、シーラーが完全に撥水剤表面を被覆しなければ上塗り塗装の剥離が生じ易い箇所ができる等の新たな問題が生じた。
【0008】
したがって、窯業系基材切削部の脆弱層が効果的に補強され、長期使用後も高い塗膜密着性、防水性、および耐凍害性を示す塗装無機質建材が望まれていた。
【0009】
【課題を解決するための手段】
この出願の発明は、上記の課題を解決するものとして表面が塗装された無機質建材であって、窯業系基材の切削部に、固形分濃度が30重量%以下であるアルコキシシラン系撥水剤と重量平均分子量が15000〜60000である高分子を含有するウレタン系シーラーを混合して得られる混合塗料であり、アルコキシシラン系撥水剤の固形分量が、混合塗料全体の固形分量の30〜50重量%である混合塗料が塗布されていることを特徴とする塗装無機質建材を提供する。
【0012】
【発明の実施の形態】
この出願の発明の塗装無機質建材は、表面が塗装された無機質建材であって、固形分濃度が30重量%以下であるアルコキシシラン系撥水剤と重量平均分子量が15000〜60000である高分子を含有するウレタン系シーラーを混合して得られる混合塗料であり、アルコキシシラン系撥水剤の固形分量が、混合塗料全体の固形分量の30〜50重量%である混合塗料が窯業系基材の切削部に塗布されたものである。
【0013】
まず、使用されるウレタン系シーラーは、高分子として重量平均分子量が15000〜60000の高分子を含有するものであればどのようなものであってもよい。例えば、重量平均分子量15000〜60000の高分子以外に、溶剤、硬化剤、顔料、充填材等を含んでいてもよく、2液硬化型、1液湿気硬化型のいずれであってもよい。
【0014】
含有される高分子の重量平均分子量が60000より大きい場合には、混合塗料の窯業系基材への含浸性が低下し、窯業系基材切削部に生じた脆弱層を補強しきれない。このため、得られた無機質建材において上塗り塗装の剥離が起こりやすくなってしまい、好ましくない。一方、ウレタン系シーラーに含有される高分子の重量平均分子量が15000よりも小さい場合には、混合塗料の窯業系基材への含浸性は高くなるものの、混合塗料によるシーラー層が窯業系基材表面に留まらないために、上塗り塗装の塗膜密着性が低下してしまう。したがって、この出願の発明の塗装無機質建材においては、窯業系基材の切削部に塗布される混合塗料中のウレタン系シーラーが、高分子として重量平均分子量15000〜60000の高分子を含有するものであることが重要となる。
【0015】
次に、以上のとおりのウレタン系シーラーに混合される撥水剤は、アルコキシシラン系の撥水剤であればよく、主成分として
123Si−OR
(ただし、Rは鎖状または脂環状の炭化水素基、R1〜R3は各々Siに結合する水素原子または置換基を有していてもよい炭化水素基であり、R1〜R3のうち少なくとも一つは置換基を有していてもよい炭化水素基である)で表されるアルコキシシランを繰り返し単位として有するものであればどのようなものであってもよい。前記の繰り返し単位以外の成分、分子量の異なる成分、溶剤、顔料等を含んでいてもよく、種々の公知のアルコキシシラン系撥水剤が好ましく適用される。
【0016】
このようなアルコキシシラン系撥水剤と前記のウレタン系シーラーを混合して得られる混合塗料を窯業系基材の切削部に塗布すれば、混合塗料中のアルコキシシラン系撥水剤成分が容易に窯業系基材切削部に含浸され、かつ切削部表面に留まる。これにより、窯業系基材の切削部に発生した脆弱層が補強されるとともに上塗り塗装との塗膜密着性が高められ、さらに切削部に高い防水性も付与される。したがって、得られる塗装無機質建材は、長期使用後も水が浸透せず、膨潤による上塗り塗装の剥離が起こり難く、耐凍害性も高いものとなる。
【0017】
この出願の発明の塗装無機質建材において、窯業系基材切削部に塗布される混合塗料は、以上のとおりの特徴を有するものであり、混合されるアルコキシシラン系撥水剤成分とウレタン系シーラー成分の組成はとくに限定されない。しかし、さらに混合塗料による防水効果を高め、得られる塗装無機質建材における上塗り塗装の塗膜密着性や耐凍害性、さらには意匠性を高めるためには、ウレタン系シーラーに混合されるアルコキシシラン系撥水剤の固形分濃度を30重量%以下とする。
【0018】
これは、アルコキシシラン系撥水剤の固形分濃度が30重量%よりも大きい場合、混合塗料を調製する際のアルコキシシラン系撥水剤成分の濃度が制限されることがあるためである。つまり、混合されるアルコキシシラン系撥水剤の固形分濃度が30重量%よりも大きい場合、ウレタン系シーラーと混合された際にソルベントショックによる白濁が起こり易くなり、混合塗料の全固形分に占めるアルコキシシラン系撥水剤の固形分量をあまり大きくできないのである。そして、白濁の生じた混合塗料は、窯業系基材の切削部に塗布した場合、窯業系基材に含浸されにくいばかりでなく、部分的に防水性の不十分な箇所や上塗り塗装の塗膜密着性の低い箇所ができたり、塗膜が均一になり難くなったりするため、好ましくない。
【0019】
反対に、アルコキシシラン系撥水剤の固形分濃度が30重量%以下ならば、混合塗料の全固形分に占めるアルコキシシラン系撥水剤の固形分量を増加しても混合塗料の白濁は起こらない。例えばアルコキシシラン系撥水剤の固形分濃度を30重量%とした場合には、50重量%のアルコキシシラン固形分を含む均一な混合塗料を得ることができ、これを窯業系基材の切削部に塗布すれば、塗布面全体に渡って高い防水性と上塗り塗装との高い塗膜密着性を有する塗装無機質建材が得られるのである。
【0020】
また、このときウレタン系シーラーと混合されるアルコキシシラン系撥水剤の固形分濃度は、適当な溶剤でアルコキシシラン系撥水剤を希釈して調製してもよいし、30重量%以下の固形分濃度を有する市販品を用いてもよい。
【0021】
この出願の発明の塗装無機質建材では、さらに、窯業系基材の切削部に塗布される前記の混合塗料において、混合塗料の固形分全体に占めるアルコキシシラン系撥水剤の固形分量は、30〜50重量%とる。
【0022】
混合塗料におけるアルコキシシラン系撥水剤固形分の含有量が多いほど、得られる塗装無機質建材の防水性は高くなるが、あまり多すぎると混合塗料の白濁が起こりやすくなったり、窯業系基材切削部の脆弱層が十分に補強されなかったり、上塗り塗装の塗膜密着性が低下したりする恐れがある。アルコキシシラン系撥水剤固形分の含有量を、混合塗料の固形分全量の30〜50重量%とすることにより、脆弱層が効果的に補強され、高い防水性と塗膜密着性が得られ、耐凍害性も高くなる。
【0023】
この出願の発明の塗装無機質建材は、窯業系基材の切削部に以上のとおりの混合塗料が塗布されていればよく、混合塗料の塗布方法はとくに限定されない。例えば、刷毛(ブラシ)、ローラーコーター、スプレーなどの一般的に使用される手段によって塗布されればよい。このとき、より混合塗料の効果を十分に発揮させながら、上塗り塗装の発泡や脹れを回避するために、塗布量は5〜200g/mとすることが好ましい。
【0024】
さらに、この出願の発明の塗装無機質建材では、用いられる窯業系基材はどのようなものであってもよい。例えばセメントや無機フィラー等を主原料として抄造法、注型法、圧縮法、押出し法等により得られる窯業系基材が例示される。このような窯業系基材において原料の組成や窯業系基材の形状、大きさ等は限定されない。
【0025】
そして、この出願の発明の塗装無機質建材は、窯業系基材の切削部に以上のとおりの混合塗料が塗布された後、上塗り塗装が施されて得られるものであればよく、上塗り塗装に用いられる塗料の種類、組成、塗布方法、塗布量等は限定されない。もちろん、この上塗り塗装の上にさらにコーティング層等を有するものであってもよい。
【0026】
以下、実施例を示し、この発明の実施の形態についてさらに詳しく説明する。もちろん、この発明は以下の例に限定されるものではなく、細部については様々な態様が可能であることは言うまでもない。
【0027】
【実施例】
<実施例1〜3> 混合塗料の調製
ウレタン系シーラーとしては、重量平均分子量が45000〜60000のマルチシーラーA(昭和高分子社製)を用いた。アルコキシシラン系撥水剤としては、KBM3103C(信越化学社製)を用いた。
【0028】
撥水剤の固形分濃度を30重量%としてウレタン系シーラーにアルコキシシラン系撥水剤を添加した。このとき、アルコキシシラン系撥水剤の固形分量は全固形分量の10重量%(実施例1)、30重量%(実施例2)、50重量%(実施例3)とした。
【0029】
得られた混合塗料の状態を確認し、結果を変化なし(○)、微白濁(△)、白濁(×)として表1に示した。
<比較例1〜6>
実施例1〜3と同様の方法で、アルコキシシラン系撥水剤の固形分濃度を95重量%(比較例1〜2)、50重量%(比較例3〜5)、30重量%(比較例6)として混合塗料を調製した。混合塗料中の全固形分におけるアルコキシシラン系撥水剤の固形分量、および混合塗料の状態を実施例1〜3と同様に、表1に示した。
【0030】
【表1】

Figure 0004362238
【0031】
表1より、アルコキシシラン系撥水剤の固形分濃度を予め30重量%以下としたとき、混合塗料中の全固形分量に対するアルコキシシラン系撥水剤の固形分量を50重量%まで増加しても、白濁のない均一な混合塗料が得られることが確認された(実施例1〜3)。
【0032】
一方、アルコキシシラン系撥水剤の固形分濃度を50重量%以上とした場合には、混合塗料中の全固形分量に対するアルコキシシラン系撥水剤の固形分量を大きくすることにより混合塗料の白濁が生じることが明らかになった(比較例1〜5)。
【0033】
さらに、アルコキシシラン系撥水剤の固形分濃度を30重量%とした場合でも、混合塗料中の全固形分量に対するアルコキシシラン系撥水剤の固形分量を60重量%とすることにより混合塗料の白濁が生じ易くなることが示された(比較例6)。
<実施例4〜8> 防水性試験、耐凍害性試験、および塗膜密着性試験
(1)準備
窯業系基材として抄造法により製造したセメント系基材を用いた。また、ウレタン系シーラーとしては、重量平均分子量が45000〜60000のマルチシーラーA(昭和高分子社製)、または重量平均分子量が15000〜25000のルリール(日本ペイント社製)のいずれかを用い、固形分濃度が30重量%となるように希釈されたアルコキシシラン系撥水剤KBM3103C(信越化学社製)を混合して混合塗料とした。
【0034】
得られた混合塗料を塗布量を20〜30g/m2として刷毛にて窯業系基材の切削部に塗布した。
(2)防水性試験
150×300mmの基材の切削部分を張り合わせ、張り合わせ部分を含む表面に60×200mmの枠を固定し、切削部以外を防水シールした。枠内に高さ20mmまで水を張り、24時間透水試験を行った。
【0035】
透水量は、以下の式より求めた。
【0036】
[24時間後の基材重量(g)−初期基材重量(g)]/切削部面積(m2
(3)耐凍害性試験
窯業系基材の切削部に混合塗料を塗布した後、ASTM−B法で200サイクル後にセロテープ剥離試験を行った。
(4)上塗り塗装の塗膜密着性試験
窯業系基材の切削部に混合塗料を塗布した後、Vセラン#600DK(大日本塗料社製)を塗布し、上塗り塗装とした。JIS5422−7−7に準ずる方法で上塗り塗装の塗膜密着性を評価した。
【0037】
実施例4〜8について防水性試験、耐凍害性試験、および塗膜密着性試験の結果を表2に示した。
【0038】
ただし、防水性試験において、透水量500g/m2以下(◎)、500〜1000g/m2未満(○)、1000〜3000g/m2未満(△)、3000g/m2以上(×)とした。
【0039】
耐凍害性試験においては、剥離率5%以下(○)、5〜10%未満(△)、10%以上(×)とした。
【0040】
上塗り塗装の塗膜密着性試験においては、剥離率5%以下(○)、5%より大きい(×)とした。
<比較例7〜8>
窯業系基材としては、実施例4〜8と同じものを用いた。
【0041】
アルコキシシラン系撥水剤を混合せずにマルチシーラーA(昭和高分子社製)のみを窯業系基材の切削部に塗布し、実施例4〜8と同様に防水性試験、耐凍害性試験、上塗り塗装の塗膜密着性試験を行った。(比較例7)
また、アルコキシシラン系撥水剤として実施例4〜8と同じKBM3103C(信越化学社製)を用い、ウレタン系シーラーとして、分子量10000の高分子を含有するSBシーラー(ナトコ社製)を用いて混合塗料を調製し、窯業系基材の切削部に塗布して実施例4〜8と同様に防水性試験、耐凍害性試験、上塗りの塗膜密着性試験を行った。(比較例8)
比較例7〜8について防水性試験、耐凍害性試験、および塗膜密着性試験の結果を実施例4〜8と同様に、表2に示した。
【0042】
【表2】
Figure 0004362238
【0043】
表2より、重量平均分子量が15000〜60000の高分子を含有するウレタン系シーラーにアルコキシラン系撥水剤を混合した混合塗料を塗布して得られる塗装無機質建材では、防水性、耐凍害性、および塗膜密着性がいずれも高いことが示された。また、混合塗料中の全固形分におけるアルコキシシラン系撥水剤の固形分量が30重量%以上のとき(実施例5、6、8)、得られる塗装無機質建材の防水性がとくに高いことが確認された。
【0044】
一方、アルコキシシラン系撥水剤を用いない場合(比較例7)には、塗装無機質建材の防水性と耐凍害性が低く、ウレタン系シーラー中の高分子の重量平均分子量が10000の混合塗料(比較例8)を窯業系基材の切削部に塗布して得られる塗装無機質建材は、防水性、耐凍害性、および塗膜密着性がいずれも低いものとなることが示された。
【0045】
【発明の効果】
以上詳しく説明したとおり、この発明によって、固形分濃度が30重量%以下であるアルコキシシラン系撥水剤と重量平均分子量が15000〜60000である高分子を含有するウレタン系シーラーを混合して得られる混合塗料であり、アルコキシシラン系撥水剤の固形分量が、混合塗料全体の固形分量の30〜50重量%である混合塗料が切削部に塗布されることにより切削部の脆弱層が効果的に補強され、高い防水性と耐凍害性が付与され、塗膜密着性が長期に渡り持続する新しい塗装無機質建材が提供される。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a painted inorganic building material. More specifically, the invention of this application relates to a coated inorganic building material in which a cutting portion is reinforced and has high coating film adhesion, water resistance, and frost damage resistance.
[0002]
[Prior art and its problems]
Painted inorganic building materials are widely used as exterior materials such as outer wall materials for houses and roofing materials, and roof materials, and those having a wide variety of designs are provided. These coated inorganic building materials are usually made in accordance with the size and shape of ceramic-based substrates obtained from raw material slurry mainly composed of cement, inorganic filler, etc. by paper making, casting, compression, extrusion, etc. It is obtained by applying a top coat in order to cut the blade and further improve the design and to provide weather resistance such as waterproofness and frost resistance.
[0003]
The cutting method of the ceramic base material includes the cutting process to cut the end vertically, and the thickness direction is cut into irregularities or steps to increase the strength of the joint between the ceramic building materials. There is actual processing to make these unevenness and staircases fit into the joints between building materials. However, in any of the methods, an inner layer having a lower density than the surface layer appears on the surface in the cutting portion of the ceramic base material, and there is a problem that the strength is low. In particular, on the surface of the cut part obtained by actual machining, there is a problem that the low density is remarkable, and not only the strength but also the waterproof property is remarkably low.
[0004]
Further, there is a problem that cutting powder tends to remain in the cutting part of the ceramic base material, and a fragile layer is often formed around the cutting part. In such a fragile layer, peeling and cracking of the ceramic base material are likely to occur, and the strength of the entire ceramic base material is reduced, the beauty is impaired, or the cutting part is easily damaged. And, in such a coated inorganic building material obtained by applying a top coat to a ceramic base material, there is a problem that breakage or peeling of the top coat tends to occur in a short period of time.
[0005]
So far, a method has been proposed in which a sealer containing a polymer having a relatively large molecular weight is applied as a base to a cutting part of a ceramic base material to reinforce the cutting part.
[0006]
[Problems to be solved by the invention]
However, although the above-mentioned proposed technique showed a high effect in reinforcing the ceramic base material cutting part, the actual situation is that the waterproofness in the painted inorganic building material was not sufficiently obtained. In other words, there is a problem that water easily penetrates into the ceramic base material from the cutting part due to rain, moisture, freezing, etc., and the ceramic base material is likely to swell and peel off due to long-term use. is there.
[0007]
In order to solve such problems, the use of water repellents has been studied. However, the water repellent alone does not provide the reinforcing effect of the ceramic base material and the adhesion to the top coat, and the method of applying the sealer after applying the water repellent increases the number of steps, so the coating of inorganic building materials New problems have arisen, such as high manufacturing costs and the possibility of forming a portion where the top coat is easily peeled off if the sealer does not completely cover the surface of the water repellent.
[0008]
Accordingly, there has been a demand for a coated inorganic building material that effectively reinforces the fragile layer of the ceramic base cutting part and exhibits high coating film adhesion, waterproofness, and frost resistance even after long-term use.
[0009]
[Means for Solving the Problems]
The invention of this application is an inorganic building material whose surface is coated as a solution to the above-mentioned problem, and an alkoxysilane-based water repellent whose solid content concentration is 30% by weight or less in a cutting portion of a ceramic base material. agent and a coating mix obtained weight average molecular weight by mixing the urethane-based sealer containing polymer is from 15,000 to 60,000, solid content of alkoxysilane-based water repellent, 30 solid content of the whole coating mix The present invention provides a coated inorganic building material characterized in that a mixed paint of ˜50% by weight is applied.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The coated inorganic building material of the invention of this application is an inorganic building material whose surface is coated , and an alkoxysilane water repellent having a solid content concentration of 30% by weight or less and a polymer having a weight average molecular weight of 15,000 to 60,000. a mixed coating material obtained by mixing a urethane sealer containing a solid content of alkoxysilane-based water repellent, 30-50 wt% a is mixed paint solid content of the whole coating mix has a ceramic base material It is applied to the cutting part.
[0013]
First, the urethane sealer used may be any polymer as long as it contains a polymer having a weight average molecular weight of 15,000 to 60,000 as a polymer. For example, in addition to a polymer having a weight average molecular weight of 15,000 to 60,000, a solvent, a curing agent, a pigment, a filler, and the like may be included, and either a two-component curable type or a one-component moisture curable type may be used.
[0014]
When the weight average molecular weight of the contained polymer is larger than 60000, the impregnation property of the mixed paint into the ceramic base material is lowered, and the fragile layer generated in the ceramic base material cutting part cannot be reinforced. For this reason, in the obtained inorganic building material, peeling | exfoliation of topcoat will occur easily and it is not preferable. On the other hand, when the weight average molecular weight of the polymer contained in the urethane sealer is less than 15000, the impregnation property of the mixed paint into the ceramic base material is high, but the sealer layer by the mixed paint is the ceramic base material. Since it does not stay on the surface, the coating film adhesion of the top coat is lowered. Therefore, in the coated inorganic building material of the invention of this application, the urethane sealer in the mixed paint applied to the cutting part of the ceramic base material contains a polymer having a weight average molecular weight of 15,000 to 60,000 as the polymer. It is important to be.
[0015]
Next, the water repellent mixed with the urethane sealer as described above may be an alkoxysilane water repellent, and R 1 R 2 R 3 Si—OR as a main component.
(However, R is a chain or alicyclic hydrocarbon group, R 1 to R 3 are each a hydrogen atom bonded to Si or an optionally substituted hydrocarbon group, and R 1 to R 3 Any one of them may be used as long as it has as a repeating unit an alkoxysilane represented by (at least one is a hydrocarbon group which may have a substituent). Components other than the above repeating units, components having different molecular weights, solvents, pigments and the like may be contained, and various known alkoxysilane water repellents are preferably applied.
[0016]
If a mixed paint obtained by mixing such an alkoxysilane water repellent and the urethane sealer is applied to the cutting part of the ceramic base material, the alkoxysilane water repellent component in the mixed paint can be easily obtained. The ceramic base material cutting part is impregnated and stays on the surface of the cutting part. This reinforces the fragile layer generated in the cutting part of the ceramic base material, enhances the adhesion of the coating film to the top coat, and further imparts high waterproofness to the cutting part. Therefore, the coated inorganic building material obtained does not allow water to penetrate even after long-term use, makes it difficult for the top coat to peel off due to swelling, and has high frost resistance.
[0017]
In the coated inorganic building material of the invention of this application, the mixed paint applied to the ceramic base material cutting part has the characteristics as described above, and the alkoxysilane water repellent component and the urethane sealer component to be mixed. The composition of is not particularly limited. However, in order to further improve the waterproof effect of the mixed paint and improve the adhesion of the top coat in the coated inorganic building material, frost resistance, and design, the alkoxysilane-based repellent mixed with the urethane sealer the solid concentration of the liquid medication shall be the 30 wt% or less.
[0018]
This is because when the solid content concentration of the alkoxysilane water repellent is greater than 30% by weight, the concentration of the alkoxysilane water repellent component in preparing the mixed paint may be limited. That is, when the solid content concentration of the alkoxysilane water repellent mixed is greater than 30% by weight, white turbidity due to solvent shock is likely to occur when mixed with the urethane sealer, and occupies the total solid content of the mixed paint. The solid content of the alkoxysilane water repellent cannot be increased too much. And, when the mixed paint with white turbidity is applied to the cutting part of the ceramic base material, it is not only difficult to impregnate the ceramic base material, but also a partially insufficiently waterproof part or a top coat film This is not preferable because a portion having low adhesion can be formed or the coating film becomes difficult to be uniform.
[0019]
On the contrary, if the solid content concentration of the alkoxysilane water repellent is 30% by weight or less, even if the solid content of the alkoxysilane water repellent in the total solid content of the mixed paint is increased, the mixed paint does not become cloudy. . For example, when the solid content concentration of the alkoxysilane-based water repellent is 30% by weight, a uniform mixed paint containing 50% by weight of alkoxysilane solids can be obtained. If applied, a coated inorganic building material having high waterproofness and high coating adhesion to the top coat over the entire coated surface can be obtained.
[0020]
At this time, the solid content concentration of the alkoxysilane water repellent mixed with the urethane sealer may be prepared by diluting the alkoxysilane water repellent with an appropriate solvent, or a solid content of 30% by weight or less. Commercial products having a partial concentration may be used.
[0021]
In the coated inorganic building material of the invention of this application, the solid content of the alkoxysilane water repellent occupying the entire solid content of the mixed paint in the mixed paint applied to the cutting portion of the ceramic base material is 30 to It shall be the 50% by weight.
[0022]
The higher the content of the alkoxysilane water repellent solid content in the mixed paint, the higher the waterproofness of the resulting coated inorganic building material, but if it is too much, the mixed paint tends to become cloudy or the ceramic base material is cut. There is a possibility that the fragile layer of the part is not sufficiently reinforced, or the adhesion of the coating film of the top coat is lowered. By making the content of the alkoxysilane water repellent solid content 30 to 50 % by weight of the total solid content of the mixed paint, the fragile layer is effectively reinforced, and high waterproofness and coating film adhesion can be obtained. , frost resistance also that a high.
[0023]
The coated inorganic building material of the invention of this application is not particularly limited as long as the mixed paint as described above is applied to the cutting portion of the ceramic base material. For example, what is necessary is just to apply | coat by means generally used, such as a brush (brush), a roller coater, and a spray. At this time, while fully effective yo Ri coating mix, in order to avoid foaming or swelling of the top coating, the coating amount is preferably set to 5 to 200 g / m 2.
[0024]
Furthermore, in the coated inorganic building material of the invention of this application, any ceramic base material may be used. For example, a ceramic base material obtained by a papermaking method, a casting method, a compression method, an extrusion method or the like using cement or an inorganic filler as a main raw material is exemplified. In such a ceramic base material, the composition of the raw materials and the shape and size of the ceramic base material are not limited.
[0025]
The coated inorganic building material of the invention of this application may be obtained by applying a top coat after the mixed paint as described above is applied to the cutting portion of the ceramic base material, and is used for the top coat. The kind, composition, coating method, coating amount, etc. of the coating material to be applied are not limited. Of course, a coating layer or the like may be further provided on the top coat.
[0026]
Hereinafter, examples will be shown, and the embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects are possible in detail.
[0027]
【Example】
<Examples 1-3> Preparation of Mixed Paint As the urethane sealer, Multi Sealer A (made by Showa Polymer Co., Ltd.) having a weight average molecular weight of 45,000 to 60,000 was used. As the alkoxysilane water repellent, KBM3103C (manufactured by Shin-Etsu Chemical Co., Ltd.) was used.
[0028]
The alkoxysilane water repellent was added to the urethane sealer with a solid content concentration of the water repellent of 30% by weight. At this time, the solid content of the alkoxysilane water repellent was 10% by weight (Example 1), 30% by weight (Example 2), and 50% by weight (Example 3) of the total solid content.
[0029]
The state of the obtained mixed paint was confirmed, and the results are shown in Table 1 as no change (◯), slightly cloudy (Δ), and cloudy (×).
<Comparative Examples 1-6>
In the same manner as in Examples 1 to 3, the solid content concentration of the alkoxysilane water repellent was 95% by weight (Comparative Examples 1 to 2), 50% by weight (Comparative Examples 3 to 5), and 30% by weight (Comparative Example). A mixed paint was prepared as 6). The solid content of the alkoxysilane water repellent in the total solid content in the mixed paint and the state of the mixed paint are shown in Table 1 as in Examples 1-3.
[0030]
[Table 1]
Figure 0004362238
[0031]
From Table 1, when the solid content concentration of the alkoxysilane water repellent is 30% by weight or less in advance, even if the solid content of the alkoxysilane water repellent is increased to 50% by weight with respect to the total solid content in the mixed paint. It was confirmed that uniform mixed paint without white turbidity was obtained (Examples 1 to 3).
[0032]
On the other hand, when the solid content concentration of the alkoxysilane water repellent is 50% by weight or more, the mixed paint becomes cloudy by increasing the solid content of the alkoxysilane water repellent with respect to the total solid content in the mixed paint. It was revealed that this occurred (Comparative Examples 1 to 5).
[0033]
Further, even when the solid content concentration of the alkoxysilane water repellent is 30% by weight, the mixed paint becomes cloudy by setting the solid content of the alkoxysilane water repellent to 60% by weight with respect to the total solid content in the mixed paint. (Comparative Example 6).
<Examples 4 to 8> Waterproof test, frost resistance test, and coating film adhesion test (1) A cement-based substrate manufactured by a papermaking method was used as a preparatory ceramic-based substrate. In addition, as the urethane-based sealer, either a multi-sealer A having a weight average molecular weight of 45,000 to 60,000 (made by Showa Polymer Co., Ltd.) or a reel having a weight average molecular weight of 15,000 to 25,000 (made by Nippon Paint Co., Ltd.) is used. An alkoxysilane-based water repellent KBM3103C (manufactured by Shin-Etsu Chemical Co., Ltd.) diluted to have a partial concentration of 30% by weight was mixed to prepare a mixed paint.
[0034]
The obtained mixed paint was applied to a cutting part of a ceramic base material with a brush with an application amount of 20 to 30 g / m 2 .
(2) Waterproof test A cut portion of a 150 × 300 mm base material was pasted together, a 60 × 200 mm frame was fixed to the surface including the pasted portion, and the portions other than the cut portion were waterproof sealed. The frame was filled with water up to a height of 20 mm, and a water permeability test was conducted for 24 hours.
[0035]
The amount of water permeation was determined from the following equation.
[0036]
[Substrate weight (g) after 24 hours-initial substrate weight (g)] / cutting area (m 2 )
(3) Frost resistance test After applying the mixed paint to the cutting part of the ceramic base material, a cellophane peeling test was conducted after 200 cycles by the ASTM-B method.
(4) Coating coating adhesion test of top coating After applying the mixed coating to the cutting part of the ceramic base material, V-Selan # 600DK (manufactured by Dainippon Paint Co., Ltd.) was applied to form a top coating. The film adhesion of the top coat was evaluated by a method according to JIS 5422-7-7.
[0037]
Table 2 shows the results of the waterproofness test, the frost damage resistance test, and the coating film adhesion test for Examples 4 to 8.
[0038]
However, the waterproof test, the water permeability 500 g / m 2 or less (◎), 500~1000g / m less than 2 (○), 1000~3000g / m less than 2 (△), was 3000 g / m 2 or more (×) .
[0039]
In the frost damage resistance test, the peel rate was 5% or less (◯), less than 5 to 10% (Δ), and 10% or more (×).
[0040]
In the coating adhesion test of the top coat, the peel rate was 5% or less (◯) and greater than 5% (×).
<Comparative Examples 7-8>
As the ceramic base material, the same ones as in Examples 4 to 8 were used.
[0041]
Only Multisealer A (made by Showa Polymer Co., Ltd.) was applied to the cutting part of the ceramic base material without mixing the alkoxysilane water repellent, and the waterproofness test and the frost damage resistance test were conducted in the same manner as in Examples 4-8. The film adhesion test of the top coat was conducted. (Comparative Example 7)
Also, the same KBM3103C (made by Shin-Etsu Chemical Co., Ltd.) as in Examples 4 to 8 was used as the alkoxysilane-based water repellent, and the SB sealer (manufactured by NATCO) containing a polymer having a molecular weight of 10,000 was used as the urethane sealer. A coating material was prepared and applied to a cutting part of a ceramic base material, and a waterproof test, a frost damage test, and a top coat adhesion test were performed in the same manner as in Examples 4-8. (Comparative Example 8)
The results of the waterproof test, the frost damage resistance test, and the coating film adhesion test for Comparative Examples 7 to 8 are shown in Table 2 as in Examples 4 to 8.
[0042]
[Table 2]
Figure 0004362238
[0043]
From Table 2, the coated inorganic building material obtained by applying a mixed paint in which an alkoxylan-based water repellent is mixed with a urethane sealer containing a polymer having a weight average molecular weight of 15,000 to 60000, is waterproof, frost-resistant, It was shown that the coating film adhesion was high. In addition, when the solid content of the alkoxysilane water repellent in the total solid content in the mixed paint is 30% by weight or more (Examples 5, 6 and 8), it is confirmed that the waterproof properties of the resulting coated inorganic building materials are particularly high. It was done.
[0044]
On the other hand, when no alkoxysilane-based water repellent is used (Comparative Example 7), the coating inorganic building material has low waterproofness and frost damage resistance, and the mixed paint (10,000) has a weight average molecular weight of the polymer in the urethane sealer. It was shown that the coating inorganic building material obtained by applying Comparative Example 8) to the cutting part of the ceramic base material has low waterproofness, frost damage resistance, and coating film adhesion.
[0045]
【The invention's effect】
As described above in detail, the present invention, by mixing the urethane sealer alkoxy silane water repellent and weight-average molecular weight solid concentration is 30 wt% or less contains a polymer is 15,000 to 60,000 obtained The fragile layer of the cutting part is effective by applying the mixed paint in which the solid content of the alkoxysilane water repellent is 30 to 50% by weight of the total solid content of the mixed paint to the cutting part. Thus, it is possible to provide a new painted inorganic building material that is reinforced with high waterproofness and frost damage resistance and has a coating film adhesion property that lasts for a long time.

Claims (1)

表面が塗装された無機質建材であって、窯業系基材の切削部に、固形分濃度が30重量%以下であるアルコキシシラン系撥水剤と重量平均分子量が15000〜60000である高分子を含有するウレタン系シーラーを混合して得られる混合塗料であり、アルコキシシラン系撥水剤の固形分量が、混合塗料全体の固形分量の30〜50重量%である混合塗料が塗布されていることを特徴とする無機質建材。An inorganic building material with a coated surface, containing an alkoxysilane water repellent having a solid content concentration of 30% by weight or less and a polymer having a weight average molecular weight of 15,000 to 60,000 in a cutting portion of a ceramic base material It is a mixed paint obtained by mixing with a urethane sealer, and a mixed paint in which the solid content of the alkoxysilane water repellent is 30 to 50% by weight of the total solid content of the mixed paint is applied. A characteristic inorganic building material.
JP2001012375A 2001-01-19 2001-01-19 Painted inorganic building materials Expired - Lifetime JP4362238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001012375A JP4362238B2 (en) 2001-01-19 2001-01-19 Painted inorganic building materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001012375A JP4362238B2 (en) 2001-01-19 2001-01-19 Painted inorganic building materials

Publications (2)

Publication Number Publication Date
JP2002220293A JP2002220293A (en) 2002-08-09
JP4362238B2 true JP4362238B2 (en) 2009-11-11

Family

ID=18879391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001012375A Expired - Lifetime JP4362238B2 (en) 2001-01-19 2001-01-19 Painted inorganic building materials

Country Status (1)

Country Link
JP (1) JP4362238B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4516533B2 (en) * 2006-01-30 2010-08-04 クボタ松下電工外装株式会社 Building board and manufacturing method thereof

Also Published As

Publication number Publication date
JP2002220293A (en) 2002-08-09

Similar Documents

Publication Publication Date Title
US4241107A (en) Roof coating process
JP4362238B2 (en) Painted inorganic building materials
JP3670867B2 (en) Painted inorganic building materials
US20060225836A1 (en) Flashing material
JP4560179B2 (en) Reinforcing method for ceramic base cutting parts
WO2015179476A1 (en) Lightweight spackling paste composition containing hydrated silica
CN108952199A (en) A kind of cracking of wall surface method for repairing and mending
US20040259981A1 (en) Sealant coating for stucco and method of production thereof
CN112482807B (en) Coating construction process
EP0271473B1 (en) Process for the application of a finishing coating to an outer covering of a porous support, particularly a cellular concrete facade
JP2000219823A (en) Limy finish coating material composition
JPH029639B2 (en)
CN216893318U (en) Inorganic terrace coating system of nanometer
CA1117989A (en) Stucco mix
CA1127860A (en) Roof coating process
KR101029145B1 (en) Eco-friendly color stain pattern paint having alkali recovery and surface reinforcement functions of concrete and constructing method thereof
CN205153383U (en) Waterproof building interior wall structure
JP3421000B2 (en) Coating material and its construction method
JP4615111B2 (en) Lightweight cellular concrete panel
JP4217063B2 (en) Manufacturing method for ceramic substrates
JP2827075B2 (en) Waterproofing method for small edge of ceramic plate and coating composition used for the method
JPS6028450A (en) Sealant for steel tank hood concave part and its application
JP4021635B2 (en) Manufacturing method of inorganic board
JPH05156781A (en) Porous building material and construction thereof
JPS634728Y2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070517

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070523

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090817

R150 Certificate of patent or registration of utility model

Ref document number: 4362238

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

EXPY Cancellation because of completion of term