JP4361813B2 - Aligned winding method and winding apparatus for porous flat tubes - Google Patents

Aligned winding method and winding apparatus for porous flat tubes Download PDF

Info

Publication number
JP4361813B2
JP4361813B2 JP2004014874A JP2004014874A JP4361813B2 JP 4361813 B2 JP4361813 B2 JP 4361813B2 JP 2004014874 A JP2004014874 A JP 2004014874A JP 2004014874 A JP2004014874 A JP 2004014874A JP 4361813 B2 JP4361813 B2 JP 4361813B2
Authority
JP
Japan
Prior art keywords
winding
flat tube
porous flat
tube
recoiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004014874A
Other languages
Japanese (ja)
Other versions
JP2005205456A (en
Inventor
敬 鹿島
正巳 小島
和昭 正武家
秀則 城下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2004014874A priority Critical patent/JP4361813B2/en
Publication of JP2005205456A publication Critical patent/JP2005205456A/en
Application granted granted Critical
Publication of JP4361813B2 publication Critical patent/JP4361813B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)
  • Winding Filamentary Materials (AREA)
  • Tension Adjustment In Filamentary Materials (AREA)

Description

本発明は、自動車用の熱交換器部品などに使用される、塗装された多孔偏平管(以下、チューブと略す)を巻取る方法及びその巻取りに用いる装置に関するものである。   The present invention relates to a method for winding a coated porous flat tube (hereinafter abbreviated as a tube) used for heat exchanger parts for automobiles and the like, and an apparatus used for the winding.

自動車用の熱交換器部品などに使用されるチューブは、通常、その基材に耐食性に優れたアルミニウム合金(JIS−A1050)などを用い、図7に示すような塗装後の断面形状を有している。図7に示すチューブ2は、縦1.1mm、横16.15mmの両端が丸みを帯びた長方断面形状で、チューブ上下外周とは約0.25mmの距離、チューブ左右端とは0.875mmの隔たりを有し、19個の小孔50が約0.2mmの間隔で一列に穿たれた断面形状を有し、その表面には50μm前後の塗膜が設けられている。 Tubes used for automotive heat exchanger parts usually use aluminum alloy (JIS-A1050) with excellent corrosion resistance as the base material and have a cross-sectional shape after painting as shown in FIG. ing. The tube 2 shown in FIG. 7 is 1.1 mm long and 16.15 mm wide, rounded at the both ends, with a distance of about 0.25 mm from the upper and lower outer circumferences and 0.875 mm from the left and right ends of the tube. The 19 small holes 50 have a cross-sectional shape formed in a row at intervals of about 0.2 mm, and a coating film of about 50 μm is provided on the surface thereof.

このチューブは、アルミニウム粗引き線を出発材とし、コンフォーム押出しによって製造する方法と、ビレットを出発材として熱間押出しによって製造する方法が一般的である。いずれの場合にも、チューブは一度、コイル状に巻かれ、次の塗布工程に送られる。
塗布工程では、図1に示すような設備を用いて、塗装、加熱、乾燥、冷却、巻取りを連続して行い、チューブの外表面に後の組立工程で必要となる塗料を塗布したチューブのコイルが製造される。
This tube is generally manufactured by a method of extrusion by using an aluminum rough wire as a starting material and a method of manufacturing by a hot extrusion by using a billet as a starting material. In either case, the tube is once wound into a coil and sent to the next coating process.
In the coating process, using the equipment shown in FIG. 1 , painting, heating, drying, cooling, and winding are continuously performed, and the tube surface is coated with paint necessary for the subsequent assembly process. A coil is manufactured.

発明者らは、組立工程のろう付けに用いられる塗料として、ろう付け効果を有するSi単体またはAL−Si系合金の粉体、もしくは犠牲陽極効果を有するZn単体またはAL−Zn系合金の粉体のうち少なくとも1種、もしくは該金属粉体とフラックス粉体の混合物または該金属とフラックスの化合物粉体を用い、その塗布量は、5〜13g/m程度が好適であり、また、塗布については、トップフィード方式で塗料を供給し、リバース方式により塗布し、乾燥することにより塗膜の均一性および密着性が良好で、十分なろう付け接着性が得られることを見出したが、塗装されたチューブの巻取り後のコイル形態に凹凸に生じて整列に巻き取ることが出来ず、チューブが変形してしまう問題があった。 As a coating material used for brazing in an assembling process, the inventors have used a powder of a simple substance of Si or AL-Si based alloy having a brazing effect, or a simple substance of Zn or a powder of AL-Zn based alloy having a sacrificial anode effect. At least one of them, or a mixture of the metal powder and the flux powder or a compound powder of the metal and the flux, and the coating amount is preferably about 5 to 13 g / m 2. Found that by supplying the paint by the top feed method, applying it by the reverse method, and drying it, the uniformity and adhesion of the coating film is good and sufficient brazing adhesion can be obtained. There was a problem that the coil shape after winding of the tube was uneven and could not be wound in alignment, and the tube was deformed.

そこで、このようなチューブ状の長尺物を巻取り、巻取り後のコイル形態に凹凸を発生させること無く、整列に巻取る技術の代表的なものとして、(1)巻取り時に巻取りトルクを一定にする方法、(2)巻取り時に巻取り張力を一定にする方法、(3)コイルの巻径に対応し張力そのものを変化させる方法(例えば、特許文献1参照)、が提案されている。   Therefore, as a representative technique for winding such a long tube-shaped object and winding it in an aligned manner without causing irregularities in the coil form after winding, (1) winding torque during winding (2) a method of making the winding tension constant at the time of winding, and (3) a method of changing the tension itself corresponding to the winding diameter of the coil (for example, see Patent Document 1). Yes.

特許第3336893号公報Japanese Patent No. 3336893

しかしながら、前記従来技術をもってしても完全に塗装されたチューブの巻取り後のコイル形状に凹凸を発生させずに整列に巻取ることはできなかった。
先ず、第1の巻取り時にトルクを一定にする方法では、トルク制御は応答性が遅いために張力の変動が原因で細かい凹凸が発生することを防げないために、塗装されたチューブの巻取り後のコイル形態に凹凸を発生させてしまうことがある。
However, even with the above-described prior art, the coil shape after winding a completely coated tube could not be wound in an aligned manner without causing irregularities.
First, in the method of keeping the torque constant during the first winding, since the torque control is slow in response, it cannot prevent the occurrence of fine irregularities due to fluctuations in tension. Unevenness may occur in later coil forms.

次に、第2の巻取り時に張力を一定にする方法では、巻径が大きくなるにつれて、巻付け力が大きくなりコイル形状に凹凸が発生してしまうため、塗装されたチューブの巻取り後のコイル形状に凹凸を発生させること無く、整列に巻取ることができなかった。   Next, in the method of keeping the tension constant during the second winding, the winding force increases and the coil shape becomes uneven as the winding diameter increases. The coil shape could not be wound up without causing irregularities.

更に、第3の巻径に対応して張力そのものを変化させる方法は、例えば特許文献1で見られるように金属条のコイルの巻高さを巻高検出センサーで検出し、その巻高さに応じて巻取り軸(マンドレル)の軸心を自動的に上下させ、この巻高さ検出センサーにより検出した金属条のコイルの巻高さにより、巻径が小さいときには張力を小さく、又、巻径が大きくなれば張力を大きくするように自動的に張力を変化させるもので、その結果、異形断面を有し、幅方向に対して中央部が厚い厚板部とその両端が薄い帯状の薄板部を有する金属条の厚さ方向の曲がり変形を防ぐが、この方法で塗装されるチューブを巻取ると、巻径が大きくなるにつれて、既に巻かれたチューブに加わる歪が増加することで、コイル形態に凹凸が発生してしまい、その凹凸の影響で条がコイル上を滑り、整列に巻取ることができなくなるという問題が生じている。   Furthermore, a method for changing the tension itself corresponding to the third winding diameter is, for example, as shown in Patent Document 1, in which the winding height of a metal strip coil is detected by a winding height detection sensor, and the winding height is detected. Accordingly, the axis of the winding shaft (mandrel) is automatically raised and lowered, and the winding height of the metal strip coil detected by this winding height detection sensor reduces the tension when the winding diameter is small, and the winding diameter. The tension is automatically changed so that the tension increases as a result of increasing the thickness. As a result, a thick plate portion having a deformed cross section and a thick central portion with respect to the width direction and a thin strip portion having both ends thin. In the case of winding a tube to be coated by this method, the strain applied to the already wound tube increases as the winding diameter increases. Concavity and convexity occur in the Article is sliding on the coil under the influence of the projections, a problem that can not be wound up has occurred in the alignment.

本発明はこのような状況に鑑み、自動車用熱交換器に用いる塗装されたチューブの巻取り方法について種々研究を重ねて見出したもので、チューブ状の長尺物をコイル形状に巻取り、その巻取り後のコイル形状に凹凸を発生させること無く、整列に巻取ることで、更に変形していないチューブを得ることができる自動車用熱交換器用の塗膜付き多孔偏平管の製造方法とその製造装置を提供するものである。 In view of such a situation, the present invention has been found by repeatedly conducting various studies on a method of winding a coated tube used in an automobile heat exchanger, and winding a long tube-like object into a coil shape. without causing irregularities on the coil shape after winding, by winding the alignment method of manufacturing a deformed though not coated porous flat tube for a heat exchanger for an automobile which can obtain a tube and its production A device is provided.

請求項1記載の発明は、表面を塗装した多孔偏平管をコイル形態へ巻取りする方法において、多孔偏平管のコイル形態への巻取りの進行に伴って多孔偏平管に付与する張力を小さくしていく張力制御とコイル形態への巻取り時の多孔偏平管温度が50℃以下である温度制御とをしながら、コイル形態が整列巻となるように巻取り装置を制御してコイル形態に巻取る多孔偏平管の整列巻取り方法である。   According to the first aspect of the present invention, in the method of winding a porous flat tube coated on a surface into a coil shape, the tension applied to the porous flat tube is reduced as the winding of the porous flat tube into the coil shape proceeds. The winding device is controlled so that the coil configuration is aligned winding while the tension control is performed and the temperature control is performed so that the temperature of the porous flat tube is 50 ° C. or less during winding into the coil configuration. This is an aligned winding method for a porous flat tube.

請求項2記載の発明は、前記張力制御が電空変換制御方式で行われることを特徴とする請求項1記載の多孔偏平管の整列巻取り方法である。   According to a second aspect of the present invention, there is provided the method of aligning and winding porous flat tubes according to the first aspect, wherein the tension control is performed by an electropneumatic conversion control system.

請求項3記載の発明は、前記電空変換制御方式が、ダンサーロールとカウンターバランスシリンダーと電空レギュレーターとから構成される制御装置で行われることを特徴とする請求項1及び請求項2記載の多孔偏平管の整列巻取り方法である。   According to a third aspect of the present invention, the electropneumatic conversion control method is performed by a control device including a dancer roll, a counter balance cylinder, and an electropneumatic regulator. This is an aligned winding method for porous flat tubes.

請求項4記載の発明は、前記コイル形態が整列巻となるように巻取り装置を制御する方法が、多孔偏平管を巻き付けるボビンを備えるリコイラーと前記リコイラーの移動装置とその制御装置とからなる巻取り装置を用いて、多孔偏平管が前記ボビンの端部に到着するように前記リコイラーを所定速度で移動させて多孔偏平管を到着させた後、前記リコイラーの移動を止め、次いでその逆方向に移動させる時、多孔偏平管が前記ボビンに数列巻かれるまで、その移動速度を前記所定速度より速くして巻取り、その後前記所定速度に戻して巻取りを行うことを特徴とする請求項1乃至請求項3記載の多孔偏平管の整列巻取り方法である。 According to a fourth aspect of the present invention, there is provided a method of controlling a winding device so that the coil form is an aligned winding, comprising: a recoiler comprising a bobbin for winding a porous flat tube, a recoiler moving device, and a control device for the recoiler. Using the take-off device, the recoiler is moved at a predetermined speed so that the porous flat tube reaches the end of the bobbin, and then the porous flat tube arrives, and then the movement of the recoiler is stopped, and then in the opposite direction. when that moved, until the porous flat tube is wound sequences in the bobbin, winding the moving speed faster than the predetermined speed, 1 to thereafter claim and performing the winding is returned to the predetermined velocity It is the aligned winding method of the porous flat tube of Claim 3.

請求項5記載の発明は、多孔偏平管の塗装・整列巻取り装置において、コイル形態に巻かれた多孔偏平管を供給する巻出し機と、前記巻出し機より引き出された多孔偏平管の面上に塗料を塗布するコーターマシンと、前記塗布された塗料を多孔偏平管に固着化する加熱装置と、加熱された多孔偏平管を所定温度へ冷却する冷却装置と、冷却された多孔偏平管のコイル形態への巻取りの進行に伴って多孔偏平管に付与する張力を小さくしていく張力制御を行う張力制御装置と、巻取り時の多孔偏平管温度が50℃以下である温度制御をしながら整列巻取り制御が施されている巻取り機とからなることを特徴とする多孔偏平管の塗装・整列巻取り装置である。 According to a fifth aspect of the present invention, there is provided an unwinding device for supplying a porous flat tube wound in a coil form and a surface of the porous flat tube drawn out from the unwinding device in a coating / aligning winding device for a porous flat tube. A coater machine for applying a coating material thereon, a heating device for fixing the applied coating material to the porous flat tube, a cooling device for cooling the heated porous flat tube to a predetermined temperature, and a cooled porous flat tube A tension control device that performs tension control to reduce the tension applied to the porous flat tube as the winding into the coil form progresses, and temperature control that the porous flat tube temperature during winding is 50 ° C. or less. while a paint-aligned-winding-up device of the porous flat tube, characterized in that the alignment winding control is composed of a winding machine which has been subjected.

請求項6記載の発明は、前記張力制御が電空変換制御方式で行われることを特徴とする請求項5記載の多孔偏平管の塗装・整列巻取り装置である。A sixth aspect of the present invention is the coating / aligning winding device for a porous flat tube according to the fifth aspect, wherein the tension control is performed by an electropneumatic conversion control system.

請求項7記載の発明は、前記電空変換制御方式が、ダンサーロールとカウンターバランスシリンダーと電空レギュレーターとから構成される制御装置で行われることを特徴とする請求項5及び請求項6記載の多孔偏平管の塗装・整列巻取り装置である。The invention according to claim 7 is characterized in that the electropneumatic conversion control system is performed by a control device including a dancer roll, a counter balance cylinder, and an electropneumatic regulator. This is a painting / aligning winding device for porous flat tubes.

請求項8記載の発明は、前記コイル形態が整列巻となるように巻取り装置を制御する方法が、多孔偏平管を巻き付けるボビンを備えるリコイラーと前記リコイラーの移動装置とその制御装置とからなる巻取り装置を用いて、多孔偏平管が前記ボビンの端部に到着するように前記リコイラーを所定速度で移動させて多孔偏平管を到着させた後、前記リコイラーの移動を止め、次いでその逆方向に移動させる時、多孔偏平管が前記ボビンに数列巻かれるまで、その移動速度を前記所定速度より速くして巻取り、その後前記所定速度に戻して巻取りを行うことを特徴とする請求項5乃至請求項7記載の多孔偏平管の塗装・整列巻取り装置である。According to an eighth aspect of the present invention, there is provided a method of controlling a winding device so that the coil form is an aligned winding. Using the take-off device, the recoiler is moved at a predetermined speed so that the porous flat tube reaches the end of the bobbin, and then the porous flat tube arrives, and then the movement of the recoiler is stopped, and then in the opposite direction 6. When moving, until the porous flat tube is wound around the bobbin in several rows, the winding speed is wound at a speed higher than the predetermined speed, and then wound back at the predetermined speed. A coating / aligning winding device for a porous flat tube according to claim 7.

以上のように、本発明による整列巻取り方法及び整列巻取り装置によれば、チューブ巻取り後のコイル形状及びピッチを安定化させることにより次工程での製造ラインでチューブの蛇行を防いで、製造工程内のトラブルを回避し、安定した操業を行うことが出来るもので、工業上顕著な効果を奏するものである。 As described above, according to the aligned winding method and the aligned winding apparatus according to the present invention, the coil shape and pitch after tube winding are stabilized to prevent meandering of the tube in the production line in the next process, A trouble in the manufacturing process can be avoided and a stable operation can be performed, and a remarkable industrial effect can be achieved.

先ず、コイル表面に凹凸が発生する原因について述べる。
第1に、図8(a)に巻取り開始直後、及び図8(b)に巻取り終了直前の巻取り角度α、張力Tと張力Tの分力である巻付け力Fの関係を模式的に示す。
一定張力Tでチューブを巻取ることにより、巻取られたコイル2aが巻取られているチューブ2から受ける張力分力Fは、図8で示すようにコイル径が大きくなるにつれ、巻取り角度αが大きくなり、従って巻付け力Fも大きくなり、巻取り開始時より巻取り終了時の巻付け力Fの方が大きくなる。即ち、図8においてはF<Fとなる。ここで、Fは巻取り開始直後の張力分力、Fは巻取り終了直前の張力分力を示し、αは巻取り開始直後の巻取り角度、αは巻取り終了直前の巻取り角度を示す。
このように巻付け力Fが大きくなると、図9に示すようにコイルに巻かれたチューブ表面の上層部51及び下層部52のチューブ同士の密着性が上がりチューブ2の断面プロフィールが鮮明にコイル表面に凹凸形状で現れる。
First, the cause of unevenness on the coil surface will be described.
First, FIG. 8 (a) schematically shows the relationship between the winding angle α, the tension T and the winding force F, which is a component force of the tension T, immediately after the start of winding, and FIG. 8 (b). Indicate.
When the tube is wound at a constant tension T, the tension component force F received from the tube 2 on which the wound coil 2a is wound is increased as the coil diameter increases as shown in FIG. Therefore, the winding force F is also increased, and the winding force F at the end of winding is greater than that at the start of winding. In other words, F 1 <F 2 in FIG. Here, F 1 indicates the tension component immediately after the start of winding, F 2 indicates the tension component immediately before the end of winding, α 1 indicates the winding angle immediately after the start of winding, and α 2 indicates the winding immediately before the end of winding. Indicates the take angle.
When the winding force F is increased in this way, as shown in FIG. 9, the adhesion between the tubes of the upper layer portion 51 and the lower layer portion 52 of the tube surface wound around the coil increases, and the cross-sectional profile of the tube 2 becomes clear. Appears in a concavo-convex shape.

第2に、50℃を超える温度になるとチューブの強度が低下していき、50℃以上の温度状態で巻取ると熱変形によりチューブが変形して、コイル径が大きくなるにつれて、その変形部分が鮮明にコイル表面の凹凸形状で現れる。   Second, when the temperature exceeds 50 ° C., the strength of the tube decreases. When the coil is wound at a temperature of 50 ° C. or higher, the tube deforms due to thermal deformation. It appears clearly in the irregular shape of the coil surface.

次に、整列巻ピッチが乱れる原因については、整列巻をするために巻取り装置は整列方向に一定速度で送られ、その速度で条間隔をきめているが、コイル表面に凹凸が発生すると凹部では塗装されたチューブが滑り易くなり、凸部では塗装されたチューブが載り移り難くなり、整列巻ピッチが規定ピッチ通りにいかなくなる。
以下、図面を参照して本発明の実施の形態を説明する。
Next, regarding the cause of the disturbance in the aligned winding pitch, the winding device is sent at a constant speed in the alignment direction to perform the aligned winding, and the spacing is determined at that speed. Then, the coated tube becomes slippery, and the coated tube is difficult to transfer on the convex portion, and the aligned winding pitch does not follow the specified pitch.
Embodiments of the present invention will be described below with reference to the drawings.

図1に、本発明で用いる塗装装置の構成図を示す。
巻出し装置1に巻かれたチューブ2が引き出され、蛇行検出センサー3により蛇行を監視されながら、入側ガイドローラ4、入側ダンサーロール5を通り、コーターマシン6に導かれて表面へのろう材の塗布が行われる。塗布後、チューブ2はろう材塗膜の厚みを7の塗膜厚み計で測定し、続いて誘導加熱炉8に挿入されて固着化される。誘導加熱炉8を出てきたチューブ2は、熱風乾燥機9、エアースプレー冷却装置10を通って、エアー冷却装置11で50℃以下に冷却される。50℃以下に冷却されたチューブ2は、出側ガイドローラ12、ブライドルロール13を通り、出側ダンサーロール14とカウンターバランスシリンダー15と図1には記載していない電空レギュレーターとで構成される張力制御装置17に導かれ、張力の調整を受けながら、整列巻取り制御が施されている巻取り装置18で整列巻取りされる。なお、チューブ2の温度を50℃以下に維持するには、巻取り装置18から出側ダンサーロール14までをカバー19で覆い、その中に空調設備による温度制御を行うことで、チューブ2の温度を50℃以下に維持する。
In FIG. 1, the block diagram of the coating apparatus used by this invention is shown.
The tube 2 wound around the unwinding device 1 is pulled out, and while the meandering detection sensor 3 monitors the meandering, it passes through the entrance-side guide roller 4 and the entrance-side dancer roll 5 and is guided to the coater machine 6 to the surface. The material is applied. After the application, the tube 2 measures the thickness of the brazing material coating film with a coating film thickness meter of 7, and then is inserted into the induction heating furnace 8 and fixed. The tube 2 exiting the induction heating furnace 8 passes through the hot air dryer 9 and the air spray cooling device 10 and is cooled to 50 ° C. or less by the air cooling device 11. The tube 2 cooled to 50 ° C. or less passes through the exit guide roller 12 and the bridle roll 13 and is composed of the exit dancer roll 14, the counterbalance cylinder 15, and an electropneumatic regulator not shown in FIG. While being guided to the tension control device 17 and being subjected to tension adjustment, the winding is performed by the winding device 18 that is subjected to the alignment winding control. In addition, in order to maintain the temperature of the tube 2 at 50 ° C. or less, the temperature from the winding device 18 to the exit side dancer roll 14 is covered with a cover 19 and the temperature of the tube 2 is controlled by air conditioning equipment therein. Is maintained below 50 ° C.

図2に、張力制御装置17の配置を示す。
コイルの巻付け力が一定になるように巻取り開始時は張力を強くし、巻取りの終わりにつれて張力を弱くしていくために、出側ダンサーロール14にカウンターバランスシリンダー15を取付け、コイルの巻取り径を制御信号に用い、その信号をカウンターバランスシリンダー15の圧力を制御する電空変換レギュレーター16へと送り、コイル径に比例させてその圧力を増加させることでカウンターバランスシリンダー15の出力を増加させ、それにより出側ダンサーロール14がチューブ2に与える張力を減少させていく。
FIG. 2 shows the arrangement of the tension control device 17.
In order to increase the tension at the start of winding so that the coil winding force is constant and to decrease the tension at the end of winding, a counter balance cylinder 15 is attached to the outgoing dancer roll 14 and the coil The winding diameter is used as a control signal, and the signal is sent to an electropneumatic conversion regulator 16 that controls the pressure of the counterbalance cylinder 15, and the output of the counterbalance cylinder 15 is increased by increasing the pressure in proportion to the coil diameter. The tension applied to the tube 2 by the outgoing dancer roll 14 is decreased.

図3に巻取り装置18の全体図を示す。
コイルターン部20でリコイラーストップ角の角度制御とリコイラー移動速度の速度制御を組み合わせて行うものである。即ち、コイルターン部20においてリコイラー21を停め、リコイラー21に設置されたチューブ2を巻取るボビン22が、リコイラー停止時より設定角度分回転するまでチューブを巻取る。次に、ボビン22の回転角度が設定角度に到達したらボビン22にチューブ2が数列巻かれるまでリコイラー21を所定の移動速度より増速して移動させる。その後、移動速度を所定速度に戻して巻取りを行う制御方法により整列巻ピッチの乱れを防ぐ。23はリコイラー21を移動させるためのサーボモーターで、24は巻取り軸である。
FIG. 3 shows an overall view of the winding device 18.
The coil turn unit 20 performs angle control of the recoiler stop angle and speed control of the recoiler moving speed in combination. That is, the recoiler 21 is stopped at the coil turn section 20 and the tube is wound until the bobbin 22 that winds the tube 2 installed on the recoiler 21 rotates by a set angle from the time when the recoiler is stopped. Next, when the rotation angle of the bobbin 22 reaches the set angle, the recoiler 21 is moved at a speed higher than the predetermined moving speed until the tube 2 is wound around the bobbin 22 in several rows . Thereafter, disturbance of the aligned winding pitch is prevented by a control method in which the moving speed is returned to a predetermined speed and winding is performed. Reference numeral 23 denotes a servo motor for moving the recoiler 21, and reference numeral 24 denotes a winding shaft.

チューブを巻取るリコイラーの移動速度および位置の制御はサーボモーターで行う。図4は、その制御方法のフローチャートを示す。
コイルのターンポイントをサーボモーターからのパルス信号を入力して制御ユニットに認識させ、そのターンポイントでサーボモーターの回転を停める指令をサーボモーターに出力する。その後、リコイラーを回転させるベクトルインバーターモーターのパルス信号を制御ユニットへ入力し、ベクトルインバーターモーターの回転角度が設定角度になったらサーボモーターの回転速度を増速させてサーボモーターをスタートさせリコイラーを移動させる。チューブを数列巻取ったところで再び元の回転速度へ戻すことをプログラムにて制御する方法である。
The servo motor controls the moving speed and position of the recoiler that winds the tube. FIG. 4 shows a flowchart of the control method.
A pulse signal from the servomotor is input to the coil turn point to cause the control unit to recognize it, and a command to stop the rotation of the servo motor at that turn point is output to the servo motor. After that, the pulse signal of the vector inverter motor that rotates the recoiler is input to the control unit. When the rotation angle of the vector inverter motor reaches the set angle, the servo motor speed is increased to start the servo motor and move the recoiler. . This is a method of controlling by a program that the tube is wound up in several rows and then returned to the original rotational speed again.

(実施例1)
アルミニウム合金を熱間押出成形して製造した21穴アルミニウム合金製押出多孔偏平管(偏平管寸法:巾16.15mm、厚さ1.1mm、孔寸法:約0.6mm、孔間隔約0.2mm)を塗装した全長23,000mのものを共試材に用いて行った。
この共試材を図1に示す塗装装置により、ろう材を管の両サイドの偏平面に塗装した後、140℃での乾燥を施し、冷却装置により47℃に冷却して、巻取り速度80m/分で巻き取った。
巻取りの状態は、整列巻きについては押出多孔偏平管の間隔を目標19.15mmにセットして図5のような整列巻取りを行い、1,000m、5,000m、10,000m、15,000m、20,000m、及び23,000m地点で一度ラインを止め、その間隔を測定した。その結果を表1に記す。
Example 1
21 hole aluminum alloy extruded porous flat tube manufactured by hot extrusion molding of aluminum alloy (flat tube size: width 16.15 mm, thickness 1.1 mm, hole size: about 0.6 mm, hole interval about 0.2 mm ) Was used for the co-test material.
The coating apparatus according to this co試材in FIG. 1, after coating a brazing material on the polarization plane of both sides of the tube, subjected to drying at 140 ° C., cooled to 47 ° C. by cooling, winding speed 80m Winded up at / min .
As for the winding state, for the aligned winding, the interval between the extruded porous flat tubes is set to a target of 19.15 mm, and the aligned winding as shown in FIG. 5 is performed, and 1,000 m, 5,000 m, 10,000 m, 15, The lines were once stopped at 000 m, 20,000 m, and 23,000 m, and the intervals were measured. The results are shown in Table 1.

Figure 0004361813
Figure 0004361813

表1から明らかなように、全て間隔が目標数値の±1mm以内であった。   As is apparent from Table 1, all the intervals were within ± 1 mm of the target numerical value.

コイル形状については、23,000mを巻き終わった後に、図6に示すようにコイル表面にストレートゲージをあて、ストレートゲージとコイル表面との隙間Aを隙間ゲージにて測定したところ、コイルの凹凸差が1mm以内であった。   Regarding the coil shape, after winding 23,000 m, a straight gauge was applied to the coil surface as shown in FIG. 6, and the gap A between the straight gauge and the coil surface was measured with the gap gauge. Was within 1 mm.

なお、使用した塗料は3フッ化亜鉛酸カリウムを3−メトキシ−3−メチル−1−ブチル66.6%、水13.6%、アクリル樹脂12.7%、3−メトキシ−1−ブタノール5.9%、N、N−ジメチルアミノエタノール0.7%、2−(イソプロピルアミノ)エタノール0.5%含まれた液体に混合したものを用いた。 In addition, the coating material used is potassium trifluoride zinc 3-methoxy-3-methyl-1-butyl 66.6%, water 13.6%, acrylic resin 12.7%, 3-methoxy-1-butanol 5 A mixture of 9.9%, N, N-dimethylaminoethanol 0.7% and 2- (isopropylamino) ethanol 0.5% was used.

比較例1
比較例として塗装されたチューブを一定張力で巻き付けた場合のコイル形状を実施例1と同様の図6に示す方法で測定した結果を表2に示す。
コイル表面で3〜4mmの凹凸が発生し、且つ整列巻きピッチも最大7mmと大きく乱れた。
( Comparative Example 1 )
As a comparative example, Table 2 shows the results of measuring the coil shape when a coated tube is wound at a constant tension by the method shown in FIG.
Concavities and convexities of 3 to 4 mm were generated on the coil surface, and the aligned winding pitch was greatly disturbed to a maximum of 7 mm.

Figure 0004361813
Figure 0004361813

(比較例2)
第2の比較例として塗装されたチューブを一定トルクで巻き付けた場合のコイル形状を実施例1と同様の図6に示す方法で測定した結果を表3に示す。
コイル表面は2〜3mmの凹凸が発生し、且つ整列巻きピッチも最大5mmと大きく乱れていた。
(Comparative Example 2)
As a second comparative example, Table 3 shows the results of measuring the coil shape when a coated tube is wound with a constant torque by the method shown in FIG.
The coil surface had irregularities of 2 to 3 mm, and the aligned winding pitch was greatly disturbed at a maximum of 5 mm.

Figure 0004361813
Figure 0004361813

(比較例3)
第3の比較例として、実施例1の方法における冷却装置の冷却度を弱めて、材料を60℃の温度で巻き取った場合のコイル形状を実施例1と同様の図6に示す方法で測定した結果を表4に示す。
表4で明らかなように、コイル表面には7mmの凹凸が発生し、且つ整列巻きピッチも最大5mmと大きく乱れた。
(Comparative Example 3)
As a third comparative example, the cooling degree of the cooling device in the method of Example 1 was weakened, and the coil shape when the material was wound at a temperature of 60 ° C. was measured by the method shown in FIG. Table 4 shows the results.
As is apparent from Table 4, irregularities of 7 mm were generated on the coil surface, and the aligned winding pitch was greatly disturbed to a maximum of 5 mm.

Figure 0004361813
Figure 0004361813

(比較例4)
第4の比較例として、実施例1の方法において、ターン部制御をせずにコイル形状に巻取った場合のコイル形状を実施例1と同様の図6に示す方法で測定した結果を表5に示す。
コイル表面には3〜4mmの凹凸が発生し、且つ整列巻きピッチも最大9mmと大きく乱れていた。
(Comparative Example 4)
As a fourth comparative example, the results of measuring the coil shape in the method of Example 1 in the case of winding into a coil shape without controlling the turn part by the method shown in FIG. Shown in
Concavities and convexities of 3 to 4 mm were generated on the coil surface, and the aligned winding pitch was greatly disturbed at a maximum of 9 mm.

Figure 0004361813
Figure 0004361813

本発明に係る塗装・巻取り装置の構成図である。It is a block diagram of the coating and winding apparatus which concerns on this invention. 張力制御装置の構成図である。It is a block diagram of a tension control device. 巻取り装置の構成図である。It is a block diagram of a winding device. 整列巻取り制御の制御方式を示すフローチャートである。It is a flowchart which shows the control system of aligned winding control. 実施例で用いた整列巻取けを示す断面図である。It is sectional drawing which shows the alignment winding used in the Example. コイル表面形状の測定箇所方法を示す説明図である。It is explanatory drawing which shows the measuring location method of a coil surface shape. 多孔偏平管の一例を示す断面図である。It is sectional drawing which shows an example of a porous flat tube. (a)巻取り開始直後の巻取り角度、張力、巻付け力の関係を示す模式図である。(b)巻取り終了直前の巻取り角度、張力、巻付け力の関係を示す模式図である。(A) It is a schematic diagram which shows the relationship between the winding angle immediately after winding start, tension | tensile_strength, and winding force. (B) It is a schematic diagram which shows the relationship between the winding angle immediately before completion | finish of winding, tension | tensile_strength, and winding force. 巻取りコイルにおける多孔偏平管の重なりを示す部分図である。It is a fragmentary figure which shows the overlap of the porous flat tube in a winding coil.

1 巻出し装置
2 多孔偏平管(チューブ)
2a 多孔偏平管コイル
3 蛇行検出センサー
4 入側ガイドローラ
5 入側ダンサーロール
6 コーターマシン
7 塗膜厚み計
8 誘導加熱炉
9 熱風乾燥
10 エアースプレー冷却装置
11 エアー冷却装置
12 出側ダンサーロール
13 ブライドルロール
14 出側ダンサーロール
14a 制御信号入力(リコイラー回転補正)
15 カウンターバランスシリンダー
16 電空レギュレーター
16a 制御信号入力(コイル径)
17 張力制御装置
18 巻取り装置
19 カバー
20 コイルターン部
21 リコイラー
22 ボビン
23 サーボモーター
24 巻取り軸
50 小孔
51 上層部
52 下層部
1 Unwinding device 2 Perforated flat tube (tube)
2a perforated flattened pipe coil 3 meandering detection sensor 4 inlet side guide roller 5 entry side dancer roll 6 coater machine 7 coating thickness meter 8 induction furnace 9 a hot air dryer 10 air spray cooling system 11 Air cooler 12 exit-side dancer roll 13 Bridle roll 14 Outgoing dancer roll 14a Control signal input (Recoiler rotation correction)
15 Counterbalance cylinder 16 Pneumatic regulator 16a Control signal input (coil diameter)
17 Tension control device 18 Winding device 19 Cover 20 Coil turn portion 21 Recoiler 22 Bobbin 23 Servo motor 24 Winding shaft 50 Small hole 51 Upper layer portion 52 Lower layer portion

Claims (8)

表面を塗装した多孔偏平管をコイル形態へ巻取りする方法において、多孔偏平管のコイル形態への巻取りの進行に伴って多孔偏平管に付与する張力を小さくしていく張力制御とコイル形態への巻取り時の多孔偏平管温度が50℃以下である温度制御とをしながら、コイル形態が整列巻となるように巻取り装置を制御してコイル形態に巻取る多孔偏平管の整列巻取り方法。 In the method of winding a porous flat tube with a coated surface into a coil configuration, the tension applied to the porous flat tube and the coil configuration are reduced as the winding of the porous flat tube into the coil configuration progresses. Alignment winding of a porous flat tube that is wound into a coil shape by controlling the winding device so that the coil shape is aligned winding while controlling the temperature so that the temperature of the porous flat tube is 50 ° C. or less at the time of winding Method. 前記張力制御が電空変換制御方式で行われることを特徴とする請求項1記載の多孔偏平管の整列巻取り方法。 2. The method according to claim 1, wherein the tension control is performed by an electropneumatic conversion control system. 前記電空変換制御方式が、ダンサーロールとカウンターバランスシリンダーと電空レギュレーターとから構成される制御装置で行われることを特徴とする請求項1及び請求項2記載の多孔偏平管の整列巻取り方法。 The method of aligning and winding porous flat tubes according to claim 1 or 2, wherein the electropneumatic conversion control system is performed by a control device including a dancer roll, a counterbalance cylinder, and an electropneumatic regulator. . 前記コイル形態が整列巻となるように巻取り装置を制御する方法が、多孔偏平管を巻き付けるボビンを備えるリコイラーと前記リコイラーの移動装置とその制御装置とからなる巻取り装置を用いて、多孔偏平管が前記ボビンの端部に到着するように前記リコイラーを所定速度で移動させて多孔偏平管を到着させた後、前記リコイラーの移動を止め、次いでその逆方向に移動させる時、多孔偏平管が前記ボビンに数列巻かれるまで、その移動速度を前記所定速度より速くして巻取り、その後前記所定速度に戻して巻取りを行うことを特徴とする請求項1乃至請求項3記載の多孔偏平管の整列巻取り方法。 A method for controlling a winding device so that the coil form is aligned winding uses a winding device comprising a recoiler comprising a bobbin for winding a porous flat tube, a moving device of the recoiler, and a control device thereof. After moving the recoiler at a predetermined speed so that the tube reaches the end of the bobbin and arriving at the porous flat tube, when the movement of the recoiler is stopped and then moved in the opposite direction, the porous flat tube is until wound sequences in the bobbin, perforated flat tube of the moving speed the predetermined speed faster and wound, then claims 1 to 3, wherein: performing the winding is returned to a predetermined speed Aligned winding method. 多孔偏平管の塗装・整列巻取り装置において、コイル形態に巻かれた多孔偏平管を供給する巻出し機と、前記巻出し機より引き出された多孔偏平管の面上に塗料を塗布するコーターマシンと、前記塗布された塗料を多孔偏平管に固着化する加熱装置と、加熱された多孔偏平管を所定温度へ冷却する冷却装置と、冷却された多孔偏平管のコイル形態への巻取りの進行に伴って多孔偏平管に付与する張力を小さくしていく張力制御を行う張力制御装置と、巻取り時の多孔偏平管温度が50℃以下である温度制御をしながら整列巻取り制御が施されている巻取り機とからなることを特徴とする多孔偏平管の塗装・整列巻取り装置。 In a coating / aligning winding device for a porous flat tube, an unwinding machine for supplying a porous flat tube wound in a coil form, and a coater machine for applying a paint onto the surface of the porous flat tube drawn out from the unwinding machine A heating device for fixing the applied paint to the porous flat tube, a cooling device for cooling the heated porous flat tube to a predetermined temperature, and the progress of winding the cooled porous flat tube into a coil form Along with the tension control device that controls the tension to reduce the tension applied to the porous flat tube, and the alignment winding control is performed while controlling the temperature at which the porous flat tube temperature during winding is 50 ° C. or less. A winding and painting apparatus for a porous flat tube characterized by comprising a winding machine. 前記張力制御が電空変換制御方式で行われることを特徴とする請求項5記載の多孔偏平管の塗装・整列巻取り装置。6. The perforated flat tube coating / aligning winding apparatus according to claim 5, wherein the tension control is performed by an electropneumatic conversion control system. 前記電空変換制御方式が、ダンサーロールとカウンターバランスシリンダーと電空レギュレーターとから構成される制御装置で行われることを特徴とする請求項5及び請求項6記載の多孔偏平管の塗装・整列巻取り装置。The said electropneumatic conversion control system is performed by the control apparatus comprised from a dancer roll, a counter balance cylinder, and an electropneumatic regulator, The coating and alignment winding of the porous flat tube of Claim 5 and Claim 6 characterized by the above-mentioned. Take-off device. 前記コイル形態が整列巻となるように巻取り装置を制御する方法が、多孔偏平管を巻き付けるボビンを備えるリコイラーと前記リコイラーの移動装置とその制御装置とからなる巻取り装置を用いて、多孔偏平管が前記ボビンの端部に到着するように前記リコイラーを所定速度で移動させて多孔偏平管を到着させた後、前記リコイラーの移動を止め、次いでその逆方向に移動させる時、多孔偏平管が前記ボビンに数列巻かれるまで、その移動速度を前記所定速度より速くして巻取り、その後前記所定速度に戻して巻取りを行うことを特徴とする請求項5乃至請求項7記載の多孔偏平管の塗装・整列巻取り装置。A method for controlling a winding device so that the coil form is aligned winding uses a winding device comprising a recoiler comprising a bobbin for winding a porous flat tube, a moving device of the recoiler, and a control device thereof. After moving the recoiler at a predetermined speed so that the tube reaches the end of the bobbin and arriving at the porous flat tube, when the movement of the recoiler is stopped and then moved in the opposite direction, the porous flat tube is The porous flat tube according to any one of claims 5 to 7, wherein winding is performed by making the moving speed faster than the predetermined speed until the bobbin is wound in several rows, and then returning to the predetermined speed. Painting and alignment winding device.
JP2004014874A 2004-01-22 2004-01-22 Aligned winding method and winding apparatus for porous flat tubes Expired - Fee Related JP4361813B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004014874A JP4361813B2 (en) 2004-01-22 2004-01-22 Aligned winding method and winding apparatus for porous flat tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004014874A JP4361813B2 (en) 2004-01-22 2004-01-22 Aligned winding method and winding apparatus for porous flat tubes

Publications (2)

Publication Number Publication Date
JP2005205456A JP2005205456A (en) 2005-08-04
JP4361813B2 true JP4361813B2 (en) 2009-11-11

Family

ID=34900532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004014874A Expired - Fee Related JP4361813B2 (en) 2004-01-22 2004-01-22 Aligned winding method and winding apparatus for porous flat tubes

Country Status (1)

Country Link
JP (1) JP4361813B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105060020A (en) * 2015-08-26 2015-11-18 山东菲达电器有限公司 Automatic tensioning device for winding machine
CN108672539B (en) * 2018-04-04 2024-09-03 沧州智友宝行汽车配件有限公司 Automatic film spreading and recovering device for metal stretching process
CN109650161B (en) * 2018-12-20 2021-02-12 赣州齐畅新材料有限公司 Automatic winding machine for rare earth wire roller for round wire

Also Published As

Publication number Publication date
JP2005205456A (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JPH08300044A (en) Wire rod continuous straightening device
EP2514534A1 (en) Equipment for manufacturing a cold-rolled material, and cold-rolling method
JP4361813B2 (en) Aligned winding method and winding apparatus for porous flat tubes
JP4696814B2 (en) Coating rod, coating apparatus and method using the same, and film manufacturing apparatus and method
RU2403112C1 (en) Method and device for coiling hot-rolled strip
JP2007179983A (en) Manufacturing method of coated steel wire
CN117819275A (en) Constant-speed constant-tension control method and system in metal heat treatment process
JP7225880B2 (en) Method for manufacturing hot-rolled coil
EP2949408B1 (en) Method and device for plastic stretching of a metal wire
KR20180013905A (en) Method for the stepped rolling of a metal strip
JPH0341336B2 (en)
JP6456505B2 (en) Hot rolling bar winding and unwinding device
CN103316829A (en) Process for continuously coating brazing flux on surfaces of aluminum and aluminum alloy parallel flow tubes
KR101728013B1 (en) A Winding Device
JP6051944B2 (en) Manufacturing apparatus and manufacturing method of differential steel plate
JP2016078078A (en) Plate thickness control method for tapered steel plate having plate thickness changed in tapered shape in rolling direction
JP3774709B2 (en) Method and apparatus for forming a single bead wire bead
JPH02298246A (en) Method for continuously plating metal strip with molten metal
CN116786592A (en) Strip steel tail positioning method and device for hot continuous rolling coiling machine
KR100839448B1 (en) Method for controlling tension in continuous process line
KR101022441B1 (en) Method for manufacturing hot rolled steel strip by continuous hot rolling equipment
JP2008121049A (en) Powder clad production line
JPH09110292A (en) Winder of thin pipe
JP2014161892A (en) Manufacturing apparatus and manufacturing method for differential thickness steel plate
CN114367404A (en) Roller-spraying integrated intelligent coating production line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4361813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150821

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees