JP4360230B2 - Pharmaceutical manufacturing plant components - Google Patents

Pharmaceutical manufacturing plant components Download PDF

Info

Publication number
JP4360230B2
JP4360230B2 JP2004047235A JP2004047235A JP4360230B2 JP 4360230 B2 JP4360230 B2 JP 4360230B2 JP 2004047235 A JP2004047235 A JP 2004047235A JP 2004047235 A JP2004047235 A JP 2004047235A JP 4360230 B2 JP4360230 B2 JP 4360230B2
Authority
JP
Japan
Prior art keywords
less
amount
pharmaceutical
pharmaceutical manufacturing
inevitable impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004047235A
Other languages
Japanese (ja)
Other versions
JP2005240053A (en
Inventor
克生 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004047235A priority Critical patent/JP4360230B2/en
Publication of JP2005240053A publication Critical patent/JP2005240053A/en
Application granted granted Critical
Publication of JP4360230B2 publication Critical patent/JP4360230B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Heat Treatment Of Articles (AREA)

Description

この発明は、高温加工性に優れかつ比較的弱い酸や強アルカリ環境に曝される環境下において金属イオン溶出量が著しく小さい耐食性に優れたNi基合金にからなる医薬品製造プラント部材に関するものである。 SUMMARY OF THE INVENTION The present invention relates to pharmaceutical production plants member made of a Ni-based alloy metal ion elution amount is excellent in significantly less corrosion resistance in an environment exposed to high and relatively weak acids and strong alkaline environment to a high temperature processability is there.

近年、医薬品製造プラントでは、医薬品の安全性を確保するGMPバリデーション(薬事法で定められた医薬品製造にかかわる上流から製品出荷までの全ての過程での不良をなくすための予防的手段の確立)にのっとった製造方法が義務付けられている。
一方で、医薬品バルク生成プロセスでは、創薬技術の加速化に伴い多品種少量生産への要求が年々高まり、同一装置で異なるプロセスを実施しなければ対応できない状況になっている。それゆえ広範な運転条件(腐食環境)に対して汚染が発生すること無くバッチブロセスを行うための多目的装置用材料の必要性が高まってきている。
In recent years, in pharmaceutical manufacturing plants, GMP validation (establishment of preventive measures to eliminate defects in all processes from upstream to product shipping related to pharmaceutical manufacturing stipulated by the Pharmaceutical Affairs Law) to ensure the safety of pharmaceuticals There is a mandatory manufacturing method.
On the other hand, in the bulk drug production process, with the acceleration of drug discovery technology, the demand for high-mix low-volume production has been increasing year by year, and it is in a situation that cannot be handled unless different processes are performed on the same device. Therefore, there is an increasing need for multipurpose equipment materials for batch processing without causing contamination over a wide range of operating conditions (corrosive environment).

これに対して、現在使用されている医薬品製造プラントは、炭素鋼にグラスライニングを施すことによりプロセス液の汚染を最小限に抑制した構造の医薬品製造プラントが使用されている。しかし、このグラスライニングが施された医薬品製造プラントは、グラスライニングが破損してガラス片が製品に混入する恐れがあること、静電気が発生して有機溶剤ハンドリング中に爆発する恐れがあること、熱伝導性が悪いのでプロセスの微妙な制御が困難であること、グラスライニングはフッ化水素およびアルカリに弱いのでかかる環境下において操業して得られた医薬製品が汚染される原因になることなどの欠点があった。   On the other hand, the pharmaceutical manufacturing plant currently used is a pharmaceutical manufacturing plant having a structure in which contamination of the process liquid is minimized by applying glass lining to carbon steel. However, pharmaceutical manufacturing plants with this glass lining have the potential to break glass lining and cause glass fragments to enter the product, to generate static electricity and to explode during organic solvent handling, Disadvantages such as difficult conductivity control due to poor conductivity, and glass lining is vulnerable to hydrogen fluoride and alkali, causing contamination of pharmaceutical products obtained by operating in such an environment. was there.

これら欠点を克服するために、医薬品製造プラントの材料として、例えば、高温加工性に優れかつ耐食性に優れたステンレス鋼やステンレス鋼よりも耐食性が遥かに優れているハステロイC−22(商標名)(UNS No.06022と規格化されている合金)といった耐食性ニッケル基合金が選定され採用されつつある。   In order to overcome these drawbacks, as a material of a pharmaceutical manufacturing plant, for example, stainless steel excellent in high-temperature processability and corrosion resistance, and Hastelloy C-22 (trade name) (which has far superior corrosion resistance than stainless steel) ( Corrosion-resistant nickel-based alloys such as UNS No. 06022 are standardized and are being adopted.

前記ステンレス鋼やハステロイC−22は、いずれも腐食試験前後での腐食速度(mm/year)が0.1mm/year未満であるので、一般の医薬品製造プラントの構造部材としてエクセレントと判定される。しかし、先に述べたような医薬品の安全性を確保するGMPバリデーションを満たし、さらに、多品種少量生産するために同一装置で異なるプロセスを実施しても汚染されること無くバッチブロセスを行うためには従来のステンレス鋼やハステロイC−22では金属イオンの溶出量が多く、この溶出した金属イオンは汚染の原因となるので十分満足できる材料とはなっていない。   Since both stainless steel and Hastelloy C-22 have a corrosion rate (mm / year) before and after the corrosion test of less than 0.1 mm / year, they are judged to be excellent as structural members of a general pharmaceutical manufacturing plant. However, in order to satisfy the GMP validation to ensure the safety of pharmaceuticals as described above, and to carry out batch processes without contamination even if different processes are performed on the same device to produce a variety of products in small quantities In conventional stainless steel and Hastelloy C-22, a large amount of metal ions are eluted, and the eluted metal ions cause contamination, and are not sufficiently satisfactory materials.

そのため、金属イオンの溶出が少なくかつ耐食性に優れた材料として、質量%で(以下、%は質量%を示す)Cr:38〜50%、MoおよびWの内の1種または2種:0.1〜2%を含有し、さらに必要に応じて(i)Cu:0.1〜2%、(ii)Ca:0.001〜0.01%、(iii)Zr,Nb,TaおよびHfの内の1種または2種以上:0.1〜3%、(iv)Yおよび希土類元素の内の1種または2種以上:0.001〜0.01%、上記(i)〜(iv) の内の1種または2種以上を含有し、残りがNiと不可避不純物からなる組成を有し、かつ不可避不純物としてCおよびN成分の含有量をC:0.05%以下、N:0.04%以下とし、さらにその他の不可避不純物としてFe:0.3%以下、Mn:0.3%以下、Ti:0.3%以下、Al:0.3%以下、Mg:0.05%以下を含有する曲げ加工性に優れた耐食性Ni−Cr系合金が知られており(特許文献1参照)、このNi−Cr系合金が医薬品製造プラントの材料として注目されはじめている。
特公平6−94579号公報
Therefore, as a material with less metal ion elution and excellent corrosion resistance, it is expressed in mass% (hereinafter,% indicates mass%) Cr: 38 to 50%, one or two of Mo and W: 0.0. 1 to 2%, and if necessary, (i) Cu: 0.1 to 2%, (ii) Ca: 0.001 to 0.01%, (iii) Zr, Nb, Ta and Hf One or more of: 0.1 to 3%, (iv) One or more of Y and rare earth elements: 0.001 to 0.01%, (i) to (iv) above 1 or 2 or more, and the remainder is composed of Ni and inevitable impurities, and the contents of C and N components as inevitable impurities are C: 0.05% or less, N: 0.00. 04% or less, and other inevitable impurities Fe: 0.3% or less, Mn: 0.3% or less, Ti: 0.3% or less Corrosion-resistant Ni—Cr alloys having excellent bending workability containing Al: 0.3% or less and Mg: 0.05% or less are known (see Patent Document 1). It has begun to attract attention as a material for pharmaceutical manufacturing plants.
Japanese Patent Publication No. 6-94579

しかし、前記Ni−Cr系合金は、優れた耐食性および曲げ加工性を有するものの、熱間での加工性に劣り、例えば、熱間押し出し性の指標となる高温における変形能が低いため、例えば、シームレスパイプやその他の複雑形状の機械部品を製造することは困難である。この高温における変形能の低下の原因の一つとして相安定性が良くないことがあげられるが、相安定性が良くないと金属イオンの溶出が大きくなり、特に溶接部およびその熱影響部から金属イオンの溶出が著しく大きくなるなどの課題があった。   However, although the Ni-Cr-based alloy has excellent corrosion resistance and bending workability, it is inferior in hot workability, for example, because its deformability at high temperatures that is an index of hot extrudability is low, It is difficult to produce seamless pipes and other complex shaped machine parts. One of the causes of the deterioration of the deformability at high temperature is that the phase stability is not good, but if the phase stability is not good, the elution of metal ions increases, especially from the weld and its heat-affected zone. There were problems such as significant elution of ions.

そこで、本発明者らは、高温加工性に優れかつ金属イオンの溶出、特に溶接部からの金属イオン溶出が極めて少ない金属材料を得るべく鋭意研究を行った。
その結果、質量%(以下、%は質量%を示す)でCr:29〜42%未満含有するNi基合金にTa:1超〜3%と、Mg:0.001〜0.05%と、N:0.001〜0.04%と、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有せしめ、さらに、必要に応じてMo:0.1〜2%、Fe:0.05〜1.0%およびSi:0.01〜0.1%を1種または2種以上を含有せしめ、残りがNiおよび不可避不純物からなり、不可避不純物としてのCを0.05%以下に調整した組成を有するNi基合金は、高温加工性に優れかつ比較的弱い酸や強アルカリ環境下における腐食速度(mm/year)が0.1mm/year未満でありさらに金属イオンの溶出が著しく少ないことから、この成分組成を有するNi−Cr系合金は比較的弱い酸や強アルカリ環境下にある医薬品製造プラントなどの材料として一層優れた効果を有する、という知見を得たのである。
Accordingly, the present inventors have intensively studied to obtain a metal material that is excellent in high-temperature workability and has very little metal ion elution, particularly metal ion elution from a weld.
As a result, the Ni-based alloy containing Cr: 29-42% in mass% (hereinafter,% indicates mass%), Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.5%, B: 0.0005 to 0.01%, and Mo: 0.1 to 2 as necessary %, Fe: 0.05 to 1.0% and Si: 0.01 to 0.1% are contained in one kind or two or more kinds, and the rest is made of Ni and inevitable impurities, and C as an inevitable impurity is 0 The Ni-based alloy having a composition adjusted to 0.05% or less is excellent in high-temperature workability and has a corrosion rate (mm / year) of less than 0.1 mm / year in a relatively weak acid or strong alkaline environment. Of Ni-C having this component composition System alloy has a more excellent effect as a material such as a relatively weak acid and strong pharmaceutical production plant in an alkaline environment, it was obtained a finding that.

この発明は、かかる知見に基づいてなされたものであって、
(1)質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなる医薬品製造プラント部材
(2)質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにMo:0.1〜2%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなる医薬品製造プラント部材
(3)質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにFe:0.05〜1.0%およびSi:0.01〜0.1%の1種または2種を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなる医薬品製造プラント部材
(4)質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにMo:0.1〜2%を含有し、さらにFe:0.05〜1.0%およびSi:0.01〜0.1%の1種または2種を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなる医薬品製造プラント部材、に特徴を有するものである。
This invention has been made based on such knowledge,
(1) By mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 0.5%, B: 0.0005% to 0.01%, with the balance being Ni and inevitable impurities, Ni group having a composition in which the amount of C contained as inevitable impurities is adjusted to 0.05% or less Pharmaceutical manufacturing plant parts made of alloys ,
(2) By mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 -0.5%, B: 0.0005-0.01%, Mo: 0.1-2% further, the balance consisting of Ni and inevitable impurities, the amount of C contained as inevitable impurities A pharmaceutical production plant member comprising a Ni-based alloy having a composition adjusted to 0.05% or less,
(3) By mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 -0.5%, B: 0.0005-0.01%, and Fe: 0.05-1.0% and Si: 0.01-0.1% A pharmaceutical production plant member comprising a Ni-based alloy having a composition in which the balance is made of Ni and inevitable impurities, and the amount of C contained as inevitable impurities is adjusted to 0.05% or less,
(4) By mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 -0.5%, B: 0.0005-0.01%, Mo: 0.1-2%, Fe: 0.05-1.0% and Si: 0.01 Production of a pharmaceutical comprising a Ni-based alloy having a composition containing one or two of ~ 0.1%, the balance being Ni and inevitable impurities, and the amount of C contained as inevitable impurities being adjusted to 0.05% or less The plant member has a feature.

次に、この発明の金属イオン溶出量が著しく小さいNi基合金からなる医薬品製造プラント部材における各元素の限定理由について詳述する. Next, the reason for limitation of each element in a pharmaceutical production plant member made of a Ni-based alloy with a remarkably small amount of metal ion elution of the present invention will be described in detail.

Cr、Ta:
医薬品製造プラントなどの比較的弱い酸や強アルカリ環境下では、CrとTaが同時に含有することにより耐食性が著しく向上する。その場合、Crは29%以上含有することが必要であるが、しかし42%以上含有するとTaとの組合せにおいて単一相化が困難になり、金属イオンの溶出量が増大するので好ましくない。したがって、Cr含有量を29〜42%未満に定めた。一層好ましくは、35〜41%である。
同様にTaは1%を越えて含有することが必要であるが、3%を超えて含有するとCrとの組合せにおいて相安定性が劣化し、金属イオンの溶出量が増大するので好ましくない。したがって、Taの含有量を1超〜3%(一層好ましくは1.1〜2.5%未満)に定めた。
Cr, Ta:
In a relatively weak acid or strong alkali environment such as a pharmaceutical manufacturing plant, the corrosion resistance is remarkably improved by simultaneously containing Cr and Ta. In that case, it is necessary to contain 29% or more of Cr, but if it contains 42% or more, it becomes difficult to form a single phase in combination with Ta, and the amount of elution of metal ions increases, which is not preferable. Therefore, the Cr content is set to 29 to less than 42%. More preferably, it is 35 to 41%.
Similarly, it is necessary to contain Ta in excess of 1%. However, inclusion in excess of 3% is not preferable because phase stability deteriorates in combination with Cr, and the elution amount of metal ions increases. Therefore, the Ta content is determined to be more than 1 to 3% (more preferably less than 1.1 to 2.5%).

N、MnおよびMg:
N、MnおよびMgを共存させることにより、相安定性を向上させることができる。すなわち、N、MnおよびMgは母相であるNi-fcc相を安定化させ、Crの固溶化を促進し、第2相を析出しにくくする効果がある。その結果として高温加工性、特に高温での変形能の向上や溶接部とその熱影響部における耐食性、特に医薬品製造プラント等の比較的弱い酸や強アルカリ環境でのそれらの耐食性の劣化を抑制する効果がある。しかし、Nの含有量が0.001%未満では相安定化の効果はなく、したがって高温加工性の向上や溶接部耐食性劣化の抑制に対する効果がなく、一方、0.04%を超えて含有すると窒化物を形成し、高温加工性が劣化すると同時に溶接部やその熱影響部の金属イオンの溶出量が増大するため、Nの含有量を0.001〜0.04%(一層好ましくは、0.005〜0.03%)とした。
同様に、Mnの含有量が0.05%未満では相安定化の効果はなく、したがって、高温加工性の向上や溶接部耐食性劣化の抑制に対する効果がないので好ましくなく、一方、0.5%を超えて含有すると相安定性を損ね、高温加工性が劣化すると同時に溶接部やその熱影響部の金属イオンの溶出量が増大するため、Mnの含有量を0.05〜0.5%(一層好ましくは、0.1%〜0.4%)とした。
また、同様に、Mgの含有量が0.001%未満では相安定化の効果はなく、したがって、高温加工性の向上や溶接部耐食性劣化の抑制に対する効果がないので好ましくなく、一方、0.05%を超えて含有すると相安定性を損ね、高温加工性が劣化すると同時に溶接部やその熱影響部の金属イオンの溶出量が増大するため、Mgの含有量を0.001〜0.05%(一層好ましくは、0.002%〜0.04%)とした。
なお、これら3元素の効果はそれぞれ均等ではなく、3元素が同時に所定の範囲に含有しないと効果がないことを見出している。
N, Mn and Mg:
By making N, Mn, and Mg coexist, phase stability can be improved. That is, N, Mn, and Mg have the effect of stabilizing the Ni-fcc phase that is the parent phase, promoting the solid solution of Cr, and making the second phase difficult to precipitate. As a result, high-temperature workability, especially high temperature deformability, corrosion resistance at welds and their heat-affected zones, especially deterioration of their corrosion resistance in relatively weak acid or strong alkali environments such as pharmaceutical manufacturing plants effective. However, if the content of N is less than 0.001%, there is no effect of phase stabilization, and therefore there is no effect on improvement of high temperature workability and suppression of deterioration of corrosion resistance of welds, while on the other hand, if it exceeds 0.04% Nitride is formed, high temperature workability deteriorates, and at the same time, the elution amount of metal ions in the welded part and its heat-affected zone increases, so the N content is 0.001 to 0.04% (more preferably 0 0.005 to 0.03%).
Similarly, when the content of Mn is less than 0.05%, there is no effect of phase stabilization, and therefore, it is not preferable because there is no effect on improvement of high-temperature workability and deterioration of corrosion resistance of welds, whereas 0.5% If it exceeds V, the phase stability is impaired, the high temperature workability deteriorates, and at the same time the elution amount of metal ions in the welded part and its heat-affected zone increases, so the Mn content is 0.05 to 0.5% ( More preferably, it was 0.1% to 0.4%.
Similarly, if the Mg content is less than 0.001%, there is no effect of phase stabilization, and therefore, there is no effect on improvement of high-temperature workability and suppression of deterioration of corrosion resistance of welds. If the content exceeds 05%, the phase stability is impaired, the high temperature workability deteriorates, and at the same time, the elution amount of metal ions in the welded part and its heat-affected zone increases, so the content of Mg is 0.001 to 0.05. % (More preferably 0.002% to 0.04%).
The effects of these three elements are not equal to each other, and it has been found that there is no effect unless the three elements are simultaneously contained in a predetermined range.

B:
Bは、熱間における変形能を向上させる効果があると同時に溶接凝固部においてCr偏析を抑制することにより溶接部の耐食性劣化を抑制する効果がある。しかし、その含有量が0.0005%未満では所望の効果が得られないので好ましくなく、一方、0.01%を越えて含有すると逆に熱間における変形能を低下させると同時に、逆にCrの偏析を促してしまうことから、溶接凝固部における耐食性を劣化させる傾向にあるため、B含有量を0.0005〜0.01%に定めた。一層好ましい範囲は0.001〜0.01%である。
B:
B has an effect of improving hot deformability and at the same time has an effect of suppressing deterioration of corrosion resistance of the welded portion by suppressing Cr segregation in the weld solidified portion. However, if the content is less than 0.0005%, the desired effect cannot be obtained, which is not preferable. On the other hand, if the content exceeds 0.01%, the hot deformability is reduced at the same time. Therefore, the B content is determined to be 0.0005 to 0.01% because the corrosion resistance in the weld solidified portion tends to be deteriorated. A more preferable range is 0.001 to 0.01%.

Mo:
Moは、特に微量な硫酸が含まれる、たとえば、医薬品製造プラントなどの比較的弱い酸や強アルカリ環境で硫酸濃度が上がった場合の金属イオンの溶出量が増大するのを抑制する効果があるので必要に応じて添加するが、その場合、0.1%以上含有することで効果を示すが、2%を超えて含有すると相安定性が劣化し、Cr−bcc相の固溶化を困難にしてしまうため、母相であるNi−fcc相とCr−bcc相との間でミクロ電池を形成し、結果的に金属イオンの溶出量を増大させるので好ましくない。従って、この発明のNi基合金に含まれるMoは0.1〜2%に定めた。一層好ましい範囲は0.1超〜0.5%未満である。
Mo:
Mo has an effect of suppressing an increase in the elution amount of metal ions when the sulfuric acid concentration is increased in a relatively weak acid or strong alkaline environment such as a pharmaceutical manufacturing plant that contains a particularly small amount of sulfuric acid. Although it is added as necessary, in that case, the effect is shown by containing 0.1% or more, but if it exceeds 2%, the phase stability deteriorates, making it difficult to solidify the Cr-bcc phase. Therefore, it is not preferable because a micro battery is formed between the Ni-fcc phase and the Cr-bcc phase, which are the parent phases, and as a result, the elution amount of metal ions is increased. Therefore, Mo contained in the Ni-based alloy of the present invention is set to 0.1 to 2%. A more preferred range is from more than 0.1 to less than 0.5%.

FeおよびSi:
FeおよびSiは強度を向上させる効果があるので必要に応じて添加するが、Feは0.05%以上含有することで効果を示すものの、1%を超えて含有すると医薬品製造プラント等の比較的弱い酸や強アルカリ環境における金属イオンの溶出量が増大するため、Feの含有量を0.05%〜1%(一層好ましくは、0.1〜0.5%未満)とした。
同様にSiは0.01%以上含有することで効果を示すものの、0.1%を超えて含有すると相安定性が劣化するため、特に高温加工性が劣化や溶接部耐食性の劣化が生じるため、Siの含有量を0.01%〜0.1%(一層好ましくは、0.02〜0.05%)とした。
Fe and Si:
Fe and Si have the effect of improving strength, so they are added as necessary. However, Fe is effective when contained in an amount of 0.05% or more. Since the elution amount of metal ions in a weak acid or strong alkali environment increases, the Fe content is set to 0.05% to 1% (more preferably, less than 0.1 to 0.5%).
Similarly, if Si is contained in an amount of 0.01% or more, the effect is exhibited, but if it exceeds 0.1%, the phase stability is deteriorated, and therefore, high-temperature workability is deteriorated and corrosion resistance of welds is deteriorated. The Si content is set to 0.01% to 0.1% (more preferably 0.02 to 0.05%).

C:
Cは不可避不純物として含まれるが、Cは結晶粒界近傍でCrと炭化物を形成し、金属イオンの溶出量を増大させるため、Cの含有量は少ないほど好ましく、不可避不純物に含まれるCの含有量の上限を0.05%と定めた。
C:
Although C is included as an inevitable impurity, C forms a carbide with Cr in the vicinity of the grain boundary and increases the elution amount of metal ions. Therefore, the lower the content of C, the better the content of C contained in the inevitable impurities. The upper limit of the amount was set to 0.05%.

この発明の部材は、高温加工性に優れるので製造上最も加工が困難な熱間押し出しによるシームレスパイプの製造が可能となり、また複雑な形状の部材も製造可能となり、さらに金属イオン溶出、特に溶接部の金属イオン溶出が著しく小さいところから品質管理が特に厳しくかつ比較的弱い酸や強アルカリ環境に曝され、金属イオン溶出による汚染を嫌う医薬品製造プラント部材として使用すると優れた効果をもたらすものである。 The member of the present invention is excellent in high-temperature workability, so that it is possible to produce a seamless pipe by hot extrusion, which is the most difficult to process, and it is also possible to produce a member having a complicated shape. Since the elution of metal ions is extremely small, quality control is particularly severe and it is exposed to relatively weak acid and strong alkali environments, and when used as a pharmaceutical production plant member that dislikes contamination due to elution of metal ions, an excellent effect is brought about.

いずれもC含有量の少ない原料を用意し、これらを通常の高周波溶解炉を用いて溶解し鋳造して表1〜3に示される成分組成を有するNi基合金からなる厚さ:40mm、重さ:で約5kgを有するインゴットを作製した。このインゴットを1230℃で10時間均質化熱処理を施し、1000〜1230℃の範囲内に保持しながら、1回の熱間圧延で1mmの厚さを減少させ、厚さ:30mmを有する本発明医薬品製造プラント部材1〜23、比較医薬品製造プラント部材1〜12および従来医薬品製造プラント部材1〜2を作製した。これら本発明医薬品製造プラント部材1〜23、比較医薬品製造プラント部材1〜12および従来医薬品製造プラント部材1〜2を一部切断して厚さ:30mmの厚板を作製し、この厚板を1200℃で30分間保持し水焼入れすることにより固溶化処理を施した。
一方、一部切断した残りの部分をさらに圧延して最終的に厚さ:3mmとしたのち1200℃で30分間保持し水焼入れすることにより固溶化処理を施し、表面をバフ研磨することにより薄板を作製した。このようにして作製した厚板および薄板を用いて、下記の条件で熱間捻り試験を行うことにより高温における変形能を評価し、さらに腐食試験を行うことにより耐食性を評価した。
All prepared raw materials with low C content, melted and cast using a normal high-frequency melting furnace, and made of a Ni-based alloy having the composition shown in Tables 1 to 3; thickness: 40 mm, weight An ingot having about 5 kg was prepared. This ingot is subjected to a homogenization heat treatment at 1230 ° C. for 10 hours and maintained within a range of 1000 to 1230 ° C., and the thickness of the pharmaceutical product of the present invention having a thickness of 30 mm is reduced by 1 hot rolling. Manufacturing plant members 1 to 23, comparative pharmaceutical manufacturing plant members 1 to 12 and conventional pharmaceutical manufacturing plant members 1 to 2 were produced. These pharmaceutical manufacturing plant members 1 to 23, comparative pharmaceutical manufacturing plant members 1 to 12 and conventional pharmaceutical manufacturing plant members 1 to 2 are partially cut to produce a 30 mm thick plate. The solution was solidified by holding at 30 ° C. for 30 minutes and quenching with water.
On the other hand, the remaining part that has been partially cut is further rolled to a final thickness of 3 mm, held at 1200 ° C. for 30 minutes and subjected to solid solution treatment by water quenching, and the surface is buffed to form a thin plate Was made. Using the thick plate and the thin plate thus produced, hot deformability was evaluated by performing a hot twist test under the following conditions, and corrosion resistance was evaluated by further performing a corrosion test.

(A)熱間捻り試験
先に作製した本発明医薬品製造プラント部材1〜23、比較医薬品製造プラント部材1〜12および従来医薬品製造プラント部材1〜2からなる厚さ:30mmの厚板を機械加工することにより、両側にチャック部を有し、直径:8mm、長さ:30mmの寸法を有する捻り部を持った熱間捻り試験片を作製した。この熱間捻り試験片を温度:950℃にそれぞれ15分間保持した後、歪速度を2.0/秒になるように捻り回転数を調整して試験を実施し、切断するまでの回転数を測定し、その結果を表4〜6に示すことにより高温における変形能を評価した。
(A) Machining a 30 mm thick plate made of the present invention pharmaceutical production plant members 1 to 23, comparative pharmaceutical production plant members 1 to 12 and conventional pharmaceutical production plant members 1 and 2 produced in the hot twist test destination As a result, a hot twist test piece having a chuck portion on both sides and a twist portion having a diameter of 8 mm and a length of 30 mm was produced. After holding the hot twist test piece at a temperature of 950 ° C. for 15 minutes, the test was carried out by adjusting the twist rotational speed so that the strain rate was 2.0 / second. The deformability at high temperature was evaluated by measuring and showing the results in Tables 4-6.

(B)腐食試験
先に作製した本発明医薬品製造プラント部材1〜23、比較医薬品製造プラント部材1〜12および従来医薬品製造プラント部材1〜2からなる厚さ:3mmの薄板をそれぞれ縦:30mm、横:20mmの寸法に切断して溶接無し腐食試験片を作製した。
続いて前記本発明医薬品製造プラント部材1〜23、比較医薬品製造プラント部材1〜12および従来医薬品製造プラント部材1〜2からなる厚さ:3mmの薄板をアルゴンアーク溶接器を用いて同材種の突き合わせ溶接を行い、突き合わせ溶接部を含む板から溶接ビードを中央に位置するように縦:30mm、横:20mmの寸法に切断して溶接有り腐食試験片を作製した。これら試験片の表面を研磨し、最終的に耐水エメリー紙#400仕上げの表面研摩したのち、これらをアセトン中超音波振動状態に5分間保持し脱脂した。
(B) Corrosion test The present invention pharmaceutical production plant members 1 to 23, the comparative pharmaceutical production plant members 1 to 12 and the conventional pharmaceutical production plant members 1 to 2 and the conventional pharmaceutical production plant members 1 to 2 were each made of a thin plate of 3 mm in length: 30 mm, Horizontal: Cut to 20 mm size to produce a corrosion test piece without welding.
Subsequently, the present invention pharmaceutical manufacturing plant members 1 to 23, comparative pharmaceutical manufacturing plant members 1 to 12 and conventional pharmaceutical manufacturing plant members 1 to 2 are made of the same material type using an argon arc welder. Butt welding was performed, and the weld bead was cut from the plate including the butt welded portion into a dimension of 30 mm in length and 20 mm in width so that the weld bead was located in the center, thereby producing a corrosion test piece with welding. The surfaces of these test pieces were polished and finally polished with a water-resistant emery paper # 400 finish, and then these were degreased by being kept in an ultrasonic vibration state in acetone for 5 minutes.

さらに、医薬品製造で用いられる比較的弱い酸(塩酸、硫酸、フッ酸、有機酸など)や強アルカリを含む環境を模擬してpH:0.5の塩酸水溶液、pH:0.5の硫酸水溶液、pH:12の水酸化ナトリウム水溶液を室温にて調液することにより作製した。さらにテフロン容器を用意し、このテフロン容器に塩酸水溶液、硫酸水溶液および水酸化ナトリウム水溶液を充填し、さらに前記溶接無し腐食試験片および溶接有り腐食試験片をテフロン容器に投入し、テフロン容器内の温度を80℃に設定し、1000時間保持した。この時の比液量は16.7cc/cm(12cm2の試料表面積に対して液を200cc)とした。
保持試験終了後、テフロン容器を冷却してから試験片を取出し、浸漬後の腐食溶液中に溶出した元素の定量分析(ICP発光分析による)をし、試験片の単位面積当りに溶出したイオンの総量を測定し、この溶出したイオンの総量を試験片表面積で割り、単位面積当りの溶出量を算出し、その値を表4〜6に示した。
Furthermore, it simulates an environment containing relatively weak acids (hydrochloric acid, sulfuric acid, hydrofluoric acid, organic acids, etc.) and strong alkali used in pharmaceutical production, pH: 0.5 hydrochloric acid aqueous solution, pH: 0.5 sulfuric acid aqueous solution It was prepared by preparing a sodium hydroxide aqueous solution of pH: 12 at room temperature. Further, prepare a Teflon container, fill the Teflon container with a hydrochloric acid aqueous solution, a sulfuric acid aqueous solution and a sodium hydroxide aqueous solution, and put the corrosion test piece without welding and the corrosion test piece with welding into the Teflon container. Was set at 80 ° C. and held for 1000 hours. The specific liquid amount at this time was 16.7 cc / cm 2 (the liquid was 200 cc with respect to the sample surface area of 12 cm 2 ).
After completion of the holding test, the Teflon container is cooled, and then the test piece is taken out. The element eluted in the corrosive solution after immersion is quantitatively analyzed (by ICP emission analysis), and the ions eluted per unit area of the test piece are analyzed. The total amount was measured, the total amount of ions eluted was divided by the surface area of the test piece, and the amount of elution per unit area was calculated. The values are shown in Tables 4-6.

Figure 0004360230
Figure 0004360230

Figure 0004360230
Figure 0004360230

Figure 0004360230
Figure 0004360230

Figure 0004360230
Figure 0004360230

Figure 0004360230
Figure 0004360230

Figure 0004360230
Figure 0004360230

表1〜6に示された結果から、本発明医薬品製造プラント部材1〜23は、従来医薬品製造プラント部材1および2に比べて熱間捻り回数が多いところから高温での変形能が優れていること、および試験片の単位面積当たりの金属イオンの溶出量が少なく、特に溶接有り試験片の単位面積当たりの金属イオンの溶出量が格段に少ないところから、本発明医薬品製造プラント部材1〜23は、従来医薬品製造プラント部材1および2に比べて熱間加工性に優れかつ溶接部を含めて耐食性に優れていることが分かる。しかし、この発明から外れた比較医薬品製造プラント部材1〜12の試験片は熱間圧延時に割れが発生したり、金属イオンの溶出量がやや多かったりするなど好ましくない特性が有ることが分かる。 From the results shown in Tables 1 to 6, the pharmaceutical production plant members 1 to 23 of the present invention are superior in deformability at high temperatures because they have a higher number of hot twists than the conventional pharmaceutical production plant members 1 and 2. Since the elution amount of metal ions per unit area of the test piece is small, and especially the elution amount of metal ions per unit area of the test piece with welding is particularly small, the pharmaceutical production plant members 1 to 23 of the present invention are It can be seen that, compared with the conventional pharmaceutical production plant members 1 and 2, the hot workability is excellent and the corrosion resistance including the welded portion is excellent. However, it can be seen that the test pieces of the comparative pharmaceutical production plant members 1 to 12 that deviate from the present invention have unfavorable characteristics such as cracking during hot rolling and a slightly large amount of metal ion elution.

Claims (4)

質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなることを特徴とする医薬品製造プラント部材In mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.00. 5%, B: 0.0005-0.01% is contained, the balance is made of Ni and inevitable impurities, and is made of a Ni-based alloy having a composition in which the amount of C contained as inevitable impurities is adjusted to 0.05% or less. A pharmaceutical production plant member characterized by that . 質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにMo:0.1〜2%を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなることを特徴とする医薬品製造プラント部材In mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.00. 5%, B: 0.0005 to 0.01%, further Mo: 0.1 to 2%, the balance is made of Ni and inevitable impurities, and the amount of C contained as inevitable impurities is 0.05. A pharmaceutical manufacturing plant member comprising a Ni-based alloy having a composition adjusted to not more than%. 質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにFe:0.05〜1.0%およびSi:0.01〜0.1%の1種または2種を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなることを特徴とする医薬品製造プラント部材In mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.00. 5%, B: 0.0005-0.01%, Fe: 0.05-1.0% and Si: 0.01-0.1%, or one or two, the balance A pharmaceutical production plant member comprising: Ni and an inevitable impurity, and an Ni-based alloy having a composition in which the amount of C contained as an inevitable impurity is adjusted to 0.05% or less. 質量%で、Cr:29〜42%未満、Ta:1超〜3%、Mg:0.001〜0.05%、N:0.001〜0.04%、Mn:0.05〜0.5%、B:0.0005〜0.01%を含有し、さらにMo:0.1〜2%を含有し、さらにFe:0.05〜1.0%およびSi:0.01〜0.1%の1種または2種を含有し、残部がNiおよび不可避不純物からなり、不可避不純物として含まれるC量を0.05%以下に調整した組成を有するNi基合金からなることを特徴とする医薬品製造プラント部材In mass%, Cr: 29 to less than 42%, Ta: more than 1 to 3%, Mg: 0.001 to 0.05%, N: 0.001 to 0.04%, Mn: 0.05 to 0.00. 5%, B: 0.0005 to 0.01%, Mo: 0.1 to 2%, Fe: 0.05 to 1.0%, and Si: 0.01 to 0.3%. It is characterized by comprising 1% or 1 type of 1%, the balance being made of Ni and inevitable impurities, and a Ni-based alloy having a composition in which the amount of C contained as inevitable impurities is adjusted to 0.05% or less. Pharmaceutical manufacturing plant components .
JP2004047235A 2004-02-24 2004-02-24 Pharmaceutical manufacturing plant components Expired - Fee Related JP4360230B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004047235A JP4360230B2 (en) 2004-02-24 2004-02-24 Pharmaceutical manufacturing plant components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004047235A JP4360230B2 (en) 2004-02-24 2004-02-24 Pharmaceutical manufacturing plant components

Publications (2)

Publication Number Publication Date
JP2005240053A JP2005240053A (en) 2005-09-08
JP4360230B2 true JP4360230B2 (en) 2009-11-11

Family

ID=35022095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004047235A Expired - Fee Related JP4360230B2 (en) 2004-02-24 2004-02-24 Pharmaceutical manufacturing plant components

Country Status (1)

Country Link
JP (1) JP4360230B2 (en)

Also Published As

Publication number Publication date
JP2005240053A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
EP2781612B1 (en) Seamless austenite heat-resistant alloy tube
EP2520677B1 (en) Heat-resistant titanium alloy material for exhaust system components with excellent oxidation resistance, manufacturing method of heat-resistant titanium alloy sheet with excellent oxidation resistance for exhaust system components, and exhaust system
TWI588268B (en) Acid and alkali resistant nickel-chromium-molybdenum-copper alloys
JP5107172B2 (en) Ni-base alloy welding material
JP5725630B1 (en) Ni-base alloy with excellent hot forgeability and corrosion resistance
EP3115472B1 (en) Method for producing two-phase ni-cr-mo alloys
EP3318651A1 (en) Austenitic heat-resistant alloy and welded structure
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JPH01168837A (en) High molybdenum base alloy
JP4360229B2 (en) Pharmaceutical manufacturing plant components
JPH083670A (en) Nickel-base alloy excellent in workability and corrosion resistance
JP2010261061A (en) METHOD FOR PRODUCING Al ALLOY FORGED PRODUCT
JP2008291281A (en) Ni-Cr BASE ALLOY WITH EXCELLENT RESISTANCE TO NITRIC-HYDROFLUORIC ACID CORROSION
JP4360230B2 (en) Pharmaceutical manufacturing plant components
JP2005060821A (en) beta TYPE TITANIUM ALLOY, AND COMPONENT MADE OF beta TYPE TITANIUM ALLOY
JP5035250B2 (en) Nickel materials for chemical plants
JP4872577B2 (en) Copper alloy backing plate and copper alloy manufacturing method for backing plate
JPH0754081A (en) High corrosion-resistant titanium alloy excellent in cold processibility and weldability
CN112935622A (en) NiCu-7 nickel-based welding wire and preparation method and application thereof
JPH09241767A (en) Consumable electrode type remelting method for superalloy
JPS63270446A (en) Production of al-mg base alloy thick plate for welded structure
JP7469635B2 (en) Fe-based alloy pipes and welded joints
JP4796922B2 (en) Titanium welded joint
JP5146640B2 (en) Ni-Mo alloy welding wire
TWI564399B (en) Acid and alkali resistant nickel-chromium-molybdenum-copper alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4360230

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees