JP4360083B2 - Lead-acid battery charging method, pass / fail judgment method, and charger - Google Patents

Lead-acid battery charging method, pass / fail judgment method, and charger Download PDF

Info

Publication number
JP4360083B2
JP4360083B2 JP2002365009A JP2002365009A JP4360083B2 JP 4360083 B2 JP4360083 B2 JP 4360083B2 JP 2002365009 A JP2002365009 A JP 2002365009A JP 2002365009 A JP2002365009 A JP 2002365009A JP 4360083 B2 JP4360083 B2 JP 4360083B2
Authority
JP
Japan
Prior art keywords
charging
voltage
value
lead
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002365009A
Other languages
Japanese (ja)
Other versions
JP2004199933A (en
Inventor
正道 稲倉
賢治 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2002365009A priority Critical patent/JP4360083B2/en
Publication of JP2004199933A publication Critical patent/JP2004199933A/en
Application granted granted Critical
Publication of JP4360083B2 publication Critical patent/JP4360083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、鉛蓄電池の充電の方法および該充電方法を適用した良否判定方法および鉛蓄電池用充電器に関するものであって、過放電に陥った鉛蓄電池の良否を判定することとその機能を回復するための充電の方法および前記良否判定と機能を回復するための充電に適用する充電器に関するものである。
【0002】
【従来の技術】
自動車(4輪車)用、二輪車(自動二輪)用等一般ユーザー用の鉛蓄電池は、使用の状況が様々である。自動車用電池の場合にはヘッドライトやルームランプの消し忘れ等により、蓄電池の持つ容量(定格容量)以上に放電されたり、補充電をしないままに長時間放置されて過放電状態に陥る場合も多く見受けられる。鉛蓄電池の過放電状態には大きく分けて、極板のサルフェーションが進行し充電しても機能が回復しないもの(便宜的に重度の過放電状態と表記する)と、充電によって機能を回復する(サルフェーションが起きていないかまたはサルフェーションがおきてはいるが進行していないもの、便宜的に軽度の過放電状態と表記する)ものに分類される。
【0003】
しかし、対象とする鉛蓄電池の過放電の状態が軽度なのかあるいは重度なのかを判定するためには、鉛蓄電池に関して高度の専門的知識を必要とし、一般のユーザーが見分けることは困難である。
【0004】
従来の充電方法および充電器では、軽度の過放電電池でも充電できない虞があった。また、鉛蓄電池用の充電器として市販されている充電器は、異種電池の充電や出力端子を短絡させた状態では通電しないよう保護装置が設けられており、充電しようとする電池が過放電に陥った鉛蓄電池のように蓄電池の電圧が所定値以下の場合には充電ができない問題があった。
【0005】
図9は、12V系鉛蓄電池の従来の良否判定および充電方法における工程を示す流れ図である。従来の充電方法は、例えば工程NO.12において対象とする鉛蓄電池の開回路電圧を計測し、該開回路電圧が7V未満であれば不良電池(充電による回復不能電池)、あるいは異種電池(例えば6V系の鉛蓄電池)と判定し、前記開回路電圧が7V以上であれば良品(充電により回復可)と判定し、充電電圧が所定の電圧になるまで通常の条件にて充電(正規充電)を行う。
【0006】
なお、ここでいう正規充電とは、鉛蓄電池を補充電するために一般的に行われている充電方法であり、温度室温で実施する充電であって、定電流充電と定電圧充電の2つの様式があり、定電流充電の場合は、例えば1/10ItAの電流で一般的に11〜12時間充電し、定電圧充電は12V系電池(6セルシリーズ接続)の場合14〜15V(2.33V/セル〜2.5V/セル)の充電電圧で10〜12時間充電することを指す。
【0007】
図9に示した従来の良否判定方法では、前記12V系の鉛蓄電池において、開回路電圧が7V未満であっても一時的に過放電に陥っているのみで充電によって機能が回復する見込みのある電池も不良と判定する場合が生じる。また、不良品(充電しても機能が回復しない鉛蓄電池)を良品と判定し無駄な充電を実施してしまう場合も生じる。さらに、良品と判定された電池でもいきなり正規充電にかけるために、殆ど充電できないケースが生じる。すなわち、過放電に陥った鉛蓄電池を正規充電で充電しようとすると充電開始直後に直ちに充電電圧が充電終止電圧に達してしまい、実際には殆ど充電されていないにも拘わらず充電が完了するために充電できていないにも拘わらず充電できていると誤った判断をされる虞がある。
【0008】
このように、過放電(軽度の過放電)に陥った鉛蓄電池を充電して回復させようとすると鉛蓄電池の取り扱いに関する専門知識を必要とするため、一般ユーザーが充電することは困難であった。また、従来過放電に陥った鉛蓄電池を回復させるための充電器は、高度に複雑な機能を備えなければならず、高価である欠点があった。また、過放電に陥った電池を微細な電流で充電する方法もあるが、該充電方法は簡単ではあるが、回復に長時間を要する欠点があった。
【0009】
過放電により充電不能となった鉛蓄電池の回復方法として特許文献1には、交流電圧を印加するか又は逆充電して正極格子表面と活物質との界面に生成した半導体的物質を破壊し、その後に正規の充電を施すことが提案されている。
【0010】
【特許文献1】
特公昭63−23623号公報(ページ1、特許請求の範囲)
【0011】
また、特許文献2には、過充電が許されない密閉型電池にパルス状充電電流を供給して高速に充電する方法が記載されている。
【0012】
【特許文献2】
特公昭47−45462号公報(ページ7、特許請求の範囲)
【0013】
しかし、前記特許文献1の方法は、充電方法が複雑であり充電器が高価になること、対象とする鉛蓄電池が充電によって回復する見込みの有無を一般のユーザーが容易に判定できない欠点があった。特許文献2に記載の方法は、パルス充電を適用することによって高速充電の可能性を示唆しているものの、過放電に陥った鉛蓄電池の回復方法として適用可能な方法を示してはいない。
【0014】
【発明が解決しようとする課題】
本発明は、前記従来方法の欠点に鑑みてなされたものであって、過放電に陥った鉛蓄電池の良否(充電によって機能回復可能なものか否か)を容易に判定し、且つ当該鉛蓄電池を適正に、かつ、速やかに充電するための方法および充電器を提供するものである。
【0015】
【課題を解決するための手段】
一般に鉛蓄電池の極板にサルフェーションが生じそれが極板の大部分にまで進行すると充電しても機能が回復しない。従来、過放電状態であって、サルフェーションが生じている程度が軽度(サルフェーションが極板のごく一部分にのみ生じている)であり、大部分の活物質が正常であるにも拘わらず、従来充電不能として判定される場合が多く見受けられた。それは、極板の格子体と活物質の界面あるいは極板の表面にサルフェーションが生じると、それによって生成した生成物が格子体から離れた部分あるいは極板の内部に存在する活物質の充電を妨げるために極板の活物質全体が充電できないと判定されたことによるものと考えられる。
【0016】
本発明に係る鉛蓄電池の充電方法は、過放電状態に陥った鉛蓄電池をパルス波状の電力で充電する方法であって、充電開始時に1セル当たり波高値において2.5〜6.0V/セルの電圧を印加する。
【0017】
従来の鉛蓄電池の充電においては、1セル当たり2.0〜2.5V(2.0/セル〜2.5V/セル)の充電電圧を印加していた。この従来の方法では、極板の極一部分にのみサルフェーションが生じている場合でも充電電圧が直ちに前記充電電圧(2.0/セル〜2.5V/セル)に達してしまい充電ができなかった。これに対して、本発明に係る鉛蓄電池の充電方法においては、パルス波形状の電力による充電において波高値を2.5〜6.0V/セルという従来に比べて高い充電電圧とする。このことによって、本発明は、従来難しいとされている軽度のサルフェーションを生じている鉛蓄電池の充電を可能にした。軽度の過放電状態にある鉛蓄電池の充電において、充電開始時に前記のように高電圧を印加すると何故充電ができるかは定かではないが、高電圧を印加することにより前記格子体と活物質の界面または極板の表面に存在した充電阻害物質が変質するか破壊されるために電気が流れるようになり、充電が可能となると考えられる。
【0018】
また、本発明に係る鉛蓄電池の良否判定方法は、過放電に陥った鉛蓄電池の良否を判定する方法であって、被検電池を定電流または定電圧で充電を行い、そのときの充電電圧あるいは充電電流の挙動に基づいて良否を判定する。なお、ここでいう良品とは、充電によって機能が回復する鉛蓄電池(以下良品または軽度の過放電電池と表記する)を指し、不良品とは、充電しても機能が回復しない鉛蓄電池(以下不良品または重度の過放電電池と表記する)を指す。
【0019】
過放電に陥った鉛蓄電池、特にサルフェーションを生じた鉛蓄電池(被検電池)を充電した場合、良品と不良品とは異なる挙動を示す。すなわち、定電流で充電を行った場合、良品においては充電電圧が時間の経過と共に垂下し規定充電電圧値以下になる。これに対して不良品の場合は、充電電圧が時間の経過とともに垂下しないか、または、垂下の幅が小さく充電電圧が規定充電電圧値以下にならない。また、定電圧で充電を行った場合、良品においては充電電流が時間の経過とともに上昇し、規定充電電流値以上になる。これに対して、不良品の場合は、充電電流が時間の経過とともに上昇しないかまたは上昇幅が小さく、規定充電電流値以上にならない。
【0020】
本発明は、前記良品と不良品の充電における挙動の差に基づいて過放電に陥った鉛蓄電池の良否を判定するものである。
【0021】
正常(過放電に陥っていない)な鉛蓄電池を充電する時の充電電圧は、通常最大2.3〜2.5V/セルである。しかし、過放電に陥った鉛蓄電池においては前記通常の充電電圧を印加しても電池電圧が充電開始直後にすぐに前記充電電圧の最大値にまで上昇してしまうために充電ができない。本発明に係る充電方法は、少なくとも充電開始時点において鉛蓄電池に2.5V/セル以上、最大4.0V/セル、パルス充電の場合は少なくとも充電開始時点において鉛蓄電池に波高値が2.5V/セル〜6.0V/セルの電圧を印加することによって、過放電に陥った鉛蓄電池であっても良品であれば充電ができ、充電電圧が規定充電電圧値以下に垂下するかまたは充電電流値が規定充電電流値以上に上昇した後は前記正規の充電方法によって充電可能であるという知見の基に充電する充電方法である。
【0022】
本発明に係る鉛蓄電池の充電方法は、前記のようにパルス充電開始時に波高値が2.5〜6.0V/セルの充電電圧を印加して充電し、電圧の波高値または平均値を一定にした場合にはパルス充電における電流の波高値または平均値が規定電流値以上になるまで、電流の波高値または平均値を一定にした場合にはパルス充電における電圧の波高値または平均値が規定電圧値以下に垂下するまで充電を行った後、後記診断充電において良と判定された鉛蓄電池のみを対象として正規充電を行う。
【0023】
本発明に係る鉛蓄電池の良否判定方法は、被検電池を定電流充電により充電(診断充電)することによって過放電状態に陥った鉛蓄電池の良否を判定する方法であって、充電電流を一定、充電電圧を可変として規定時間充電し、該充電時の充電電圧または充電終了後の開回路電圧が規定充電電圧値または規定開回路電圧値以上に上昇したときに被検電池を良と判定する。該良否判定のための診断充電において、規定充電時間は、特に限定されるものではないが長くとも3分間で十分であり、0.5〜2分間とすることもできる。該診断充電において、良否を精度良く判定するためには、充電電流値を1/100〜1/15ItAの範囲に設定することが好ましく、1/50〜1/20ItAに設定することがさらに好ましい。また、充電開始時点での充電電圧が1.5V/セル〜2.0V/セルの範囲に入ることが好ましい。また、規定充電電圧値および規定開回路電圧値を1.2V/セル以上に設定することが好ましい。開回路電圧値に基づいて良否を判定する場合、充電終了時点から開回路測定時点に到るまでの時間は特に限定されるものではないが、一定時間に規定することが好ましく、1分間以上の一定の値に規定することがさらに好ましい。
【0024】
本発明に係る鉛蓄電池の別の良否判定方法は、被検電池をパルス波状の電流により充電(診断充電)することによって過放電状態に陥った鉛蓄電池(被検電池)の良否を判定する方法であって、前記充電がパルス充電における充電電流の波高値または平均値を一定、電圧の波高値または平均値を可変として、規定時間充電を行い、該充電時の充電電圧の波高値または平均値または充電終了後の被検電池の開回路電圧が規定充電電圧値(波高値または平均値)または規定開回路電圧値以上に上昇したときに被検電池を良と判定する。該良否判定のための診断充電において、規定充電時間は、特に限定されるものではないが長くとも3分間で十分であり、0.3〜2分間とすることが好ましい。該診断充電において、良否を精度良く判定するためには、充電電流値の波高値を1/50〜1/5ItAの範囲に設定することが好ましく、1/30〜1/10ItAの範囲に設定することがさらに好ましい。また、充電電流の平均値を規定する場合は、平均値を1/100〜1/15ItAの範囲に設定することが好ましく、1/50〜1/20ItAの範囲に設定することがさらに好ましい。また、充電開始時点での充電電圧の波高値が2.0V/セル〜4.0V/セルの範囲に入ることが好ましい。規定充電電圧値(波高値)は2.0V以上、規定充電電圧値(平均値)および規定開回路電圧値(平均値)を1.2V/セル以上に設定することが好ましい。開回路電圧値に基づいて良否を判定する場合、充電終了時点から開回路測定時点に到るまでの時間は特に限定されるものではないが、一定時間に規定することが好ましく、1分間以上の一定の値に規定することがさらに好ましい。
【0025】
本発明に係る鉛蓄電池の良否判定方法は、定電圧又は定電流で充電(診断充電)することによって被検電池の良否を判定する方法であって、充電開始時に2.5〜4.0V/セルの充電電圧を印加し、定電流充電の場合は充電電流値を好ましい範囲である1/100〜1/15ItAの一定の値となるよう充電電圧を可変として規定時間充電し、該充電時の充電電圧が規定充電電圧値、例えば2.5V/セル以下に垂下したとき、定電圧充電の場合は2.5〜4.0V/セルの充電電圧を印加して規定時間充電した時の充電電流値が規定充電電流値、例えば1/20ItA以上に上昇したときに前記被検電池を良と判定する。
【0026】
本発明に係る鉛蓄電池の別の良否判定方法は、パルス充電することによって該鉛蓄電池(被検電池)の良否を判定する方法であって、被検電池に、充電開始直後に波高値が2.5/セル〜6.0V/セルの充電電圧を印加し、充電電流の波高値または平均値を一定、充電電圧を可変にして規定の時間充電例えば30秒充電を行い、該充電時の充電電圧の波高値または平均値が規定充電電圧値、波高値においては例えば2.8Vセル以下に垂下したとき、あるいは平均値においては例えば2.5V/セル以下に垂下したときに被検電池を良と判定する。
【0027】
本発明に係る鉛蓄電池の別の良否判定方法は、また、前記パルス充電において充電電圧の波高値を例えば3.0V/セルで一定または充電電圧の平均値を例えば2.5V/セルで一定とし、充電電流値を可変にして規定の時間充電例えば30秒間充電を行い、充電電流の波高値が規定充電電流値例えば1/20ItA以上に上昇したとき、充電電流の平均値が規定充電電流値例えば1/50ItA以上に上昇したときにその鉛蓄電池を良と判定する。
【0028】
本発明に係る鉛蓄電池の良否判定においては、前記診断充電に先だって被検電池の開回路電圧の測定を行い、該測定結果と開回路電圧の基準値(A){6セルシリーズ接続の鉛蓄電池の場合は例えば12V(2.0v/セル)以上}を比較して被検電池の開回路電圧が前記基準値を満たしておれば正常電池(過放電されていない電池)として過放電電池あるいは直列接続されているセル数が少ない異種電池と区分することも有効である。このことによって、正常電池を診断充電経ることなくただちに正規充電にかけることができる。
【0029】
本発明に係る鉛蓄電池の充電器は、前記本発明に係る鉛蓄電池の充電方法のうち少なくともいずれかを満たす充電機能および前記本発明に係る良否判定機能のうち少なくともいずれかを満たす良否判定機能を備える。
【0030】
本発明に係る鉛蓄電池の充電器は、前記良否判定の結果を告知する機能を備える。
【0031】
【発明の実施の形態】
以下、図面に基づいて本発明に係る蓄電池の実施の形態を説明する。なお、以下に示す形態は1例であって、本発明は、以下に示す例に限定されるものではない。
【0032】
図1は、本発明の第1の実施形態に係る鉛蓄電池の良否判定と該電池の充電の流れを示すフロー図である。図1のフロー図は、前記請求項2および3に記載の良否判定方法を備える良否判定の流れを示す図である。図1で対象としている被検電池は、公称電圧が12ボルト(V)、公称容量が4アンペアアワー(Ah)、6セルシリーズ接続の二輪車用鉛蓄電池である。
【0033】
工程NO.11において被検電池の開回路電圧をチェックし開回路電圧が12V(2.0V/セル)以上の場合には正常品(ここで対象とする過放電に陥った電池ではない)と判定し、工程NO.50の通常の充電プロセスに移行する。
【0034】
被検電池の開回路電圧が12V(2.0V/セル)未満の場合は、過放電に陥った電池または他機種の蓄電池(例えば6V系の蓄電池)と判定する。被検電池の開回路電圧が12V未満のうち、開回路電圧が規定開回路電圧値7.2V(1.2V/セル)以上の場合には、充電による機能回復の可能性を診断するために工程NO.30の診断充電(2)に進む。開回路電圧が規定開回路電圧値7V未満の場合には、直ぐに工程NO.30に進まずに、規定の充電によって開回路電圧が規定開回路電圧値7.2V(1.2V/セル)以上になるか否かを調べるため、あるいは、他機種の蓄電池を排除するために工程NO.20の診断充電(1)に移行する。
【0035】
診断充電(1)において被検電池に印加する電圧を最大2.0V/セル(6セルシリーズ接続電池の場合は最大12V)とする。本例のように、パルスではなく連続して印加する電圧が2.0V/セルを超えると診断を誤る虞があるので、2.0V/セルを超える電圧を印加することを避けることが望ましい。診断充電(1)において例えば1/20ItA(充電電流0.2アンペア(A)、公称容量4Ahの電池においては1/20ItAの電流値に相当)の電流で3分間充電した後充電を打ち切り、開放状態として充電打ち切り直後の開回路電圧を計測する。なお、診断充電(1)における充電電流の値は特に限定されるものではないが、1/100〜1/15ItAが好ましい。
【0036】
また、図1 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=3" \t "imageframe" に示した例では診断充電(1)における良否判定基準を開回路電圧としたが、診断充電(1)の充電電圧を判定基準としてもよい。図2 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=4" \t "imageframe" は、過放電の程度が異なる2つの被検電池を1/20ItAの電流で充電した時の充電時間と充電電圧の関係を示すグラフである。図2 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=4" \t "imageframe" に示したように、過放電した電池であっても1/20ItAの電流で3分間充電すると充電電圧が規定充電電圧値7.2V(1.2V/セル)以上になる。診断充電(1)における充電電圧が7.2V(1.2V/セル)未満の場合は、内部短絡等の何等かの異常を起こしている可能性が極めて高いか異種電池(例えば6V系電池)と判断される。従って、診断充電(1)の充電電圧が規定電圧値7.2V(1.2V/セル)未満の場合は、前記のように不良と判定し、図1に示した工程NO.A0へ進み、不良(充電による回復不可)であることを告知する(電池異常警告)。一方、前記診断充電(1)の充電電圧が規定充電電圧値7.2V(1.2V/セル)以上の場合には、充電による機能回復の可能性を診断するために工程NO.30に進む。
【0037】
なお、前記診断充電(1)には、前記パルス波状の電流であって、電流の波高値および/または平均値を一定としたパルス充電も適用できる。パルス充電を適用する場合は、充電電流値の波高値を1/50〜1/5ItAの範囲に設定することが好ましい。また、充電電流の平均値を規定する場合は、平均値を1/100〜1/15ItAの範囲に設定することが好ましい。また、充電開始時点での充電電圧の波高値が2.0V/セル〜4.0V/セルの範囲に入ることが好ましい。規定充電電圧値(波高値)は2.0V以上、規定充電電圧値(平均値)または規定開回路電圧値(平均値)を1.2V/セル以上に設定することが好ましい。
【0038】
本発明の診断充電(1)に適用するパルスの波形は、特に限定されず、矩形波、ノコギリ形状のパルス波、サインカーブ形状のパルス波等、種々の形状のパルス波を適用出来る。また、パルスの幅および周期は、特に限定されるものではないが、充電時の濃度分極を抑制するためにはパルス幅を小さくした方が有利である。但しパルスの幅を小さくするとその波高値または平均値を検知するのにより高価な検出器を必要とする。この観点から前記パルス電圧またはパルス電流の波高値を高く設定するためおよびパルスの波高値を容易に検出するためには、パルス幅およびパルスの間隔を数ミリ秒(ms)〜数十ミリ秒(ms)、1秒間当たりのパルス数を数十〜百回(回/s)とすることが好ましい。パルス幅が数ms未満の場合には、パルスの発生およびその検知のための装置が複雑且つ高価になる欠点がある。
【0039】
前記のように、工程NO.12において被検電池の充電電圧が規定開回路電圧値7.2V(1.2V/セル)を超えている時には、工程NO.30の診断充電(2)に進み、充電電圧を最大で24Vに設定し、かつ可変として、1/20ItA(0.2A)の定電流で最大30秒間充電を行う。定電流充電による診断充電における電流値は、充電開始時の充電電圧が2.5〜4.0Vになるように設定する。充電電圧が2.5V/セル未満では、前記過放電電池の充電阻害要因を取り除く効果が期待できず良品(軽度の過放電電池)を不良品(重度の過放電電池)と判定してしまう虞がある。また、連続して印加する電圧が4.0Vを超えると電池を破壊する虞があるので避ける。本発明では、充電電圧値が前記条件を満たしておればよく、充電電流値を特に限定するものではないが、短時間で良否を判定するためには、充電電流を1/100〜1/15ItAとすることが好ましく、1/50〜1/20ItAとすることがさらに好ましい。充電電流値が1/100ItA未満では、良否判定に長時間を要する欠点がある。充電電流値を1/15ItAを超える値に設定したときには、セル当たりに印加する電圧が高くなり、前記上限値4.0Vを超える虞がある。
【0040】
被検電池が良品(充電により回復する)の場合は、充電時間が経過するとともに充電電圧が大きく垂下する。被検電池が不良品(充電しても回復しない)の場合は、充電電圧が垂下しないかまたは垂下の幅が小さい。良品の場合は充電時間の経過と共に前記充電阻害物質が除去されるために充電電圧が垂下し、不良品の場合は充電阻害物質が除去されないために充電時間が経過しても充電電圧が高い状態のままであると考えられる。充電電圧が本例のように12V系の電池の場合、前記充電中に充電電圧が規定充電電圧値15V以下(2.5V/セル)に垂下した場合は、良品と判定し、工程NO.50の通常の条件での充電プロセスに移行する。被検電池の充電電圧が規定充電電圧値15V(2.5V/セル)を超える場合は、工程NO.40の診断充電(3)に進むか、必要と認めた場合には工程NO.30に戻り、再度同じ操作を繰り返し行う。
【0041】
放電後放置された鉛蓄電池は、サルフェーションを起こし充電を受け入れ難くなる。サルフェーションの進み具合が重度になると充電してももはや機能が回復しなくなる(重度の過放電電池)。図2は、軽度の過放電電池(良品)と重度の過放電電池(不良品)を1/20ItAの電流で充電した時の充電電圧を示すグラフである。
【0042】
軽度の過放電電池は、充電直後において充電の受け入れが悪く、充電電圧が跳ね上がる、しかし、充電時間が経過するとともに充電受け入れが良くなり、充電電圧は垂下する。図2に示したように充電を開始してから30秒後には充電電圧が規格充電電圧(A)の15V(2.5V/セル)以下にまで低下する。これに対して重度の過放電電池の場合は、時間が経過しても充電受け入れが良くならず充電電圧は20V(3.4V/セル)を超えたままである。
【0043】
診断充電(2)の規定充電時間および規定充電電圧値は、充電電流値によって影響を受けるものであり、特に限定されるものではない。前記好ましい電流値で充電した場合、規定充電時間は最大でも60秒で十分であり、好ましくは最大30秒とすることもできる。精度良く良否判定をするためには規定充電電圧値を16V以下とすることが好ましく、図1に示した如く15V以下とすることがさらに好ましい。
【0044】
サルフェーションの進行度合い(過放電の度合い)には種々あり、前記診断充電(2)において充電受け入れ性が回復しなかった鉛蓄電池の中には、さらに長時間充電するうちに充電受け入れ性が回復するもの(良品に区分されるもので、以下便宜上中程度の過放電電池と表記する。)もある。中程度の過放電電池と重度の過放電電池を区別するために、診断充電(2)を1回実施した時点または2回繰り返し行っても充電電圧が規定充電電圧値15V(2.5V/セル)を超える場合は、工程NO.40の診断充電(3)に移行し、例えば診断充電(2)と同じ電流で規定時間充電し、その間の充電電圧を計測する。該充電電圧が規定充電電圧値の15V以下に降下した場合は、良(充電により回復可)と判定し、その旨告知するとともに工程NO.50の通常の条件での充電プロセスに移行する。充電電圧が規定充電電圧値の15Vを超える場合は不良と判定し工程NO.A0へ移行し該蓄電池が不良であることが告知される。
【0045】
なお、診断充電(3)の規定充電時間および規定充電電圧値は、診断充電(2)の場合と同様に充電電流値によって影響を受けるものであり、特に限定されるものではない。前記好ましい電流値で充電した場合、規定充電時間は最大でも60分で十分であり、好ましくは最大30分とすることもできる。また、精度良く良否判定をするためには規定充電電圧値を16V以下とすることが好ましく、図1に示した如く15V以下とすることがさらに好ましい。
【0046】
図3は、中程度の過放電電池と重度の過放電電池を診断充電(3)にかけたときの充電電圧を示すグラフである。図3に示した例では充電電流値を診断充電(2)と同じ1/20ItAとした。図3に示すように、中程度の過放電電池の場合、充電を開始して約3分間は充電電圧が20Vを超えているが、3分経過以後徐徐に充電電圧が低下し、30分後には規定充電電圧値の15V以下にまで垂下し、良と判定された。
【0047】
前記診断充電で良品と判定された電池は、工程NO.50に進み、前記正規充電により充電する。本方法によれば、短時間で精度よく過放電された鉛蓄電池の良否を判定することができ、かつ不良品を正規充電にかけるという無駄を省くことができる。
【0048】
図4は、本発明の第2の実施形態に係る過放電に陥った鉛蓄電池の良否判定および充電の流れを示す図である。本実施形態の場合は、前記請求項1、2および3に記載の判定の操作を組み合わせた方法である。
【0049】
前記第1の実施形態と異なる点は、計測された開回路電圧が規定開回路電圧値7Vを超えている場合に、工程NO.30´の診断充電(2´)へ移行する。前記のようにサルフェーションを起こした電池は、充電受け入れが悪い、従って、一定の充電電圧を印加した時に充電によって回復する見込みのある電池は、充電電圧を連続して印加すれば時間の経過とともに充電受け入れが良くなり、充電電流は上昇する。一方充電しても機能が回復せずに不良と判定される電池は、充電電流の上昇が認められない。工程NO.30´の診断充電(2´)において被検電池に16V(2.5V/セル)の一定の充電電圧を最大30秒間印加し、充電電流を計測する。
【0050】
図5は、軽度の過放電電池と重度の過放電電池を診断充電(2´)にかけたときの充電電流を示すグラフである。軽度の過放電電池においては充電開始後10〜20秒後に充電電流が規定充電電流値0.2A(1/20ItAに相当)以上の値にまで上昇している。一方重度の過放電電池においては充電電流が規定の充電時間内に殆ど上昇しない。このように充電電流が規定充電電流値以上になった場合に良と判定し、工程NO.50の通常の充電に進む。充電電流が規定充電電流値に達しない場合、必要と認めた場合には工程NO.30´に戻り再度診断充電(2´)を実施する。診断充電(2´)において充電電流が規定充電電流値に達しない場合は、前記実施形態と同じく、充電によって回復可能な電池と回復の見込みのない電池を区分するために、工程NO.40の0.2Aの定電流による診断充電(3)(回復充電を兼ねる)へ移行する。
【0051】
なお、ここでは省略するが、診断充電(3)の充電様式を診断充電(2´)と同じく定電圧充電様式{診断充電(3´)}とし、規定充電時間を30分間とすることもできる。該規定充電時間の充電で充電電流が前記規定充電電流値以上に上昇すれば良と判定し、通常の充電工程NO.50へ進む。一方充電電流値が規定充電電流値以上に上昇しない時は不良と判定し不良を示す電池異常を告知する。
【0052】
診断充電(2´)の規定充電時間および規定充電電流値は、充電電圧値によって影響を受けるものであり、特に限定されるものではない。前記好ましい電圧値で充電した場合、規定充電時間は最大でも60秒で十分であり、好ましくは最大30秒とすることもできる。精度良く良否判定をするためには規定充電電流値を1/50ItA以上とすることが好ましく、図4に示した如く1/20ItA以上とすることがさらに好ましい。
【0053】
本発明の別の実施形態は、前記実施形態に示した定電流または定電圧による充電に替えて、パルスを印加する。パルスを印加するメリットは、蓄電池の電解液あるいは電極内の充電反応に関与する反応物質あるいは充電によって生成する反応生成物の濃度の偏りによる濃度分極を抑制出来る点にあると考えられる。パルス充電を適用した場合、定電圧または定電流充電に比べて印加する電圧もしくは電流の波高値を高く設定することができる。このことによって、前記充電時の電気の流れを阻害している要因を除く効果が大きい利点がある。また、充電による蓄電池の良否判定、あるいは機能回復のための充電の速さを向上させることができる。診断充電において良と判定された鉛蓄電池を正規充電にて充電する。
【0054】
本発明の診断充電(2)、(2′)、(3)、(3′)に適用するパルスの波形は、特に限定されず、矩形波、ノコギリ形状のパルス波、サインカーブ形状のパルス波等、種々の形状のパルス波を適用出来る。パルス充電のメリットを生かす意味において、パルス電圧またはパルス電流の波高値を定電圧や定電圧充電の電圧や電流に比べて高く設定する。但し、パルス電圧、パルス電流の上限値を被検電池を破壊する虞のない値とする。
【0055】
パルス充電の場合、被検電池に印加する電圧は、波高値で2.5〜6.0Vが適当である。パルス電流値を一定にして充電する場合、充電開始時の印加電圧(波高値)が前記範囲にはいるように設定する。波高値の好ましい値は、パルス幅やパルスの周期によって影響されるが、波高値の設定は、被検電池を破壊せず、充電が促進されることを勘案して選ぶ。本発明においては、パルスの波高値として2.5〜6.0V/セルが適当であり、3.5〜5.0V/セルが好ましい。また、パルス電流の波高値が、1/20〜1/3ItAが好ましく、1/10〜1/5ItAがさらに好ましい。パルスの波高値が1/20ItA未満では診断充電に時間を要し、1/3ItA以上では電圧の波高値が6.0Vを超える虞が生じる。
【0056】
また、パルスの幅および周期は、特に限定されるものではないが、前記パルス充電を診断充電(1)に適用するときと同様、パルス幅およびパルスの間隔を数ミリ秒(ms)〜数十ミリ秒(ms)、1秒間当たりのパルス数を数十〜百回(回/s)とすることが好ましい。
【0057】
パルス充電において、電圧(波高値)を一定にして充電する場合、規定時間充電し、該充電時の充電電流の波高値が規定充電電流値以上になった場合に良と判定する。電流(波高値)を一定にして充電する場合、充電電流の波高値が一定のパルス波を印加して規定時間充電し、該充電時の充電電圧の波高値が規定充電電圧値以下に垂下した場合に良と判定する。
【0058】
パルス充電による診断充電における充電の規定時間、規定充電電流値、規定充電電圧値は、特に限定されないが、診断充電にパルス充電を適用した場合、前記図1に示した定電流充電における診断充電(2)に相当する診断充電においては、規定充電時間は最大40秒間あれば十分であり、好ましくは最大20秒間に設定する。また、図1に示した定電流充電における診断充電(3)に相当する診断充電においては、最大10分間で十分であり、好ましくは最大5分間に設定する。精度良く判定するために、規定充電電流値(波高値)を1/20ItA以上とすることが好ましく、1/10ItA以上とすることがさらに好ましい。また、規定充電電圧値(波高値)を2.8V/セル以下とすることが好ましく、2.5V/セル以下とすることがさらに好ましい。診断充電において良と判定された鉛蓄電池を正規充電にて充電する。
【0059】
パルスの電圧および電流の波高値を検知するには高価な検知機が必要となる。それに対してパルスの電圧および電流の平均値の検知は容易であり、安価な検知器により検知できる。従って、本発明におけるパルス充電を適用した鉛蓄電池の充電および良否判定においては、パルスの電圧および電流の平均値に基づいて充電を制御したり、良否を判定することがさらに好ましい実施形態である。
【0060】
前記パルス充電の例(印加するパルスの電圧または電流の波高値を一定とした充電)において、充電電圧または充電電流の平均値を基準値として良否を判定することも出来る。規定電圧値または規定電流値(パルスの平均値)は特に限定されるものではないが、精度良く良否判定を行うためには、規定充電電圧値(パルスの平均値)として、2.5/セル以下がこのましく、2.3V/セル以下がさらに好ましい。また、規定充電電流値(パルスの平均値)として、1/50ItA以上が好ましく、1/20ItA以上がさらに好ましい。
【0061】
パルス充電において印加するパルスを電圧または電流の平均値で規定することもできる。図6は、前記12V、4Ah、6セルシリーズ接続の二輪車用鉛蓄電池の診断充電{図1の診断充電(2)に相当}に、図7に示す平均値が0.16A(波高値が0.4A、パルス幅が0.2ms、パルスの間隔が0.6ms)で一定としたパルスを適用した時における充電電圧の平均値の時間的推移を示すグラフである。図6に示す如く、軽度の過放電電池は、充電電圧(パルス)の平均値が規定充電電圧値(15V、2.5V/セル)以下になり、良と判定する。一方、重度の過放電電池は、充電電圧の平均値が垂下せず不良と判定する。
【0062】
パルス充電において印加するパルスの電圧あるいは電流の平均値は、特に限定されるものではない。但し、1セル当たりに印加されるパルスの電圧の波高値が6.0V/セルを超えないように設定する。本発明においては、パルス幅、パルスの間隔(パルスの周期)を勘案してパルスの電圧または電流の平均値を設定する。設定に際しては、パルス幅を小さくして1セル当たりに印加するパルスの電圧の波高値が6.0V/セルを超えない範囲で印加電圧をできるだけ高くする方が前記充電阻止要因を取り除くのに有利である。具体的には印加するパルスの電圧の平均値を2.0〜2.5V、電流の平均値を1/50〜1/20ItAに設定することが好ましい。また、この場合の良否判定のための規定充電電圧や規定充電電流(パルスの平均値)も前記パルス充電の良否判定値と同様に特に限定されるものではないが、精度良く判定するためには、規定充電電圧(パルスの平均値)としては2.5V/セル以下が好ましく、2.3V/セル以下がさらに好ましい。また、規定充電電流(パルスの平均値)は、1/50ItA以上が好ましく、1/20ItA以上がさらに好ましい。
【0063】
図6に示した良品の充電電圧は、前記図2に示した良品の充電電圧に比べて早く垂下している。図6に示した例では、図7に示した波高値0.4ItAの充電電流(図2に示した例の充電電流は0.2ItA)という大きな充電電流を流している。このため、図6に示した例では充電開始時点における充電電圧の波高値が約30V(5V/セル、図示せず)に達しており、図2に示した例の約21V(約3.6V/セル)に比べて高い電圧が印加されている。このことによって、前記充電阻害要因が早く取り除かれ、良品の充電受け入れ性が早く回復したものと考えられる。このようにパルス充電を採用して瞬間的に高い電圧を印加することによって、被検電池の良否判定を速やかに行うことができる。なお、本発明の診断充電に適用するパルスは、前記のように電圧または電流の波高値が高いものであり、該パルスを長時間電池に印加すると電池の特性が劣化する虞があり好ましくはない、従って、本発明においては、パルス充電を鉛蓄電池の良否判定のための診断にのみ適用し、容量回復のための通常の充電には適用しない。
【0064】
以上、ブロック図で示した実施の形態においては診断充電(1)、診断充電(2)、および診断充電(3)を併せて備えるか、診断充電(1)、診断充電(2′)、および診断充電(3′)を併せて備える例を示した。前記実施形態のように複数の診断充電機能を併せて備えている場合には良否判定の精度が高く、好ましい実施の形態ではあるが、本発明に係る鉛蓄電池の良否判定方法においては必ずしもこれらの診断充電機能を全て備える必要はなく、前記の診断充電機能のうち少なくとも1つの診断充電機能を備えておればよい。
【0065】
図8は、本発明に係る充電器の回路構成の1例を示すブロック図である。B0は、該充電器の電源プラグであって商用の100Vないし200Vの電源に接続する。B1は、該充電器のON、OFFの操作をするためのスイッチである。B2は、AC電源の過電流保護用のヒューズである。
【0066】
C0は、一次側のACの電圧を降下して二次側に供給するための変圧器である。変圧器C0によって電圧を降下させた交流はリレースイッチD1をONにすることによってダイオードD0により整流された直流が診断用充電(診断兼回復充電を含む)の充電電流として充電器の正極出力端子G0および負極出力端子G1に接続された鉛蓄電池H0に供給される。E1は、充電電流の過電流保護用のヒューズである。
【0067】
蓄電池H0に印加される電圧または鉛蓄電池の開回路電圧は、分圧抵抗器F0によって調整され、電圧検出器F1によって計測される。充電電流は、電流検出器F2によって検出される。
【0068】
また、サイリスタE0によって整流され位相制御された直流が電流診断用兼普通充電用の充電電流として鉛蓄電池H0に供給され、充電中の充電電流および充電電圧は、電圧・電流検出回路F3によって計測される。F4は、検出状態監視、判定、経過時間管理、充電電圧、充電電流の管理、充電操作の管理を司る制御回路である。F5は、充電器の出力電圧、出力電流の操作、リレー操作、充電器の運転/警報表示操作を行うための操作回路である。
【0069】
F6は、運転状態の表示、判定結果を告知するための表示装置である。該表示装置がとり得る告知の方法は特に限定されず光や音が適用できる。ことに光による表示は電圧診断中、電流診断中、回復充電中、普通充電中など運転に応じて別々の光源を点灯または点滅することによって運転状態の区分を表示できる。また、判定結果の告知も良否の区分以外に診断充電(1)による不良判定、診断充電(2)電圧診断による不良判定、回復充電不能による不良判定など判定に応じて別々の光源を点灯することによって不良判定を区分して詳細に告知できる利点がある。
【0070】
本充電器は、1台で過放電に陥った鉛蓄電池の判定機能、良品を回復させるための充電機能および正規充電機能を併せ持っており、鉛蓄電池の取り扱いに関して専門的な知識のないユーザーにとって利便性の高い充電器である。
【発明の効果】
【0071】
本発明の請求項1に係る発明は、過放電に陥った鉛蓄電池の機能を短時間で回復させるのに有効な充電方法である。
【0073】
本発明の請求項2に係る発明は、過放電に陥った鉛蓄電池の機能を回復させるのに有効な充電方法である。
【0074】
本発明の請求項3に係る発明は、充電によって回復すると判定された鉛蓄電値のみを正規充電にかけることができ、回復不能の蓄電池の充電を長時間かけて試みるという無駄を省くことができる。
【0075】
本発明の請求項4、5に係る発明によれば、充電の対象外である異種電池や不良品を迅速に排除することができる。
【0076】
本発明の請求項6、7に係る発明によれば、過放電に陥った鉛蓄電池の良否を精度良く短時間で判定することが出来る。
【0077】
本発明の請求項8に係る発明によれば、過放電に陥った鉛蓄電池の良否を精度良く、さらに短時間で判定することが出来る。
【0078】
本発明の請求項9に係る発明によれば、1台の充電器で過放電に陥った鉛蓄電池の良否判定および充電を容易に且つ速やかに行うことができるとともに、良否判定結果を即座に知ることができる。
【図面の簡単な説明】
【図1】本発明に係る鉛蓄電池の良否判定方法および充電過程の1例を示すブロック図である。
【図2】過放電に陥った鉛蓄電池を本発明係る定電流充電による診断充電(2)を行ったときの被検電池の開回路電圧と充電時間の関係を示すグラフである。
【図3】過放電に陥った鉛蓄電池を本発明係る定電流充電による診断充電(3)を行ったときの充電電圧と充電時間の関係を示すグラフである。
【図4】本発明に係る鉛蓄電池の良否判定方法および充電過程の1例を示すブロック図である。
【図5】過放電に陥った鉛蓄電池を本発明係る定電圧充電による診断充電(2´)を行ったときの充電電流を示すグラフである。
【図6】本発明に係るパルス充電における充電電圧の平均値と充電時間の関係を示すグラフである。
【図7】本発明に係るパルス充電に適用するパルス波の波形の1例を示すグラフである。
【図8】本発明に係る充電器の1構成例を示すブロック図である。
【図9】従来の鉛蓄電池の良否判定方法および充電方法の1例を示すブロック図である。
【符号の説明】
D0 ダイオード
E0 サイリスタ
F1 電圧検出器
F2 電流検出器
F3 電圧・電流検出回路
H0 被充電(被検)電池
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for charging a lead-acid battery, a quality determination method to which the charge method is applied, and a lead-acid battery charger, and determines the quality of a lead-acid battery that has been overdischarged and recovers its function. The present invention relates to a charging method for charging and a charger applied to the charging for restoring the quality determination and function.
[0002]
[Prior art]
The use of lead-acid batteries for general users such as automobiles (four-wheeled vehicles) and motorcycles (motorcycles) varies. In the case of batteries for automobiles, due to forgetting to turn off the headlights or room lamps, etc., the battery may be discharged beyond its capacity (rated capacity), or may be left for a long time without supplementary charging, resulting in an overdischarged state. Many are seen. The overdischarge status of lead-acid batteries can be broadly divided into those in which the function of the electrode plate does not recover even after charging, and the function is restored by charging (represented as a severe overdischarge status for the sake of convenience) ( Sulfation does not occur or sulfation has occurred but has not progressed, and it is classified as a mild overdischarge state for the sake of convenience).
[0003]
However, in order to determine whether the target lead-acid battery is over-discharged in a light or severe state, it requires a high level of specialized knowledge regarding the lead-acid battery, and it is difficult for a general user to distinguish it.
[0004]
In the conventional charging method and charger, there is a possibility that even a light overdischarge battery cannot be charged. In addition, a charger commercially available as a lead-acid battery charger is provided with a protective device so that it is not charged when a different battery is charged or the output terminal is short-circuited. There is a problem that charging cannot be performed when the voltage of the storage battery is equal to or lower than a predetermined value, such as a fallen lead storage battery.
[0005]
FIG. 9 is a flowchart showing steps in a conventional quality determination and charging method for a 12V lead acid battery. In the conventional charging method, for example, the open circuit voltage of the target lead storage battery is measured in step NO.12. If the open circuit voltage is less than 7V, a defective battery (non-recoverable battery by charging) or a different type of battery (for example, 6V lead acid battery), if the open circuit voltage is 7V or higher, it is determined as good (recoverable by charging) and charged under normal conditions until the charging voltage reaches a predetermined voltage (regular charging) I do.
[0006]
In addition, regular charge here is the charge method generally performed in order to carry out supplementary charge of lead acid battery, is charge implemented at temperature room temperature, Comprising: Two of constant current charge and constant voltage charge In the case of constant current charging, for example, charging is typically performed for 11 to 12 hours at a current of 1/10 ItA, and constant voltage charging is 14 to 15 V (2.33 V) for a 12 V battery (6-cell series connection). / Cell to 2.5V / cell) is meant to be charged for 10 to 12 hours.
[0007]
In the conventional pass / fail judgment method shown in FIG. 9, in the 12V lead-acid battery, even if the open circuit voltage is less than 7V, the function is expected to be recovered by charging only due to temporary overdischarge. In some cases, the battery is determined to be defective. In addition, a defective product (lead storage battery whose function does not recover even when charged) is judged as a non-defective product and wasteful charging may be performed. In addition, even a battery that is determined to be good is suddenly subjected to regular charging. That is, if you attempt to charge a lead-acid battery that has been overdischarged by regular charging, the charging voltage immediately reaches the end-of-charge voltage immediately after the start of charging. There is a risk that it may be erroneously determined that the battery can be charged even though it has not been charged.
[0008]
As described above, when an attempt is made to charge and recover a lead storage battery that has fallen into an overdischarge (mild overdischarge), it requires specialized knowledge regarding the handling of the lead storage battery, so it was difficult for a general user to charge it. . In addition, a charger for recovering a lead-acid battery that has fallen into a conventional overdischarge has to have a highly complicated function and has a disadvantage of being expensive. In addition, there is a method of charging a battery that has been overdischarged with a fine current, but this charging method is simple but has a drawback that it takes a long time to recover.
[0009]
Patent Document 1 discloses a method for recovering a lead-acid battery that has become unchargeable due to overdischarge, in which an alternating voltage is applied or reversely charged to destroy a semiconducting material generated at the interface between the positive electrode lattice surface and the active material, It has been proposed to perform regular charging thereafter.
[0010]
[Patent Document 1]
Japanese Patent Publication No. 63-23623 (page 1, claims)
[0011]
Patent Document 2 describes a method of charging at high speed by supplying a pulsed charging current to a sealed battery that is not allowed to be overcharged.
[0012]
[Patent Document 2]
Japanese Examined Patent Publication No. 47-45462 (Page 7, Claims)
[0013]
However, the method of Patent Document 1 has a drawback that the charging method is complicated and the charger becomes expensive, and the general user cannot easily determine whether or not the target lead storage battery is expected to be recovered by charging. . Although the method described in Patent Document 2 suggests the possibility of high-speed charging by applying pulse charging, it does not show a method applicable as a method for recovering a lead storage battery that has fallen into overdischarge.
[0014]
[Problems to be solved by the invention]
The present invention has been made in view of the drawbacks of the above-described conventional methods, and can easily determine the quality of a lead storage battery that has fallen into overdischarge (whether or not its function can be recovered by charging), and the lead storage battery. It is intended to provide a method and a charger for properly and promptly charging the battery.
[0015]
[Means for Solving the Problems]
In general, when sulfation occurs in the electrode plate of a lead storage battery and the sulfation proceeds to most of the electrode plate, the function does not recover even if it is charged. Conventionally, the battery is overdischarged, and the degree of sulfation is mild (sulfation occurs only in a small part of the electrode plate), and charging is performed even though most of the active material is normal. Many cases were judged as impossible. That is, when sulfation occurs at the interface between the grid and active material of the electrode plate or the surface of the electrode plate, the product produced thereby prevents charging of the active material existing in the part away from the grid or inside the electrode plate. Therefore, it is considered that it was determined that the entire active material of the electrode plate could not be charged.
[0016]
A method for charging a lead storage battery according to the present invention is a method for charging a lead storage battery that has fallen into an overdischarged state with pulsed power, and at a peak value per cell of 2.5 to 6.0 V / cell at the start of charging. Apply a voltage of.
[0017]
In charge of the conventional lead acid battery, the charging voltage of 2.0-2.5V (2.0 / cell-2.5V / cell) was applied per cell. In this conventional method, even when sulfation occurs only in a part of the electrode plate, the charging voltage immediately reaches the charging voltage (2.0 / cell to 2.5 V / cell), and charging cannot be performed. On the other hand, in the method for charging a lead storage battery according to the present invention, the peak value is set to 2.5 to 6.0 V / cell, which is higher than that in the related art in charging with pulse-wave power. By this, this invention enabled the charge of the lead storage battery which has produced the mild sulfation considered conventionally difficult. When charging a lead storage battery in a light overdischarge state, it is not clear why charging can be performed when a high voltage is applied as described above at the start of charging, but by applying a high voltage, the lattice and the active material It is considered that charging is possible because the charge-inhibiting substance existing on the interface or the surface of the electrode plate is altered or destroyed and electricity flows.
[0018]
Moreover, the quality determination method for a lead storage battery according to the present invention is a method for determining the quality of a lead storage battery that has fallen into overdischarge, wherein the test battery is charged with a constant current or a constant voltage, and the charging voltage at that time Alternatively, the quality is determined based on the behavior of the charging current. The non-defective product here refers to a lead-acid battery whose function is restored by charging (hereinafter referred to as a non-defective product or a light overdischarge battery), and the defective product is a lead-acid battery whose function is not restored even after charging (hereinafter referred to as a non-defective product). (Denoted as defective or heavy overdischarge battery).
[0019]
When a lead-acid battery that has fallen into an overdischarge, particularly a lead-acid battery (test battery) that causes sulfation, is charged, the non-defective product and the defective product behave differently. That is, when charging is performed at a constant current, the charge voltage of a good product droops with time and falls below a specified charge voltage value. On the other hand, in the case of a defective product, the charging voltage does not droop over time, or the drooping width is small and the charging voltage does not fall below the specified charging voltage value. In addition, when charging is performed at a constant voltage, in a non-defective product, the charging current increases with time and becomes equal to or higher than the specified charging current value. On the other hand, in the case of a defective product, the charging current does not increase over time or the increase width is small and does not exceed the specified charging current value.
[0020]
The present invention determines the quality of a lead-acid battery that has fallen into overdischarge based on the difference in behavior between charging the good product and the defective product.
[0021]
The charging voltage when charging a normal (not over-discharged) lead storage battery is usually 2.3 to 2.5 V / cell at maximum. However, a lead storage battery that has been overdischarged cannot be charged because the battery voltage immediately rises to the maximum value of the charging voltage immediately after the start of charging even when the normal charging voltage is applied. In the charging method according to the present invention, the lead storage battery has a peak value of 2.5 V / cell at least at the start of charging. By applying a voltage of cell to 6.0 V / cell, even a lead storage battery that has been overdischarged can be charged if it is a non-defective product, and the charging voltage drops below a specified charging voltage value or charging current value Is a charging method for charging based on the knowledge that charging can be performed by the regular charging method after the current rises to a specified charging current value or more.
[0022]
As described above, the lead storage battery charging method according to the present invention applies a charging voltage of 2.5 to 6.0 V / cell at the start of pulse charging and charges the battery, and the voltage peak value or average value is constant. If the current peak value or average value is constant until the current peak value or average value in pulse charging exceeds the specified current value, the voltage peak value or average value in pulse charging is specified. After charging until the voltage drops below the voltage value, regular charging is performed only for lead-acid batteries determined to be good in diagnostic charging described later.
[0023]
A lead storage battery quality determination method according to the present invention is a method for determining the quality of a lead storage battery that has fallen into an overdischarged state by charging a test battery by constant current charging (diagnostic charging), and the charging current is constant. When the charging voltage is variable and charging is performed for a specified time, and the charging voltage at the time of charging or the open circuit voltage after completion of charging rises above the specified charging voltage value or the specified open circuit voltage value, the test battery is determined to be good. . In the diagnostic charging for the pass / fail judgment, the specified charging time is not particularly limited, but 3 minutes is sufficient at the longest, and may be 0.5 to 2 minutes. In the diagnostic charging, in order to accurately determine the quality, the charging current value is preferably set in a range of 1/100 to 1/15 ItA, more preferably 1/50 to 1/20 ItA. Moreover, it is preferable that the charge voltage at the time of a charge start enter into the range of 1.5V / cell-2.0V / cell. Moreover, it is preferable to set the specified charging voltage value and the specified open circuit voltage value to 1.2 V / cell or more. When determining pass / fail based on the open circuit voltage value, the time from the end of charging to the open circuit measurement time is not particularly limited, but it is preferably defined as a certain time and is preferably 1 minute or more. More preferably, the value is defined to be a constant value.
[0024]
Another quality determination method for a lead storage battery according to the present invention is a method for determining the quality of a lead storage battery (test battery) that has fallen into an overdischarged state by charging the test battery with a pulsed current (diagnostic charge). The charging is carried out for a specified time with the crest value or average value of the charging current in pulse charging being constant, the crest value or average value of the voltage being variable, and the crest value or average value of the charging voltage at the time of charging being performed. Alternatively, the test battery is determined to be good when the open circuit voltage of the test battery after completion of charging rises to a specified charge voltage value (crest value or average value) or a specified open circuit voltage value or more. In the diagnostic charging for the pass / fail judgment, the specified charging time is not particularly limited, but 3 minutes is sufficient at the longest, and is preferably 0.3 to 2 minutes. In the diagnostic charging, in order to accurately determine the quality, the peak value of the charging current value is preferably set in the range of 1/50 to 1/5 ItA, and is set in the range of 1/30 to 1/10 ItA. More preferably. Further, when the average value of the charging current is specified, the average value is preferably set in a range of 1/100 to 1/15 ItA, and more preferably set in a range of 1/50 to 1/20 ItA. Moreover, it is preferable that the peak value of the charging voltage at the start of charging falls within the range of 2.0 V / cell to 4.0 V / cell. It is preferable to set the specified charging voltage value (peak value) to 2.0 V or higher, the specified charging voltage value (average value), and the specified open circuit voltage value (average value) to 1.2 V / cell or higher. When determining pass / fail based on the open circuit voltage value, the time from the end of charging to the open circuit measurement time is not particularly limited, but it is preferably defined as a certain time and is preferably 1 minute or more. More preferably, the value is defined to be a constant value.
[0025]
The quality determination method for a lead storage battery according to the present invention is a method for determining the quality of a test battery by charging (diagnostic charging) with a constant voltage or a constant current, and is 2.5 to 4.0 V / Applying the charging voltage of the cell, in the case of constant current charging, charging is performed for a specified time with the charging voltage being variable so that the charging current value is a constant value of 1/100 to 1/15 ItA, which is a preferred range, When the charging voltage drops below a specified charging voltage value, for example, 2.5 V / cell or less, in the case of constant voltage charging, the charging current when charging is performed for a specified time by applying a charging voltage of 2.5 to 4.0 V / cell When the value rises to a specified charging current value, for example, 1/20 ItA or more, the test battery is determined to be good.
[0026]
Another quality determination method for the lead storage battery according to the present invention is a method for determining the quality of the lead storage battery (test battery) by pulse charging, and the peak value of the test battery is 2 immediately after the start of charging. Apply charging voltage of 0.5 / cell to 6.0V / cell, make the crest value or average value of the charging current constant, change the charging voltage and charge for a specified time, for example 30 seconds, and charge at the time of charging When the peak value or average value of the voltage drops below a specified charging voltage value, peak value, for example, 2.8 V cell or lower, or when the average value drops, for example, below 2.5 V / cell, the test battery is good. Is determined.
[0027]
Another quality determination method for the lead-acid battery according to the present invention is such that, in the pulse charging, the peak value of the charging voltage is constant at, for example, 3.0 V / cell, or the average value of the charging voltage is constant at, for example, 2.5 V / cell. When the charging current value is variable and charging is performed for a specified time, for example, for 30 seconds, and the peak value of the charging current rises to a specified charging current value, for example, 1/20 ItA or more, the average value of the charging current is, for example, The lead storage battery is determined to be good when it rises to 1/50 ItA or more.
[0028]
In the quality determination of the lead storage battery according to the present invention, the open circuit voltage of the test battery is measured prior to the diagnostic charging, and the measurement result and the reference value (A) of the open circuit voltage {6 cell series connected lead storage battery In the case of, for example, 12V (2.0v / cell or more) is compared, and if the open circuit voltage of the test battery satisfies the reference value, a normal battery (non-overdischarged battery) is used as an overdischarge battery or a series battery. It is also effective to distinguish from different types of batteries with a small number of connected cells. As a result, a normal battery can be immediately subjected to regular charging without undergoing diagnostic charging.
[0029]
The lead-acid battery charger according to the present invention has a charging function that satisfies at least one of the charging methods of the lead-acid battery according to the present invention and a quality determination function that satisfies at least one of the quality determination functions according to the present invention. Prepare.
[0030]
The lead-acid battery charger according to the present invention has a function of notifying a result of the quality determination.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a storage battery according to the present invention will be described with reference to the drawings. In addition, the form shown below is an example and this invention is not limited to the example shown below.
[0032]
FIG. 1 is a flowchart showing the flow of determination of quality of a lead-acid battery and charging of the battery according to the first embodiment of the present invention. The flowchart of FIG. 1 is a diagram showing a flow of pass / fail determination including the pass / fail determination method according to claims 2 and 3. The test battery in FIG. 1 is a lead-acid battery for a motorcycle with a nominal voltage of 12 volts (V), a nominal capacity of 4 ampere hours (Ah), and a 6-cell series connection.
[0033]
In process NO.11, the open circuit voltage of the test battery is checked, and when the open circuit voltage is 12 V (2.0 V / cell) or higher, it is a normal product (not a battery that has fallen into the overdischarge target here). It judges and transfers to the normal charge process of process NO.50.
[0034]
When the open circuit voltage of the test battery is less than 12 V (2.0 V / cell), it is determined that the battery is overdischarged or another type of storage battery (for example, a 6 V storage battery). When the open circuit voltage of the test battery is less than 12V and the open circuit voltage is more than the specified open circuit voltage value 7.2V (1.2V / cell), in order to diagnose the possibility of functional recovery by charging Proceed to diagnostic charge (2) in step NO.30. If the open circuit voltage is less than the specified open circuit voltage value of 7V, the open circuit voltage is not less than the specified open circuit voltage value of 7.2V (1.2V / cell) by the specified charging without immediately proceeding to step NO.30. In order to check whether or not, or to eliminate the storage battery of other models, the process proceeds to diagnostic charge (1) in step NO.
[0035]
The voltage applied to the test battery in the diagnostic charge (1) is 2.0 V / cell at the maximum (in the case of a 6-cell series connection battery, the maximum is 12 V). It is desirable to avoid applying a voltage exceeding 2.0 V / cell, as in this example, there is a risk of making a diagnosis error if the voltage applied continuously instead of the pulse exceeds 2.0 V / cell. In diagnostic charging (1), for example, 1/20 ItA (charging current 0.2 amp (A), equivalent to 1/20 ItA current value for a battery with a nominal capacity of 4 Ah) is charged for 3 minutes, then the charging is terminated and released. The open circuit voltage immediately after the termination of charging is measured as a state. In addition, the value of the charging current in the diagnostic charging (1) is not particularly limited, but 1/100 to 1/15 ItA is preferable.
[0036]
In addition, in the example shown in Fig. 1 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=3" \ t "imageframe" Although the voltage is used, the charging voltage of the diagnostic charging (1) may be used as a determination criterion. Fig. 2 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=4" \ t "imageframe" uses two test batteries with different degrees of overdischarge. It is a graph which shows the relationship between the charge time when charging with, and a charge voltage. Fig. 2 HYPERLINK "http://128.31.3.46/patweb/patweb.exe?Command=imgform&DocDir=tma006042&ImageNo=4" \ t "imageframe" When charged for 3 minutes, the charging voltage becomes equal to or higher than the specified charging voltage value of 7.2 V (1.2 V / cell). When the charge voltage in diagnostic charge (1) is less than 7.2 V (1.2 V / cell), it is very likely that some abnormality such as an internal short circuit has occurred, or a different battery (for example, a 6 V battery) It is judged. Therefore, when the charge voltage of the diagnostic charge (1) is less than the specified voltage value of 7.2 V (1.2 V / cell), it is determined as defective as described above, and the process proceeds to step NO. A0 shown in FIG. Notify that it is defective (cannot be recovered by charging) (battery abnormality warning). On the other hand, when the charge voltage of the diagnostic charge (1) is equal to or higher than the specified charge voltage value of 7.2 V (1.2 V / cell), the process proceeds to step NO. 30 in order to diagnose the possibility of function recovery by charging. .
[0037]
Note that pulse charging in which the pulse wave current is constant and the peak value and / or average value of the current is constant can also be applied to the diagnostic charging (1). When applying pulse charging, it is preferable to set the peak value of the charging current value in a range of 1/50 to 1/5 ItA. Further, when the average value of the charging current is specified, it is preferable to set the average value in a range of 1/100 to 1/15 ItA. Moreover, it is preferable that the peak value of the charging voltage at the start of charging falls within the range of 2.0 V / cell to 4.0 V / cell. It is preferable to set the specified charging voltage value (peak value) to 2.0 V or higher and the specified charging voltage value (average value) or the specified open circuit voltage value (average value) to 1.2 V / cell or higher.
[0038]
The pulse waveform applied to the diagnostic charge (1) of the present invention is not particularly limited, and pulse waves of various shapes such as a rectangular wave, a sawtooth pulse wave, and a sine curve pulse wave can be applied. Further, the width and period of the pulse are not particularly limited, but it is advantageous to reduce the pulse width in order to suppress concentration polarization during charging. However, if the pulse width is reduced, an expensive detector is required to detect the peak value or average value. From this viewpoint, in order to set the peak value of the pulse voltage or pulse current high and to easily detect the pulse peak value, the pulse width and the pulse interval are set to several milliseconds (ms) to several tens of milliseconds ( ms) The number of pulses per second is preferably several tens to one hundred times (times / s). When the pulse width is less than a few ms, there is a disadvantage that the device for generating and detecting the pulse is complicated and expensive.
[0039]
As described above, when the charging voltage of the test battery exceeds the specified open circuit voltage value of 7.2 V (1.2 V / cell) in step NO. 12, the process proceeds to diagnostic charging (2) in step NO. The charging voltage is set at a maximum of 24 V and is variable, and charging is performed at a constant current of 1/20 ItA (0.2 A) for a maximum of 30 seconds. The current value in diagnostic charging by constant current charging is set so that the charging voltage at the start of charging is 2.5 to 4.0V. If the charging voltage is less than 2.5 V / cell, the effect of removing the charging inhibition factor of the overdischarge battery cannot be expected, and a non-defective product (slight overdischarge battery) may be determined as a defective product (severe overdischarge battery). There is. Also, if the voltage applied continuously exceeds 4.0V, the battery may be destroyed, so avoid it. In the present invention, it is sufficient that the charging voltage value satisfies the above condition, and the charging current value is not particularly limited. However, in order to determine pass / fail in a short time, the charging current is set to 1/100 to 1/15 ItA. It is preferable to be 1/50 to 1/20 ItA. If the charging current value is less than 1/100 ItA, there is a drawback that it takes a long time to determine pass / fail. When the charging current value is set to a value exceeding 1/15 ItA, the voltage applied per cell becomes high and there is a possibility that it exceeds the upper limit value of 4.0V.
[0040]
When the test battery is a good product (recovered by charging), the charging voltage drastically drops as the charging time elapses. When the test battery is defective (does not recover even when charged), the charging voltage does not droop or the droop width is small. In the case of non-defective products, the charging voltage drops because the charging inhibitor is removed as the charging time elapses, and in the case of defective products, the charging voltage is high even if the charging time elapses because the charging inhibitor is not removed. It is thought to remain. When the charging voltage is a 12V battery as in this example, if the charging voltage drops below the specified charging voltage value of 15V (2.5V / cell) during the charging, it is determined as a non-defective product and the process No. 50 Transition to the charging process under normal conditions. If the charging voltage of the test battery exceeds the specified charging voltage value of 15 V (2.5 V / cell), the process proceeds to diagnostic charging (3) in step No. 40 or goes to step NO. 30 if deemed necessary. Return and repeat the same operation again.
[0041]
Lead-acid batteries left after discharge cause sulfation, making it difficult to accept charging. If the progress of sulfation becomes severe, the function will no longer recover even after charging (severe overdischarge battery). FIG. 2 is a graph showing charging voltages when a light overdischarge battery (good product) and a heavy overdischarge battery (defective product) are charged with a current of 1/20 ItA.
[0042]
In a light overdischarge battery, the acceptance of charging is poor immediately after charging, and the charging voltage jumps up. However, as the charging time elapses, the charging is improved and the charging voltage drops. As shown in FIG. 2, 30 seconds after the start of charging, the charging voltage drops to 15 V (2.5 V / cell) or less of the standard charging voltage (A). On the other hand, in the case of a heavy overdischarge battery, the charge acceptance is not good even after a lapse of time, and the charge voltage remains over 20 V (3.4 V / cell).
[0043]
The specified charging time and the specified charging voltage value of diagnostic charging (2) are affected by the charging current value and are not particularly limited. In the case of charging at the preferred current value, a maximum specified charging time of 60 seconds is sufficient, and a maximum of 30 seconds may be preferable. In order to make a pass / fail judgment with high accuracy, the specified charging voltage value is preferably 16 V or less, and more preferably 15 V or less as shown in FIG.
[0044]
There are various degrees of progress of sulfation (degree of overdischarge). Among lead storage batteries whose charge acceptability has not recovered in the diagnostic charge (2), the charge acceptability recovers after further charging. Some of them are classified as non-defective products (hereinafter referred to as medium overdischarge batteries for convenience). In order to distinguish between medium overcharged batteries and severe overdischarged batteries, the charge voltage remains at the specified charge voltage value of 15 V (2.5 V / cell) even when diagnostic charging (2) is performed once or even when repeated twice. ), The process proceeds to diagnostic charge (3) in step No. 40, for example, charging is performed for the specified time with the same current as diagnostic charge (2), and the charging voltage during that time is measured. When the charging voltage falls below the specified charging voltage value of 15 V, it is determined as good (recoverable by charging), the fact is notified, and the process proceeds to the charging process under the normal conditions of step NO. When the charging voltage exceeds the specified charging voltage value of 15V, it is determined as defective and the process proceeds to step NO. A0, where it is notified that the storage battery is defective.
[0045]
The specified charging time and the specified charging voltage value of the diagnostic charging (3) are affected by the charging current value as in the case of the diagnostic charging (2), and are not particularly limited. In the case of charging at the preferred current value, the specified charging time is 60 minutes at the maximum, and preferably 30 minutes at the maximum. Further, in order to make a good / bad determination with high accuracy, the specified charging voltage value is preferably 16 V or less, and more preferably 15 V or less as shown in FIG.
[0046]
FIG. 3 is a graph showing charging voltages when a medium overcharged battery and a heavy overdischarged battery are subjected to diagnostic charging (3). In the example shown in FIG. 3, the charging current value is set to 1/20 ItA which is the same as that of the diagnostic charging (2). As shown in FIG. 3, in the case of a medium overdischarge battery, the charging voltage exceeds 20V for about 3 minutes after starting charging, but the charging voltage gradually decreases after 3 minutes and 30 minutes later. Drooped to 15 V or less of the specified charging voltage value, and was determined to be good.
[0047]
The battery determined to be a non-defective product by the diagnostic charging proceeds to step NO. 50 and is charged by the regular charging. According to this method, it is possible to determine the quality of a lead storage battery that has been overdischarged accurately in a short time, and it is possible to eliminate the waste of subjecting a defective product to regular charging.
[0048]
FIG. 4 is a diagram showing a quality determination and charge flow of a lead storage battery that has fallen into overdischarge according to the second embodiment of the present invention. In the case of the present embodiment, this is a method in which the determination operations according to claims 1, 2 and 3 are combined.
[0049]
The difference from the first embodiment is that when the measured open circuit voltage exceeds the specified open circuit voltage value 7V, the process proceeds to the diagnostic charge (2 ′) of step NO. 30 ′. As described above, a battery that has caused sulfation has a poor acceptance of charging. Therefore, a battery that is expected to recover by charging when a certain charging voltage is applied is charged over time if a charging voltage is continuously applied. The acceptance is better and the charging current is increased. On the other hand, an increase in charging current is not recognized for a battery that is judged to be defective without recovering its function even when charged. In the diagnostic charge (2 ′) of step NO. 30 ′, a constant charging voltage of 16 V (2.5 V / cell) is applied to the test battery for a maximum of 30 seconds, and the charging current is measured.
[0050]
FIG. 5 is a graph showing the charging current when a light overdischarge battery and a heavy overdischarge battery are subjected to diagnostic charging (2 ′). In a light overdischarge battery, the charging current rises to a specified charging current value of 0.2 A (corresponding to 1/20 ItA) or more after 10 to 20 seconds from the start of charging. On the other hand, in a heavy overdischarge battery, the charging current hardly rises within a specified charging time. As described above, when the charging current becomes equal to or higher than the specified charging current value, it is determined that the charging is good, and the process proceeds to normal charging in step NO. If the charging current does not reach the specified charging current value, if it is deemed necessary, the process returns to step NO. 30 'and the diagnostic charging (2') is performed again. When the charging current does not reach the specified charging current value in the diagnostic charging (2 ′), in order to distinguish between the battery that can be recovered by charging and the battery that cannot be recovered by charging, Shift to diagnostic charge (3) (also serves as recovery charge) with a constant current of 0.2 A.
[0051]
In addition, although omitted here, the charging mode of the diagnostic charging (3) may be the constant voltage charging mode {diagnostic charging (3 ')} as with the diagnostic charging (2'), and the specified charging time may be 30 minutes. . If the charging current rises to a value equal to or higher than the specified charging current value during the charging of the specified charging time, it is determined as good, and the process proceeds to normal charging process No. 50. On the other hand, when the charging current value does not rise above the specified charging current value, it is determined as defective and a battery abnormality indicating the failure is notified.
[0052]
The specified charging time and the specified charging current value of the diagnostic charging (2 ′) are affected by the charging voltage value and are not particularly limited. In the case of charging at the preferred voltage value, the specified charging time is 60 seconds at the maximum and preferably 30 seconds at the maximum. In order to make a pass / fail judgment with high accuracy, the specified charging current value is preferably 1/50 ItA or more, and more preferably 1/20 ItA or more as shown in FIG.
[0053]
In another embodiment of the present invention, a pulse is applied instead of charging with a constant current or a constant voltage shown in the above embodiment. It is considered that the merit of applying the pulse is that concentration polarization due to concentration deviation of the reaction solution or the reaction product generated by charging in the electrolytic solution of the storage battery or in the electrode can be suppressed. When pulse charging is applied, the peak value of the voltage or current to be applied can be set higher than that of constant voltage or constant current charging. As a result, there is an advantage that the effect of removing the factor obstructing the flow of electricity at the time of charging is great. Further, it is possible to improve the quality of the storage battery by charging, or the speed of charging for function recovery. A lead-acid battery determined to be good in diagnostic charging is charged by regular charging.
[0054]
The pulse waveform applied to the diagnostic charging (2), (2 '), (3), (3') of the present invention is not particularly limited, and is a rectangular wave, a sawtooth pulse wave, a sine curve pulse wave. For example, pulse waves having various shapes can be applied. In order to take advantage of the advantages of pulse charging, the peak value of the pulse voltage or pulse current is set higher than the voltage or current of constant voltage or constant voltage charging. However, the upper limit value of the pulse voltage and pulse current is set to a value that does not cause the test battery to be destroyed.
[0055]
In the case of pulse charging, the voltage applied to the test battery is suitably 2.5 to 6.0 V in peak value. When charging with a constant pulse current value, the applied voltage (crest value) at the start of charging is set to fall within the above range. The preferable value of the peak value is influenced by the pulse width and the pulse period, but the peak value is selected in consideration of the fact that charging is promoted without destroying the test battery. In the present invention, the peak value of the pulse is suitably 2.5 to 6.0 V / cell, preferably 3.5 to 5.0 V / cell. Further, the peak value of the pulse current is preferably 1/20 to 1/3 ItA, and more preferably 1/10 to 1/5 ItA. When the pulse peak value is less than 1/20 ItA, it takes time for diagnostic charging, and when it is 1/3 ItA or more, the voltage peak value may exceed 6.0V.
[0056]
Further, the pulse width and cycle are not particularly limited, but the pulse width and the pulse interval are set to several milliseconds (ms) to several tens as in the case of applying the pulse charge to the diagnostic charge (1). It is preferable that the number of pulses per millisecond (ms) is set to several tens to one hundred times (times / s).
[0057]
When charging with a constant voltage (peak value) in pulse charging, charging is performed for a specified time, and when the peak value of the charging current at the time of charging is equal to or higher than the specified charge current value, it is determined to be good. When charging with a constant current (crest value), charging was performed for a specified time by applying a pulse wave with a constant crest value of the charging current, and the crest value of the charging voltage at the time of charging dropped below the specified charging voltage value. If it is judged good.
[0058]
The specified charging time, specified charging current value, and specified charging voltage value in diagnostic charging by pulse charging are not particularly limited. However, when pulse charging is applied to diagnostic charging, diagnostic charging in constant current charging (see FIG. 1) ( In the diagnostic charging corresponding to 2), it is sufficient that the specified charging time is a maximum of 40 seconds, and is preferably set to a maximum of 20 seconds. Further, in the diagnostic charging corresponding to the diagnostic charging (3) in the constant current charging shown in FIG. 1, a maximum of 10 minutes is sufficient, and preferably a maximum of 5 minutes is set. In order to determine accurately, the specified charging current value (peak value) is preferably 1/20 ItA or more, and more preferably 1/10 ItA or more. Further, the specified charging voltage value (peak value) is preferably 2.8 V / cell or less, and more preferably 2.5 V / cell or less. A lead-acid battery determined to be good in diagnostic charging is charged by regular charging.
[0059]
An expensive detector is required to detect the peak value of the pulse voltage and current. On the other hand, detection of the average value of the voltage and current of the pulse is easy and can be detected by an inexpensive detector. Therefore, in the charge and the pass / fail judgment of the lead storage battery to which the pulse charge in the present invention is applied, it is a more preferable embodiment to control the charge or judge the pass / fail based on the average value of the pulse voltage and current.
[0060]
In the example of the pulse charging (charging with a constant pulse voltage or current peak value to be applied), pass / fail can be determined using the average value of the charging voltage or charging current as a reference value. The specified voltage value or the specified current value (average pulse value) is not particularly limited, but in order to accurately determine pass / fail, the specified charging voltage value (average pulse value) is 2.5 / cell. The following is preferable, and 2.3 V / cell or less is more preferable. Further, the specified charging current value (average pulse value) is preferably 1/50 ItA or more, and more preferably 1/20 ItA or more.
[0061]
A pulse to be applied in pulse charging can be defined by an average value of voltage or current. FIG. 6 shows that the average value shown in FIG. 7 is 0.16 A (the peak value is 0) in the diagnostic charge (corresponding to diagnostic charge (2) in FIG. 1) of the 12V, 4Ah, 6-cell series connected lead-acid battery for motorcycles. 4A, the pulse width is 0.2 ms, and the pulse interval is 0.6 ms). As shown in FIG. 6, the light overdischarge battery is determined to be good because the average value of the charging voltage (pulse) is less than or equal to the specified charging voltage value (15 V, 2.5 V / cell). On the other hand, a heavy overdischarge battery determines that the average value of the charging voltage does not drop and is defective.
[0062]
The average value of the voltage or current of the pulse applied in the pulse charging is not particularly limited. However, the peak value of the pulse voltage applied per cell is set so as not to exceed 6.0 V / cell. In the present invention, the average value of the voltage or current of the pulse is set in consideration of the pulse width and the pulse interval (pulse period). At the time of setting, it is more advantageous to remove the charge blocking factor by reducing the pulse width and increasing the applied voltage as much as possible within a range where the peak value of the voltage of the pulse applied per cell does not exceed 6.0 V / cell. It is. Specifically, it is preferable to set the average value of the voltage of the pulse to be applied to 2.0 to 2.5 V and the average value of the current to 1/50 to 1/20 ItA. In addition, the specified charging voltage and the specified charging current (average pulse value) for the pass / fail judgment in this case are not particularly limited as in the case of the pass / fail judgment value of the pulse charge. The specified charging voltage (average pulse value) is preferably 2.5 V / cell or less, more preferably 2.3 V / cell or less. The specified charging current (average pulse value) is preferably 1/50 ItA or more, and more preferably 1/20 ItA or more.
[0063]
The charging voltage of the non-defective product shown in FIG. 6 droops faster than the charging voltage of the non-defective product shown in FIG. In the example shown in FIG. 6, a large charging current of a charging current having a peak value of 0.4 ItA shown in FIG. 7 (the charging current in the example shown in FIG. 2 is 0.2 ItA) is passed. Therefore, in the example shown in FIG. 6, the peak value of the charging voltage at the start of charging reaches about 30 V (5 V / cell, not shown), and about 21 V (about 3.6 V in the example shown in FIG. 2). / Cell) is applied with a higher voltage. As a result, it is considered that the charging hindering factor was removed quickly, and the charge acceptability of the non-defective product was quickly recovered. By adopting pulse charging in this way and applying a high voltage instantaneously, the quality of the test battery can be determined quickly. Note that the pulse applied to the diagnostic charging of the present invention has a high peak value of voltage or current as described above. If the pulse is applied to the battery for a long time, the characteristics of the battery may be deteriorated. Therefore, in the present invention, the pulse charging is applied only to the diagnosis for determining the quality of the lead storage battery, and is not applied to the normal charging for capacity recovery.
[0064]
As described above, in the embodiment shown in the block diagram, the diagnostic charge (1), the diagnostic charge (2), and the diagnostic charge (3) are provided together, or the diagnostic charge (1), the diagnostic charge (2 ′), and An example in which a diagnostic charge (3 ′) is also provided is shown. In the case of having a plurality of diagnostic charging functions together as in the above embodiment, the accuracy of the pass / fail judgment is high, which is a preferred embodiment, but in the pass / fail judgment method of the lead storage battery according to the present invention, these are not necessarily It is not necessary to provide all the diagnostic charging functions, and it is sufficient to provide at least one diagnostic charging function among the diagnostic charging functions.
[0065]
FIG. 8 is a block diagram showing an example of the circuit configuration of the charger according to the present invention. B0 is a power plug of the charger and is connected to a commercial 100V to 200V power source. B1 is a switch for turning on and off the charger. B2 is a fuse for overcurrent protection of the AC power supply.
[0066]
C0 is a transformer for dropping the voltage of the AC on the primary side and supplying it to the secondary side. The alternating current whose voltage has been reduced by the transformer C0 is the positive output terminal G0 of the charger as the charging current of the charging for diagnosis (including diagnosis and recovery charging) as the direct current rectified by the diode D0 by turning on the relay switch D1. And supplied to the lead storage battery H0 connected to the negative output terminal G1. E1 is a fuse for overcurrent protection of charging current.
[0067]
The voltage applied to the storage battery H0 or the open circuit voltage of the lead storage battery is adjusted by the voltage dividing resistor F0 and measured by the voltage detector F1. The charging current is detected by the current detector F2.
[0068]
Further, the direct current rectified and phase-controlled by the thyristor E0 is supplied to the lead storage battery H0 as a charging current for current diagnosis and normal charging, and the charging current and charging voltage during charging are measured by the voltage / current detection circuit F3. The F4 is a control circuit that manages detection state monitoring, determination, elapsed time management, charge voltage, charge current management, and charge operation management. F5 is an operation circuit for performing operation of the output voltage and output current of the charger, relay operation, and operation / alarm display operation of the charger.
[0069]
F6 is a display device for notifying the display of the driving state and the determination result. The notification method that the display device can take is not particularly limited, and light and sound can be applied. In particular, the display by light can display the classification of the operation state by lighting or blinking different light sources according to the operation such as during the voltage diagnosis, during the current diagnosis, during the recovery charge, during the normal charge. In addition to determining whether the determination result is good or bad, separate light sources are turned on according to determinations such as failure determination based on diagnostic charging (1), failure determination based on diagnostic charging (2) voltage diagnosis, and failure determination based on the failure of recovery charging. There is an advantage that failure determination can be classified and notified in detail.
[0070]
This charger has a function to determine the lead storage battery that has been over-discharged by one unit, a charging function to recover a non-defective product, and a regular charging function, which is convenient for users who do not have specialized knowledge regarding the handling of lead storage batteries. It is a highly efficient charger.
【The invention's effect】
[0071]
The invention according to claim 1 of the present invention is a charging method effective for recovering the function of a lead storage battery that has fallen into an overdischarge in a short time.
[0073]
The invention according to claim 2 of the present invention is an effective charging method for recovering the function of the lead storage battery that has fallen into overdischarge.
[0074]
In the invention according to claim 3 of the present invention, only the lead stored value determined to be recovered by charging can be subjected to regular charging, and the waste of trying to charge an unrecoverable storage battery over a long time can be saved. .
[0075]
According to the inventions according to claims 4 and 5 of the present invention, it is possible to quickly eliminate different types of batteries and defective products that are not charged.
[0076]
According to the inventions according to claims 6 and 7 of the present invention, it is possible to accurately determine the quality of a lead storage battery that has fallen into an overdischarge in a short time.
[0077]
According to the invention of claim 8 of the present invention, it is possible to accurately determine the quality of a lead storage battery that has fallen into an overdischarge in a shorter time.
[0078]
According to the invention of claim 9 of the present invention, it is possible to easily and quickly perform the pass / fail judgment and charging of the lead storage battery that has been overdischarged by one charger, and immediately know the pass / fail judgment result. be able to.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an example of a quality determination method and a charging process of a lead storage battery according to the present invention.
FIG. 2 is a graph showing the relationship between the open circuit voltage of a test battery and the charging time when a lead-acid battery that has undergone overdischarge is subjected to diagnostic charging (2) by constant current charging according to the present invention.
FIG. 3 is a graph showing the relationship between a charging voltage and a charging time when a lead storage battery that has been overdischarged is subjected to diagnostic charging (3) by constant current charging according to the present invention.
FIG. 4 is a block diagram showing an example of a quality determination method and charging process for a lead storage battery according to the present invention.
FIG. 5 is a graph showing a charging current when a lead storage battery that has been overdischarged is subjected to diagnostic charging (2 ′) by constant voltage charging according to the present invention.
FIG. 6 is a graph showing a relationship between an average value of charging voltage and charging time in pulse charging according to the present invention.
FIG. 7 is a graph showing an example of a waveform of a pulse wave applied to pulse charging according to the present invention.
FIG. 8 is a block diagram showing a configuration example of a charger according to the present invention.
FIG. 9 is a block diagram showing an example of a quality determination method and a charging method for a conventional lead storage battery.
[Explanation of symbols]
D0 diode
E0 Thyristor
F1 voltage detector
F2 current detector
F3 Voltage / current detection circuit
H0 Charged (tested) battery

Claims (9)

過放電状態に陥った鉛蓄電池にパルス波状の電力を印して充電(パルス充電)する方法であって、前記パルス波状電力の電圧の波高値を1セル当たり2.5〜6.0V/セルとし、前記印する電力の電圧の波高値または平均値、あるいは電流の波高値または平均値を一定として充電することを特徴とする鉛蓄電池の充電方法。A method of charging a power pulse wave in lead-acid battery falls into an overdischarged state to mark pressurization (pulse charge) per cell the peak value of the voltage of the pulse wave power 2.5~6.0V / and cell charging method of a lead-acid battery, characterized by charging peak value or average value of the power voltage to said indicia pressure, or the peak value or average value of the current as a constant. 請求項1に記載の方法を適用して過放電状態に陥った鉛蓄電池を充電する方法であって、電圧を一定またはパルス波状電力の電圧の波高値または平均値を一定にした場合には充電電流の波高値または平均値が規定電流値以上になるまで、電流を一定またはパルス波状電力の電流の波高値または平均値を一定にした場合には充電電圧の波高値または平均値が規定電圧値以下に垂下するまで充電を行うことを特徴とする鉛蓄電池の充電方法。A method for charging a lead-acid battery that has fallen into an overdischarged state by applying the method according to claim 1 , wherein charging is performed when the voltage is constant or the peak value or average value of the pulse wave power voltage is constant. The crest value or average value of the charging voltage is the specified voltage value when the current is constant or the crest value or average value of the pulse wave power is constant until the crest value or average value of the current exceeds the specified current value. The lead acid battery charging method, wherein charging is performed until drooping below. 請求項2に記載の充電に引き続き、正規充電を行うことを特徴とする鉛蓄電池の充電方法。 A method for charging a lead-acid battery, comprising performing regular charging following the charging according to claim 2 . 過放電状態に陥った鉛蓄電池を定電流充電することによって該鉛蓄電池の良否を判定する方法であって、規定時間の定電流充電時の充電電圧が規定充電電圧値以上に上昇したときに、または該充電終了後の開回路電圧が規定開回路電圧値以上に上昇したときに該鉛蓄電池を良と判定する鉛蓄電池の良否判定方法。 The lead-acid battery falls into an overdischarged state there is provided a method for determining the quality of the lead-acid battery by constant current charging, when the charge voltage at the time of constant current charging of the prescribed time is increased to more than the specified charge voltage value, or quality determination method of the lead storage battery is determined 該鉛蓄 battery as good when the open circuit voltage after the charging completion rises above defined open-circuit voltage value. 過放電状態に陥った鉛蓄電池を、電流の波高値および/または平均値を一定にしたパルス波状の充電電流により充電(パルス充電)することによって該鉛蓄電池の良否を判定する方法であって、規定時間のパルス充電時の充電電圧の波高値もしくは平均値が規定充電電圧値以上に上昇したときに、または該充電終了後の開回路電圧が規定開回路電圧値以上に上昇したときに該鉛蓄電池を良と判定する鉛蓄電池の良否判定方法。 The lead-acid battery falls into an overdischarged state, there is provided a method for determining the quality of the lead-acid battery by charging by the charging current pulse wave in which the wave height values and / or average value of the current constant (pulse charge) The lead when the peak value or average value of the charging voltage during pulse charging for a specified time rises above the specified charging voltage value, or when the open circuit voltage after the end of charging rises above the specified open circuit voltage value quality determination method of the lead-acid battery is determined battery as good. 過放電状態に陥った鉛蓄電池を定電流充電することによって該鉛蓄電池の良否を判定する方法であって、充電開始時に該鉛蓄電池に2.5〜4.0V/セルの充電電圧が印加されるように充電電流を設定し、該充電電流を一定、充電電圧を可変として規定時間充電したときの充電電圧が規定充電電圧値以下に垂下したときに該鉛蓄電池を良と判定する鉛蓄電池の良否判定方法。 The lead-acid battery falls into an overdischarged state there is provided a method for determining the quality of the lead-acid battery by constant current charging, the charging voltage of 2.5~4.0V / cell is applied to該鉛battery when charging start the charge current is set to so that, constant the charging current, good and determines a lead-acid battery the 該鉛蓄 battery when the charging voltage when charging the specified time the charging voltage as a variable is suspended below the specified charge voltage value Pass / fail judgment method. 過放電状態に陥った鉛蓄電池を定電圧充電することによって該鉛蓄電池の良否を判定する方法であって、充電開始時に該鉛蓄電池に2.5〜4.0V/セルの充電電圧を印加して規定時間充電したときの充電電流が規定充電電流値以上に上昇したときに該鉛蓄電池を良と判定する鉛蓄電池の良否判定方法。 The lead-acid battery falls into an overdischarged state there is provided a method for determining the quality of the lead-acid battery by the constant voltage charging by applying a charging voltage of 2.5~4.0V / cell該鉛battery when charging start quality determination method of the lead storage battery is determined 該鉛蓄 battery as good when the charge current rises above specified charging current value when the charge specified time Te. 過放電状態に陥った鉛蓄電池に電圧の波高値が2.5〜6.0V/セルのパルス波状の電力を印加して充電(パルス充電)することによって該鉛蓄電池の良否を判定する方法であって、充電開始時の充電電圧の波高値が2.5〜6.0V/セルの範囲で変化する一定の充電電流の波高値または平均値を設定して規定時間の充電を行い、該充電時の充電電圧の波高値または平均値が規定充電電圧値以下に垂下したとき、または充電開始時の充電電圧の波高値が2.5〜6.0V/セルの範囲の一定値に設定して規定時間の充電を行い、該充電時の充電電流の波高値または平均値が規定電流値以上に上昇したときに、該鉛蓄電池を良と判定する鉛蓄電池の良否判定方法。In a method for determining the quality of the lead-acid battery by the peak value of the voltage to the lead-acid battery falls into an overdischarged state is charged by applying a power pulse wavy 2.5~6.0V / cell (pulse charge) The charging voltage peak value at the start of charging is set within a range of 2.5 to 6.0 V / cell, and a constant charging current peak value or average value is set and charging is performed for a specified time. When the peak value or average value of the charging voltage drops below the specified charging voltage value, or the peak value of the charging voltage at the start of charging is set to a constant value in the range of 2.5 to 6.0 V / cell perform the prescribed time charging, when the peak value or average value of the charging current during the charge rises above the prescribed current value, quality determination method of the lead storage battery is determined 該鉛蓄 battery as good. 請求項1〜3のいずれかに記載の充電機能と、請求項4〜8記載の少なくとも一つの良否判定機能および/または前記良否判定機能に基づく良否判定結果の告知機能とを備えることを特徴とする充電器。 A charging function according to any one of claims 1 to 3, and at least one quality determination function according to claims 4 to 8 and / or a notification function of a quality determination result based on the quality determination function. charger to.
JP2002365009A 2002-12-17 2002-12-17 Lead-acid battery charging method, pass / fail judgment method, and charger Expired - Fee Related JP4360083B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002365009A JP4360083B2 (en) 2002-12-17 2002-12-17 Lead-acid battery charging method, pass / fail judgment method, and charger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002365009A JP4360083B2 (en) 2002-12-17 2002-12-17 Lead-acid battery charging method, pass / fail judgment method, and charger

Publications (2)

Publication Number Publication Date
JP2004199933A JP2004199933A (en) 2004-07-15
JP4360083B2 true JP4360083B2 (en) 2009-11-11

Family

ID=32762678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002365009A Expired - Fee Related JP4360083B2 (en) 2002-12-17 2002-12-17 Lead-acid battery charging method, pass / fail judgment method, and charger

Country Status (1)

Country Link
JP (1) JP4360083B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075740A1 (en) * 2005-01-17 2006-07-20 Gs Yuasa Corporation Method and apparatus for judging conformity of lead storage battery
CN100428558C (en) * 2006-09-22 2008-10-22 北京清大华美环保节能技术研究院 Lead-acid battery detecting-repairing method and system
WO2008078552A1 (en) * 2006-12-26 2008-07-03 Panasonic Corporation Non-aqueous electrolyte secondary battery charging method, electronic device, battery pack, and charging device
FR2914429B1 (en) * 2007-03-28 2009-08-21 Peugeot Citroen Automobiles Sa METHOD FOR DETERMINING A CHARGE CAPACITY OF A LEAD-LIQUID TYPE BATTERY
JP5616043B2 (en) * 2009-09-28 2014-10-29 株式会社マステック Lead acid battery regeneration method and lead acid battery regeneration device used in the method
CN102427147A (en) * 2011-12-07 2012-04-25 山东圣阳电源科技有限公司 Charging method for vehicle lead-acid storage battery
JP5938633B2 (en) * 2012-09-28 2016-06-22 三菱自動車工業株式会社 Battery chargeability determination device
CN114374003B (en) * 2021-12-13 2024-04-19 安徽力普拉斯电源技术有限公司 Method for identifying formation charging micro-short circuit of deep-cycle battery for two-wheeled vehicle

Also Published As

Publication number Publication date
JP2004199933A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP4377164B2 (en) Power storage device abnormality detection method, power storage device abnormality detection device, and power storage system
US8106632B2 (en) Method for managing a bank of rechargeable batteries using the coup de fouet effect on charging
WO2012053487A1 (en) Battery charger and battery charging method
US11735779B2 (en) Reconditioned battery pack and method of making same
US20110234166A1 (en) Battery module state detection method
US20100117604A1 (en) Lead acid battery de-sulfation
JP7145865B2 (en) Rechargeable battery short-circuit prediction device and rechargeable battery short-circuit prediction method
CN105510831A (en) Method for monitoring state of battery in motor vehicle
JP4360083B2 (en) Lead-acid battery charging method, pass / fail judgment method, and charger
JP2008125199A (en) Control method for battery pack
CN108695912A (en) Battery charging and discharging current monitoring method and device
JPH0937478A (en) Charger
CN103401037A (en) Charging method for traction storage battery
KR100984556B1 (en) A bettery restoration unit and restoration method
JP6711238B2 (en) Battery pack disconnection detection system
JP2021525437A (en) Battery management device and method
CN1647340A (en) Microprocessor controlled booster apparatus with polarity protection
CN114600299A (en) Battery pack protection method and device
KR20130039684A (en) Charging system with diagnostic function for battery life
KR20220102454A (en) Apparatus and method for diagnosing battery system
EP3611817A1 (en) Appratus and method of controlling battery
JP3862078B2 (en) Secondary battery recovery method and secondary battery charger
JP3455979B2 (en) Method and apparatus for detecting short between electrodes of secondary battery
CN112684738B (en) Device control method, device, battery module, and nonvolatile storage medium
JP7178287B2 (en) Rechargeable battery status detection device and rechargeable battery status detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4360083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees