JP4359978B2 - Ladder type surface acoustic wave filter - Google Patents

Ladder type surface acoustic wave filter Download PDF

Info

Publication number
JP4359978B2
JP4359978B2 JP33213499A JP33213499A JP4359978B2 JP 4359978 B2 JP4359978 B2 JP 4359978B2 JP 33213499 A JP33213499 A JP 33213499A JP 33213499 A JP33213499 A JP 33213499A JP 4359978 B2 JP4359978 B2 JP 4359978B2
Authority
JP
Japan
Prior art keywords
ladder
saw
electrode
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33213499A
Other languages
Japanese (ja)
Other versions
JP2001156586A (en
Inventor
卓弥 大脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP33213499A priority Critical patent/JP4359978B2/en
Publication of JP2001156586A publication Critical patent/JP2001156586A/en
Application granted granted Critical
Publication of JP4359978B2 publication Critical patent/JP4359978B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はラダー型弾性表面波フィルタに関し、特に通過帯域幅と通過帯域近傍の減衰量とを改善したラダー型弾性表面波フィルタに関する。
【0002】
【従来の技術】
近年、弾性表面波フィルタは通信分野で広く利用され、高性能、小型、量産性等の優れた特徴を有することから特に携帯電話等に多く用いられている。
弾性表面波フィルタ(以下、SAWフィルタと称す)の中で、減衰傾度が急峻であると共に挿入損失が小さいという特徴を備えたラダー型SAWフィルタが、セルラー方式携帯電話のRF段に数多く用いられている。
周知のように、ラダー型SAWフィルタは同一圧電基板上に一端子対弾性表面波共振子(以下、SAW共振子と称す)複数個を並列、直列、並列と交互に配置してラダー型構造に構成した共振子型SAWフィルタである。
【0003】
図4(a)は、ラダー型SAWフィルタに用いられるSAW共振子の構成を示す平面図であって、圧電基板21の主面上に表面波の伝搬方向に沿ってIDT電極22とその両側にグレーティング反射器(以下、反射器と称す)23a、23bを配置してSAW共振子を構成したものである。
IDT電極22はそれぞれ互いに間挿し合う複数本の電極指を有する一対のくし形電極より構成され、一方のくし形電極と、他方のくし形電極とで一端子対SAW共振子を構成している。ここで、記号WはIDT電極22の交差幅を示している。
【0004】
一般にラダー型回路は、図4(b)に示すように、並列腕Ypと直列腕Zsとが共に1個の共振子からなるラダー型フィルタ基本区間(以下、基本区間と称す)を、互いにインピーダンスが整合するように、n区間(図の例では4区間)縦続接続して構成される。影像パラメータ理論によると、基本区間の並列腕(Yp)の反共振周波数faと、直列腕(Zs)の共振周波数fsをほぼ一致させるように設定することにより、該周波数を中心周波数とする帯域フィルタが形成され、並列腕(Yp)の共振周波数及び直列腕(Zs)の反共振周波数によりそれぞれ減衰極が形成される。
【0005】
図4(b)に示すように基本区間を4個縦続接続したラダー形回路において、直列腕のインピーダンスZsを有する共振子を2個直列接続した回路は、周知のようにインピーダンス2Zsの1個の共振子と等価であり、また、並列腕のアドミッタンスYpを有する共振子が2個並列に接続されたものは、アドミッタンス2Ypの1個の共振子と等価となる。
従って、図4(b)に示した4基本区間のラダー型回路は、同図(c)に示す5素子ラダー型回路に等価変換される。即ち、アドミッタンスYpを有する並列腕と、インピーダンス2Zsを有する直列腕と、アドミッタンス2Ypの並列腕と、インピーダンス2Zsの直列腕と、アドミッタンスYpを有する並列腕とからなるラダー型回路に変換される。このため、並列腕のSAW共振子24、26、28は同一の共振周波数を有するものの、SAW共振子26はSAW共振子24、28の2倍のアドミッタンスを有することになる。
【0006】
図5(a)は従来のラダー型SAWフィルタの断面図を示す模式図であって、セラミックパッケージ31の凹陥部にラダー型SAWフィルタ(以下、パッケージに収容する場合はSAWフィルタチップと称す)32を収容すると共に、該チップ32の底面と凹陥部底面とを接着剤33を用いて接着固定する。さらに、SAWフィルタチップ32の主面上に配設したリード電極とパッケージ31の端子電極35とをボンディングワイヤを用いて接続した後、パッケージ31上面の金属フランジに金属蓋36を抵抗溶接等の手段を用いて気密溶接してラダー型SAWフィルタを完成する。
【0007】
ここで、例えば図5(b)に示すように並列腕のSAW共振子24、26、28にそれぞれインダクタンスLを直列接続することにより広帯域化を実現できることが知られている。周知のように、SAW共振子にインダクタンスを直列接続すると、反共振周波数は変化しないが共振周波数は低周波側にシフトするため、共振−反共振周波数の間隔が広がり、フィルタとしては通過域が広帯域化することになる。
【0008】
【発明が解決しようとする課題】
例えば、特開平5−183380にはラダー型SAWフィルタを広帯域化する手段として、SAWフィルタチップ32と外部の端子とを接続するためのボンディングワイヤ34をインダクタンスLとして利用したものが提案されている。しかしながら、特開平5−183380によれば、ラダー型SAWフィルタを広帯域化するためにはインダクタンスLとして4nH程度の大きさが必要となるが、ワイヤボンディングを通常に用いる範囲では高々1nH程度のインダクタンスしか得られず、4nHものインダクタンスを得るためには長大なワイヤを必要とするため、小型化の観点からも非現実的とされていた。
また、最近ではSAWフィルタの更なる小型化要求のため、図6にラダー型SAWフィルタの模式的断面図を示すように、セラミックパッケージ41の凹陥部に収容したSAWフィルタチップ42上のパッド電極とパッケージの端子電極44、44・・とを金属バンプ43、43・・を介して接続するフリップチップボンディング技術が、SAWフィルタにも適用されるようになった。これに伴い、ボンディングワイヤによるインダクタンスの形成に代えて、例えば特開平10−93376に開示されているように、圧電基板上にストリップラインを形成して広帯域のラダー型SAWフィルタを実現する手法が提案されている。ところが、同じSAWフィルタを異なる用途に使用することは少なくなく、その用途に応じてインダクタンス値の変更が必要となる場合があるが、ストリップラインの場合はその長さを微調整して所望のインダクタンス値を得るといったことができないという不具合がある。このストリップラインはSAW共振子と同一のプロセスにて形成されるのが一般的である。従って、インダクタンスを変更する必要が生ずると、ストリップラインだけでなくSAW共振子を含むフォトリソグラフィ用マスクを再製作することとなり、そのコストは高価なものとなる。
本発明は上記問題を解決するためになされたものであって、広帯域化と通過域近傍の減衰量を改善したラダー型SAWフィルタを安価に提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために本発明に係るラダー型弾性表面波フィルタは、IDT電極とその両側に配置したグレーティング反射器とを備えた弾性表面波共振子を圧電基板の主面上に複数個有し、前記弾性表面波共振子が並列腕直列腕に配置されたラダー型弾性表面波フィルタにおいて、前記並列腕に配置された弾性表面波共振子の接地側に接続され、且つ複数のリード電極の直列接続よりなるリード電極群と、前記リード電極群の一端と前記IDTとの間を連結し、且つ前記リード電極よりも幅広である第1パッド電極と、前記リード電極群の他端に設けられ、且つ前記リード電極よりも幅広である、接地用の第2パッド電極と、前記複数のリード電極を連結し、且つ前記リード電極よりも幅広である第3パッド電極と、を有することを特徴とする。
さらに本発明は、前記第1、第2及び第3パッド電極の少なくとも一つに金属バンプを形成し、該バンプを介して電気的接続をしたことを特徴とする。
【0010】
【発明の実施の形態】
以下本発明を図面に示した実施の形態に基づいて詳細に説明する。
図1(a)は本発明に係るラダー型SAWフィルタの一構成例を示す平面図、同図(b)はラダー型SAWフィルタをセラミックパッケージに収容し、フリップチップボンディングしたものの模式的断面図である。図1(a)は、圧電基板1主面上にIDT電極とその両側に配置した反射器とを備えたSAW共振子を、入力側INから交互に並列腕SAW共振子2、直列腕SAW共振子3、並列腕SAW共振子4、直列腕SAW共振子5、並列腕SAW共振子6と接続回路が梯子状になるように配設して構成した5素子ラダー型SAWフィルタ11である。
SAW共振子2〜6を構成するIDT電極はそれぞれ互いに間挿し合う複数本の電極指を有する一対のくし形電極により構成され、IDT電極の一方のくし形電極と他方のくし形電極とで一端子対SAW共振子を構成している。
図1(a)に示したSAWフィルタチップ11をパターン形成面を下向きにしてセラミックパッケージ12の凹陥部に収容し、SAWフィルタチップ11に設けたパッド電極Q1、Q2及びQEと、パッケージ12の外部より内部に気密貫通する端子電極14、14・・とを金属バンプ13、13・・を介して固定すると共に導通接続している。
【0011】
本発明の特徴は図1(a)に示すようにラダー型SAWフィルタの並列腕SAW共振子2、4及び6の接地側のリード電極L1、L2及びL3に、それぞれの共振子の近傍にパッド電極Q3、Q4及びQ5を配置すると共に、基板1の図中中央下部に設けたパッド電極QEまでの間に複数個のパッド電極を設けている点にある。図1(a)の例ではパッド電極QEの一点に金属バンプを形成して接地を施したフィルタの例を示している。
リード電極L1、L2及びL3は、800MHz帯という高周波ではそれぞれインダクタンスを呈し、その大きさは接地点までの長さに比例する。つまり、図1(a)に示すようにパッド電極QEの一点で接地した場合が、各並列腕に直結されるインダクタンスの値がほぼ同一となると共に大きな値を呈することになる。
一方、パッケージ12の内部端子電極と外部端子電極との間の導体部でもインダクタンスが形成され、入力端子、接地端子、出力端子の各導体部ではそれぞれインダクタンスLpI、LpE、LpOを呈することになる。従って、各並列腕のSAW共振子2、4、6には接地点までのリード電極の長さに比例したインダクタンスと、パッケージ12の接地導体のインダクタンスLpEとの和が直列接続されていることになる。
【0012】
接地側のリード電極L1、L2及びL3を長く延在すると共に、それぞれの途中にパッド電極を複数個設けたことにより、並列腕のSAW共振子2、4及び6に直結するそれぞれのインダクタンスを適宜設定できるようになる。即ち、並列腕SAW共振子の接地側のリード電極を各共振子から一番遠い点、即ちパッド電極QEで接地した場合、SAW共振子に直列接続するインダクタンスが最も大きくなり、並列腕のSAW共振子の共振周波数を低周波側へシフトさせ、フィルタの帯域幅が広くなる。
【0013】
図2はN-CDMA方式のRFフィルタ用に、中心周波数を851MHz、帯域幅を38MHzとし、圧電基板にLiTaO3を用い、両側の並列腕SAW共振子2、6のIDT電極対数を86対、反射器本数をそれぞれ74本、交差幅を16.8λ(λはIDT電極の電極周期)、中央の並列腕SAW共振子4のIDT電極対数を146対、反射器本数をそれぞれ34本、交差幅を20λ、直列腕のSAW共振子3、5のIDT電極対数を56対、反射器本数をそれぞれ106本、交差幅を17.2λとし、図1(a)に示すようにSAW共振子2、4、6の接地側のリード電極を1つのパッド電極QEまで延在し、該電極に金属バンプを介して接地したフィルタをシミュレーションした特性が曲線αである。
一方、曲線βは比較するためのフィルタ特性で、回路構成、SAW共振子の定数値等は曲線αのフィルタと同一であるが、並列腕SAW共振子2、4、6の近傍のパッド電極Q3、Q4、Q5にバンプを設けてそれぞれを接地したフィルタをシミュレーションした特性である。
図2から明らかなように、パッド電極QEで接地した場合の方が低域側の通過域が広がると共に、通過域近傍の減衰特性が改善されることがわかる。
【0014】
図3は回路構成、SAW共振子の定数値は図2に示したものと同一であるが、並列腕SAW共振子の接地側リード電極の接地点を変えた場合のフィルタ特性である。即ち、曲線αは図1(a)に示すように両側の並列腕のSAW共振子2、6の接地側のリード電極を図中下部中央に設けたパッド電極QEまで延在して、該パッドに金属バンプを介して接地すると共に、中央の並列腕に配置したSAW共振子4の接地は、該共振子の近傍に設けたパッド電極Q4にて接地したラダー型SAWフィルタを測定したフィルタ特性である。
一方、曲線βは比較のために示したフィルタ特性で、並列腕のSAW共振子2、4、6の接地側リード電極をそれぞれの共振子の近傍に設けたパッド電極Q3、Q4及びQ5にて接地した場合の測定例である。
図3のフィルタ特性から、並列腕のSAW共振子の接地位置によって通過域近傍の減衰特性が変化することが判明した。並列腕SAW共振子の接地側リード電極を該共振子の近傍でそれぞれ接地すると、リード電極によるインダクタンスが小さくなるため、通過域低域側において減衰量が改善される。これに対して、両側の並列腕SAW共振子の接地用リード電極を長くし、それらを1点にて接地し、並列腕の中央のSAW共振子はその近傍に設けたパッド電極で接地するすると、帯域幅が若干広がると共に、通過域近傍の高域側の減衰量が改善できることが判明した。
つまり、用途に応じてバンプを形成するパッド電極を選択するだけで、圧電基板上の電極パターンを設計変更することなく必要な特性が得られるのである。
【0015】
以上の説明では5素子ラダー型SAWフィルタを例として説明したが、他の素子数のフィルタについても適用できることは云うまでもない。
また、圧電基板としてタンタル酸リチウムを用いて説明したが、他の圧電材料、例えばニオブ酸リチウム、ランガサイト、四硼酸リチウム等にも適用できることは説明するまでもない。
上記の例ではリード電極をストリップライン状にして複数のパッド電極を設けた場合を説明したが、リード電極を直線状とし、該リード電極上に複数個のパッド電極を設けてもよいし、またリード電極自体を太幅とすると共に任意の位置にバンプを形成できるように構成したものでもよい。
【0016】
【発明の効果】
本発明は、以上説明したように構成したので、通過域の広帯域化に貢献すると共に、接地点の数により通過域近傍の減衰量を改善することが可能となり、用途に応じたフィルタ特性を実現することができる。本発明になるフリップチップラダー型SAWフィルタをN-CDMA方式のRFフィルタとして用いれば優れた特性の携帯電話ができるという効果を表す。
【図面の簡単な説明】
【図1】(a)は本発明に係るフリップチップラダー型SAWフィルタの構成を示す平面図、(b)はその模式的断面図である。
【図2】 曲線αは本発明のフリップチップラダー型SAWフィルタの特性をシミュレーションにより求めた図、曲線βは比較のために従来のフリップチップラダー型SAWフィルタの特性を示す図である。
【図3】曲線αは両側の並列腕のSAW共振子を1点で接地したラダー型SAWフィルタの特性、曲線βは比較のためのフィルタ特性で、SAW共振子の近傍でそれぞれ接地したフィルタ特性である。
【図4】(a)は従来のSAW共振子の構成を示す平面図、(b)はラダー型SAWフィルタの基本区間を4個縦続接続したラダー型SAWフィルタ、(c)は直列腕、並列腕のSAW共振子を合成して5素子ラダー型SAWフィルタとしたものである。
【図5】(a)はSAWフィルタチップをパッケージの凹陥部に収容し、ボンディングワイヤを用いて端子電極と導通を図った従来のラダー型SAWフィルタの断面図、(b)はその電気的等価回路である。
【図6】フリップチップボンディング方式のラダー型SAWフィルタの断面を示す模式図である。
【符号の説明】
1・・圧電基板
2、3、4、5、6・・SAW共振子
11・・フリップチップラダー型SAWフィルタ(SAWフィルタチップ)
L1、L2、L3・・リード電極
Q1、Q2、Q3、Q4、Q5、QE・・パッド電極
LpI、LpE、LpO・・パッケージの電極導体のインダクタンス
12・・パッケージ
13・・金属バンプ
14・・端子電極
15・・金属蓋
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ladder-type surface acoustic wave filter, and more particularly to a ladder-type surface acoustic wave filter with improved passband width and attenuation near the passband.
[0002]
[Prior art]
In recent years, surface acoustic wave filters have been widely used in the communication field, and are often used particularly for cellular phones because they have excellent characteristics such as high performance, small size, and mass productivity.
Among surface acoustic wave filters (hereinafter referred to as SAW filters), many ladder-type SAW filters having a steep attenuation slope and a small insertion loss are used in the RF stage of cellular mobile phones. Yes.
As is well known, a ladder-type SAW filter has a ladder-type structure in which a plurality of one-terminal-pair surface acoustic wave resonators (hereinafter referred to as SAW resonators) are alternately arranged in parallel, series, and parallel on the same piezoelectric substrate. It is the comprised resonator type SAW filter.
[0003]
FIG. 4A is a plan view showing the configuration of the SAW resonator used in the ladder-type SAW filter. The IDT electrode 22 is formed on the main surface of the piezoelectric substrate 21 along the propagation direction of the surface wave and on both sides thereof. A SAW resonator is formed by arranging grating reflectors (hereinafter referred to as reflectors) 23a and 23b.
The IDT electrode 22 is composed of a pair of comb-shaped electrodes each having a plurality of electrode fingers that are interleaved with each other, and one comb-shaped electrode and the other comb-shaped electrode constitute a one-terminal pair SAW resonator. . Here, the symbol W indicates the crossing width of the IDT electrode 22.
[0004]
In general, as shown in FIG. 4 (b), a ladder-type circuit has a ladder-type filter basic section (hereinafter, referred to as a basic section) in which the parallel arm Yp and the serial arm Zs are both formed of one resonator as impedances. N sections (4 sections in the example shown in the figure) are connected in cascade. According to the image parameter theory, by setting the anti-resonance frequency fa of the parallel arm (Yp) in the basic section and the resonance frequency fs of the series arm (Zs) to be approximately the same, a bandpass filter having the frequency as the center frequency. And attenuation poles are formed by the resonance frequency of the parallel arm (Yp) and the anti-resonance frequency of the series arm (Zs), respectively.
[0005]
As shown in FIG. 4B, in a ladder circuit in which four basic sections are cascade-connected, a circuit in which two resonators each having a series arm impedance Zs are connected in series has a single impedance of 2Zs. It is equivalent to a resonator, and two resonators having a parallel arm admittance Yp connected in parallel are equivalent to one resonator of admittance 2Yp.
Therefore, the ladder type circuit of the four basic sections shown in FIG. 4B is equivalently converted to the five element ladder type circuit shown in FIG. That is, it is converted into a ladder circuit composed of a parallel arm having admittance Yp, a serial arm having impedance 2Zs, a parallel arm having admittance 2Yp, a serial arm having impedance 2Zs, and a parallel arm having admittance Yp. Therefore, although the SAW resonators 24, 26, and 28 of the parallel arm have the same resonance frequency, the SAW resonator 26 has twice the admittance of the SAW resonators 24 and 28.
[0006]
FIG. 5A is a schematic diagram showing a cross-sectional view of a conventional ladder-type SAW filter. A ladder-type SAW filter (hereinafter referred to as a SAW filter chip when housed in a package) 32 is provided in a recessed portion of the ceramic package 31. And the bottom surface of the chip 32 and the bottom surface of the recessed portion are bonded and fixed using an adhesive 33. Further, after connecting the lead electrode disposed on the main surface of the SAW filter chip 32 and the terminal electrode 35 of the package 31 using bonding wires, a metal lid 36 is attached to the metal flange on the upper surface of the package 31 by means such as resistance welding. A ladder-type SAW filter is completed by air-tight welding using the
[0007]
Here, for example, as shown in FIG. 5B, it is known that a wide band can be realized by connecting an inductance L in series to SAW resonators 24, 26, and 28 of parallel arms. As is well known, when an inductance is connected in series to a SAW resonator, the anti-resonance frequency does not change, but the resonance frequency shifts to the low frequency side, so the interval between resonance and anti-resonance frequency is widened, and the filter has a wide passband. It will become.
[0008]
[Problems to be solved by the invention]
For example, Japanese Patent Laid-Open No. 5-183380 proposes using a bonding wire 34 for connecting the SAW filter chip 32 and an external terminal as an inductance L as means for widening a ladder-type SAW filter. However, according to Japanese Patent Laid-Open No. 5-183380, in order to broaden a ladder-type SAW filter, an inductance L of about 4 nH is required. However, in the range where wire bonding is normally used, an inductance of only about 1 nH is required. In order to obtain an inductance as high as 4 nH, a long wire is required, which is impractical from the viewpoint of miniaturization.
Further, recently, due to the demand for further downsizing of the SAW filter, the pad electrode on the SAW filter chip 42 accommodated in the recessed portion of the ceramic package 41 is shown in FIG. The flip chip bonding technique for connecting the package terminal electrodes 44, 44,... Via the metal bumps 43, 43,. Along with this, instead of forming the inductance by the bonding wire, a method for realizing a broadband ladder-type SAW filter by forming a strip line on a piezoelectric substrate is proposed as disclosed in, for example, JP-A-10-93376. Has been. However, the same SAW filter is often used for different applications, and the inductance value may need to be changed depending on the application. In the case of a stripline, the length is finely adjusted to obtain a desired inductance. There is a problem that the value cannot be obtained. In general, the stripline is formed by the same process as the SAW resonator. Therefore, when the inductance needs to be changed, not only the strip line but also the photolithography mask including the SAW resonator is remanufactured, and the cost becomes high.
The present invention has been made to solve the above problems, and an object of the present invention is to provide a ladder-type SAW filter having a wide band and improved attenuation near the passband at a low cost.
[0009]
[Means for Solving the Problems]
Engaging Lula Zehnder type surface acoustic wave filter of the present invention in order to achieve the above object, the surface acoustic wave resonator and a grating reflectors disposed on both sides of the IDT electrode on the main surface of the piezoelectric substrate In a ladder-type surface acoustic wave filter having a plurality of surface acoustic wave resonators arranged in parallel arms and series arms , the surface acoustic wave resonators are connected to the ground side of the surface acoustic wave resonators arranged in the parallel arms , and A lead electrode group composed of a series connection of the lead electrodes, a first pad electrode connecting one end of the lead electrode group and the IDT and wider than the lead electrode, and the other of the lead electrode group A second pad electrode for grounding which is provided at an end and is wider than the lead electrode; and a third pad electrode which connects the plurality of lead electrodes and is wider than the lead electrode. Specially It shall be the.
Furthermore the present invention, the first, the metal bumps formed on at least one of the second and third pad electrode, you characterized in that the electrical connection through the bumps.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.
FIG. 1A is a plan view showing a configuration example of a ladder-type SAW filter according to the present invention, and FIG. 1B is a schematic sectional view of a ladder-type SAW filter accommodated in a ceramic package and flip-chip bonded. is there. FIG. 1A shows a SAW resonator including IDT electrodes and reflectors arranged on both sides thereof on the main surface of the piezoelectric substrate 1, and parallel arm SAW resonator 2 and series arm SAW resonance alternately from the input side IN. This is a five-element ladder-type SAW filter 11 configured such that the connection circuit is arranged in a ladder shape with the child 3, the parallel arm SAW resonator 4, the series arm SAW resonator 5, and the parallel arm SAW resonator 6.
The IDT electrodes constituting the SAW resonators 2 to 6 are each constituted by a pair of comb electrodes having a plurality of electrode fingers interleaved with each other, and one comb electrode and the other comb electrode of the IDT electrode are identical. A terminal pair SAW resonator is formed.
The SAW filter chip 11 shown in FIG. 1A is accommodated in the recessed portion of the ceramic package 12 with the pattern forming surface facing downward, and the pad electrodes Q1, Q2, and Q E provided on the SAW filter chip 11 and the package 12 The terminal electrodes 14, 14... Hermetically penetrating from the outside to the inside are fixed via the metal bumps 13, 13.
[0011]
A feature of the present invention is that, as shown in FIG. 1A, the lead electrodes L1, L2, and L3 on the ground side of the parallel arm SAW resonators 2, 4 and 6 of the ladder-type SAW filter are padded in the vicinity of the respective resonators. with arranging the electrodes Q3, Q4 and Q5, in that it provided a plurality of pad electrodes until the pad electrodes Q E provided at the center lower portion in the figure in the substrate 1. The example of FIG. 1A shows an example of a filter in which a metal bump is formed at one point of the pad electrode Q E and grounded.
Each of the lead electrodes L1, L2, and L3 exhibits an inductance at a high frequency of 800 MHz band, and its magnitude is proportional to the length to the ground point. In other words, as shown in FIG. 1A, when grounded at one point of the pad electrode Q E , the inductance value directly connected to each parallel arm is substantially the same and exhibits a large value.
On the other hand, inductance is formed also in the conductor portion between the internal terminal electrode and the external terminal electrode of the package 12, and the inductance portions Lp I , Lp E , and Lp O are exhibited in the conductor portions of the input terminal, the ground terminal, and the output terminal, respectively. become. Accordingly, the sum of the inductance proportional to the length of the lead electrode to the ground point and the inductance Lp E of the ground conductor of the package 12 is connected in series to the SAW resonators 2, 4 and 6 of each parallel arm. become.
[0012]
The lead electrodes L1, L2 and L3 on the ground side extend long, and a plurality of pad electrodes are provided in the middle of each, so that the respective inductances directly connected to the SAW resonators 2, 4 and 6 of the parallel arm are appropriately set. It becomes possible to set. That is, when the lead electrode on the ground side of the parallel arm SAW resonator is grounded at the point farthest from each resonator, that is, the pad electrode Q E , the inductance connected in series to the SAW resonator becomes the largest, and the SAW of the parallel arm The resonance frequency of the resonator is shifted to the low frequency side, and the bandwidth of the filter is increased.
[0013]
FIG. 2 shows an N-CDMA RF filter with a center frequency of 851 MHz, a bandwidth of 38 MHz, LiTaO 3 as a piezoelectric substrate, and 86 IDT electrode pairs of parallel arm SAW resonators 2 and 6 on both sides. The number of reflectors is 74, the crossing width is 16.8λ (λ is the electrode period of the IDT electrode), the number of IDT electrode pairs of the central parallel arm SAW resonator 4 is 146, the number of reflectors is 34, and the crossing width 20λ, the number of IDT electrode pairs of the SAW resonators 3 and 5 in series arms is 56, the number of reflectors is 106, the crossing width is 17.2λ, and the SAW resonator 2 as shown in FIG. A curve α is a characteristic obtained by simulating a filter in which the ground-side lead electrodes 4 and 6 extend to one pad electrode Q E and grounded to the electrode via a metal bump.
On the other hand, the curve β is a filter characteristic for comparison, and the circuit configuration, the constant value of the SAW resonator, etc. are the same as the filter of the curve α, but the pad electrode Q3 in the vicinity of the parallel arm SAW resonators 2, 4, 6 is used. , Q4 and Q5 are characteristics obtained by simulating a filter in which bumps are provided and grounded.
As can be seen from FIG. 2, when the pad electrode Q E is grounded, the lower pass band is widened and the attenuation characteristic near the pass band is improved.
[0014]
FIG. 3 shows the filter characteristics when the circuit configuration and the constant value of the SAW resonator are the same as those shown in FIG. 2, but the ground point of the ground lead electrode of the parallel arm SAW resonator is changed. That is, as shown in FIG. 1A, the curve α extends to the pad electrode Q E provided at the lower center of the lead electrode on the ground side of the SAW resonators 2 and 6 of the parallel arms on both sides as shown in FIG. The pad is grounded via a metal bump, and the SAW resonator 4 disposed on the central parallel arm is grounded by measuring a ladder type SAW filter grounded by a pad electrode Q4 provided in the vicinity of the resonator. It is.
On the other hand, the curve β is a filter characteristic shown for comparison, and pad electrodes Q3, Q4, and Q5 in which the ground side lead electrodes of the SAW resonators 2, 4, and 6 of the parallel arm are provided in the vicinity of the respective resonators. This is a measurement example when grounded.
From the filter characteristics of FIG. 3, it has been found that the attenuation characteristics in the vicinity of the passband change depending on the ground contact position of the SAW resonator of the parallel arm. When the ground-side lead electrodes of the parallel arm SAW resonator are grounded in the vicinity of the resonator, the inductance due to the lead electrodes is reduced, so that the attenuation is improved on the low-pass side. On the other hand, if the lead electrodes for grounding of the parallel arm SAW resonators on both sides are lengthened and grounded at one point, the center SAW resonator of the parallel arm is grounded by a pad electrode provided in the vicinity thereof. It has been found that the attenuation on the high frequency side near the passband can be improved with a slight increase in bandwidth.
That is, the required characteristics can be obtained without changing the design of the electrode pattern on the piezoelectric substrate simply by selecting the pad electrode for forming the bump according to the application.
[0015]
In the above description, a five-element ladder type SAW filter has been described as an example, but it goes without saying that the present invention can be applied to filters having other numbers of elements.
Although the description has been made using lithium tantalate as the piezoelectric substrate, it is needless to say that the present invention can be applied to other piezoelectric materials such as lithium niobate, langasite, lithium tetraborate and the like.
In the above example, the case where the lead electrode is striplined and a plurality of pad electrodes are provided has been described. However, the lead electrode may be linear and a plurality of pad electrodes may be provided on the lead electrode. The lead electrode itself may have a large width and may be configured such that bumps can be formed at arbitrary positions.
[0016]
【The invention's effect】
Since the present invention is configured as described above, it contributes to widening of the pass band, and it is possible to improve the attenuation near the pass band by the number of grounding points, realizing filter characteristics according to the application. can do. If the flip-chip ladder type SAW filter according to the present invention is used as an N-CDMA RF filter, an effect that a cellular phone having excellent characteristics can be obtained is obtained.
[Brief description of the drawings]
FIG. 1A is a plan view showing a configuration of a flip chip ladder type SAW filter according to the present invention, and FIG. 1B is a schematic sectional view thereof.
FIG. 2 is a graph obtained by simulating the characteristics of the flip chip ladder type SAW filter of the present invention, and a curve β is a diagram showing characteristics of a conventional flip chip ladder type SAW filter for comparison.
3 is a characteristic of a ladder-type SAW filter in which the SAW resonators of the parallel arms on both sides are grounded at one point, and a curve β is a filter characteristic for comparison, each of which is grounded in the vicinity of the SAW resonator. It is.
4A is a plan view showing the configuration of a conventional SAW resonator, FIG. 4B is a ladder-type SAW filter in which four basic sections of a ladder-type SAW filter are cascade-connected, and FIG. 4C is a series arm, in parallel. The SAW resonator of the arm is synthesized to form a 5-element ladder type SAW filter.
5A is a cross-sectional view of a conventional ladder-type SAW filter in which a SAW filter chip is accommodated in a recessed portion of a package and is connected to a terminal electrode using a bonding wire, and FIG. 5B is an electrical equivalent thereof. Circuit.
FIG. 6 is a schematic view showing a cross section of a flip-chip bonding type ladder-type SAW filter.
[Explanation of symbols]
1 .. Piezoelectric substrate 2, 3, 4, 5, 6, .. SAW resonator 11 .. Flip chip ladder type SAW filter (SAW filter chip)
L1, L2, L3 ·· lead electrodes Q1, Q2, Q3, Q4, Q5, Q E ·· pad electrode
L pI , L pE , L pO ..Inductance of electrode conductor of package 12 .. Package 13 ..Metal bump 14 ..Terminal electrode 15 ..Metal lid

Claims (2)

IDT電極とその両側に配置したグレーティング反射器とを備えた弾性表面波共振子を圧電基板の主面上に複数個有し、前記弾性表面波共振子が並列腕直列腕に配置されたラダー型弾性表面波フィルタにおいて、
前記並列腕に配置された弾性表面波共振子の接地側に接続され、且つ複数のリード電極の直列接続よりなるリード電極群と、
前記リード電極群の一端と前記IDTとの間を連結し、且つ前記リード電極よりも幅広である第1パッド電極と、
前記リード電極群の他端に設けられ、且つ前記リード電極よりも幅広である、接地用の第2パッド電極と、
前記複数のリード電極を連結し、且つ前記リード電極よりも幅広である第3パッド電極と、
を有することを特徴とするラダー型弾性表面波フィルタ。
A ladder in which a plurality of surface acoustic wave resonators including IDT electrodes and grating reflectors disposed on both sides thereof are provided on the main surface of the piezoelectric substrate, and the surface acoustic wave resonators are disposed in parallel arms and serial arms. Type surface acoustic wave filter,
A lead electrode group that is connected to the ground side of the surface acoustic wave resonator disposed on the parallel arm and includes a plurality of lead electrodes connected in series;
A first pad electrode connecting between one end of the lead electrode group and the IDT and wider than the lead electrode;
A second pad electrode for grounding provided at the other end of the lead electrode group and wider than the lead electrode;
A third pad electrode connecting the plurality of lead electrodes and wider than the lead electrode;
Ladder-type SAW filter is characterized by having a.
前記第1、第2及び第3パッド電極の少なくとも一つに金属バンプを形成し、該バンプを介して電気的接続をしたことを特徴とする請求項1記載のラダー型弾性表面波フィルタ。 2. The ladder type surface acoustic wave filter according to claim 1, wherein a metal bump is formed on at least one of the first, second and third pad electrodes, and electrical connection is made through the bump.
JP33213499A 1999-11-24 1999-11-24 Ladder type surface acoustic wave filter Expired - Fee Related JP4359978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33213499A JP4359978B2 (en) 1999-11-24 1999-11-24 Ladder type surface acoustic wave filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33213499A JP4359978B2 (en) 1999-11-24 1999-11-24 Ladder type surface acoustic wave filter

Publications (2)

Publication Number Publication Date
JP2001156586A JP2001156586A (en) 2001-06-08
JP4359978B2 true JP4359978B2 (en) 2009-11-11

Family

ID=18251537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33213499A Expired - Fee Related JP4359978B2 (en) 1999-11-24 1999-11-24 Ladder type surface acoustic wave filter

Country Status (1)

Country Link
JP (1) JP4359978B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003069382A (en) * 2001-08-27 2003-03-07 Matsushita Electric Ind Co Ltd Surface acoustic wave filter and antenna duplexer employing the same
KR20030053113A (en) * 2001-12-22 2003-06-28 엘지이노텍 주식회사 Balance type surface acoustic wave filter
JP2003298392A (en) * 2002-03-29 2003-10-17 Fujitsu Media Device Kk Filter chip and filter device
JP2004364041A (en) 2003-06-05 2004-12-24 Fujitsu Media Device Kk Surface acoustic wave device and manufacturing method thereof
JP4601411B2 (en) * 2004-12-20 2010-12-22 京セラ株式会社 Surface acoustic wave device and communication device
JP4601415B2 (en) * 2004-12-24 2010-12-22 京セラ株式会社 Surface acoustic wave device and communication device
KR102377662B1 (en) * 2017-09-29 2022-03-23 가부시키가이샤 무라타 세이사쿠쇼 Multiplexers, high-frequency front-end circuits and communication devices

Also Published As

Publication number Publication date
JP2001156586A (en) 2001-06-08

Similar Documents

Publication Publication Date Title
US5999069A (en) Surface acoustic wave ladder filter having a parallel resonator with a larger electrostatic capacitance
JP3449352B2 (en) Surface acoustic wave filter
US6489863B2 (en) Surface acoustic wave device, surface acoustic wave filter, and manufacturing method for the surface acoustic wave device
JP5088416B2 (en) Elastic wave filter
US7211925B2 (en) Surface acoustic wave device and branching filter
JP2002300003A (en) Elastic wave filter
KR100679194B1 (en) Surface acoustic wave element and duplexer having the same
EP0898363B1 (en) Surface acoustic wave device
JPWO2019107280A1 (en) SAW filters, demultiplexers and communication devices
JP3379775B2 (en) Surface acoustic wave filter
JP4359978B2 (en) Ladder type surface acoustic wave filter
US7482895B2 (en) Surface acoustic wave filter
JP3981590B2 (en) Surface acoustic wave device including surface acoustic wave filter element, base substrate for surface acoustic wave filter element, and surface acoustic wave filter element
JP4023730B2 (en) Surface acoustic wave device and duplexer
JP3402015B2 (en) Surface acoustic wave filter
JP2002217680A (en) Ladder-type surface acoustic wave filter
JP3890668B2 (en) Surface acoustic wave filter
JP2001007680A (en) Balanced type surface acoustic wave filter
EP0668655B1 (en) Balanced-type surface acoustic wave filter
JPH09252232A (en) Surface acoustic wave device
JP4471474B2 (en) Surface acoustic wave device and surface acoustic wave device using the same
JP2000341086A (en) Ladder type saw filter
JP2001345666A (en) Elastic surface wave device
JP2001244777A (en) Ladder-type surface acoustic wave filter
JP2003087082A (en) Ladder-type surface acoustic wave filter element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061114

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees