JP4358968B2 - Optimal cutting position detector for section steel crop - Google Patents

Optimal cutting position detector for section steel crop Download PDF

Info

Publication number
JP4358968B2
JP4358968B2 JP2000107120A JP2000107120A JP4358968B2 JP 4358968 B2 JP4358968 B2 JP 4358968B2 JP 2000107120 A JP2000107120 A JP 2000107120A JP 2000107120 A JP2000107120 A JP 2000107120A JP 4358968 B2 JP4358968 B2 JP 4358968B2
Authority
JP
Japan
Prior art keywords
crop
cutting position
width
shape steel
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000107120A
Other languages
Japanese (ja)
Other versions
JP2001286909A (en
Inventor
文則 中野
達朗 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical Nippon Steel Corp
Priority to JP2000107120A priority Critical patent/JP4358968B2/en
Publication of JP2001286909A publication Critical patent/JP2001286909A/en
Application granted granted Critical
Publication of JP4358968B2 publication Critical patent/JP4358968B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば形鋼の1つであるH形鋼の圧延において、ブレークダウンミルの圧延後のH形鋼に形成されるクロップの最適切断位置を検出するH形鋼クロップの最適切断位置検出装置に関する。
【0002】
【従来の技術】
例えば形鋼の1種であるH形鋼の圧延では、連続鋳造などで製造されたビームブランク、ブルームやスラブは、図3に示すように、ブレークダウンミル(BD)での複数パスの粗圧延の後、中間ユニバーサル(UR)、エッジャーミル(E)、仕上ユミバーサルミル(UF)での複数パスの圧延によりH形鋼の形状に圧延される。ブレークダウンミル(BD)の圧延では、図4に示すように、被圧延材に舌状のクロップが形成される。このクロップは、後工程の圧延機において噛み込み易くするため、回転鋸等のクロップ切断機で切断される。
【0003】
切断するクロップの長さは、H形鋼製品の歩留まり向上のためには、極力短くしたい。しかしながら、H形鋼のクロップは、圧延により上下に反りを生じているため長くしすぎると、例えば、後工程である圧延機において噛み込み不良の事故となる。したがって、前記の両課題を同時に満足するために、品種ごとに最適クロップ切断位置の検出が重要となる。
【0004】
H形鋼の圧延ラインでは、圧延される各品種ごとにクロップの長さ及び反りが概ね操業による経験的な実測値として把握されるため、品種ごとの最適クロップ切断位置のクロップ幅sとウエブ幅wとの最適比s/w、あるいはクロップ高さshとフランジ高さwhの最適比sh/swに予め設定することができる。
【0005】
クロップ切断位置の検出は、例えば、実開昭63−124602号公報に記載されているものは、形鋼のクロップが3次元的なクロップであるため、圧延ライン上方及び側方の両方から形鋼を2次元カメラで撮像し、その撮像信号と予め入力された成品サイズ信号とを比較し、クロップ形状及びクロップ切断長を算出している。
【0006】
【発明が解決しようとする課題】
しかしながら、2次元カメラを使用する場合は、1台当たりの画素数の制限があるため、少ない画素数で広範囲を検出するので、1画素数当たりの検出面積が広くなり、分解能が悪くなる。そこで分解能を上げようとすると、1画素当たりの検出面積を小さくする必要があり、そのため検出器の台数を増やさなくてはならないという問題がある。
【0007】
また、クロップの形状が長くなった場合、本当のクロップ位置と制御上のクロップと認識する位置の誤差が大きくなり切断精度が悪くなる。さらに、材料のエッジ検出の画像処理のソフトも多く、処理に時間がかかり、オンラインの切断制御には不向きとなっている。
【0008】
そこで、本発明は、形鋼クロップの最適切断位置を検出誤差を小さくして、切断精度を向上させることができる、形鋼クロップの最適切断位置検出装置を提供するものである。
【0009】
【課題を解決するための手段】
本発明の形鋼クロップの最適切断位置検出装置は、形鋼のクロップ幅を連続的に測定するクロップ幅測定手段及び形鋼の正規の幅を連続的に測定する材料幅測定手段と、形鋼の搬送量を測定する搬送量測定手段と、搬送量測定手段で測定された形鋼の搬送量と、クロップ幅測定手段で連続的に測定される形鋼のクロップ幅Sと、材料幅測定手段で連続的に測定される形鋼の材料幅Wとからクロップの長手方向の各位置でのS/Wを演算し、演算されたS/Wと、記憶されている、予め各形鋼の品種ごとに定められている最適クロップ切断位置のクロップ幅sと材料幅w最適比s/wと比較演算して最適切断位置を演算する最適切断位置演算手段とを備えたことを特徴とする。
【0010】
幅測定手段に代えて高さ測定手段を用いて、搬送量測定手段で測定された形鋼の搬送量と、クロップ高さ測定手段で連続的に測定される形鋼のクロップ高さShと、材料高さ測定手段で連続的に測定される形鋼の材料高さWhとからクロップの長手方向の各位置でのSh/Whを演算し、演算されたSh/Whと、記憶されている、予め各形鋼の品種ごとに定められている最適クロップ切断位置のクロップ高さshと材料高さwh最適比sh/whと比較演算して最適切断位置を演算してもよい。
【0011】
【発明の実施の形態】
本発明の形鋼クロップの最適切断位置検出装置は、1次元の自発光検出方式の幅あるいは高さを測定するCCDカメラ等の1次元センサーを圧延ライン方向に2台設け、2台の1次元センサーの間隔は、圧延ラインで圧延される種々の形鋼の中で最大のクロップ長さよりも広い間隔とする。
【0012】
1次元の自発光検出方式の幅あるいは高さを測定する1次元センサーを使用した場合、画素数を5000画素以上と大きくすることができ、その結果、分解能がよくなり、誤差が小さく切断精度が向上する。また、1次元の自発光検出方式の幅計を2台使用することにより、クロップの最適切断位置を安価に、またリアルタイムに検出することができ、また、従来の検出では自発光形の検出で測定誤差となる、温度によるエッジ検出のバラツキ、幅、高さ等のサイズによる長さ測定誤差や通材位置による測定誤差について、膨大なソフトで処理し、それでも完全には補正できなかったが、本発明では絶対幅や長さの値が不要であり、2つの検出値の比をとることで、膨大なソフトが不要となり簡略化できる。
【0013】
また、1台の1次元センサーでも最適切断位置を検出することは可能であるが、この場合、搬送される形鋼の連続的に測定するクロップ幅と測定時間位置を記憶しておき、ウエブ幅を検出した時点で、それまでに記憶した測定結果の中から最適切断位置を決定する必要がある。
【0014】
したがって、大量のクロップ幅測定データを記憶する記憶装置が必要であり、また、切断位置を判定するソフトが複雑になってしまうという問題がある。
【0015】
【実施例】
実施例1
図1は本発明の対象とする形鋼の中でH形鋼クロップの最適切断位置検出装置の一実施例の説明図で幅測定によるものである。ブレークダウンミルの圧延後に搬送されるH形鋼1のクロップ幅Sを測定するクロップ幅測定手段2である1次元センサーとH形鋼のウエブ幅Wを連続的に測定するウエブ幅測定手段3である1次元センサーをH形鋼の圧延ライン方向に間隔をおいて上部に配置する。
【0016】
搬送ローラ4で搬送されるH形鋼1の搬送量は、搬送ローラ4に設けられたパルスジェネレータやアブソリュートエンコーダ等の搬送量測定手段5で測定される。
【0017】
クロップ幅測定手段2で連続的に測定されるH形鋼1のクロップ幅Sと、ウエブ幅測定手段3で連続的に測定されるH形鋼1のウエブ幅Wと、搬送量測定手段5で測定されたH形鋼1の搬送量が最適切断位置演算手段6に入力され、クロップの長手方向の各位置でのS/Wが演算される。
【0018】
最適切断位置演算手段6には、予め各品種ごとの、材料サイズ、位置データ等により定められているクロップ幅sとウエブ幅wの最適比s/wが記憶されており、s/wと演算されたS/Wとが比較演算されて最適切断位置が演算され、その結果が搬送ローラ制御装置7に入力される。搬送ローラ制御装置7は、最適切断位置に基づいて搬送ローラ4の回転数を制御して最適切断位置がクロップ切断機に位置するように搬送量を制御する。
【0019】
実施例2
図2は、本発明のH形鋼のクロップの最適切断位置検出装置の別実施例の説明図で、実施例1と異なるのは、幅測定に代えて高さ測定により最適切断位置を演算するものである。
【0020】
搬送されるH形鋼1のクロップ高さShを測定するクロップ高さ測定手段8である1次元センサーとH形鋼のフランジ高さWhを連続的に測定するフランジ高さ測定手段9である1次元センサーをH形鋼1の圧延ライン方向に間隔をおいて側部方向に配置する。
【0021】
クロップ高さ測定手段8で連続的に測定されるH形鋼1のクロップ高さShと、フランジ高さ測定手段9で連続的に測定されるH形鋼1のフランジ高さWhと、搬送量測定手段5で検出されたH形鋼1の搬送量が最適切断位置演算手段6に入力され、クロップの長手方向の各位置でのSh/Whの比が演算される。クロップの位置の検出は、Sh/Wh>k(ただし、k<1)が設定値を超えた位置をクロップ位置と判断する。
【0022】
最適切断位置演算手段6には、予め各品種ごとの材料サイズ、位置データ等により定められているクロップ高さshとフランジ高さwhの最適比sh/whが記憶されており、測定により演算されたSh/Whとが比較演算され、最適切断位置が演算されると、その結果が材料搬送ローラ制御装置7に入力される。材料搬送ローラ制御装置7は、最適切断位置に基づいて搬送ローラ4の回転数を制御して、最適切断位置がクロップ切断機に位置するように搬送量を制御する。
【0023】
前記の実施例ではH形鋼の例を示したが、本発明はこれに限られることなく、例えば形鋼ミルの他の例であるI形鋼クロップの最適位置検出装置としても、有効に活用できる。
【0024】
【発明の効果】
本発明により、1次元センサーを自発光方式で使い、しかもソフト補正がほとんど不要であるため、安価で高速にクロップの最適切断位置検出が可能となる。これによりクロップの切断ロスの減少による歩留向上、材料の自動位置決め及び自動切断を組合せた際の省力化が可能となる。
【図面の簡単な説明】
【図1】 本発明のH形鋼クロップの切断位置の検出装置の説明図である。
【図2】 本発明のH形鋼のクロップの切断位置検出装置の別実施例の説明図である。
【図3】 形鋼の圧延ラインを示す図である。
【図4】 クロップの概略図である。
【符号の説明】
1:H形鋼
2:クロップ幅測定手段
3:ウエブ幅測定手段
4:搬送ローラ
5:搬送量測定手段
6:最適切断位置演算手段
7:搬送ローラ制御装置
8:クロップ高さ測定手段
9:フランジ高さ測定手段
S:クロップ幅
W:ウエブ幅
[0001]
BACKGROUND OF THE INVENTION
The present invention, for example, in the rolling of an H-section steel, which is one of the section steels, detects the optimum cutting position of the H-section steel crop that detects the optimum cutting position of the crop formed on the H-section steel after rolling in the breakdown mill. Relates to the device.
[0002]
[Prior art]
For example, in rolling of H-section steel, which is a type of section steel, beam blanks, blooms and slabs manufactured by continuous casting, etc., are roughly rolled in multiple passes in a breakdown mill (BD) as shown in FIG. Thereafter, it is rolled into the shape of an H-shaped steel by rolling in a plurality of passes in an intermediate universal (UR), an edger mill (E), and a finishing humversal mill (UF). In the rolling of the breakdown mill (BD), a tongue-shaped crop is formed on the material to be rolled as shown in FIG. This crop is cut by a crop cutting machine such as a rotary saw in order to facilitate biting in a rolling mill in a subsequent process.
[0003]
The length of the crop to be cut should be as short as possible in order to improve the yield of the H-section steel product. However, since the H-shaped steel crop is warped up and down due to rolling, if it is made too long, for example, an accident of a biting failure occurs in a rolling mill as a subsequent process. Therefore, in order to satisfy both the above-mentioned problems at the same time, it is important to detect the optimum crop cutting position for each product type.
[0004]
In the H-section steel rolling line, the length and warpage of the crop for each product type to be rolled are generally grasped as empirically measured values from operations, so the crop width s and web width at the optimal crop cutting position for each product type. The optimum ratio s / w with w or the optimum ratio sh / sw between the crop height sh and the flange height wh can be set in advance.
[0005]
The detection of the crop cutting position is, for example, described in Japanese Utility Model Publication No. 63-124602. Since the shape steel crop is a three-dimensional crop, the shape steel is obtained from both the upper side and the side of the rolling line. Are captured by a two-dimensional camera, and the image signal and a product size signal input in advance are compared, and the crop shape and crop cutting length are calculated.
[0006]
[Problems to be solved by the invention]
However, when a two-dimensional camera is used, since there is a limit on the number of pixels per unit, a wide range is detected with a small number of pixels, so that the detection area per number of pixels is widened, resulting in poor resolution. In order to increase the resolution, it is necessary to reduce the detection area per pixel, and there is a problem that the number of detectors must be increased.
[0007]
In addition, when the shape of the crop becomes longer, an error between the true crop position and the position recognized as the crop for control becomes large, and the cutting accuracy deteriorates. In addition, there are many image processing softwares for material edge detection, which takes time and is not suitable for online cutting control.
[0008]
Therefore, the present invention provides an optimum cutting position detection device for a shape steel crop that can improve the cutting accuracy by reducing the detection error of the optimum cutting position of the shape steel crop.
[0009]
[Means for Solving the Problems]
An optimum cutting position detecting device for a shape steel crop according to the present invention includes a crop width measuring means for continuously measuring a crop width of a shape steel, a material width measuring means for continuously measuring a regular width of the shape steel, and a shape steel. The conveyance amount measuring means for measuring the conveyance amount of the steel, the conveyance amount of the shape steel measured by the conveyance amount measurement means, the crop width S of the shape steel continuously measured by the crop width measurement means, and the material width measurement means The S / W at each position in the lengthwise direction of the crop is calculated from the material width W of the shape steel continuously measured at, and the calculated S / W is stored in advance and stored in advance. And an optimum cutting position calculating means for calculating the optimum cutting position by comparing and calculating the crop width s of the optimum crop cutting position determined for each and the optimum ratio s / w of the material width w. .
[0010]
Instead of the width measuring means, using the height measuring means, the conveyance amount of the shape steel measured by the conveyance amount measuring means, and the crop height Sh of the shape steel continuously measured by the crop height measuring means, The Sh / Wh at each position in the longitudinal direction of the crop is calculated from the material height Wh of the shape steel continuously measured by the material height measuring means, and the calculated Sh / Wh is stored. it may be calculated optimum cutting position and optimum crop height of the crop cutting position sh and materials height wh optimum ratio sh / wh predetermined for each type of the shape steel comparison operations to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The optimum cutting position detection apparatus for the shape steel crop of the present invention is provided with two one-dimensional sensors such as a CCD camera for measuring the width or height of the one-dimensional self-luminous detection method in the rolling line direction. The sensor spacing is wider than the maximum crop length among the various shapes rolled in the rolling line.
[0012]
When a one-dimensional sensor that measures the width or height of the one-dimensional self-luminous detection method is used, the number of pixels can be increased to 5000 pixels or more. As a result, the resolution is improved, the error is small, and the cutting accuracy is small. improves. In addition, by using two one-dimensional self-luminous detection type width gauges, the optimal cutting position of the crop can be detected at low cost and in real time. The measurement error, length measurement error due to temperature detection variation, width, height, etc., and measurement error due to the threading position were processed with a huge amount of software, but still could not be completely corrected, In the present invention, absolute width and length values are unnecessary, and by taking the ratio of two detection values, a huge amount of software is unnecessary and can be simplified.
[0013]
Although it is possible to detect the optimum cutting position with a single one-dimensional sensor, in this case, the crop width and measurement time position of the continuously measured shape steel are stored, and the web width is stored. It is necessary to determine the optimum cutting position from the measurement results stored so far at the time of detecting.
[0014]
Therefore, a storage device for storing a large amount of crop width measurement data is required, and software for determining the cutting position becomes complicated.
[0015]
【Example】
Example 1
FIG. 1 is an explanatory view of an embodiment of an optimum cutting position detecting apparatus for H-section steel crop among the section steels to be the subject of the present invention, and is based on width measurement. A one-dimensional sensor which is a crop width measuring means 2 for measuring the crop width S of the H-section steel 1 conveyed after the rolling of the breakdown mill and a web width measuring means 3 for continuously measuring the web width W of the H-section steel. A certain one-dimensional sensor is arranged on the upper part at intervals in the direction of the H-section steel rolling line.
[0016]
The conveyance amount of the H-section steel 1 conveyed by the conveyance roller 4 is measured by a conveyance amount measuring means 5 such as a pulse generator or an absolute encoder provided on the conveyance roller 4.
[0017]
The crop width S of the H-section steel 1 continuously measured by the crop width measurement means 2, the web width W of the H-section steel 1 continuously measured by the web width measurement means 3, and the transport amount measurement means 5 The measured transport amount of the H-section steel 1 is input to the optimum cutting position calculation means 6, and the S / W at each position in the longitudinal direction of the crop is calculated.
[0018]
The optimum cutting position calculation means 6 stores the optimum ratio s / w of the crop width s and the web width w determined in advance by the material size, position data, etc., for each product type. The optimum S / W is compared and calculated to calculate the optimum cutting position, and the result is input to the transport roller control device 7. The conveyance roller control device 7 controls the conveyance amount so that the optimum cutting position is located in the crop cutting machine by controlling the number of rotations of the conveyance roller 4 based on the optimum cutting position.
[0019]
Example 2
FIG. 2 is an explanatory view of another embodiment of the optimum cutting position detection apparatus for the H-section steel crop of the present invention. The difference from the first embodiment is that the optimum cutting position is calculated by height measurement instead of width measurement. Is.
[0020]
1-dimensional sensor which is the crop height measuring means 8 for measuring the crop height Sh of the H-shaped steel 1 being conveyed and the flange height measuring means 9 for continuously measuring the flange height Wh of the H-shaped steel 1 A dimension sensor is arrange | positioned in the side part direction at intervals in the rolling line direction of the H-section steel 1. FIG.
[0021]
The crop height Sh of the H-section steel 1 continuously measured by the crop height measuring means 8, the flange height Wh of the H-section steel 1 continuously measured by the flange height measuring means 9, and the transport amount The conveyance amount of the H-section steel 1 detected by the measuring means 5 is input to the optimum cutting position calculating means 6 and the ratio of Sh / Wh at each position in the longitudinal direction of the crop is calculated. The crop position is detected by determining a position where Sh / Wh> k (where k <1) exceeds a set value as a crop position.
[0022]
The optimum cutting position calculation means 6 stores the optimum ratio sh / wh of the crop height sh and the flange height wh determined in advance by the material size, position data, etc. for each product type, and is calculated by measurement. When Sh / Wh is compared and the optimum cutting position is calculated, the result is input to the material transport roller controller 7. The material conveyance roller control device 7 controls the conveyance amount so that the optimum cutting position is located in the crop cutting machine by controlling the rotation speed of the conveyance roller 4 based on the optimum cutting position.
[0023]
Although the example of H-section steel was shown in the above-mentioned embodiment, the present invention is not limited to this, and it can be effectively used as an optimum position detection device for an I-section steel crop as another example of a section steel mill. it can.
[0024]
【The invention's effect】
According to the present invention, since the one-dimensional sensor is used in a self-luminous system and soft correction is almost unnecessary, the optimum cutting position of the crop can be detected at low cost and at high speed. As a result, it is possible to improve the yield by reducing crop cutting loss, and to save labor when combining automatic positioning and automatic cutting of materials.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a device for detecting a cutting position of an H-shaped steel crop of the present invention.
FIG. 2 is an explanatory diagram of another embodiment of the H-section steel crop cutting position detection device of the present invention.
FIG. 3 is a diagram showing a section steel rolling line.
FIG. 4 is a schematic diagram of a crop.
[Explanation of symbols]
1: H-section steel 2: Crop width measuring means 3: Web width measuring means 4: Conveying roller 5: Conveying amount measuring means 6: Optimal cutting position calculating means 7: Conveying roller control device 8: Crop height measuring means 9: Flange Height measuring means S: Crop width W: Web width

Claims (2)

形鋼のクロップ幅を連続的に測定するクロップ幅測定手段及び形鋼の正規の幅を連続的に測定する材料幅測定手段と、
形鋼の搬送量を測定する搬送量測定手段と、
搬送量測定手段で測定された形鋼の搬送量と、クロップ幅測定手段で連続的に測定される形鋼のクロップ幅Sと、材料幅測定手段で連続的に測定される形鋼の材料幅Wとからクロップの長手方向の各位置でのS/Wを演算し、演算されたS/Wと、記憶されている、予め各形鋼の品種ごとに定められている最適クロップ切断位置のクロップ幅sと材料幅w最適比s/wと比較演算して最適切断位置を演算する最適切断位置演算手段とを備えた形鋼クロップの最適切断位置検出装置。
Crop width measuring means for continuously measuring the crop width of the section steel and material width measuring means for continuously measuring the regular width of the shape steel;
A conveyance amount measuring means for measuring a conveyance amount of the shape steel;
Conveyance amount of the shape steel measured by the conveyance amount measuring means, a crop width S of the shape steel continuously measured by the crop width measuring means, and a material width of the shape steel continuously measured by the material width measuring means. The S / W at each position in the longitudinal direction of the crop is calculated from W, and the calculated S / W and the crop of the optimal crop cutting position that is stored in advance and determined for each type of shape steel is stored. An optimum cutting position detection device for a shape steel crop, comprising: an optimum cutting position calculation means for calculating an optimum cutting position by comparing and calculating the optimum ratio s / w of the width s and the material width w.
形鋼のクロップ高さを連続的に測定するクロップ高さ測定手段及び形鋼の正規の高さを連続的に測定する材料高さ測定手段と、
形鋼の搬送量を測定する搬送量測定手段と、
搬送量測定手段で測定された形鋼の搬送量と、クロップ高さ測定手段で連続的に測定される形鋼のクロップ高さShと、材料高さ測定手段で連続的に測定される形鋼の材料高さWhとからクロップの長手方向の各位置でのSh/Whを演算し、演算されたSh/Whと、記憶されている、予め各形鋼の品種ごとに定められている最適クロップ切断位置のクロップ高さshと材料高さwh最適比sh/whと比較演算して最適切断位置を演算する最適切断位置演算手段とを備えた形鋼クロップの最適切断位置検出装置。
A crop height measuring means for continuously measuring the crop height of the shape steel, and a material height measuring means for continuously measuring the regular height of the shape steel;
A conveyance amount measuring means for measuring a conveyance amount of the shape steel;
The shape steel measured by the conveying height measuring means, the crop height Sh of the shape steel continuously measured by the crop height measuring means, and the shape steel continuously measured by the material height measuring means. The Sh / Wh at each position in the longitudinal direction of the crop is calculated from the material height Wh, and the calculated Sh / Wh and the optimal crop that is stored and stored in advance for each section type An optimum cutting position detection device for a shape steel crop, comprising: an optimum cutting position calculation means for calculating an optimum cutting position by comparing and calculating the crop height sh of the cutting position and the optimum ratio sh / wh of the material height wh.
JP2000107120A 2000-04-07 2000-04-07 Optimal cutting position detector for section steel crop Expired - Fee Related JP4358968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000107120A JP4358968B2 (en) 2000-04-07 2000-04-07 Optimal cutting position detector for section steel crop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000107120A JP4358968B2 (en) 2000-04-07 2000-04-07 Optimal cutting position detector for section steel crop

Publications (2)

Publication Number Publication Date
JP2001286909A JP2001286909A (en) 2001-10-16
JP4358968B2 true JP4358968B2 (en) 2009-11-04

Family

ID=18620160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000107120A Expired - Fee Related JP4358968B2 (en) 2000-04-07 2000-04-07 Optimal cutting position detector for section steel crop

Country Status (1)

Country Link
JP (1) JP4358968B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088054B2 (en) * 2007-09-05 2012-12-05 Jfeスチール株式会社 Cutting method of tail end crop
JP5458580B2 (en) * 2009-01-21 2014-04-02 Jfeスチール株式会社 Crop sawing method for rolled material
US11155070B2 (en) 2019-03-20 2021-10-26 7260297 Manitoba Ltd. Prepreg debacker and method of layup

Also Published As

Publication number Publication date
JP2001286909A (en) 2001-10-16

Similar Documents

Publication Publication Date Title
JP2001343223A (en) Method for measuring quality of strip-shaped object, method for controlling camber, quality-measuring apparatus for strip-shaped object, rolling apparatus and trimming apparatus
KR20130093041A (en) Cutting line making device for plate-shaped object, cutting line making method for plate-shaped object, producing device for glass plate and producing method for glass plate
JP4358968B2 (en) Optimal cutting position detector for section steel crop
JPS6284829A (en) Automatic straightening device for welding h shape steel
JP4907467B2 (en) Grinding method of slab, slab for hot rolling, and manufacturing method of steel plate using them
KR102231141B1 (en) System for inspecting appearance of rolled plate and method of inspecting appearance of rolled plate using the same
CN112455841A (en) Method and device for adjusting position of outer ring belt head of steel coil
TW201336793A (en) Cutting line processing device for plate-shaped object, cutting line processing method for plate-shaped object, manufacturing device for glass panel and manufacturing method for glass panel
JPH06503515A (en) Equipment for hot forging workpieces starting from bar stock
KR20010056652A (en) Apparatus for measuring velocity and shape of crop of hot-bar using ccd-sensor of line-scan type
CA2567084C (en) Method and device for handling profile parts
JP5053037B2 (en) Cutting abnormality judgment method and continuous casting slab cutting method
JP3411145B2 (en) Control device for warpage correction machine
JP2008264986A (en) Grinding method and grinder of slab
JP2882560B2 (en) How to measure dimensions of section steel
JP2006234540A (en) H-section steel shape measuring method
JPH0663815A (en) Crop shear controller
US20220104433A1 (en) Sod harvesting systems and related methods
JP2786762B2 (en) Slit rolling machine
EP1097009B1 (en) A method and a device for controlling the dimensions of an elongated material rolled in a rolling mill
JPH02212015A (en) End cutting method in hot billet rolling
CN117361083A (en) Method and system for detecting profile pose on conveying chain of heavy-duty stacker crane
JPS6239703A (en) Apparatus for cutting shape plate
JPH05177226A (en) Shape controller for h-shaped steel
KR100758233B1 (en) Control Apparatus For Preventing Metal Strip From Being Cross-Current On Line And Method Thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061201

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees