JP4358407B2 - Welding method of thick steel plate with excellent laser weldability - Google Patents

Welding method of thick steel plate with excellent laser weldability Download PDF

Info

Publication number
JP4358407B2
JP4358407B2 JP2000145782A JP2000145782A JP4358407B2 JP 4358407 B2 JP4358407 B2 JP 4358407B2 JP 2000145782 A JP2000145782 A JP 2000145782A JP 2000145782 A JP2000145782 A JP 2000145782A JP 4358407 B2 JP4358407 B2 JP 4358407B2
Authority
JP
Japan
Prior art keywords
welding
laser
steel plate
thick steel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000145782A
Other languages
Japanese (ja)
Other versions
JP2001329334A (en
Inventor
敏彦 小関
秀里 間渕
康信 宮崎
和利 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000145782A priority Critical patent/JP4358407B2/en
Publication of JP2001329334A publication Critical patent/JP2001329334A/en
Application granted granted Critical
Publication of JP4358407B2 publication Critical patent/JP4358407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、産業プラント、機械、船舶、建築、その他の鋼構造物に適用されるレーザー溶接性に優れた厚鋼板の溶接方法に関する。
【0002】
【従来の技術】
大出力レーザー溶接機の開発とともに、厚鋼板のレーザー溶接の実用化が活発に進められている。エネルギー密度の高いレーザービームを溶接熱源にすることによって、深溶け込みの高速・高能率溶接が可能であり、また、溶接変形の大幅低減、溶接部の形状・材質改善、フィラーメタルの不使用(あるいは使用しても使用量の低減)によるコストメリット、などが期待されるからである。
【0003】
一方、厚鋼板溶接にレーザー溶接の適用する場合、溶接金属中のブローホールの発生が溶接施工上の大きな課題の一つである。従来、厚鋼板のレーザー溶接時のブローホール低減のために、特開昭60−206589号公報に開示されているごとく、レーザー照射位置の制御などによる対策が考えられてきたが、板厚や溶接条件の変更に伴い毎回に照射位置を最適化する必要があり、実用的とはいえない。
【0004】
また、実際の適用では、プラズマ切断やガス切断、レーザー切断などによる切断ままの状態で開先面に適用し溶接するケースが多く、その場合、機械加工した開先を用いるのに比べてブローホールの発生が一層顕著である。しかしながら、鋼構造物をレーザー溶接で組み立てる際、開先を機械加工するのは、施工効率的に、ひいては経済的に現実的ではなく、プラズマ切断やガス切断、レーザー切断などによる切断ままの状態で溶接してもブローホールの発生のない鋼板及び溶接方法が望まれる。
これに対して本発明者らは従来知見を基に溶接条件の最適化からブローホール低減を種々検討したが、大幅な改善には至らなかった。
【0005】
【発明が解決しようとする課題】
本発明は以上の背景に鑑み、レーザー溶接時のブローホール発生を抑制しうる溶接性に優れた厚鋼板の溶接方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは種々の組成・板厚の鋼板を試作し、それをレーザー切断したものを突き合わせ開先とし、種々のレーザー出力、溶接速度で溶接し、溶接部のブローホール発生を詳細に調査した。その結果、ブローホール発生は鋼板突き合わせ面の性状に依存することが明らかとなった。すなわち、突き合わせ面は実用的な観点に立ちレーザー切断ままを用いたが、その切断面が比較的平坦で酸化スケールの残存が少ない場合は相対的にブローホールの発生少なく、一方、切断面の凹凸が大きく、かつ/または、面上に残存する酸化スケールが多く、しかもそれによって切断面が粗い場合はブローの発生頻度が高いという結論に至った。
【0007】
一方、ブローホールの発生を、鋼板成分、板厚、溶接条件の影響の観点から解析すると、そのいずれにも強い関係があった。鋼材成分の影響については、脱酸元素、特にAl,Ti,Mg,Caを増すほどブローホールの発生が低減することがわかった。また、板厚、溶接条件の影響では、板厚が増すほど、溶接速度が増すほど、ブローの発生傾向は強く、他方、出力の大きいレーザー溶接機を用いるほど発生傾向は低下した。
【0009】
本発明の要旨は以下の通りである。
(1)質量%で、
C :0.09〜0.2%、 Si:0.05〜0.7%、
Mn:1.09〜1.6%、 P :0.025%以下、
S :0.015%以下、 Al:0.012〜0.1%、
残部Feおよび不可避的不純物からなり、板厚が6mm以上のt(mm)である厚鋼板を出力P(kW)のレーザーを用いて速度v(cm/min)で溶け込み溶接する際、
(%Al)+(1/10)(%Si)≧vt/(5000+150P)√P
を満たすように前記レーザーの溶接速度v(cm/min)と出力P(kW)のいずれか一方又は両方を調整することを特徴とするレーザー溶接性に優れた厚鋼板の溶接方法。
(2)質量%で、
C :0.09〜0.2%、 Si:0.05〜0.7%、
Mn:1.09〜1.6%、 P :0.025%以下、
S :0.015%以下、 Al:0.012〜0.1%
を含有し、さらに質量%で、
Nb:0.001〜0.1%、 Ti:0.001〜0.1%、
Zr:0.001〜0.1%、 Mg:0.0001〜0.02%、
Ca:0.0001〜0.02%、 REM:0.001〜0.2%
の一種または二種以上を含有し、残部Feおよび不可避的不純物からなり、板厚が6mm以上のt(mm)である厚鋼板を出力P(kW)のレーザーを用いて速度v(cm/min)で溶け込み溶接する際、
(%Al)+(1/10)(%Si)+(1/3)(%Ti)+(1/3)(%Zr)+(3/4)(%Mg)+(1/2)(%Ca)+(1/5)(%REM)
≧vt/(5000+150P)√P
を満たすようにレーザーの速度v(cm/min)と出力P(kW)のいずれか一方又は両方を調整することを特徴とする、レーザー溶接性に優れた厚鋼板の溶接方法。
(3)さらに質量%で、
Cu:0.05〜1.0%、 Ni:0.10〜2.0%、
Cr:0.03〜3.0%、 Mo:0.05〜1.0%、
V :0.01〜0.40%、 B :0.0002〜0.0020%
の一種又は二種以上を含有せしめることを特徴とする前記(1)又は(2)に記載のレーザー溶接性に優れた鋼板の溶接方法。
(4)上記鋼成分のうち、質量%で、
C :0.09〜0.18%、 Si:0.05〜0.4%、
P :0.010%以下、 S :0.008%以下
としたことを特徴とする前記(1)ないし(3)のいずれかに記載のレーザー溶接性に優れた鋼板の溶接方法。
【0010】
この場合、溶接に使われるレーザーとしては、炭酸ガスレーザー、YAGレーザーなどが主であるが、溶接熱源として使用可能であるかぎりすべてのレーザーに本発明は適用可能である。
【0011】
【発明の実施の形態】
先ず、本発明において鋼の化学成分を限定した理由を述べる。
Cは安価に強度を向上するのに最も有効な元素であるが、0.2%を越えると母材の低温靱性を阻害し、さらにレーザー溶接部の硬化を著しく促進することから、上限を0.2%とした。一方、C量が0.04%未満の場合は、レーザー溶接金属の凝固割れ感受性が増す。また、レーザー切断、またはプラズマ切断、あるいはガス切断ままで供される開先面(以後、切断まま開先面)の粗さが増し、そのためその突き合わせの溶接部でブローホールの発生が促進されることを本検討で知見した。なお、実用的に耐割れ性、耐ブローホールを十分確保するには、Cが0.09%以上であることが望ましく、溶接部の硬化を一層抑えるためには0.18%以下であることが望ましい。
【0012】
Siは強度向上元素として有効であり安価な溶鋼の脱酸元素としても有用であるが、0.7%を越えると切断まま開先面を粗くし、そのためその突き合わせの溶接部でブローホールの発生を促進することがわかった。一方、それ以下の含有では弱いながらブローホールの抑制に有効な傾向をみせた。この傾向は0.05%程度まで見られ、それ未満ではみられなかった。よって0.05%〜0.7%と限定した。なお、レーザー、プラズマ等で切断ままでレーザー溶接に供され、かつ、耐ブローホール性が厳しく要求される場合は0.4%以下であることが望ましい。
【0013】
Mnは強度を向上する有用な元素であり、その必要下限から1.09%以上として、一方、1.6%超の添加はブローホールの発生を促進することを知見し、1.09〜1.6%に限定した。
【0014】
Pは凝固時の偏析率が高く、レーザー溶接部の凝固割れの主原因の一つであり、割れ感受性の低減のためには0.025%以下が必要であり、コストとの兼ね合いもあるが、割れ性を非常に低くするためには0.010%以下であることが好ましい。
【0015】
Sは溶鋼の流動に影響を与える元素であり、過剰に含有すると、レーザー溶接時、特に下向き溶接で溶鋼の垂れ落ちにつながる。さらにSはPと同様、レーザー溶接時の溶接割れ感受性を高めるため、0.015%以下に抑える必要がある。割れ性を非常に低くするためには0.008%以下であることが好ましい。
【0016】
Alは脱酸上必要な元素であり0.012%以上添加が必要である。本発明者はAlの添加がブローホールの抑制に有効であることを知見した。ただし0.1%を越える過度の添加は溶接部の靱性を損なうために、0.012〜0.1%に限定した。
【0017】
NbはTMCP鋼において鋼板の強度、靭性の両立する極めて重要な元素である。また、溶接熱影響部(HAZ)の硬化性の主要因であるC、Nを固定する働きもある。ただし0.1%を越える添加は析出による母材硬化を促進して有害なため、0.001〜0.1%に限定した。
【0018】
Tiは脱酸元素として有効であり、加えてNbと同様、TMCP鋼において母材の強度・靭性の両立に重要な元素である。さらに、本発明者らはTi添加により、ブローホール発生、HAZ硬化が抑制されることも知見した。ただし、0.1%を越える添加は、母材、溶接部とも靭性に有害であることから、0.001〜0.1%に限定した。
【0019】
Zrは溶鋼中Alとほぼ同じ脱酸力を有し、脱酸元素として利用可能であるが、さらに、鋼板中の固溶ZrはAl同様、レーザー溶接部のブローホール生成を抑制することが判明した。ただし過剰な添加は溶接部靭性を損ねるので、0.001〜0.1%に限定した。
【0020】
Mg,Ca,REMは溶鋼中で強力な脱酸力を有し、鋼板製造時およびレーザー溶融プール中で脱酸元素として利用できる。加えて、これら元素は強力な脱硫元素でもありSの偏析に起因する溶接金属の凝固割れを抑制する働きを有する。さらに、本発明者らはこれらの元素の添加は、レーザー溶接時のブローホールの発生や溶接金属及びHAZの焼入れ硬化を抑える働きがあることも知見した。ただしいずれの元素も、過剰な添加は、レーザー溶接時のキーホール内でのプラズマの安定性を損なうとともに、溶接部靭性も阻害するため、その範囲を、Mg:0.0001〜0.02%、Ca:0.0001〜0.02%、REM:0.001〜0.2%に限定した。
【0021】
さらに、母材強度の向上や低温靱性・溶接性の改善を目的とした低炭素等量化のために、要求される品質特性又は鋼材の大きさ・鋼板厚に応じて本発明で規定する合金元素(Cu,Ni,Cr,Mo,V,B)を強度・低温靱性・溶接性を向上する観点から一種又は二種以上添加しても本発明の効果は何ら損なわれることはない。
【0022】
次に、鋼材成分と溶接条件の関係式について限定理由を述べる。
本発明者らが、レーザー溶接時のブローホールの発生を、鋼板成分、板厚、溶接条件の影響の観点から解析した結果、脱酸元素、特にAl,Ti,Mg,Caを増すほどブローホールの発生が低減することを知見した。また、板厚、溶接条件の影響では、板厚が増すほど、溶接速度が増すほど、ブローの発生傾向は強く、他方、出力の大きいレーザー溶接機を用いるほど発生傾向は低下することが判明した。これらの実験結果を回帰的に解析し、ブローホール低減に有効な鋼板成分の指標として
(%Al)+(1/10)(%Si)+(1/3)(%Ti)+(1/3)(%Zr)+(3/4)(%Mg)+(1/2)(%Ca)
+(1/5)(%REM)
を得た。すなわち、この値が大きいほど溶接時のブロー発生傾向は小さいことが判明した。それぞれの元素の係数は、実験的に決定したものである。
【0023】
一方、溶接条件、板厚の影響としては
(100+3P)√P/vt
という指標を得た。ここで、Pはレーザー溶接機の出力(kW)であり、vは溶接速度(cm/min)、tは板厚(mm)である。この値が大きいほどブローホールの発生傾向が小さく、この指標の値が小さいほどブローホールの発生が顕著であった。
【0024】
さらに、両者の効果を統合して、
(%Al)+(1/10)(%Si)+(1/3)(%Ti)+(1/3)(%Zr)+(3/4)(%Mg)+(1/2)(%Ca)
+(1/5)(%REM)≧(1/50)(vt/(100+3P)√P)
を満足する場合にブローホールの発生傾向が極めて低いことが本検討の詳細な検討からにより明らかとなった。鋼材成分が所定のレーザー溶接条件のもと、時に耐ブローホール発生の良好な鋼材達成のため、鋼材成分と溶接条件の関係として限定した。
【0025】
【実施例】
以下に本発明の効果を実施例によりさらに具体的に示す。
まず表1に示すような鋼を、一般的な方法で、溶製、熱間圧延し、所定の板厚の厚鋼板を作製した。表1中、鋼A〜Dが本発明例であり、鋼E,Fは比較例であり、この鋼EはC,Mnが本発明の範囲外、鋼FはC,P,Sが本発明の範囲外である。
【0026】
表2にこれら鋼板A〜Fを種々の条件でレーザー溶接したときの溶接条件、および溶接性の評価結果を示す。尚、レーザー溶接には、出力15kWと45kWのCO2 レーザーを用いた。溶接用の開先は、鋼板を6kWのレーザー切断機にて切断したものを突き合わせてI開先とした。溶接姿勢としては水平横向き、および下向きとし、溶接時のレーザービームフォーカス位置は鋼板表面とした。シールドガスはフロント、バックともHeで、流量はフロント50L/min.、バック20L/min.である。溶接性の評価としては、定常ビード部分(1m)について、溶け込み(貫通/未貫通)の確認、溶け落ちの有無の確認、10cm間隔10箇所の溶接部断面検査によるブローホール、凝固割れの有無の確認、を行った。
【0027】
本発明例の1〜4は本発明の条件を満たしているため、溶け落ち、ブローホール、凝固割れのない良好な溶接が可能であった。
これに対し、比較例1は発明例1と比較して、溶接速度が速いために左辺の値が右辺の値より小さくなり、即ち、下記式のようになり、
(%Al)+(1/10)(%Si)+(1/3)(%Ti)+(1/3)(%Zr)+(3/4)(%Mg)+(1/2)(%Ca)
+(1/5)(%REM)≦vt/(5000+150P)√P
ブローホールが発生した。表中Yは上記計算式の左辺(*1)と右辺(*2)が(*1)≧(*2)(本発明範囲)であり、Nは(*1)≦(*2)(本発明範囲外)であることを示す。
【0028】
また、比較例2は発明例2と比較して、溶接速度が速いために比較例1と同様に左辺の値が右辺の値より小さくなり、ブローホールが発生した。比較例3は発明例3と比較して、レーザー出力が2/3低下したのに対し溶接速度が1/3の低下であったために、左辺の値が右辺の値より小さくなりブローホールが発生した。
比較例4は、C,Mnが本発明から外れた低C,高Mn鋼であったためにブローホール及び溶接凝固割れが発生した。さらに、比較例5は、C,Mnが本発明から外れた低C,高Mn鋼で、しかも、左辺の値が右辺の値より小さくなりブローホール及び凝固割れが発生した。
【0029】
比較例6は、C,P,Sが本発明から外れた高C,高P,高S鋼であったために溶接凝固割れが多発し、比較例7は比較例6と同様にC,P,Sが本発明から外れた高C,高P,高S鋼であったために、下向き溶接では、溶け落ちが認められ溶接ビード不良であった。
【0030】
【表1】

Figure 0004358407
【0031】
【表2】
Figure 0004358407
【0032】
【発明の効果】
本発明は、鋼の成分量を規制し、かつ、脱酸元素と溶接条件の適正バランスを規定することにより、鋼板のレーザー溶接性を向上させ、特に厚鋼板のレーザー溶接で最も問題となるブローホール発生の抑制を可能ならしめた。特にレーザー溶接の際の開先にレーザー切断、またはプラズマ切断、あるいはガス切断ままの切断面を適用しても耐ブローホール性に優れ、かつ、耐割れ性、耐溶け落ち性なども優れているため、今後さらに適用拡大が期待される厚鋼板のレーザー溶接において、多大な経済的メリットを享受できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for welding thick steel plates excellent in laser weldability, which is applied to industrial plants, machines, ships, buildings, and other steel structures.
[0002]
[Prior art]
Along with the development of high-power laser welding machines, the practical application of laser welding of thick steel plates is actively promoted. By using a laser beam with a high energy density as the welding heat source, high-speed and high-efficiency welding with deep penetration is possible, greatly reducing welding deformation, improving the shape and material of the welded part, and eliminating the use of filler metal (or This is because cost merit due to reduction in the amount of use even if used is expected.
[0003]
On the other hand, when laser welding is applied to thick steel plate welding, the generation of blow holes in the weld metal is one of the major problems in welding construction. Conventionally, in order to reduce blow holes during laser welding of thick steel plates, as disclosed in JP-A-60-206589, countermeasures such as control of the laser irradiation position have been considered. It is necessary to optimize the irradiation position every time the condition is changed, which is not practical.
[0004]
Also, in actual applications, there are many cases where welding is performed by applying to the groove surface in a state of being cut by plasma cutting, gas cutting, laser cutting, etc. In that case, blow holes are used compared to using machined grooves. The occurrence of this is more remarkable. However, when assembling a steel structure by laser welding, machining the groove is not practical in terms of construction efficiency and thus economically, and it remains in a state of being cut by plasma cutting, gas cutting, laser cutting, etc. A steel plate and a welding method that do not generate blow holes even if they are welded are desired.
On the other hand, the present inventors examined various blow hole reductions from optimization of welding conditions based on conventional knowledge, but did not lead to a significant improvement.
[0005]
[Problems to be solved by the invention]
In view of the above background, it is an object of the present invention to provide a method for welding a thick steel plate having excellent weldability that can suppress blowhole generation during laser welding.
[0006]
[Means for Solving the Problems]
The inventors have made steel sheets of various compositions and thicknesses, made laser cuts of them as butt grooves, welded them at various laser outputs and welding speeds, and investigated the occurrence of blowholes in the welds in detail. did. As a result, it was clarified that blowhole generation depends on the properties of the butted surfaces of the steel plates. In other words, the abutting surface was used from the standpoint of practical use as it was with laser cutting, but when the cutting surface is relatively flat and there is little residual oxide scale, there is relatively little blowholes, while the unevenness of the cutting surface It was concluded that the occurrence frequency of blow is high when the surface area is large and / or there are many oxide scales remaining on the surface and the cut surface is rough.
[0007]
On the other hand, when the occurrence of blowholes was analyzed from the viewpoint of the effects of steel plate components, plate thickness, and welding conditions, all of them had a strong relationship. Regarding the influence of the steel material component, it was found that the generation of blowholes decreases as the deoxidizing element, particularly Al, Ti, Mg, and Ca, is increased. In addition, under the influence of the plate thickness and welding conditions, the tendency to generate blow was stronger as the plate thickness was increased and the welding speed was increased. On the other hand, the generation tendency was lowered as the laser welding machine having a higher output was used.
[0009]
The gist of the present invention is as follows.
(1) In mass%,
C: 0.09 to 0.2%, Si: 0.05 to 0.7%,
Mn: 1.09 to 1.6%, P: 0.025% or less,
S: 0.015% or less, Al: 0.012-0.1%,
When melting and welding a thick steel plate consisting of the remaining Fe and inevitable impurities and having a plate thickness of t (mm) of 6 mm or more at a speed v (cm / min) using a laser with an output P (kW),
(% Al) + (1/10) (% Si) ≧ vt / (5000 + 150P) √P
The welding method of the thick steel plate excellent in laser weldability characterized by adjusting either or both of the welding speed v (cm / min) and the output P (kW) of the laser so as to satisfy the above.
(2) In mass%,
C: 0.09 to 0.2%, Si: 0.05 to 0.7%,
Mn: 1.09 to 1.6%, P: 0.025% or less,
S: 0.015% or less, Al: 0.012-0.1%
In addition, in mass%,
Nb: 0.001 to 0.1%, Ti: 0.001 to 0.1%,
Zr: 0.001 to 0.1%, Mg: 0.0001 to 0.02%,
Ca: 0.0001 to 0.02%, REM: 0.001 to 0.2%
It contains more than one or two, and a balance of Fe and unavoidable impurities, the speed by using a laser of plate thickness output steel plate is 6mm or more t (mm) P (kW) v (cm / min )
(% Al) + (1/10) (% Si) + (1/3) (% Ti) + (1/3) (% Zr) + (3/4) (% Mg) + (1/2) (% Ca) + (1/5) (% REM)
≧ vt / (5000 + 150P) √P
A method for welding a thick steel plate excellent in laser weldability, wherein either or both of the laser speed v (cm / min) and the output P (kW) are adjusted so as to satisfy
(3) Furthermore, in mass%,
Cu: 0.05 to 1.0%, Ni: 0.10 to 2.0%,
Cr: 0.03-3.0%, Mo: 0.05-1.0%,
V: 0.01 to 0.40%, B: 0.0002 to 0.0020%
One type or two or more types of the above are contained, and the method for welding a steel plate excellent in laser weldability according to the above (1) or (2).
(4) Of the above steel components, in mass%,
C: 0.09 to 0.18%, Si: 0.05 to 0.4%,
P: 0.010% or less, S: 0.008% or less, The method for welding a steel plate excellent in laser weldability according to any one of the above (1) to (3).
[0010]
In this case, carbon dioxide laser, YAG laser, etc. are mainly used as lasers for welding, but the present invention can be applied to all lasers as long as they can be used as welding heat sources.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
First, the reason for limiting the chemical composition of steel in the present invention will be described.
C is the most effective element for improving the strength at a low cost. However, if it exceeds 0.2%, the low temperature toughness of the base metal is inhibited and the hardening of the laser weld is remarkably promoted. .2%. On the other hand, when the C content is less than 0.04%, the solidification cracking sensitivity of the laser weld metal increases. Further, the roughness of the groove surface (hereinafter referred to as the groove surface as it is cut) provided by laser cutting, plasma cutting, or gas cutting increases, so that the generation of blowholes is promoted at the butt weld. This was found in this study . Incidentally, practically crack resistance, to ensure a sufficient resistance to blow holes, it is Nozomu Mashiku C is 0.09% or more, in order to suppress further the hardening of the welded portion in the following 0.18% It is desirable to be.
[0012]
Si is effective as a strength-enhancing element and is also useful as a deoxidizing element for cheap molten steel. However, when it exceeds 0.7%, the groove surface becomes rough as it is cut, and blow holes are generated at the butt weld. It was found to promote. On the other hand, when the content was less than that, it was weak but showed an effective tendency to suppress blowholes. This tendency was seen up to about 0.05%, and was not seen below. Therefore, it was limited to 0.05% to 0.7%. In addition, when it is used for laser welding while being cut with laser, plasma, etc. and blowhole resistance is strictly required, it is desirable to be 0.4% or less.
[0013]
Mn is a useful element that improves the strength, and it is found that the addition of more than 1.6% promotes the generation of blowholes, while it is 1.09 % or more from the necessary lower limit, and 1.09 to 1 Limited to 6%.
[0014]
P has a high segregation rate during solidification and is one of the main causes of solidification cracking in laser welds. To reduce cracking susceptibility, 0.025% or less is necessary. In order to make the cracking property very low, it is preferably 0.010% or less.
[0015]
S is an element that affects the flow of molten steel. If it is contained in excess, it will lead to dripping of the molten steel during laser welding, particularly in downward welding. Further, S, like P, needs to be suppressed to 0.015% or less in order to increase the weld cracking sensitivity during laser welding. In order to make the cracking property very low, the content is preferably 0.008% or less.
[0016]
Al is an element necessary for deoxidation and needs to be added in an amount of 0.012 % or more. The present inventor has found that the addition of Al is effective in suppressing blowholes. However, excessive addition exceeding 0.1% is limited to 0.012 to 0.1% in order to impair the toughness of the weld.
[0017]
Nb is an extremely important element that satisfies both strength and toughness of a steel sheet in TMCP steel. It also has the function of fixing C and N, which are the main factors of the curability of the weld heat affected zone (HAZ). However, addition exceeding 0.1% is harmful because it accelerates the hardening of the base material by precipitation, so it was limited to 0.001 to 0.1%.
[0018]
Ti is effective as a deoxidizing element. In addition, similarly to Nb, Ti is an important element for achieving both strength and toughness of the base material in TMCP steel. Furthermore, the present inventors have also found that addition of Ti suppresses blowhole generation and HAZ hardening. However, addition over 0.1% is harmful to the toughness of both the base metal and the welded part, so it was limited to 0.001 to 0.1%.
[0019]
Zr has almost the same deoxidizing power as Al in molten steel and can be used as a deoxidizing element, but it has also been found that solute Zr in steel sheet suppresses the formation of blowholes in laser welds, similar to Al. did. However, excessive addition impairs the weld zone toughness, so it was limited to 0.001 to 0.1%.
[0020]
Mg, Ca, and REM have a strong deoxidizing power in molten steel, and can be used as a deoxidizing element when manufacturing steel sheets and in a laser melting pool. In addition, these elements are also powerful desulfurization elements and have a function of suppressing solidification cracking of the weld metal due to segregation of S. Furthermore, the present inventors have also found that the addition of these elements has a function of suppressing the generation of blowholes during laser welding and quench hardening of the weld metal and HAZ. However, excessive addition of any element impairs the stability of the plasma in the keyhole during laser welding and also impairs the toughness of the welded portion, so the range is Mg: 0.0001 to 0.02%. , Ca: 0.0001 to 0.02%, REM: 0.001 to 0.2%.
[0021]
Furthermore, in order to reduce the carbon equivalent for the purpose of improving the strength of the base metal and improving the low temperature toughness and weldability, the alloy elements specified in the present invention according to the required quality characteristics or the size and thickness of the steel material Even if (Cu, Ni, Cr, Mo, V, B) is added from the viewpoint of improving strength, low temperature toughness and weldability, the effect of the present invention is not impaired at all.
[0022]
Next, the reason for limitation of the relational expression between the steel material component and the welding condition will be described.
As a result of analysis by the inventors of the occurrence of blow holes during laser welding from the viewpoint of the influence of steel plate components, plate thickness, and welding conditions, the more deoxidizing elements, particularly Al, Ti, Mg, and Ca, the more blow holes It has been found that the occurrence of is reduced. In addition, the influence of the plate thickness and welding conditions revealed that the greater the plate thickness, the higher the welding speed, the stronger the tendency to blow, while the more the laser welding machine with higher output was used, the lower the tendency to occur. . The results of these experiments are analyzed recursively and used as an index of steel sheet components effective for blowhole reduction.
(% Al) + (1/10) (% Si) + (1/3) (% Ti) + (1/3) (% Zr) + (3/4) (% Mg) + (1/2) (% Ca)
+ (1/5) (% REM)
Got. In other words, it was found that the larger the value, the smaller the tendency of blow generation during welding. The coefficient of each element is determined experimentally.
[0023]
On the other hand, the influence of welding conditions and plate thickness is (100 + 3P) √P / vt
I got the index. Here, P is the output (kW) of the laser welding machine, v is the welding speed (cm / min), and t is the plate thickness (mm). The larger this value, the smaller the tendency for blowholes to be generated, and the smaller the value of this index, the more pronounced blowholes were generated.
[0024]
Furthermore, by integrating the effects of both,
(% Al) + (1/10) (% Si) + (1/3) (% Ti) + (1/3) (% Zr) + (3/4) (% Mg) + (1/2) (% Ca)
+ (1/5) (% REM) ≧ (1/50) (vt / (100 + 3P) √P)
From the detailed examination of this study, it became clear that the tendency to generate blowholes is very low when In order to achieve a steel material that has good resistance to blowholes under certain laser welding conditions, the steel material component was limited as a relationship between the steel material component and the welding conditions.
[0025]
【Example】
The effects of the present invention will be described more specifically with reference to examples.
First, steel as shown in Table 1 was melted and hot-rolled by a general method to produce a thick steel plate having a predetermined thickness. In Table 1, steels A to D are examples of the present invention, steels E and F are comparative examples, this steel E has C and Mn outside the scope of the present invention, and steel F has C, P and S according to the present invention. Is out of range.
[0026]
Table 2 shows the welding conditions when these steel plates A to F are laser welded under various conditions, and the evaluation results of weldability. For laser welding, CO 2 lasers with outputs of 15 kW and 45 kW were used. As a groove for welding, a steel plate cut by a 6 kW laser cutter was abutted to obtain an I groove. The welding posture was horizontal and horizontal, and the laser beam focus position during welding was the steel plate surface. The shielding gas is He at both the front and back, and the flow rate is 50 L / min. At the front and 20 L / min. At the back. As for the evaluation of weldability, as for the steady bead portion (1 m), confirmation of penetration (penetration / non-penetration), confirmation of the presence or absence of burn-out, blow hole by cross-sectional inspection of 10 welds at 10 cm intervals, presence or absence of solidification cracking Confirmed.
[0027]
In Examples 1 to 4 of the present invention, since the conditions of the present invention were satisfied, good welding without melting, blowholes and solidification cracks was possible.
On the other hand, compared with the invention example 1, since the welding speed is faster in Comparative Example 1, the value on the left side is smaller than the value on the right side, that is, the following equation is obtained:
(% Al) + (1/10) (% Si) + (1/3) (% Ti) + (1/3) (% Zr) + (3/4) (% Mg) + (1/2) (% Ca)
+ (1/5) (% REM) ≦ vt / (5000 + 150P) √P
A blowhole occurred. In the table, Y is the left side (* 1) and right side (* 2) of the above formula (* 1) ≥ (* 2) (invention scope), and N is (* 1) ≤ (* 2) (this It is outside the scope of the invention.
[0028]
In Comparative Example 2, the welding speed was higher than that of Invention Example 2, so that the value on the left side was smaller than the value on the right side as in Comparative Example 1, and blowholes were generated. In Comparative Example 3, compared with Invention Example 3, the laser output was reduced by 2/3, but the welding speed was reduced by 1/3. Therefore, the value on the left side was smaller than the value on the right side, and blow holes were generated. did.
In Comparative Example 4, blowholes and weld solidification cracks occurred because C and Mn were low C and high Mn steels that deviated from the present invention. Further, Comparative Example 5 was a low C, high Mn steel with C and Mn deviating from the present invention, and the value on the left side was smaller than the value on the right side, resulting in blowholes and solidification cracks.
[0029]
In Comparative Example 6, C, P, and S were high C, high P, and high S steels that deviated from the present invention, so that many weld solidification cracks occurred. In Comparative Example 7, as in Comparative Example 6, C, P, Since S was a high C, high P, and high S steel that deviated from the present invention, in the downward welding, burn-through was observed and the weld bead was defective.
[0030]
[Table 1]
Figure 0004358407
[0031]
[Table 2]
Figure 0004358407
[0032]
【The invention's effect】
The present invention improves the laser weldability of steel sheets by regulating the amount of steel components and defining an appropriate balance between deoxidizing elements and welding conditions. It has become possible to suppress the generation of holes. In particular, even when laser-cutting, plasma-cutting, or gas-cutting cut surfaces are applied to the groove during laser welding, it has excellent blow-hole resistance, as well as excellent crack resistance and burn-off resistance. Therefore, a great economic merit can be enjoyed in laser welding of thick steel plates, which are expected to expand further in the future.

Claims (4)

質量%で、
C :0.09〜0.2%、
Si:0.05〜0.7%、
Mn:1.09〜1.6%、
P :0.025%以下、
S :0.015%以下、
Al:0.012〜0.1%、
残部Feおよび不可避的不純物からなり、板厚が6mm以上のt(mm)である厚鋼板を出力P(kW)のレーザーを用いて速度v(cm/min)で溶け込み溶接する際、
(%Al)+(1/10)(%Si)≧vt/(5000+150P)√P
を満たすように前記レーザーの溶接速度v(cm/min)と出力P(kW)のいずれか一方又は両方を調整することを特徴とするレーザー溶接性に優れた厚鋼板の溶接方法。
% By mass
C: 0.09 to 0.2%,
Si: 0.05 to 0.7%,
Mn: 1.09 to 1.6%
P: 0.025% or less,
S: 0.015% or less,
Al: 0.012-0.1%,
When melting and welding a thick steel plate consisting of the remaining Fe and inevitable impurities and having a plate thickness of t (mm) of 6 mm or more at a speed v (cm / min) using a laser with an output P (kW),
(% Al) + (1/10) (% Si) ≧ vt / (5000 + 150P) √P
The welding method of the thick steel plate excellent in laser weldability characterized by adjusting either or both of the welding speed v (cm / min) and the output P (kW) of the laser so as to satisfy the above.
質量%で、
C :0.09〜0.2%、
Si:0.05〜0.7%、
Mn:1.09〜1.6%、
P :0.025%以下、
S :0.015%以下、
Al:0.012〜0.1%
を含有し、さらに質量%で、
Nb:0.001〜0.1%、
Ti:0.001〜0.1%、
Zr:0.001〜0.1%、
Mg:0.0001〜0.02%、
Ca:0.0001〜0.02%、
REM:0.001〜0.2%
の一種または二種以上を含有し、残部Feおよび不可避的不純物からなり、板厚が6mm以上のt(mm)である厚鋼板を出力P(kW)のレーザーを用いて速度v(cm/min)で溶け込み溶接する際、
(%Al)+(1/10)(%Si)+(1/3)(%Ti)+(1/3)(%Zr)+(3/4)(%Mg)+(1/2)(%Ca)+(1/5)(%REM)
≧vt/(5000+150P)√P
を満たすようにレーザーの速度v(cm/min)と出力P(kW)のいずれか一方又は両方を調整することを特徴とする、レーザー溶接性に優れた厚鋼板の溶接方法。
% By mass
C: 0.09 to 0.2%,
Si: 0.05 to 0.7%,
Mn: 1.09 to 1.6%
P: 0.025% or less,
S: 0.015% or less,
Al: 0.012-0.1%
In addition, in mass%,
Nb: 0.001 to 0.1%,
Ti: 0.001 to 0.1%,
Zr: 0.001 to 0.1%,
Mg: 0.0001 to 0.02%,
Ca: 0.0001 to 0.02%,
REM: 0.001 to 0.2%
It contains more than one or two, and a balance of Fe and unavoidable impurities, the speed by using a laser of plate thickness output steel plate is 6mm or more t (mm) P (kW) v (cm / min )
(% Al) + (1/10) (% Si) + (1/3) (% Ti) + (1/3) (% Zr) + (3/4) (% Mg) + (1/2) (% Ca) + (1/5) (% REM)
≧ vt / (5000 + 150P) √P
A method for welding a thick steel plate excellent in laser weldability, wherein either or both of the laser speed v (cm / min) and the output P (kW) are adjusted so as to satisfy
さらに質量%で、
Cu:0.05〜1.0%、
Ni:0.10〜2.0%、
Cr:0.03〜3.0%、
Mo:0.05〜1.0%、
V :0.01〜0.40%、
B :0.0002〜0.0020%
の一種又は二種以上を含有せしめることを特徴とする請求項1又は2に記載のレーザー溶接性に優れた厚鋼板の溶接方法。
In addition,
Cu: 0.05 to 1.0%,
Ni: 0.10 to 2.0%,
Cr: 0.03-3.0%,
Mo: 0.05-1.0%,
V: 0.01-0.40%,
B: 0.0002 to 0.0020%
The method for welding thick steel plates having excellent laser weldability according to claim 1, wherein one or more of the above are contained.
上記鋼成分のうち、質量%で、
C :0.09〜0.18%、
Si:0.05〜0.4%、
P :0.010%以下、
S :0.008%以下
としたことを特徴とする請求項1ないし3のいずれかに記載のレーザー溶接性に優れた厚鋼板の溶接方法。
Of the above steel components,
C: 0.09 to 0.18%,
Si: 0.05-0.4%
P: 0.010% or less,
S: 0.008% or less, The method for welding thick steel plates excellent in laser weldability according to any one of claims 1 to 3.
JP2000145782A 2000-05-17 2000-05-17 Welding method of thick steel plate with excellent laser weldability Expired - Fee Related JP4358407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000145782A JP4358407B2 (en) 2000-05-17 2000-05-17 Welding method of thick steel plate with excellent laser weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000145782A JP4358407B2 (en) 2000-05-17 2000-05-17 Welding method of thick steel plate with excellent laser weldability

Publications (2)

Publication Number Publication Date
JP2001329334A JP2001329334A (en) 2001-11-27
JP4358407B2 true JP4358407B2 (en) 2009-11-04

Family

ID=18652235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000145782A Expired - Fee Related JP4358407B2 (en) 2000-05-17 2000-05-17 Welding method of thick steel plate with excellent laser weldability

Country Status (1)

Country Link
JP (1) JP4358407B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016194101A (en) * 2015-03-31 2016-11-17 フタバ産業株式会社 Steel material for laser weldment and laser weldment conjugate

Also Published As

Publication number Publication date
JP2001329334A (en) 2001-11-27

Similar Documents

Publication Publication Date Title
EP2402106B1 (en) Method of and machine for arc welding combining gas-shield arc welding with submerged arc welding
US7896979B2 (en) Activating flux for welding stainless steels
JP2003220481A (en) Method and welding wire for arc-laser composite welding
KR100631404B1 (en) The laser-arc hybrid welding weldment of carbon steel, and the laser-arc hybrid welding method for the same
JP6065989B2 (en) Steel plate butt welding method and steel plate butt weld joint manufacturing method
JP4696592B2 (en) Laser cutting method of steel sheet
JP5720592B2 (en) Welded joint
JP4358407B2 (en) Welding method of thick steel plate with excellent laser weldability
JP2006075853A (en) Laser-welded joint of austenitic alloy steel and its production method
JP2005125348A (en) Large heat input butt welded joint superior in brittle fracture characteristic resistance
JP4177539B2 (en) Manufacturing method of laser welding steel
JP5333003B2 (en) Laser-arc hybrid welding method that achieves long fatigue life
JP4213830B2 (en) Laser welding steel
JP4833645B2 (en) Steel plate with excellent laser-arc hybrid weldability
JP2004136329A (en) Ferrous filler metal for laser beam welding
JP6977409B2 (en) Stable austenitic stainless steel welded material
JP2003220492A (en) Cored wire for laser beam welding of steel material and solid wire
KR100421686B1 (en) Steel suitable for laser welding
JP7380959B1 (en) Laser welding method and method for manufacturing laser welded joints
WO2024053160A1 (en) Laser welding method and laser welded joint
JP4505076B2 (en) Electron beam welding method for obtaining weld metal with excellent low temperature toughness
JP7279870B1 (en) Manufacturing method of laser-arc hybrid welded joint
WO2023095477A1 (en) Method for producing laser/arc hybrid welded joint
JP7410408B2 (en) Method for manufacturing a welded structure with a fillet weld joint and welded structure with a fillet weld joint
JP2024049591A (en) Laser welded joint and laser welding process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4358407

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees