JP4357522B2 - Train train for high speed running - Google Patents

Train train for high speed running Download PDF

Info

Publication number
JP4357522B2
JP4357522B2 JP2006304676A JP2006304676A JP4357522B2 JP 4357522 B2 JP4357522 B2 JP 4357522B2 JP 2006304676 A JP2006304676 A JP 2006304676A JP 2006304676 A JP2006304676 A JP 2006304676A JP 4357522 B2 JP4357522 B2 JP 4357522B2
Authority
JP
Japan
Prior art keywords
sectional area
cross
vehicle body
vehicle
leading
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2006304676A
Other languages
Japanese (ja)
Other versions
JP2007091221A (en
Inventor
昭彦 鳥居
功 成瀬
敬 栗山
克之 塚原
一人 中井
淳 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK, Central Japan Railway Co filed Critical Kawasaki Jukogyo KK
Priority to JP2006304676A priority Critical patent/JP4357522B2/en
Publication of JP2007091221A publication Critical patent/JP2007091221A/en
Application granted granted Critical
Publication of JP4357522B2 publication Critical patent/JP4357522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Body Structure For Vehicles (AREA)

Description

この発明は、高速走行する新幹線(登録商標)等の高速走行用の編成列車に関する。
The present invention relates to a train set for high speed travel such as Shinkansen (registered trademark) that travels at high speed.

一般に、新幹線などの高速の鉄道車両がトンネルに突入する場合には、その先頭車両によって、トンネル内の限られた空間に存在する空気を押し込むように前記空気が圧縮される。この圧縮された空気が圧縮波となって、トンネル内をほぼ音速に等しい速度で前方へ伝播される。そして、この圧縮波はトンネルの出口に到達したときには出口で反射されるが、それの一部はパルス状の圧力波となってトンネルの出口から外部へ放射される。このパルス状の圧力波を、微気圧波(トンネル微気圧波)という。この微気圧波(パルス状の圧力波)が外部へ放射されることにより、トンネルの出口付近では爆発音とともに微振動等が生じ、周辺の環境に影響を及ぼす場合がある。   In general, when a high-speed railway vehicle such as a Shinkansen enters a tunnel, the air is compressed by the leading vehicle so as to push in air existing in a limited space in the tunnel. The compressed air becomes a compression wave and propagates forward in the tunnel at a speed approximately equal to the speed of sound. When this compression wave reaches the exit of the tunnel, it is reflected at the exit, but a part of it is radiated from the exit of the tunnel to the outside as a pulsed pressure wave. This pulsed pressure wave is called a micro atmospheric pressure wave (tunnel micro atmospheric pressure wave). When this micro atmospheric pressure wave (pulsed pressure wave) is radiated to the outside, fine vibrations and the like are generated in the vicinity of the exit of the tunnel along with explosion sound, which may affect the surrounding environment.

そのため、高速性能が要求される鉄道車両では、先頭車両の車体先頭部の形状に、いわゆる高速走行時の走行抵抗を減少させるだけでなく、前述したところのトンネルに突入した際に生じる微気圧波を低減させることができる形状とすることが必要とされる。   Therefore, in railway vehicles that require high-speed performance, the shape of the top part of the body of the leading vehicle not only reduces so-called traveling resistance during high-speed traveling, but also the micro-pressure waves generated when entering the tunnel described above. It is required to have a shape that can reduce the above.

近年、そのような微気圧波を低減させる先頭車両の車体形状がいくつか提案されている。例えば、
(1)横断面積が一定の胴部に接合する接合部から最先端に至る先頭領域を尖らせ、先頭領域の上面側へ突出する運転室窓部(キャノピー)の前後の長さを、先頭領域の前後長さより短くし、運転室窓部の突設根元部に連接する上方肩部の横断面積を、上方肩部に隣接する隣接肩部の横断面積より小さくし、前記先頭領域における最先端寄りの横断面積急変域を除く領域のスカート部又は仮想スカート部を含む横断面積を、接合部から最先端へ向かっていく程に正比例に減少させた構造に先頭部の車体を構成することを提案しているものがある(例えば、特許文献1参照)。
(2)車体先端から車体前後方向における横断面積が増大する先頭部を有した鉄道車両において、先頭部を先端領域と中間領域とから構成し、先端領域は最大横断面積の半分の断面積に相当する位置よりも先端側とし、中間領域は該先端領域よりも車体長手方向他端側とし、前記中間領域は一定の断面積変化率によって横断面積が変化し、かつ前記先端領域の断面積変化率を中間領域の断面積変化率よりも大きくするものである。この技術においては、前記中間領域に運転室を配置しており、この運転室部前面窓の傾斜角度を前方注視に支障のない角度としており、前記運転室前面窓の両側方部分より下方に凹み部を形成することを提案しているものがある(例えば、特許文献2参照)。
In recent years, several vehicle body shapes of leading vehicles that reduce such micro-pressure waves have been proposed. For example,
(1) Sharpen the leading area from the joint where it joins the trunk with a constant cross-sectional area to the forefront, and set the length of the front and rear of the cab window (canopy) protruding to the upper surface side of the leading area as the leading area The cross-sectional area of the upper shoulder connected to the projecting base of the cab window is smaller than the cross-sectional area of the adjacent shoulder adjacent to the upper shoulder, and is closer to the forefront in the head region. Proposed to construct the front car body in a structure in which the cross-sectional area including the skirt part or virtual skirt part of the area excluding the sudden change area of the cross-sectional area is reduced in proportion proportionally toward the leading edge from the joint part. (For example, refer to Patent Document 1).
(2) In a railway vehicle having a leading portion whose cross-sectional area in the longitudinal direction of the vehicle body increases from the front end of the vehicle body, the leading portion is composed of a front end region and an intermediate region, and the front end region corresponds to a cross-sectional area that is half the maximum cross-sectional area The middle region is the other end in the longitudinal direction of the vehicle body relative to the tip region, the cross-sectional area of the intermediate region changes according to a constant cross-sectional area change rate, and the cross-sectional area change rate of the tip region Is made larger than the cross-sectional area change rate of the intermediate region. In this technique, a driver's cab is disposed in the intermediate region, and the inclination angle of the front window of the driver's cab is an angle that does not hinder forward gaze, and is recessed below both side portions of the front window of the driver's cab. Some have proposed forming a part (for example, refer patent document 2).

しかしながら、前記公報に記載の技術は、いずれも、次の点で課題を有する。すなわち、
第1に、いずれの技術も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部(一般断面部あるいは最大横断面積部との接合部)にかけて車体の横断面積が連続して緩やかに増大するように、先端から後方にかけてやや上方に傾斜する曲面形状に形成するとともに、その傾斜曲面部分が車体前後方向にできるだけ長くなるように先端部をノーズ状に延ばしている。このため、実際の車体形状の製作に際しては、骨組みに溶接等により張り付ける板金を、ハンマー等で打ち出すことによって凹凸部などの複雑な形状を形成しているので、作業に熟練を要することはもとより、多大な時間がかかって生産性が非常に低く、製造コストが極めて高くなるうえに、車体先頭部の車体前後方向において占める長さが長くなるため、車室が制限され、乗車定員が減少する。
However, all of the techniques described in the publications have problems in the following points. That is,
First, in any of the technologies, the change in the cross-sectional area of the front part gradually decreases gradually from the front end of the car body of the lead vehicle to the rear joint (joint part with the general cross-section part or the maximum cross-sectional area part). In order to increase, the curved surface shape is inclined slightly upward from the distal end to the rear, and the distal end portion is extended in a nose shape so that the inclined curved surface portion is as long as possible in the longitudinal direction of the vehicle body. For this reason, when manufacturing the actual car body shape, a complicated shape such as a concavo-convex part is formed by punching a sheet metal attached to the frame by welding etc. with a hammer etc. , It takes a lot of time, the productivity is very low, the manufacturing cost is extremely high, and the length occupied in the longitudinal direction of the vehicle body in the longitudinal direction of the vehicle body becomes long, so the passenger compartment is limited and the number of passengers is reduced .

第2に、いずれの技術も先頭部の横断面積の変化が先頭車両の車体先端から後方の接合部にかけて直線的に連続している。このため、鉄道車両がトンネル内に突入したときの、トンネル内のある位置における圧力変化は、圧力勾配が緩やかになっているとしても漸次高くなっている。一方、トンネル内を伝播する圧縮波の速度(音速に近い)は、圧力が上昇するのにしたがって速くなるから、トンネルの距離がある程度長くなると、せっかく車体の先頭部形状を工夫したことによって圧縮波の圧力を分散したにもかかわらず、分散された圧力がトンネルの出口では集合されて一度に大きな圧力のパルス状圧力波(微気圧波)となって外部へ放射され、トンネルの出口周辺において大きな爆発音が発生したり、振動等が生じたりするおそれがある。   Secondly, in both technologies, the change in the cross-sectional area of the leading portion is linearly continuous from the front end of the vehicle body of the leading vehicle to the rear joining portion. For this reason, when the railway vehicle enters the tunnel, the pressure change at a certain position in the tunnel is gradually increased even if the pressure gradient is gentle. On the other hand, the speed of the compression wave propagating in the tunnel (close to the speed of sound) increases as the pressure rises. Therefore, if the tunnel distance increases to some extent, the compression wave is devised by devising the shape of the top of the vehicle body. Even though the pressure is dispersed, the dispersed pressure is gathered at the tunnel exit and radiated to the outside as a high-pressure pulsed pressure wave (micro-pressure wave) at a time. There is a risk of explosion sound or vibration.

そこで、出願人は、鉄道車両がトンネル内に突入する場合に、トンネルと車両によって発生する微気圧波を分散させて低減するための鉄道先頭車両の車体形状を先に提案している(例えば、特許文献3参照)。具体的には、車体の先端部分をやや後方に傾斜させて上方に立ち上げることにより第1段目の断面積増加領域を形成した後、横断面積をほぼ一定に保ってほぼ水平に後方に延設した後、再びやや後方に傾斜させて上方に立ち上げることにより第2段目の断面積増加領域を形成し、(第1段目の横断面積)/(第2段目の横断面積)の面積比が0.6以上で、第1段目と第2段目の断面積増加領域の間隔を15m以上にしたものである。
特開平7−89439号公報(第2頁〜第3頁) 特開平8−198105号公報(第2頁〜第5頁) 特開平11−321640号公報(第2頁〜第4頁、図1〜図4)
Therefore, the applicant has previously proposed a vehicle body shape of a railway leading vehicle for dispersing and reducing micro-pressure waves generated by the tunnel and the vehicle when the railway vehicle enters the tunnel (for example, (See Patent Document 3). Specifically, after forming the first-stage cross-sectional area increasing area by tilting the front end of the vehicle body slightly backward and raising it upward, it extends rearward substantially horizontally while keeping the cross-sectional area substantially constant. After the installation, the second-stage cross-sectional area increasing region is formed by tilting back slightly backward and rising upward, and the (first-stage cross-sectional area) / (second-stage cross-sectional area) The area ratio is 0.6 or more, and the interval between the first and second step cross-sectional area increasing regions is 15 m or more.
JP-A-7-89439 (pages 2 to 3) JP-A-8-198105 (pages 2 to 5) JP-A-11-321640 (2nd to 4th pages, FIGS. 1 to 4)

そのような高速走行する先頭車両の車体は、一般に、微気圧波の低減を図るため、運転室が形成される先端部分について横断面積を小さくする等の何らかの工夫が施されている。そして、その先頭部分の後端に連続し客室空間が形成される一般部分は、先頭部分の後端とほぼ同じ大きさの一様な横断面積とされ、これの後続車両(二両目以降の車両)もほぼ同じ大きさの一様な横断面積とされている。   In general, the vehicle body of such a leading vehicle that travels at a high speed is subjected to some contrivance such as reducing the cross-sectional area at the tip portion where the cab is formed in order to reduce the micro-pressure wave. The general portion where the cabin space is formed continuously from the rear end of the head portion has a uniform cross-sectional area that is substantially the same size as the rear end of the head portion. ) Is a uniform cross-sectional area of almost the same size.

ところで、図8に示すように、鉄道先頭車両の車体は、一般部分を基準として断面積比が小さいほど、微気圧波の大きさの指針となる圧力勾配指数(圧力勾配dp/dtと基準となる圧力勾配dp0/dt0との比)が小さくなることが確認されている。 By the way, as shown in FIG. 8, the vehicle body of the railway head vehicle has a pressure gradient index (pressure gradient dp / dt and reference) that serves as a guideline for the magnitude of the micro-pressure wave as the cross-sectional area ratio is smaller with respect to the general portion. It is confirmed that the pressure gradient dp 0 / dt 0 becomes smaller.

そこで、そのような一般部分において、客室空間を大きくするために段部を設け横断面積を大きくしても、その段部(断面積変化部分)を前側部分(先頭部分に連続する部分)に設ける場合には微気圧波の低減効果に影響があるかもしれないが、後側部分に設ける場合には大きな影響がないのではないかという着想に基づき、それの後側部分の高さ及び車体幅を前側部分のそれらよりも2割程度大きくして、微気圧波の数値シミュレーション解析を行ったところ、(i)先頭部分での圧力勾配指数の変化程度は、一般部分の後側部分の高さ及び車体幅を大きくしない場合と同じ程度であり、(ii)一般部分の後側部分の高さ及び車体幅を大きくしたことによる前記一般部分での圧力勾配指数のピーク値は、先頭部分での圧力勾配指数のピーク値を超えることはないことを見出した(図9(a)参照)。すなわち、一般部分において、後側部分の高さ及び車体幅を前側部分のそれらよりも大きくしても、微気圧波に対する影響は大きくないと考えられる。   Therefore, in such a general part, even if a step portion is provided in order to increase the cabin space and the cross-sectional area is increased, the step portion (cross-sectional area changing portion) is provided in the front portion (portion continuing to the head portion). In some cases, it may have an effect on the effect of reducing micro pressure waves, but if it is installed in the rear part, the height of the rear part and the vehicle body width are based on the idea that there will be no significant effect. When the numerical simulation analysis of micro atmospheric pressure waves was performed with the value of about 20% larger than those of the front part, (i) the degree of change in the pressure gradient index at the top part is the height of the rear part of the general part And (ii) the peak value of the pressure gradient index in the general part due to the increase in the height of the rear part of the general part and the vehicle body width at the leading part. Exceeds the peak value of the pressure gradient index It was found that there is no such thing (see FIG. 9A). That is, in the general part, even if the height of the rear part and the vehicle body width are made larger than those of the front part, it is considered that the influence on the micro-pressure wave is not great.

この点についてさらに具体的に説明すると、一般部分の後側部分の高さ及び車体幅を大きくしない場合についての結果を図9(a)に実線で示す一方、一般部分の後側部分の高さ及び車体幅を大きくした場合(一般部分の前側部分に対し後側部分を1.2倍の横断面積にした場合)についての結果を図9(a)に他の線で示す。一般部分において後側部分の横断面積を前側部分のそれより大きくすると、一般部分の断面積変化部分(段部)に対して圧力勾配指数のピーク値が新たに生ずる。そのピーク値は、先頭部分におけるピーク値(最大値)の6割程度で、それを超えないことが確認された(この圧力勾配指数のピーク値が、微気圧波の最大値を決定すると考えられる)。図9(a)には、先頭部分の長さをLtop、先頭から一般部分の後側部分の高さ及び車体幅を大きくした部位までの長さをLnon roofとし(図9(b)参照)、Lnon roof/Ltop=1.1,1.6,2.2の3種類について解析した結果を示すが、いずれの場合のピーク値も、先頭部分のピーク値(最大値)を超えることがなかった。   This point will be described in more detail. The result of the case where the height of the rear portion of the general portion and the vehicle body width are not increased is shown by a solid line in FIG. 9A, while the height of the rear portion of the general portion. FIG. 9A shows the results when the vehicle body width is increased (when the rear portion is 1.2 times the cross-sectional area with respect to the front portion of the general portion). When the cross-sectional area of the rear portion is made larger than that of the front portion in the general portion, a new peak value of the pressure gradient index is generated with respect to the cross-sectional area change portion (step portion) of the general portion. The peak value is about 60% of the peak value (maximum value) at the beginning, and it was confirmed that it does not exceed it (the peak value of this pressure gradient index is considered to determine the maximum value of the micro pressure wave) ). In FIG. 9A, the length of the head portion is Ltop, and the length from the head to the rear portion of the general portion and the portion where the vehicle body width is increased is Lnon roof (see FIG. 9B). , Lnon roof / Ltop = 1.1, 1.6, 2.2 The results of analysis are shown, but the peak value in any case does not exceed the peak value (maximum value) of the head portion. It was.

つまり、一般部分において後側部分の高さ及び車体幅を大きくしても、微気圧波に対する影響はほとんどなく、しかもその大きくする部位(段部)の位置もあまり問題にならないと考えられる。この段部の位置があまり問題とならないことから、先頭車両に続く後続車両の高さ又は車体幅を大きくしても、同様な効果が得られると考えられる。   That is, even if the height of the rear portion and the vehicle body width are increased in the general portion, there is almost no influence on the micro-pressure wave, and the position of the increased portion (step portion) is not considered to be a problem. Since the position of the stepped portion does not matter so much, it is considered that the same effect can be obtained even if the height or the vehicle body width of the subsequent vehicle following the leading vehicle is increased.

そこで、発明者らは、先頭車両の一般部分の後側部分や先頭車両に続く後続車両においてそれらの車体高さ又は車体幅を大きくすることにより、客室空間が形成される部分の横断面積を増大させても、微気圧波の低減効果を損なうことなく、余裕がある客室空間を確保することができるとの着想に基づき、微気圧波の低減効果と余裕がある客室空間の確保の両立が図れる本発明を開発するに至ったものである。   Therefore, the inventors increase the cross-sectional area of the portion where the cabin space is formed by increasing the vehicle body height or vehicle body width in the rear portion of the general portion of the leading vehicle and the following vehicle following the leading vehicle. Even if it does, it is possible to achieve both the effect of reducing the micro-pressure wave and the securing of the room space with a margin based on the idea that the room space can be secured without impairing the effect of reducing the micro-pressure wave. The present invention has been developed.

本発明は、微気圧波の低減効果を損なうことなく、余裕がある客室空間を確保することができる鉄道先頭車両の車体を提供するものである。   The present invention provides a vehicle body of a railway head vehicle that can secure a passenger room space without impairing the effect of reducing micro pressure waves.

複数の車両を連結して編成される高速走行用の編成列車において、運転室が形成される先頭部分の後側に、客室空間が形成される一般部分が連続する先頭車両を備え、前記先頭車両の一般部分が、前記先頭部分の後端に連続し横断面積がほぼ一様である前側部分と、この前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分とを有するようにすれば、その後側部分に、高さ方向又は幅方向に余裕のある客室空間が確保される。また、前側部分より車体高さ又は車体幅が大きく後続車両とほぼ同じ車体高さ又は車体幅となる後側部分を先頭部分が有することは、先頭部分の前側部分が、微気圧波を低減する効果を損ねることがない。よって、微気圧波の低減効果を損ねることなく、余裕がある客室空間が確保され、微気圧波の低減と余裕がある客室空間の確保との両立を図ることができる。ここで、段部(断面積変化部分)における車体高さと車体幅との変化量(車体上方や車体左右側方に突出する量)は等しくする必要はなく、例えば車体高さの変化量を車体幅の変化量より小さくすることができる。
In a train for high-speed traveling that is formed by connecting a plurality of vehicles, the leading vehicle includes a leading vehicle in which a general portion in which a cabin space is formed is arranged behind a leading portion in which a driver's cab is formed. A general portion of the front portion that is continuous with the rear end of the head portion and has a substantially uniform cross-sectional area, and a vehicle body height or vehicle body width that is larger than the front portion and substantially the same as that of the following vehicle. If it has the rear side part which becomes , the passenger room space which has a margin in the height direction or the width direction is ensured in the rear side part . In addition, the front part has a rear part that has a vehicle body height or a body width larger than the front part and substantially the same vehicle height or body width as that of the following vehicle. This means that the front part of the head part reduces micro-pressure waves. There is no loss of effectiveness. Therefore, a room space with a margin can be secured without impairing the effect of reducing the micro-pressure wave, and both the reduction of the micro-pressure wave and the room space with a margin can be achieved. Here, the amount of change between the vehicle body height and the vehicle body width (the amount protruding to the upper side of the vehicle body or the left and right sides of the vehicle body) at the stepped portion (section area changing portion) does not have to be equal. It can be made smaller than the amount of change in width.

また、先頭部分は、車体幅が車体前後方向において車両先頭から一般部分に向かって直線的(比例的)に徐々に大きくなっているようにすれば、車体高さ方向だけでなく車体幅方向においても寸法を調整して、一般部分に対する先頭部分の断面積比を小さくすることができるようになり、微気圧波の低減を図る上で一層有利となる。   In addition, if the vehicle body width gradually increases linearly (proportionalally) from the vehicle head to the general part in the vehicle longitudinal direction, the top portion is not only in the vehicle body height direction but also in the vehicle body width direction. However, it is possible to reduce the cross-sectional area ratio of the head portion with respect to the general portion by adjusting the dimensions, which is more advantageous in reducing the micro-pressure wave.

すなわち、車体幅方向において寸法を変化させないと、一般部分に対する先頭部分の断面積比を小さくするためには、車体の高さ方向の寸法の調整だけで行う必要がある。これに対し、車体幅方向においても、車両先頭(車両先端)から一般部分に向かって直線的に徐々に大きくなっているように寸法を変化させると、先端側になるほど車体幅が小さくなるので、高さ方向の寸法の調整と相俟って、一般部分に対する先頭部分の断面積比を小さくすることがより一層容易となる。   In other words, if the dimensions are not changed in the vehicle body width direction, it is necessary to adjust only the dimensions in the height direction of the vehicle body in order to reduce the cross-sectional area ratio of the leading portion relative to the general portion. On the other hand, in the vehicle body width direction, when the dimensions are changed so as to gradually increase linearly from the vehicle head (vehicle front end) toward the general part, the vehicle body width decreases toward the front end side. Combined with the adjustment of the dimension in the height direction, it becomes much easier to reduce the cross-sectional area ratio of the leading portion relative to the general portion.

また、前述したところの段部(車体高さ又は車体幅が大きくなる部分)は、先頭車両に設ける必要なく、それに後続する車両に設けてもよいことから、請求項1の発明がなされた。
Further, the above-described stepped portion (the portion where the vehicle body height or the vehicle body width becomes large) does not need to be provided in the leading vehicle, and may be provided in a vehicle following the vehicle, so that the invention of claim 1 has been made.

すなわち、請求項1の発明は、複数の車両を連結して編成される高速走行用の編成列車において、先頭部分の前側の断面積増加領域の断面積増加率は、後側の断面積増加領域の断面積増加率よりも大きく、中間の断面積増加領域は、運転室に対応する部分であって、前側及び後側の断面積増加領域よりも断面積増加率が小さく前半部分の断面積増加率が後半部分の断面積増加率より大きくなっている先頭車両を備え、前記先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾の横断面積とほぼ一様の横断面積を有する前側部分と、この前側部分より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅で余裕がある客室空間を確保する後側部分とを段部を介して有することを特徴とする。
That is, the invention according to claim 1 is the train set for high-speed traveling that is formed by connecting a plurality of vehicles. The cross-sectional area increase rate of the front cross-sectional area increase region of the front portion is the rear cross-sectional area increase region. The cross-sectional area increase area is larger than the cross-sectional area increase ratio, and the intermediate cross-sectional area increase area corresponds to the cab, and the cross-sectional area increase ratio is smaller than that of the front and rear cross-sectional area increase areas. A leading vehicle having a rate greater than the rate of increase in cross-sectional area in the latter half of the vehicle, and any one of the following vehicles following the leading vehicle is substantially uniform with the rear cross-sectional area of the vehicle located in front of the leading vehicle. After securing a cabin space with a front section having a cross-sectional area and a vehicle body height or width that is larger than the front section and having a vehicle body height or width that is substantially the same as the cross-sectional area of the front end of the vehicle located on the rear side and a side portion via a step portion And wherein the door.

この発明は、以上に説明したように実施され、以下に述べるような効果を奏する。   The present invention is implemented as described above, and has the following effects.

請求項1の発明は、車体前後方向の断面積の変化により微気圧波低減効果がある前記先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾の横断面積とほぼ一様の横断面積を有する前側部分と、この前側部分より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅で余裕がある前記客室空間を確保する後側部分とを段部を介して有するようにしているので、微気圧波の低減効果を損なうことなく、後側部分に余裕のある客室空間を確保できる。よって、微気圧波の低減と、客室空間の確保の両立を図ることができる。
According to the first aspect of the present invention, any one of the following vehicles following the leading vehicle having a micro-pressure wave reducing effect due to a change in the cross-sectional area in the longitudinal direction of the vehicle body has a rear cross-sectional area of the vehicle located in front of the vehicle. The front portion having a substantially uniform cross-sectional area, and the passenger compartment having a margin in the vehicle body height or the vehicle body width substantially the same as the cross-sectional area of the front end of the vehicle having a vehicle body height or vehicle body width larger than the front portion and positioned on the rear side. since so as to have via a stepped portion and a rear portion for securing the space, without impairing the effect of reducing the fine gas pressure wave, the room space can afford the rear portion can be secured. Therefore, it is possible to achieve both reduction of the micro-pressure wave and securing of the cabin space.

以下、この発明の実施の形態を図面に沿って説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の前提となる高速走行用の編成列車の先頭車両を示す側面図、図2は同平面図である。   FIG. 1 is a side view showing a leading vehicle of a train set for high-speed traveling which is a premise of the present invention, and FIG. 2 is a plan view thereof.

図1及び図2に示すように、先頭車両の車体1は、運転室が形成される先頭部分Z1の後側に、客室空間が形成される一般部分Z2が連続する構成とされている。そして、先頭部分Z1には、車体高さ及び車体幅が変化することで、車体1の横断面積が車体1の先頭側から後尾側に向かって大きくなる方向に変化する3つの断面積増加領域(すなわち前側、中間及び後側の断面積増加領域Z11,Z12,Z13)が設けられ、横断面積を前後方向において3段階でもって変化させている。そして、前記一般部分Z2が、先頭部分Z1の後端に連続し横断面積がほぼ一様である前側部分Z21と、この前側部分Z21より車体高さ及び車体幅が大きく後続車両(図示せず)とほぼ同じ車体高さ及び車体幅となる後側部分Z22とを有する。この後側部分Z22は、後続車両と横断面積がほぼ等しく、客室空間が前側部分Z21より大きくなっている。   As shown in FIGS. 1 and 2, the vehicle body 1 of the leading vehicle is configured such that a general portion Z2 in which the passenger compartment space is formed is continuous with the rear side of the leading portion Z1 in which the cab is formed. The top portion Z1 has three cross-sectional area increasing regions (in which the cross-sectional area of the vehicle body 1 changes from the top side toward the rear side of the vehicle body 1 as the vehicle body height and the vehicle body width change). That is, front, middle and rear cross-sectional area increasing regions Z11, Z12, Z13) are provided, and the cross-sectional area is changed in three steps in the front-rear direction. The general portion Z2 is continuous with the rear end of the leading portion Z1 and has a substantially uniform cross-sectional area. The front portion Z21 has a vehicle body height and a vehicle body width larger than the front portion Z21, and the following vehicle (not shown). And a rear portion Z22 having substantially the same vehicle body height and vehicle body width. The rear portion Z22 has substantially the same cross-sectional area as the following vehicle, and the cabin space is larger than the front portion Z21.

先頭部分Z1の前側の断面積増加領域Z11に続く、断面積変化率が緩やかな中間の断面積増加領域Z12に対応して運転室風防21が配設され、この運転室風防21が、運転室の上側に位置し、運転席28の上側を覆うようになっている。運転席28は、車両中心より若干左側寄りに配設されている。   A driver's cab windshield 21 is disposed corresponding to an intermediate sectional area increasing region Z12 having a moderate sectional area change rate following the sectional area increasing region Z11 on the front side of the head portion Z1, and this cab windshield 21 is connected to the driver's cab. The upper side of the driver's seat 28 is covered. The driver's seat 28 is disposed slightly to the left of the vehicle center.

先頭部分Z1における後側の断面積増加領域Z13から一般部分Z2における前側部分Z21にわたって、車両左右方向に延びる前側及び後側の横通路22,23がそれぞれ形成されている。両横通路22,23が、車両左右方向に一側において車両前後方向に延びる縦通路24でもって接続されている。前側及び後側の横通路22,23の左右両側に乗降用扉25,26が開閉可能に配設されている。   Front and rear lateral passages 22 and 23 extending in the left-right direction of the vehicle are formed from the rear sectional area increasing region Z13 in the leading portion Z1 to the front portion Z21 in the general portion Z2. Both lateral passages 22, 23 are connected by a longitudinal passage 24 extending in the vehicle front-rear direction on one side in the vehicle left-right direction. Entrance doors 25 and 26 are disposed on the left and right sides of the front and rear side passages 22 and 23 so as to be openable and closable.

具体的に図示していないが、縦通路24の左右両側部分及び後側の横通路23の前側部分に、それらの部分の高さに応じて各種機器が配置され、微気圧波を低減することができる形状(車体1の形状)において、横断面積の変化にもかかわらず、各種機器のレイアウトが無理なく実現され、運転士の乗降もスムーズに行えるようにされている。すなわち、運転室の後側に横通路22を設け、それの左右両側に乗降用扉25を設け、それのさらに後側に各種機器を配置するようにしているので、運転士が乗降する際に、各種機器が配置されている部分を通過することなく、乗降することができる。   Although not specifically shown, various devices are arranged on both the left and right side portions of the vertical passage 24 and the front portion of the rear side passage 23 in accordance with the heights of those portions to reduce micro pressure waves. The shape of the vehicle body 1 (the shape of the vehicle body 1) allows the layout of various devices to be realized without difficulty despite the change in the cross-sectional area, and allows the driver to get on and off smoothly. That is, the lateral passage 22 is provided on the rear side of the cab, the entrance doors 25 are provided on both the left and right sides thereof, and various devices are arranged on the further rear side thereof. It is possible to get on and off without passing through the part where various devices are arranged.

従来の先頭車両の車体の先頭部分は、平面視ではほぼ弾丸形状である(図1及び図2破線参照)が、本例の車体1の先頭部分Z1は、平面視では車体幅が車体前後方向において先頭から一般部分Z2に向かって直線的に徐々に大きくなる形状とされている(図1及び図2実線参照)。   The front part of the vehicle body of the conventional front vehicle is substantially bullet-shaped in plan view (see the broken lines in FIGS. 1 and 2), but the front part Z1 of the vehicle body 1 in this example has a vehicle body width in the vehicle longitudinal direction in plan view. In FIG. 1, the shape gradually increases linearly from the top toward the general portion Z2 (see solid lines in FIGS. 1 and 2).

このように、車体1の先端部分Z1は、横断面積が車体前後方向に沿って変化しているが、前側の断面積増加領域Z11の断面積増加率は、後側の断面積増加領域Z13の断面積増加率よりも大きく、中間の断面積増加領域Z12は、運転室に対応する部分であって、前側及び後側の断面積増加領域Z11,Z13よりも断面積増加率が小さく前半部分の断面積増加率が後半部分のそれより大きくなっている。これにより微気圧波低減効果を有する断面積分布となっている。   Thus, the front end portion Z1 of the vehicle body 1 has a cross-sectional area that changes along the longitudinal direction of the vehicle body, but the cross-sectional area increase rate of the front cross-sectional area increase region Z11 is the same as that of the rear cross-sectional area increase region Z13. The intermediate cross-sectional area increase region Z12 is larger than the cross-sectional area increase rate, and corresponds to the cab, and the cross-sectional area increase rate is smaller than that of the front and rear cross-sectional area increase regions Z11 and Z13. The cross-sectional area increase rate is larger than that in the latter half. As a result, the cross-sectional area distribution has an effect of reducing micro-pressure waves.

このような断面積分布を満たすために、車体1は、車体の高さ方向及び車体幅方向において車体高さや車体幅が変化している。そして、前側の断面積増加領域Z11から中間の断面積増加領域Z12の中間部分付近まで、車体幅方向中央部にほぼ運転室の幅に相当する幅を有し徐々に高さが高くなることで横断面積が増加する突部が形成されている。この突部が、中間の断面積増加領域Z12の中間部分付近から、後側の断面積増加領域Z13において上方向及び左右方向に膨らむことで横断面積がさらに増加し、一般部分Z2(前側部分Z21)の車体高さ及び車体幅に等しくなるように形成されている。   In order to satisfy such a cross-sectional area distribution, the vehicle body 1 changes in the vehicle body height and the vehicle body width in the vehicle body height direction and the vehicle body width direction. And, from the front side cross-sectional area increasing region Z11 to the vicinity of the middle part of the intermediate cross-sectional area increasing region Z12, there is a width substantially corresponding to the width of the driver's cab at the center in the vehicle body width direction, and the height gradually increases. Projections that increase the cross-sectional area are formed. This protrusion swells upward and in the left-right direction in the rear cross-sectional area increasing region Z13 from the vicinity of the middle portion of the intermediate cross-sectional area increasing region Z12, so that the cross-sectional area further increases, and the general portion Z2 (front side portion Z21 ) To be equal to the vehicle body height and vehicle body width.

前述した車体1の形状(以下本発明の車体形状という)は、従来まで用いられていた形状設計に関する試行錯誤的な手法ではなく、数値流体解析(CFD解析)と最適化設計手法(遺伝的アルゴリズム)を組み合わせて、微気圧波が低減する最適先頭部分(最適断面積分布)を数値的に求める設計技術を適用して求め、それに修正を加えたものである。   The shape of the vehicle body 1 described above (hereinafter referred to as the vehicle body shape of the present invention) is not a trial and error method related to shape design that has been used so far, but is a computational fluid analysis (CFD analysis) and an optimization design method (genetic algorithm). ), A design technique that numerically obtains the optimum head portion (optimal cross-sectional area distribution) in which the micro-pressure wave is reduced, and is modified.

また、前述したように、3つの断面積増加領域Z11,Z12,Z13を有する本発明の車体の先頭部分で、微気圧波による影響をシミュレーション解析をしてみると、図3に示すように、従来の車体の先頭部分の場合(図3の破線参照)には微気圧波の影響の目安となる圧力勾配指数のピーク値が1つでかなり大きいのに対し、本発明の車体の先頭部分の場合(3の実線参照)には圧力勾配指数のピーク値が3つで小さくなり、微気圧波の大きさ自体も大幅に低減されることが確認できた。そのピーク値(最大値)を比較すると、従来の先頭部分に比べて、本発明の先頭部分では28%程度低減されていることが確認される。   Further, as described above, when a simulation analysis is performed on the influence of the micro-pressure wave at the head portion of the vehicle body of the present invention having the three cross-sectional area increasing regions Z11, Z12, and Z13, as shown in FIG. In the case of the front portion of the conventional vehicle body (see the broken line in FIG. 3), the peak value of the pressure gradient index, which is a measure of the influence of the micro-pressure wave, is considerably large by one, whereas the front portion of the vehicle body of the present invention In this case (see solid line 3), it was confirmed that the peak value of the pressure gradient index decreased with three, and the magnitude of the micro-pressure wave itself was significantly reduced. When the peak values (maximum values) are compared, it is confirmed that the head portion of the present invention is reduced by about 28% compared to the conventional head portion.

さらに、これを実験的に確かめるために、トンネル打ち込み試験を実施した。試験装置は、図4に示すように構成される。すなわち、前述したところの先頭部分に対応する横断面積分布を持つ円錐形状の車両模型61(縮尺モデル)を発射装置62を用いて、トンネルを模擬した円筒状パイプ63に、車両速度で打ち込み、評価点(図示せず)での圧力値を測定し、圧力勾配(dp/dt)を計測するものである。なお、64は制動装置である。   In order to confirm this experimentally, a tunnel driving test was conducted. The test apparatus is configured as shown in FIG. That is, a conical vehicle model 61 (scale model) having a cross-sectional area distribution corresponding to the head portion described above is driven into a cylindrical pipe 63 simulating a tunnel at a vehicle speed by using a launching device 62 and evaluated. The pressure value at a point (not shown) is measured, and the pressure gradient (dp / dt) is measured. Reference numeral 64 denotes a braking device.

この試験結果を示す図5(a)(b)からも明らかなように、従来の先頭部分(図5(a)参照)に比べて、本発明の先頭部分(図5(b)参照)の方が圧力勾配指数の低減性能に優れることが確認される。また、その試験結果は、具体的には、本発明の先頭部分は、従来の先頭部分に比べて、28%程度低減され、シミュレーション解析の結果とも一致している。   As is clear from FIGS. 5 (a) and 5 (b) showing the test results, the leading portion of the present invention (see FIG. 5 (b)) is compared with the conventional leading portion (see FIG. 5 (a)). It is confirmed that the pressure gradient index is superior in reducing performance. In addition, the test results are more specifically reduced by about 28% in the head portion of the present invention compared to the conventional head portion, and are consistent with the results of the simulation analysis.

前記一般部分Z2は、前述したように、前側部分Z21と後側部分Z22とで車体高さ及び車体幅が異なる構成とされ、それらの部分Z21,Z22の間に段部1a(傾斜段部)が形成されている。このように一般部分Z2の後端寄りの部位に段部1aを形成しているが、この段部1aを形成することにより微気圧波の低減効果を損なうことはない(図9(a)(b)参照)。このようにして、微気圧波の低減効果を損なうことなく、高速走行用の鉄道先頭車両の後側部分Z22(一般部分Z2)において、車体高さ方向(車体上下方向)及び車体幅方向に余裕がある客室空間が確保される。この客室空間には、前側から連続して左右の座席27L,27Rが一定間隔で前後方向に配設されている。   As described above, the general portion Z2 is configured such that the front side portion Z21 and the rear side portion Z22 have different vehicle body heights and vehicle body widths, and a step portion 1a (inclined step portion) between the portions Z21 and Z22. Is formed. Thus, although the step part 1a is formed in the site | part near the rear end of the general part Z2, forming the step part 1a does not impair the effect of reducing the micro-pressure wave (FIG. 9A). b)). In this way, there is a margin in the vehicle body height direction (vehicle body vertical direction) and vehicle body width direction in the rear portion Z22 (general portion Z2) of the leading vehicle for high-speed traveling without impairing the effect of reducing the micro-pressure waves. There is a room space available. In this cabin space, left and right seats 27L, 27R are arranged in the front-rear direction at regular intervals from the front side.

ここで、本例では、前側部分Z21は車体高さ3500mm、車体幅3360mmで、後側部分Z22は車体高さ3600mm、車体幅3380mmとされており、段部1aは、車両全長の90%程度の長さだけ先頭より後方部位に設けられている。ここで、段部1aを設ける位置は、図9(a)より、一般部分Z2の部位であれば、先頭部分Z1の断面積の変化による微気圧波の低減効果を損なうことがないことがわかる。   Here, in this example, the front portion Z21 has a vehicle body height of 3500 mm and a vehicle body width of 3360 mm, the rear portion Z22 has a vehicle body height of 3600 mm and a vehicle body width of 3380 mm, and the step portion 1a is about 90% of the total length of the vehicle. It is provided in the back part from the head by the length of. Here, it can be seen from FIG. 9A that the position where the stepped portion 1a is provided is a portion of the general portion Z2, and does not impair the effect of reducing the micro-pressure wave due to the change in the cross-sectional area of the leading portion Z1. .

前述したものにおいては、先頭車両の後部に段部を形成するようにしているが、そのほか、先頭車両に後続する車両のいずれかに段部を形成するようにしても、同様の作用効果が得られる。例えば図7(a)に、先頭車両31に続く2番目の車両32に段部32aを形成する例を示す。   In the above, a step portion is formed at the rear portion of the leading vehicle, but the same effect can be obtained by forming a step portion in any of the vehicles following the leading vehicle. It is done. For example, FIG. 7A shows an example in which the stepped portion 32 a is formed in the second vehicle 32 following the leading vehicle 31.

また、先頭車両に後続する車両のいずれかの車両を、先頭部で段部を形成するようにしても、同様の作用効果が得られる。例えば図7(b)に、先頭車両41に続く2番目の車両42の先頭部で段部42aを形成する例を示す。
Further, even if any of the vehicles following the leading vehicle is formed with a step at the leading portion, the same effect can be obtained. For example, FIG. 7B shows an example in which the stepped portion 42 a is formed at the leading portion of the second vehicle 42 following the leading vehicle 41.

これらの場合は、編成列車の長手方向において対称に配置されていることが望ましい。   In these cases, it is desirable to arrange them symmetrically in the longitudinal direction of the train train.

上述したほか、本発明に係る鉄道先頭車両の車体は、次のように構成することも可能である。
(1)前記実施の形態においては、後側部分Z22が、前側部分Z21より車体高さ及び車体幅が大きく後続車両(図示せず)とほぼ同じ車体高さ及び車体幅となるようにしているが、車体高さ及び車体幅を共に同じにする必要はなく、いずれか一方のみ前側部分より大きくし後続車両と同じになるようにすることも可能である。
(2)前述した試験(図4及び図5参照)においては、横断面積を1.2倍にした場合について説明しているが、それに限定されるものではなく、横断面積を2倍程度にすることも可能である。
(3)前記実施の形態においては、車体の横断面積が先頭側から後尾側に向かって大きくなる方向に変化する3つの断面積増加領域(すなわち前側、中間及び後側の断面積増加領域Z11,Z12,Z13)が設けられ、横断面積を前後方向において3段階でもって変化させている先頭部分に適用したものについて説明したが、本発明はそれに限定されるものではなく、先頭部分の前側部分が平面視ではほぼ弾丸形状である従来の車体形状(図1及び図2破線参照)にも適用することができるし、微気圧波の低減効果が要求されるそのほかの高速走行する先頭車両の先頭部分にも適用することができる。なお、先頭部分の前側部分が平面視ではほぼ弾丸形状である従来の先頭部分を有する先頭車両(図1及び図2破線参照)についても、一般部分の段部が圧力勾配指数に対して影響を与えないことが確認されている(図6参照)。
(4)また、前記実施の形態においては、段部1a(車体高さ又は車体幅が大きくなる断面積変化部分)を1つ設けているだけであるが、それに限らず、複数設けることも可能である。
(5)前述した実施の形態における各種機器の配置は、一例を示したものにすぎず、縦通路の両側及び両横通路の間に形成される空間部を、その部分(通路)の高さに応じて、各種機器を自由に配置することができる。
In addition to the above, the vehicle body of the leading railway vehicle according to the present invention can be configured as follows.
(1) In the embodiment described above, the rear portion Z22 has a vehicle body height and a vehicle body width that are larger than those of the front portion Z21, and is substantially the same as the vehicle body height and vehicle body width of the following vehicle (not shown). However, it is not necessary for both the vehicle body height and the vehicle body width to be the same, and only one of them can be made larger than the front portion and the same as the following vehicle.
(2) In the above-described test (see FIGS. 4 and 5), the case where the cross-sectional area is increased by 1.2 times is described, but the present invention is not limited to this, and the cross-sectional area is increased by about twice. It is also possible.
(3) In the above-described embodiment, the three cross-sectional area increasing regions (that is, the front, middle, and rear cross-sectional area increasing regions Z11, Z) that change in the direction in which the cross-sectional area of the vehicle body increases from the front side toward the rear side. Z12, Z13) are provided and applied to the leading portion where the cross-sectional area is changed in three steps in the front-rear direction. However, the present invention is not limited to this, and the front portion of the leading portion is It can also be applied to the conventional vehicle body shape (see the broken lines in FIGS. 1 and 2), which is almost bullet-shaped in plan view. It can also be applied to. In addition, for a leading vehicle having a conventional leading portion in which the front portion of the leading portion is substantially bullet-shaped in plan view (see the broken lines in FIGS. 1 and 2), the step portion of the general portion has an effect on the pressure gradient index. It has been confirmed that this is not given (see FIG. 6).
(4) In the above-described embodiment, only one step portion 1a (a cross-sectional area changing portion in which the vehicle body height or the vehicle body width is increased) is provided. It is.
(5) The arrangement of the various devices in the above-described embodiment is merely an example, and the space formed between both sides of the vertical passage and between the horizontal passages is the height of the portion (passage). Depending on the situation, various devices can be freely arranged.

本発明に係る実施の形態の一例である高速走行用の編成列車の先頭車両を示す側面図である。It is a side view which shows the head vehicle of the train train for high-speed traveling which is an example of embodiment which concerns on this invention. 同平面図である。It is the same top view. 微気圧波の指針となる圧力勾配指数を示す図である。It is a figure which shows the pressure gradient index | exponent used as the guideline of a micro atmospheric pressure wave. 試験装置の説明図である。It is explanatory drawing of a test apparatus. 図4の試験装置による試験結果を示し、図5(a)は従来の車体先頭形状についての試験結果を、図5(b)は本発明に係る車体先頭形状についての試験結果をそれぞれ示す図である。FIG. 5 (a) shows the test results for the conventional car body head shape, and FIG. 5 (b) shows the test results for the car body head shape according to the present invention. is there. 先頭部分における段部の位置と圧力勾配指数との関係を示す図である。It is a figure which shows the relationship between the position of the step part in a head part, and a pressure gradient index | exponent. 図7(a)(b)はそれぞれ変形例についての高速走行用の編成列車を示す図である。FIGS. 7 (a) and 7 (b) are diagrams showing trains for high-speed traveling, respectively, according to modified examples. 一般部分の段部が圧力勾配指数に対して与える影響を示す図である。It is a figure which shows the influence which the step part of a general part has on a pressure gradient index | exponent. 先頭部分における段部の位置と圧力勾配指数との関係を示す図である。It is a figure which shows the relationship between the position of the step part in a head part, and a pressure gradient index | exponent.

符号の説明Explanation of symbols

Z1 先頭部分
Z2 一般部分
Z21 前側部分
Z22 後側部分
1 車体
1a 段部
21 運転室風防
28 運転席
32a 段部
42a 段部
Z1 First part Z2 General part Z21 Front part Z22 Rear part 1 Car body 1a Step part 21 Driver's cab windshield 28 Driver's seat 32a Step part 42a Step part

Claims (1)

複数の車両を連結して編成される高速走行用の編成列車において、
先頭部分の前側の断面積増加領域の断面積増加率は、後側の断面積増加領域の断面積増加率よりも大きく、中間の断面積増加領域は、運転室に対応する部分であって、前側及び後側の断面積増加領域よりも断面積増加率が小さく前半部分の断面積増加率が後半部分の断面積増加率より大きくなっている先頭車両を備え、
前記先頭車両に続く後続車両のいずれかの車両が、それより前側に位置する車両の後尾の横断面積とほぼ一様の横断面積を有する前側部分と、この前側部分より車体高さ又は車体幅が大きく後側に位置する車両の先端の横断面積とほぼ同じ車体高さ又は車体幅で余裕がある客室空間を確保する後側部分とを段部を介して有することを特徴とする高速走行用の編成列車。
In a train set for high-speed traveling that is formed by connecting a plurality of vehicles,
The cross-sectional area increase rate of the front side cross-sectional area increase region of the leading portion is larger than the cross-sectional area increase rate of the rear side cross-sectional area increase region, the intermediate cross-sectional area increase region is a portion corresponding to the cab, It has a leading vehicle in which the cross-sectional area increase rate is smaller than the front and rear cross-sectional area increase regions, and the cross-sectional area increase rate of the first half part is larger than the cross-sectional area increase rate of the second half part
Any one of the following vehicles following the leading vehicle has a front side portion having a substantially uniform cross-sectional area and a rear cross-sectional area of the vehicle located on the front side thereof, and a vehicle body height or a vehicle body width from the front side portion. It has a rear portion that secures a cabin space with a vehicle body height or a vehicle body width substantially the same as the cross-sectional area of the front end of the vehicle located on the rear side, and has a rear portion through a step portion. Train train.
JP2006304676A 2006-11-10 2006-11-10 Train train for high speed running Expired - Lifetime JP4357522B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006304676A JP4357522B2 (en) 2006-11-10 2006-11-10 Train train for high speed running

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006304676A JP4357522B2 (en) 2006-11-10 2006-11-10 Train train for high speed running

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002340459A Division JP3913162B2 (en) 2002-11-25 2002-11-25 Train train for high speed running

Publications (2)

Publication Number Publication Date
JP2007091221A JP2007091221A (en) 2007-04-12
JP4357522B2 true JP4357522B2 (en) 2009-11-04

Family

ID=37977398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006304676A Expired - Lifetime JP4357522B2 (en) 2006-11-10 2006-11-10 Train train for high speed running

Country Status (1)

Country Link
JP (1) JP4357522B2 (en)

Also Published As

Publication number Publication date
JP2007091221A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
JP4371837B2 (en) Body structure of the leading railway
JP4456557B2 (en) High speed train
JP4478633B2 (en) High speed train
JP4357522B2 (en) Train train for high speed running
JP3913162B2 (en) Train train for high speed running
JP2010116075A (en) Multiple-car train
JPH05262226A (en) Stabilizing device for travel of track travel high speed vehicle such as train
CN105307917A (en) High-speed rail vehicle provided with a streamlined nose
JP4201756B2 (en) Body structure of the leading railway
JP6328007B2 (en) Air resistance reducing member for railway vehicles
JP3939218B2 (en) Railway head vehicle body and railway leading vehicle using the same
JP2005335512A (en) Organized train for traveling at high speed
JP4243660B2 (en) Body structure of the leading railway
JP7000384B2 (en) undercover
JPH07323839A (en) Head shape of head vehicle forming high speed train
JP2004196170A (en) Railway vehicle
JP2011168158A (en) Air current peeling-off suppression structure of moving body
JP2912178B2 (en) Railcar
JP4051364B2 (en) High speed train
JP2003063386A (en) Top part shape of rapid-transit railway rolling stock
JP6615598B2 (en) High speed train
JP4243658B2 (en) Body shape of the first train
JP4749831B2 (en) Method and apparatus for reducing underfloor wind of railway vehicles
JP2009196446A (en) Railroad head car
JP3939219B2 (en) Railway head vehicle body and railroad leading vehicle using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4357522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140814

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term