JP2009196446A - Railroad head car - Google Patents

Railroad head car Download PDF

Info

Publication number
JP2009196446A
JP2009196446A JP2008038539A JP2008038539A JP2009196446A JP 2009196446 A JP2009196446 A JP 2009196446A JP 2008038539 A JP2008038539 A JP 2008038539A JP 2008038539 A JP2008038539 A JP 2008038539A JP 2009196446 A JP2009196446 A JP 2009196446A
Authority
JP
Japan
Prior art keywords
sectional area
region
pressure gradient
cross
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008038539A
Other languages
Japanese (ja)
Inventor
Yukinobu Abe
行伸 阿部
Masaaki Shigeyama
正明 茂山
Kiyoshi Morita
潔 森田
Katsutoshi Horibatake
勝利 堀畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008038539A priority Critical patent/JP2009196446A/en
Publication of JP2009196446A publication Critical patent/JP2009196446A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a head shape of a railroad head car capable of reducing affection of minute pressure wave regardless of presence/absence of a tunnel shock absorbing part. <P>SOLUTION: The railroad head car has a head part (1) in which a cross-sectional area of a vehicle body increases from a tip (1t) of the vehicle body toward a rear-end side of the body in the longitudinal direction. The head part (1) includes a tip region (1a), and a rear region (1b) positioned on a rear-end side of the tip region (1a) in the longitudinal direction and provided with a control platform. In the tip region (1a), an increasing rate of the cross-sectional area per unit length from the tip (1t) toward the rear-end side of the body in the longitudinal direction is larger than that in the rear region (1b). The rear region (1b) is equipped with a pressure gradient changing part (L). The pressure gradient changing part (L) does not exceed 4.0 m at the longest in the longitudinal direction. The increasing rate of the cross-sectional area in the longitudinal direction is once reduced to 0.5 m<SP>2</SP>/m or lower, and then, increased. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、鉄道先頭車両の形状に係り、特に高速走行する鉄道先頭車両に関する。   The present invention relates to the shape of a railway leading vehicle, and more particularly to a railway leading vehicle that travels at high speed.

鉄道車両の高速化に伴い、走行によって生ずる空気流によって様々な問題が発生している。その一つに、鉄道車両が、トンネル通過の際に発生させるトンネル微気圧波がある。トンネル微気圧波(以下、「微気圧波」という)とは、鉄道車両がトンネルに高速で突入する際、トンネル内部の空気が圧縮されて発生した圧縮波をいい、トンネル内の定点での時間的な圧力の変化(以下、「圧力勾配」という)に比例する。微気圧波は、鉄道車両進行方向にあるトンネルの出口に向かって音速もしくは音速に近い速度で進行する。そして、トンネル出口において、微気圧波の一部は反射し、残りの大部分はトンネル出口において爆裂音や振動という形でそのエネルギを放出する。この爆裂音や振動は、トンネル出口付近の住民の住環境を害する環境(騒音)問題を生じさせている。   As the speed of railway vehicles increases, various problems occur due to the airflow generated by traveling. One of them is a tunnel micro-pressure wave generated when a railway vehicle passes through a tunnel. Tunnel micro-pressure waves (hereinafter referred to as “micro-pressure waves”) are compression waves generated by the compression of air inside a tunnel when a railway vehicle enters the tunnel at high speed, and the time at a fixed point in the tunnel Proportional to the change in pressure (hereinafter referred to as “pressure gradient”). The micro-pressure wave travels at the speed of sound or near the speed of sound toward the exit of the tunnel in the traveling direction of the railway vehicle. At the tunnel exit, a part of the micro-pressure wave is reflected, and most of the remaining part releases the energy at the tunnel exit in the form of explosive sound or vibration. This explosion sound and vibration cause an environmental (noise) problem that harms the living environment of residents near the tunnel exit.

圧力勾配は、車両速度のおよそ3乗に比例し、騒音は圧力勾配のおよそ2乗に比例する。圧力勾配に比例する微気圧波による騒音問題は、鉄道車両の顕著な高速化に伴い、空気の圧縮性の影響を無視できなくなったことに起因し、空力的な観点での対策が必要となってきている。その対策の一つとして微気圧波を減少させる鉄道車両の先頭車両の車両形状がある。例えば、進行方向に沿った前面投影断面積(以下、「横断面積」という)の増加部分に対して、横断面積をほぼ一定に保つ領域を組み合わせて微気圧波の上昇を抑制させる技術が開発されている(例えば、特許文献1)。   The pressure gradient is proportional to the cube of the vehicle speed, and the noise is proportional to the square of the pressure gradient. The problem of noise caused by micro-pressure waves proportional to the pressure gradient is due to the fact that the impact of air compressibility cannot be ignored as the speed of railway vehicles has increased significantly, and countermeasures from an aerodynamic viewpoint are required. It is coming. One of the countermeasures is the vehicle shape of the leading vehicle of the railway vehicle that reduces the micro-pressure wave. For example, a technology has been developed that combines the area where the cross-sectional area is kept almost constant with the increase in the front-projected cross-sectional area (hereinafter referred to as “cross-sectional area”) along the direction of travel to suppress the rise of micro-pressure waves. (For example, Patent Document 1).

微気圧波を減少させる車両形状を設定するためには、種々の物理量、変数、形状等の組み合わせが必要となるため、従来試行錯誤的な手法が多くとられてきた。最近では、最適化の手法として遺伝的アルゴリズムを用いて、運転室の容積を満足させながら微気圧波を低減する横断面積変化を求める技術も開発されている(例えば、特許文献2、3)。   In order to set the vehicle shape for reducing the micro-pressure wave, a combination of various physical quantities, variables, shapes, and the like is required, so that many trial and error methods have been conventionally employed. Recently, a technique has been developed that uses a genetic algorithm as an optimization method to obtain a change in cross-sectional area that reduces micro-pressure waves while satisfying the volume of the cab (for example, Patent Documents 2 and 3).

また、微気圧波を減少させる対策として、トンネルの出入り口に設置されトンネル断面積の1〜2倍程度の断面積を持つ覆体(以下、「緩衝工」という)を備える方法もある。前記した先頭車両の形状を設定する際に、数種類の緩衝工が設置されている場合、設置されていない場合について形状の最適化を実施し、より多くの条件で微気圧波を低減できるように先頭形状を決定する技術も紹介されている(例えば、特許文献3)。
特開平11−321640号公報 特開2004−66887号公報 特開2005−212740号公報
Further, as a measure for reducing micro-pressure waves, there is a method including a cover (hereinafter referred to as “buffer”) installed at the entrance of a tunnel and having a cross-sectional area of about 1 to 2 times the cross-sectional area of the tunnel. When setting the shape of the leading vehicle described above, if several types of shock absorbers are installed, the shape is optimized for cases where they are not installed, so that the micro pressure wave can be reduced under more conditions A technique for determining the leading shape has also been introduced (for example, Patent Document 3).
JP 11-321640 A JP 2004-66887 A JP 2005-221740 A

しかしながら、前記した横断面積を単調的に増加させた領域と横断面積をほぼ一定に保つ領域とを組み合わせて微気圧波の上昇を抑制させる場合、横断面積の増加率の大きな位置と次の横断面積の増加率の大きな位置との間隔を15m以上とする必要があり(例えば、特許文献1)、この長さは、さらなる車両走行の高速化に伴い延長される。このため、鉄道車両の先頭部分では横断面積の小さな領域が拡大し、言い換えれば、客室を設ける一般部が減少し、客室の快適性を損なう、もしくは、収容できる乗客数が少なくなってしまうおそれがある。   However, when the rise of the micro-pressure wave is suppressed by combining the region where the cross-sectional area is monotonously increased and the region where the cross-sectional area is kept almost constant, the position where the increase rate of the cross-sectional area is large and the next cross-sectional area The distance from the position where the increase rate is large needs to be 15 m or more (for example, Patent Document 1), and this length is extended as the vehicle travel speed increases further. For this reason, the area with a small cross-sectional area expands in the head part of the railway vehicle, in other words, there is a possibility that the general part where the guest room is provided decreases, and the comfort of the guest room is impaired, or the number of passengers that can be accommodated decreases. is there.

また、遺伝的アルゴリズムを用いた多目的関数の最適化を実施し、鉄道先頭車両の形状における最適な横断面積変化を求める場合や(例えば、特許文献2)、さらに緩衝工の条件を考慮する場合において(例えば、特許文献3)、実際の走行状態に近いトンネル内部の圧力勾配をシミュレーションする必要がある。   In addition, when optimizing a multi-objective function using a genetic algorithm and obtaining an optimal cross-sectional area change in the shape of the leading railway vehicle (for example, Patent Document 2), or when considering the conditions of buffer work (For example, Patent Document 3), it is necessary to simulate the pressure gradient inside the tunnel close to the actual traveling state.

そこで、最適化された横断面積変化と緩衝工のないトンネルへの突入のシミュレーション解析結果で得たトンネル内部の圧力勾配とを詳細に比較検討を行ったところ、トンネル内部の圧力勾配最大値の発生位置は、従来技術におけるシミュレーションと異なるものとなった。
すなわち、圧力勾配の最大値は、従来技術で示されている横断面積の増加率の大きな位置の後方位置に相当する時間で発生するのではなく、その位置に対してさらに微小な時間遅れがあると考えられ、同様の傾向は、緩衝工のあるトンネルについても見られた。
Therefore, a detailed comparison was made between the optimized cross-sectional area change and the pressure gradient inside the tunnel obtained from the simulation analysis result of the entry into the tunnel without a buffer. The maximum value of the pressure gradient inside the tunnel was generated. The position was different from the simulation in the prior art.
That is, the maximum value of the pressure gradient does not occur at the time corresponding to the position behind the position where the increase rate of the cross-sectional area shown in the prior art is large, but there is a further minute time delay with respect to that position. The same tendency was also observed for tunnels with shock absorbers.

本発明は、微気圧波の問題を解決するために、新たなシミュレーションに基づく、実際の走行状態に近い流体環境をもとに、さらに詳細に先頭部分の横断面積変化とトンネルにおける圧力勾配との比較を行い、緩衝工の有無にかかわらず、微気圧波の影響を低減できる鉄道先頭車両を提供することを目的とする。   In order to solve the problem of micro-pressure waves, the present invention is based on a new simulation and based on a fluid environment close to the actual running state, in more detail, the change in the cross-sectional area of the head portion and the pressure gradient in the tunnel. The purpose of the comparison is to provide a railway head vehicle that can reduce the influence of micro-pressure waves regardless of whether there is a buffer work.

前記課題を解決するため、本発明は、車体の先端から車体長手方向後端側へ向かって車体の横断面積が増大する先頭部を有した鉄道先頭車両において、前記先頭部は、先端領域と、この先端領域の長手方向後端側に位置し、運転台を備えた後部領域とを含んでおり、前記先端領域は、前記後部領域よりも、前記先端から車体長手方向後端側へ向かっての単位長さ当たりの前記横断面積の増加率が大きく、前記後部領域は、圧力勾配変化部を備え、前記圧力勾配変化部は、長手方向に最長4.0mを超えないものとし、長手方向の前記横断面積の増加率を、一旦0.5m/m以下に減少させた後、増大させるように形成されたことを特徴としている。 In order to solve the above problems, the present invention provides a leading vehicle having a leading portion in which the cross-sectional area of the vehicle body increases from the leading end of the vehicle body toward the rear end side in the longitudinal direction of the vehicle body. The front end region is located on the rear end side in the longitudinal direction of the front end region and includes a driver's cab, and the front end region is closer to the rear end side in the longitudinal direction of the vehicle body than the rear region. The rate of increase of the cross-sectional area per unit length is large, the rear region includes a pressure gradient change portion, and the pressure gradient change portion does not exceed a maximum length of 4.0 m in the longitudinal direction. It is characterized in that the cross-sectional area increase rate is once reduced to 0.5 m 2 / m or less and then increased.

前記構成によれば、横断面積の増加率に対して圧力勾配変化の時間遅れがあるトンネル内部の圧力勾配環境下において、鉄道車両は、先頭部が緩衝工のないトンネルに突入した際に、圧力勾配が先頭部の先端からの横断面積の増加率に伴って上昇して上がりきる前の段階で、横断面積の増加率の小さい領域に入ることとなる。この結果、圧力勾配は、鋭いピークを持つことなく、最大値近くの値をある程度保持した後、徐々に減少する。このように、前記構成は、従来と比べ短い車両の長手方向の領域によって、圧力勾配の最大値を低く抑えることができる.   According to the above configuration, in a pressure gradient environment inside a tunnel in which there is a time lag of the pressure gradient change with respect to the rate of increase in the cross-sectional area, the railway vehicle has a pressure when entering the tunnel without a buffer at the top. At the stage before the gradient rises and rises with the increase rate of the cross-sectional area from the front end of the leading portion, the region enters a region where the increase rate of the cross-sectional area is small. As a result, the pressure gradient does not have a sharp peak and gradually decreases after maintaining a value near the maximum value to some extent. Thus, the said structure can hold down the maximum value of a pressure gradient low by the area | region of the longitudinal direction of a vehicle short compared with the past.

本発明の構成によれば、実際の現象に近いトンネル内の流体環境下において、圧力勾配の最大値を低く抑え、微気圧波の影響を低減できる鉄道先頭車両を提供することができる。   According to the configuration of the present invention, it is possible to provide a railway leading vehicle that can suppress the maximum value of the pressure gradient and reduce the influence of micro-pressure waves in a fluid environment in a tunnel close to an actual phenomenon.

以下、本発明の実施形態について、図面を参照して詳細に説明する。図1は、本実施形態に係る鉄道先頭車両の形状を示しており、(a)は側面図、(b)は平面図、および(c)は正面図である。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the shape of a railway leading vehicle according to the present embodiment, where (a) is a side view, (b) is a plan view, and (c) is a front view.

図1に示すように、鉄道先頭車両は、先頭部1と一般部2とを有している。先頭部1は、先端1tから一般部2の手前に至るまでの領域をいい、先端1tから後方側へ、横断面積を漸増させている。そして、先頭部1は、先端の横断面積の増加率(以下、「横断面積増加率」という)の大きい先端領域1aと、およびその後方に先端領域1aと連続する後部領域1bとに分けることができる。後部領域1bは、運転台(運転室、図示せず)、運転室の上部に設置される風防カバー3、台車(図示せず)、台車カバー4等を備えており、後方の一般部2と連続する。   As shown in FIG. 1, the railway leading vehicle has a leading portion 1 and a general portion 2. The leading portion 1 is a region from the tip 1t to the front of the general portion 2, and the cross-sectional area is gradually increased from the tip 1t to the rear side. The leading portion 1 can be divided into a tip region 1a having a large increase rate of the cross-sectional area of the tip (hereinafter referred to as “cross-sectional area increase rate”) and a rear region 1b continuous with the tip region 1a behind the tip region 1a. it can. The rear region 1b includes a driver's cab (driver's cab, not shown), a windshield cover 3 installed on the upper part of the driver's cab, a trolley (not shown), a trolley cover 4 and the like. It is continuous.

[実施例1]
本実施形態における一実施例と比較例との先頭部1における、先端1tからの距離と横断面積との関係、先端1tからの距離と横断面積増加率との関係を、図2に示す。この図2では、実施例1の横断面積を実線で、横断面積増加率を一点鎖線で、さらに、比較例の横断面積を破線で示している。ちなみに、実施例1は、先端1tからの距離が2〜6mの位置に4mを超えない範囲で圧力勾配変化部L(図2の矢印参照)を設けた鉄道先頭車両であり、比較例の鉄道先頭車両には、かかる圧力勾配変化部Lを設けていない。
[Example 1]
FIG. 2 shows the relationship between the distance from the tip 1t and the cross-sectional area and the relationship between the distance from the tip 1t and the cross-sectional area increase rate in the leading part 1 of the example and the comparative example in this embodiment. In FIG. 2, the cross-sectional area of Example 1 is indicated by a solid line, the cross-sectional area increase rate is indicated by a one-dot chain line, and the cross-sectional area of a comparative example is indicated by a broken line. Incidentally, Example 1 is a railway head vehicle provided with a pressure gradient changing portion L (see arrow in FIG. 2) in a range not exceeding 4 m at a position 2 to 6 m from the tip 1t, and is a comparative example of a railway. The leading vehicle is not provided with such a pressure gradient changing portion L.

圧力勾配変化部Lは、図1における先端領域1aとの境界近傍の後部領域1bの一部を構成する連続的な領域である。そして、横断面積増加率は、図2に矢印で示す圧力勾配変化部Lにおいて、先端領域1aの大きな値から、0.5m/m以下にまで減少させている。なお、この一実施例では、先端領域1aは、先端1tからの距離が0〜2mの領域であり、後部領域1bは、先端1tからの距離が2m以降(一般部2の手前まで)の領域である。 The pressure gradient change part L is a continuous area | region which comprises a part of rear part 1b vicinity of the boundary with the front-end | tip area | region 1a in FIG. The rate of increase in the cross-sectional area is reduced from a large value in the tip region 1a to 0.5 m 2 / m or less in the pressure gradient change portion L indicated by an arrow in FIG. In this embodiment, the tip region 1a is a region whose distance from the tip 1t is 0 to 2 m, and the rear region 1b is a region whose distance from the tip 1t is 2 m or more (until the front of the general part 2). It is.

図2で実施例1と併記した比較例は、先端1tから横断面積増加率を0.5m/m以下に減少する部分までは実施例1と同様とし、その後方では、横断面積増加率を増大した領域を設けていない(実施例1の再度増加する部分がない)。すなわち、図2の実線(実施例1)と破線(比較例)とが一致しない部分に示されるように、実施例1と比較例とは、先端側の一部において、実施例1が比較例と比べ低い値をとった凹状の部分があることが異なっている。 The comparative example written together with Example 1 in FIG. 2 is the same as Example 1 from the tip 1t to the portion where the cross-sectional area increase rate decreases to 0.5 m 2 / m or less. An increased area is not provided (there is no part of Example 1 that increases again). That is, as shown in the portion where the solid line (Example 1) and the broken line (Comparative Example) do not match in FIG. 2, Example 1 and Comparative Example are a part of the tip side, and Example 1 is a comparative example. The difference is that there is a concave portion that takes a lower value.

ちなみに、先端1tからの距離が2mから先の部分において、実施例1と比較例とでは横断面積のグラフ上、乖離する部分が生じ、実施例1では前記した凹状の部分ができている。これは、実施例1では、先端1tからの距離が2mより先の部分において、横断面積増加率を一旦0.5m/m(所定値)よりもさらに低下させ、その先で増加に転じさせ、さらにその先で減少に転じさせている。すなわち、形状を「横断面積の増加率を、一旦0.5m/m以下に減少させた後、増大させるように形成」、あるいは、「後部領域1bにおける前記先端領域1aとの境界近傍に、前記横断面積の増加率を、所定値よりも一旦減少させ、その後所定値よりも増加させ、さらに所定値方向に向けて減少させるように形成」しているからである。 By the way, in the part ahead of the distance from the tip 1t from 2m, the part which diverges on the graph of the cross-sectional area between Example 1 and the comparative example occurs, and in Example 1, the concave part described above is formed. In the first embodiment, this is because the cross-sectional area increase rate is once further reduced below 0.5 m 2 / m (predetermined value) in the portion where the distance from the tip 1 t is 2 m and beyond, and thereafter, the increase starts to increase. Furthermore, it is starting to decrease further. That is, the shape “forms the rate of increase in the cross-sectional area once increased to 0.5 m 2 / m or less and then increases” or “in the vicinity of the boundary with the tip region 1a in the rear region 1b, This is because the rate of increase in the cross-sectional area is once decreased from a predetermined value, then increased from the predetermined value, and further decreased toward the predetermined value.

一方、この比較例では、横断面積増加率を図示していないが、先端1tからの距離が2mより先の部分においては、横断面積増加率を略0.5m/m以下として、値を一定にしている。なお、この比較例については、モデル実験が行われており、解析結果は実験結果をシミュレートすることが確認されている。 On the other hand, in this comparative example, although the cross-sectional area increase rate is not shown, the cross-sectional area increase rate is set to about 0.5 m 2 / m or less at a portion beyond the distance of 2 m from the tip 1t, and the value is constant. I have to. In addition, about this comparative example, the model experiment is conducted and it is confirmed that the analysis result simulates the experiment result.

次に図を参照して、実施例1と比較例について、緩衝工のないトンネルに突入する場合の数値流体解析のシミュレーション結果を説明する。図3は、トンネル入り口部分での圧力勾配の時間波形であり、実線で実施例1を、破線で比較例を表す。ここで、圧力勾配の変化を表すに当たって、時間および圧力勾配とも、実施例1と比較例との比較のため無次元処理を行っている。   Next, the simulation results of the numerical fluid analysis in the case of entering the tunnel without a shock absorber in Example 1 and the comparative example will be described with reference to the drawings. FIG. 3 is a time waveform of the pressure gradient at the tunnel entrance, and the solid line represents Example 1 and the broken line represents a comparative example. Here, in expressing the change of the pressure gradient, dimensionless processing is performed for the comparison between Example 1 and the comparative example for both time and pressure gradient.

図3に示すように、圧力勾配の最大値付近に注目すると、実施例1は、比較例の圧力勾配波形に対してピークが低く、ピーク部分の波形の形状もなだらかなものとなっている。このように、実施例1は、比較例と比べ圧力勾配の最大値を抑えており、この結果、微圧力波も低減される。なお、実施例1の鉄道先頭車両の形状は、遺伝的アルゴリズムを用いた最適化手法と数値流体解析を組み合わせた手法によって設定され、緩衝工のない条件だけではなく、様々な緩衝工の条件において微気圧波性能が得られるように最適解を求め、形状を決定している。   As shown in FIG. 3, focusing on the vicinity of the maximum value of the pressure gradient, Example 1 has a low peak with respect to the pressure gradient waveform of the comparative example, and the waveform of the peak portion also has a gentle shape. Thus, Example 1 has suppressed the maximum value of the pressure gradient compared with the comparative example, and as a result, the slight pressure wave is also reduced. In addition, the shape of the railroad leading vehicle of Example 1 is set by a method combining an optimization method using a genetic algorithm and a numerical fluid analysis, and is not only in a condition without a buffer work but also in various buffer work conditions. The optimal solution is obtained and the shape is determined so that the micro-pressure wave performance can be obtained.

次に、緩衝工の条件を考慮した数値流体解析結果を図を参照して説明する。図4,5は、解析の対象とした緩衝工の概略である。これらは、特許文献3の図12(緩衝工長さ14m)および図14(緩衝工長さ25m)のトンネル緩衝工に相当し、図4は、長さ14mの緩衝工の概略であり、(a)は側面図、(b)は正面図である。図5は、長さ25mの緩衝工の概略であり、(a)は側面図、(b)は正面図である。図6,7は、それぞれ図4,5に対応するトンネルの条件でのトンネル入り口部分における圧力勾配波形について比較例(破線)および実施例1(実線)の数値流体解析結果を示している。   Next, the numerical fluid analysis result in consideration of the buffer work condition will be described with reference to the drawings. 4 and 5 are outlines of the buffer works to be analyzed. These correspond to the tunnel buffer works of FIG. 12 (buffer work length 14 m) and FIG. 14 (buffer work length 25 m) of Patent Document 3, and FIG. a) is a side view, and (b) is a front view. FIG. 5 is an outline of a 25 m long buffer work, (a) is a side view, and (b) is a front view. 6 and 7 show the numerical fluid analysis results of the comparative example (broken line) and Example 1 (solid line) with respect to the pressure gradient waveform at the tunnel entrance portion under the tunnel conditions corresponding to FIGS.

図6,7に示されるように、実施例1は、比較例の圧力勾配波形に対してピークが低く、波形の形状も緩和されている。このように、実施例1は、比較例と比べ圧力勾配の最大値を抑えている。これらから、実施例1は、いずれの緩衝工においても圧力勾配の最大値を抑える結果を得ることができると思料される。   As shown in FIGS. 6 and 7, Example 1 has a low peak with respect to the pressure gradient waveform of the comparative example, and the waveform shape is relaxed. Thus, Example 1 has suppressed the maximum value of the pressure gradient compared with the comparative example. From these, it is thought that Example 1 can obtain the result of suppressing the maximum value of the pressure gradient in any buffer work.

[実施例2,3]
次に先端からの距離と横断面積との関係を前記した実施例1と形状を変えた他の実施例について、図を参照して説明する。図8は、実施例2,3および比較例の、先端からの距離と横断面積との関係を示している。
図8に示すように、比較例(破線)の横断面積が屈曲する地点Bの後方に注目すると、実施例2(実線)は、比較例と比べ横断面積の増加が小さく、その後増大してすぐに比較例と一致して変化している。一方、実施例3(一点鎖線)は、実施例2と比べ横断面積増加が小さく、その後増大しても、実施例2と比べかなり後方で比較例と一致して変化している。なお、図8には横断面積増加率を図示していないが、各実施例とも、前記した比較例の横断面積変化が屈曲する地点Bの後方の一部で横断面積増加率は0.5m/m以下とされており、圧力勾配変化部Lの範囲は4mを超えないものとしている。ちなみに、比較例では、図2を参照して前記したとおり、横断面積増加率を略0.5m/m以下として、値を一定にしている。
[Examples 2 and 3]
Next, the relationship between the distance from the tip and the cross-sectional area will be described with reference to the drawings with respect to another embodiment in which the shape is changed from the first embodiment. FIG. 8 shows the relationship between the distance from the tip and the cross-sectional area in Examples 2 and 3 and the comparative example.
As shown in FIG. 8, when attention is paid to the rear of the point B where the cross-sectional area of the comparative example (broken line) bends, the increase of the cross-sectional area in Example 2 (solid line) is small compared to the comparative example, and then immediately increases. It is consistent with the comparative example. On the other hand, in Example 3 (dashed line), the increase in the cross-sectional area is small compared with Example 2, and even if it increases thereafter, it changes considerably in comparison with Example 2 in comparison with Example 2. Although the cross-sectional area increase rate is not shown in FIG. 8, in each example, the cross-sectional area increase rate is 0.5 m 2 in a part of the rear of the point B where the cross-sectional area change of the comparative example is bent. / M or less, and the range of the pressure gradient change part L is assumed not to exceed 4 m. Incidentally, in the comparative example, as described above with reference to FIG. 2, the cross-sectional area increase rate is set to about 0.5 m 2 / m or less, and the value is made constant.

次に図8で説明した各実施例と比較例とを比較した解析結果を示す。図9は、図8の各実施例および比較例がトンネルに突入したときのトンネル入り口部分での圧力勾配波形である。なお、図9は、トンネル緩衝工がない条件で解析を実施している。(b)は、先頭部がトンネルに突入する前後の時刻での圧力勾配波形を示し、(a)は、(b)の破線枠で囲った最大圧力勾配近傍の拡大図である。   Next, an analysis result comparing each example described in FIG. 8 and the comparative example is shown. FIG. 9 is a pressure gradient waveform at the tunnel entrance when each of the examples and comparative examples of FIG. 8 enters the tunnel. Note that FIG. 9 is analyzed under conditions where there is no tunnel buffer. (B) shows the pressure gradient waveform at the time before and after the head portion enters the tunnel, and (a) is an enlarged view of the vicinity of the maximum pressure gradient surrounded by the broken line frame of (b).

実施例2(実線)は、図9(a)に示すように、比較例(破線)と比べ圧力勾配のピークを降下させているが、圧力勾配波形としては、比較例と同様に一つのピークを発生させている。一方、実施例3(一点鎖線)は、比較例および実施例2と比べ圧力勾配のピークを降下させているとともに、ふたこぶ状の二つのピークを発生させている。   In Example 2 (solid line), as shown in FIG. 9A, the peak of the pressure gradient is lowered compared to the comparative example (broken line), but the pressure gradient waveform is one peak as in the comparative example. Is generated. On the other hand, in Example 3 (one-dot chain line), the peak of the pressure gradient is lowered as compared with the comparative example and Example 2, and two peaks are formed.

各実施例と比較例とを比較すると、各実施例のように横断面積の増加(横断面積増加率)が一旦小さくされた後、増大する圧力勾配変化部Lを備えることによって、圧力勾配の最大値を抑えることができる。そして、実施例3に示すように横断面積の増加を小大と変化させる範囲を広げることによって、圧力勾配の最大値は、実施例2よりも低減されている。   When each example is compared with the comparative example, the increase in the cross-sectional area (cross-sectional area increase rate) is once reduced as in each example, and then the pressure gradient change portion L is increased, thereby increasing the maximum pressure gradient. The value can be suppressed. Then, as shown in the third embodiment, the maximum value of the pressure gradient is reduced as compared with the second embodiment by widening the range in which the increase in the cross-sectional area is changed from small to large.

本解析結果から、先頭部1の後部領域1bにおいて(図1参照)、横断面積増加率を一時的に小さくして、その後方の連続する領域で横断面積増加率を大きくする圧力勾配変化部Lを備えることは、微気圧波の影響を減少させる有効な対策の一つである。なお、実際に鉄道先頭車両を設計するに当たっては、運転室の形状等を考慮して、好適な横断面積増加率を設定すればよい。   From this analysis result, in the rear region 1b of the leading portion 1 (see FIG. 1), the pressure gradient changing portion L that temporarily decreases the cross-sectional area increase rate and increases the cross-sectional area increase rate in the subsequent continuous region. It is one of the effective measures to reduce the influence of micro pressure waves. In designing the train head vehicle, a suitable cross-sectional area increase rate may be set in consideration of the shape of the cab and the like.

[実施例4]
次にこれまでの実施例と異なり、複数の圧力勾配変化部を備えた他の実施例について、図を参照して説明する。図10は、実施例4における鉄道先頭車両における先端からの距離と横断面積との関係を表している。
[Example 4]
Next, different from the previous embodiments, another embodiment having a plurality of pressure gradient changing sections will be described with reference to the drawings. FIG. 10 shows the relationship between the distance from the tip and the cross-sectional area in the railway head vehicle in the fourth embodiment.

実施例4は、先頭部1の後部領域1bにおいて(図1参照)、複数(2箇所)の圧力勾配変化部を備えている。具体的には、図10の左側にある圧力勾配変化部L1と、その右側にある圧力勾配変化部L2であり、いずれも破線で表した比較例と分離して、凹部状になっている。   The fourth embodiment includes a plurality of (two places) pressure gradient changing portions in the rear region 1b of the leading portion 1 (see FIG. 1). Specifically, the pressure gradient changing portion L1 on the left side of FIG. 10 and the pressure gradient changing portion L2 on the right side thereof are separated from the comparative example represented by a broken line, and are in a concave shape.

図11は、実施例4と比較例の数値流体解析によるトンネル突入時の圧力勾配波形であり、(b)は、先頭部がトンネルに突入する前後の時刻での圧力勾配波形を示し、(a)は、(b)の点線で囲った最大圧力勾配近傍の拡大図である。なお、図11は、トンネル緩衝工がない条件で解析を実施している。
実施例4は、図11(a)に示すように、比較例と比べ圧力勾配のピークを降下させており、圧力勾配波形としては、比較例と同様に一つのピークを発生させている。
なお、実施例4のような先頭車両の形状を適用する際には、当該領域が運転台に加え、台車などの機器を備える領域であるため、設計時にこれらの機器設置の条件を考慮する。
FIG. 11 is a pressure gradient waveform at the time of tunnel entry by numerical fluid analysis of Example 4 and the comparative example, and (b) shows the pressure gradient waveform at the time before and after the leading portion enters the tunnel, ) Is an enlarged view in the vicinity of the maximum pressure gradient surrounded by a dotted line in (b). In addition, FIG. 11 is analyzing on the conditions without a tunnel buffer work.
In Example 4, the peak of the pressure gradient is lowered as compared with the comparative example, as shown in FIG. 11A, and one peak is generated as the pressure gradient waveform as in the comparative example.
In addition, when applying the shape of the leading vehicle as in the fourth embodiment, since the region is a region including equipment such as a cart in addition to the driver's cab, the conditions for installing these devices are taken into consideration at the time of design.

図12は、前記した実施例1〜4および比較例における図4に示した緩衝工14mおよび図5に示した緩衝工25mのトンネル緩衝工の条件での最大圧力勾配の解析結果をまとめた。なお、図12では、比較例の最大圧力勾配を100%として、実施例1〜4の最大圧力勾配を示している。
この結果を見ると、各実施例は、緩衝工がない場合とともに、条件を変えた緩衝工においても、比較例と比較して最大圧力勾配を低減することができた。最大圧力勾配の低減量は、おおむね2〜7%程度となっている。
FIG. 12 summarizes the analysis results of the maximum pressure gradient under the conditions of the shock absorber 14m shown in FIG. 4 and the shock absorber 25m shown in FIG. In addition, in FIG. 12, the maximum pressure gradient of Examples 1-4 is shown by making the maximum pressure gradient of a comparative example into 100%.
When this result was seen, each Example was able to reduce the maximum pressure gradient compared with the comparative example also in the buffer work which changed the conditions with the case where there was no buffer work. The reduction amount of the maximum pressure gradient is about 2 to 7%.

以上、本発明について好適な実施形態を説明した。本発明は、図面に記載したものに限定されることなく、その趣旨を逸脱しない範囲で設計変更が可能である。すなわち、各実施例における3次元形状は、必要な諸元の要求を鑑み、最適化して決定されるが、本発明で提供する横断面積増加率に従って3次元形状を構成することによって、トンネルにおける微気圧波を低減できる。   The preferred embodiments of the present invention have been described above. The present invention is not limited to the one described in the drawings, and design changes can be made without departing from the spirit of the present invention. That is, the three-dimensional shape in each embodiment is determined by optimization in view of the requirements of necessary specifications. By configuring the three-dimensional shape according to the cross-sectional area increase rate provided in the present invention, the three-dimensional shape in the tunnel is reduced. The pressure wave can be reduced.

本発明の一実施形態に係る鉄道先頭車両の形状を示しており、(a)は側面図、(b)は平面図、および(c)は正面図である。The shape of the railroad head vehicle which concerns on one Embodiment of this invention is shown, (a) is a side view, (b) is a top view, (c) is a front view. 鉄道先頭車両の形状における、先頭からの距離と横断面積との関係、先端からの距離と横断面積増加率との関係を示した図である。It is the figure which showed the relationship between the distance from a head, and a cross-sectional area in the shape of a railway head vehicle, and the relationship between the distance from a front-end | tip and a cross-sectional area increase rate. 実施例1に係るトンネル入り口部分での圧力勾配の時間波形である。3 is a time waveform of a pressure gradient at a tunnel entrance according to the first embodiment. 解析の対象とした緩衝工(緩衝工長さ14m)の概略であり、(a)は側面図、(b)は正面図である。It is the outline of the buffer work (buffer work length 14m) made into the object of analysis, (a) is a side view, (b) is a front view. 解析の対象とした緩衝工(緩衝工長さ25m)の概略であり、(a)は側面図、(b)は正面図である。It is the outline of the buffer work (buffer work length 25m) made into the object of analysis, (a) is a side view, (b) is a front view. 図4に対応するトンネルの条件でのトンネル入り口部分における圧力勾配波形の比較例および実施例1の数値流体解析結果である。It is a numerical fluid analysis result of the comparative example and Example 1 of the pressure gradient waveform in the tunnel entrance part on the conditions of the tunnel corresponding to FIG. それぞれ図5に対応するトンネルの条件でのトンネル入り口部分における圧力勾配波形の比較例および実施例1の数値流体解析結果である。6 is a comparative example of a pressure gradient waveform at a tunnel entrance portion under a tunnel condition corresponding to FIG. 5 and a numerical fluid analysis result of Example 1. FIG. 実施例2,3および比較例の先端からの距離と横断面積との関係を示した図である。It is the figure which showed the relationship between the distance from the front-end | tip of Example 2, 3 and a comparative example, and a cross-sectional area. 図8の各実施例および比較例の鉄道先頭車両がトンネルに突入したときのトンネル入り口部分での圧力勾配波形であり、(a)は、先頭部分がトンネルに突入する前後の時刻での圧力勾配波形を示し、(b)は、(a)の最大圧力勾配近傍の拡大図である。FIG. 9 is a pressure gradient waveform at a tunnel entrance when the railway head vehicle of each of the examples and comparative examples in FIG. 8 enters the tunnel, and (a) is a pressure gradient at a time before and after the head enters the tunnel. A waveform is shown, (b) is an enlarged view near the maximum pressure gradient of (a). 実施例4における鉄道先頭車両の先端からの距離と横断面積との関係を示した図である。It is the figure which showed the relationship between the distance from the front-end | tip of the railway head vehicle in Example 4, and a cross-sectional area. 実施例4と比較例の数値流体解析によるトンネル突入時の圧力勾配波形であり、(a)は、先頭部分がトンネルに突入する前後の時刻での圧力勾配波形を示し、(b)は、最大圧力勾配近傍の拡大図である。It is a pressure gradient waveform at the time of tunnel entry by numerical fluid analysis of Example 4 and a comparative example, (a) shows the pressure gradient waveform at the time before and after the head part enters the tunnel, (b) It is an enlarged view near a pressure gradient. 実施例1〜4および比較例における各種のトンネル緩衝工の条件での最大圧力勾配の解析結果である。It is an analysis result of the maximum pressure gradient on the conditions of various tunnel buffer works in Examples 1-4 and a comparative example.

符号の説明Explanation of symbols

1 先頭部
1a 先端領域
1b 後部領域
1t 先端
2 一般部
3 風防カバー
4 台車カバー
L 圧力勾配変化部
DESCRIPTION OF SYMBOLS 1 Top part 1a Tip area 1b Rear part 1t Tip 2 General part 3 Windshield cover 4 Carriage cover L Pressure gradient change part

Claims (3)

車体の先端から車体長手方向後端側へ向かって車体の横断面積が増大する先頭部を有した鉄道先頭車両において、
前記先頭部は、先端領域と、この先端領域の長手方向後端側に位置し、運転台を備えた後部領域とを含んでおり、
前記先端領域は、前記後部領域よりも、前記先端から車体長手方向後端側へ向かっての単位長さ当たりの前記横断面積の増加率が大きく、
前記後部領域は、圧力勾配変化部を備え、
前記圧力勾配変化部は、長手方向に最長4.0mを超えないものとし、長手方向の前記横断面積の増加率を、一旦0.5m/m以下に減少させた後、増大させるように形成されたことを特徴とする鉄道先頭車両。
In the railway leading vehicle having a leading portion where the cross-sectional area of the vehicle body increases from the front end of the vehicle body toward the rear end side in the longitudinal direction of the vehicle body,
The leading portion includes a front end region and a rear region that is located on the rear end side in the longitudinal direction of the front end region and includes a cab.
The tip region has a larger rate of increase in the cross-sectional area per unit length from the tip toward the rear end side in the longitudinal direction of the vehicle body than the rear region,
The rear region includes a pressure gradient changing unit,
The pressure gradient change part is formed so as not to exceed a maximum length of 4.0 m in the longitudinal direction and to increase the rate of increase in the transverse area in the longitudinal direction once decreased to 0.5 m 2 / m or less. This is the first train in the railway.
車体の先端から車体長手方向後端側へ向かって車体の横断面積が増大する先頭部を有した鉄道先頭車両において、
前記先頭部は、先端領域と、この先端領域の長手方向後端側に位置し、運転台を備えた後部領域とを含んでおり、
前記先端領域は、前記後部領域よりも、前記先端から車体長手方向後端側へ向かっての単位長さ当たりの前記横断面積の増加率が大きく、
前記後部領域は、圧力勾配変化部を備え、
前記圧力勾配変化部は、前記後部領域における前記先端領域との境界近傍に、前記横断面積の増加率を、所定値よりも一旦減少させ、その後前記所定値よりも増加させ、さらに前記所定値方向に向けて減少させるように形成されたことを特徴とする鉄道先頭車両。
In the railway leading vehicle having a leading portion where the cross-sectional area of the vehicle body increases from the front end of the vehicle body toward the rear end side in the longitudinal direction of the vehicle body,
The leading portion includes a front end region and a rear region that is located on the rear end side in the longitudinal direction of the front end region and includes a cab.
The tip region has a larger rate of increase in the cross-sectional area per unit length from the tip toward the rear end side in the longitudinal direction of the vehicle body than the rear region,
The rear region includes a pressure gradient changing unit,
The pressure gradient changing unit is configured to decrease the increase rate of the cross-sectional area once in a vicinity of a boundary with the tip region in the rear region, and then increase the cross-sectional area from the predetermined value, and further increase the direction beyond the predetermined value. The leading railway vehicle, which is formed to decrease toward the railway.
前記圧力勾配変化部よりも後端側の後部領域に、前記圧力勾配変化部とは別の圧力勾配変化部を備えたことを特徴とする請求項1または請求項2に記載の鉄道先頭車両。   The rail leading vehicle according to claim 1, further comprising a pressure gradient change unit different from the pressure gradient change unit in a rear region on a rear end side of the pressure gradient change unit.
JP2008038539A 2008-02-20 2008-02-20 Railroad head car Pending JP2009196446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038539A JP2009196446A (en) 2008-02-20 2008-02-20 Railroad head car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008038539A JP2009196446A (en) 2008-02-20 2008-02-20 Railroad head car

Publications (1)

Publication Number Publication Date
JP2009196446A true JP2009196446A (en) 2009-09-03

Family

ID=41140462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038539A Pending JP2009196446A (en) 2008-02-20 2008-02-20 Railroad head car

Country Status (1)

Country Link
JP (1) JP2009196446A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070022A (en) * 2016-11-01 2018-05-10 公益財団法人鉄道総合技術研究所 Front part shape evaluation device of movable body and program of evaluating its front part shape

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018070022A (en) * 2016-11-01 2018-05-10 公益財団法人鉄道総合技術研究所 Front part shape evaluation device of movable body and program of evaluating its front part shape

Similar Documents

Publication Publication Date Title
Kim et al. Aerodynamic characteristics of a tube train
CN109299533B (en) Method and system for rapidly predicting noise outside high-speed train
Talotte Aerodynamic noise: a critical survey
Saito Optimizing cross-sectional area of tunnel entrance hood for high speed rail
Kwak et al. Optimum nose shape of a front-rear symmetric train for the reduction of the total aerodynamic drag
JP4456557B2 (en) High speed train
JP4371837B2 (en) Body structure of the leading railway
Luo et al. Aerodynamic effects as a maglev train passes through a noise barrier
CN103640629A (en) Front auxiliary frame with anticollision structure
JP4478633B2 (en) High speed train
JP3822368B2 (en) A shock absorber that reduces low-frequency sound generated at the entrance and exit of the tunnel
JP2009196446A (en) Railroad head car
CN203713973U (en) Front auxiliary frame with anti-collision structure
Jacuzzi et al. NASCAR race vehicle wake modification via passive blown ducts and its effect on trailing vehicle drag
JP6546577B2 (en) Apparatus for evaluating front shape of moving object and program for evaluating front shape thereof
JP4201756B2 (en) Body structure of the leading railway
JP4749831B2 (en) Method and apparatus for reducing underfloor wind of railway vehicles
JP3939218B2 (en) Railway head vehicle body and railway leading vehicle using the same
JP4076734B2 (en) High speed train
JP4243660B2 (en) Body structure of the leading railway
KR101200842B1 (en) Dummy tunnel duct for pressure variation reduction in a tunnel and method for installing the same
KR101731888B1 (en) High-speed train comprising pilot nose for reducing micro-pressure wave
JP4051364B2 (en) High speed train
Iida et al. Analysis and experiment of compression wave generated by train entering tunnel entrance hood
JP4357522B2 (en) Train train for high speed running