JP4357053B2 - Process for producing bisperfluoroalkylsulfonimide compound - Google Patents

Process for producing bisperfluoroalkylsulfonimide compound Download PDF

Info

Publication number
JP4357053B2
JP4357053B2 JP32827699A JP32827699A JP4357053B2 JP 4357053 B2 JP4357053 B2 JP 4357053B2 JP 32827699 A JP32827699 A JP 32827699A JP 32827699 A JP32827699 A JP 32827699A JP 4357053 B2 JP4357053 B2 JP 4357053B2
Authority
JP
Japan
Prior art keywords
bisperfluoroalkylsulfonimide
formula
producing
compound
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32827699A
Other languages
Japanese (ja)
Other versions
JP2001139540A (en
Inventor
一男 森崎
政直 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kyogyo Co.,Ltd.
Original Assignee
Kanto Denka Kyogyo Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kyogyo Co.,Ltd. filed Critical Kanto Denka Kyogyo Co.,Ltd.
Priority to JP32827699A priority Critical patent/JP4357053B2/en
Publication of JP2001139540A publication Critical patent/JP2001139540A/en
Application granted granted Critical
Publication of JP4357053B2 publication Critical patent/JP4357053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ルイス酸触媒および有機イオン電導体として有用な物質であるビスパーフルオロアルキルスルホンイミド化合物の新規な製造法に関するものである。
【0002】
【従来の技術】
ビスパーフルオロアルキルスルホニルイミド化合物、即ちビスパーフルオロアルキルスルホニルイミドまたはその塩は、ルイス酸触媒や有機イオン電導体として有機合成および電気材料分野において有用な物質である。
【0003】
これまでに提案されているビスパーフルオロアルキルスルホンイミド化合物の製法としては、例えば、
▲1▼ パーフルオロアルキルスルホニルハライドとN−トリメチルシリルパーフルオロアルキルスルホンイミドのアルカリ金属塩を反応させる方法(EP364340、特開平9−173856号公報等)
2RfSO2X + (Me3Si)2NLi → (RfSO2)2NLi + 2Me3SiX
[式中、X はハロゲンを示す。]
▲2▼ パーフルオロアルキルスルホニルフルオライドとパーフルオロアルキルスルホンアミドのアルカリ金属塩を反応させる方法(J.Fluorine Chem., 52, 7, 1991等)
RfSO2F + RfSO2NHLi → (RfSO2)2NLi + HF
▲3▼ 無水パーフルオロアルキルスルホン酸と尿素またはアンモニウムハロゲン化物を反応させる方法(特開平2−56805号公報等)
(RfSO2)2O + CO(NH2)2 → (RfSO2)2NH + NH3 + CO2
(RfSO2)2O + NH4X → (RfSO2)2NH + H2O + HX
[式中、X はハロゲンを示す。]
▲4▼ パーフルオロアルキルスルホニルハライドと金属窒化物を反応させる方法(WO90/11999等)
2RfSO2X + Li3N → (RfSO2)2NLi + 2LiX
[式中、X はハロゲンを示す。]
▲5▼ パーフルオロアルキルスルホニルハライドとアンモニアまたはパーフルオロアルキルスルホンアミドを第3アミンあるいは複素環式アミン存在下で反応させる方法(WO97/23448、特開平8−81436号公報、特開平11−209338号公報等)
2RfSO2X + NH3 + 3NR1R2R3 → (RfSO2)2NNHR1R2R3 + 2R1R2R3NHX
RfSO2X + RfSO2NH2 + NR1R2R3 → (RfSO2)2NH + R1R2R3NHX
[式中、R1、R2およびR3はそれぞれ同じか異なる、炭素数1から5までのアルキル基を、X はハロゲンを示す。]
▲6▼ ビス(パーフルオロアルキルチオ)アミンを次亜塩素酸ソーダで酸化する方法(Inorg. Chem., 35, 1918, 1996等)
(RfS)2NH + 4NaClO → (RfSO2)2NNa + HCl + 3NaCl
等が知られている。
【0004】
しかしながら、上記▲1▼〜▲5▼の方法はいずれも原料に高価なパーフルオロアルキルスルホニル化合物を利用しなければならない。中でも、パーフルオロアルキルスルホニルクロライド以外の原料を用いる場合は、高圧下で反応を行う必要があるため、高価な加圧反応器を使用しなければならない。さらに、▲1▼および▲2▼の方法では多くの工程を必要とする上に高価なシラザン誘導体を使用することから、工業的な製法ではない。▲3▼の方法は生成物の精製が困難なため単離収率が非常に低い。▲4▼の方法は空気中不安定な金属窒化物を用いるため、工業的ではない。▲6▼の方法は腐食性の酸化剤を用い、▲2▼および▲5▼の方法は生成物の精製工程で有毒な腐食性ガスであるハロゲン化水素が発生するため、ともに高価な耐腐食性の反応装置が必要である。
【0005】
以上のように、簡便な装置によるビスパーフルオロアルキルスルホンイミド化合物の効率的且つ安価な合成法については、満足のいく方法が見当たらないのが実情である。
【0006】
【発明が解決しようとする課題】
従って本発明の目的は、上記▲1▼〜▲6▼の方法による問題点を解決したビスパーフルオロアルキルスルホンイミド化合物の簡便且つ効率的な工業的製法を提供することである。
【0007】
【課題を解決するための手段】
本発明者は上記目的を達成するため鋭意検討した結果、アルキル化剤としてパーフルオロアルキルハライドを用いることによりパーフルオロアルキルスルホンイミド化合物の工業的な製造法を見出した。
【0008】
本発明によれば、原料に高価なパーフルオロアルキルスルホニル化合物を用いることなく、パーフルオロアルキルハライドとビス(クロロスルホニル)イミド化合物を周期表1〜12族から選択される1種以上の0価の金属の存在下、溶媒中で反応させるこにより容易にビスパーフルオロアルキルスルホンイミド化合物を製造することができる。
【0009】
即ち、本発明は、
一般式(II):
RfX (II)
[式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基、X はハロゲン原子を表す。]
で示されるパーフルオロアルキルハライドと、
一般式(III) :
(SO2Cl)2NM (III)
[式中、M は1価の陽イオンを表す。]
で示されるビス(クロロスルホニル)イミド化合物とからなる混合物を
溶媒中で、周期表1〜12族から選択される1種以上の0価の金属の存在下で反応させることを特徴とする、一般式(I):
(RfSO2)2NM (I)
[式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基、M は1価の陽イオンを表す。]
で表されるビスパーフルオロアルキルスルホンイミド化合物の製造法である。
【0010】
また本発明は、
溶媒中で、一般式(II):
RfX (II)
で示されるパーフルオロアルキルハライドと、周期表1〜12族から選択される1種以上の0価の金属とを反応させた後に、
一般式(III) :
(SO2Cl)2NM (III)
で示されるビス(クロロスルホニル)イミド化合物を添加し、反応させることを特徴とするビスパーフルオロアルキルスルホンイミド化合物の製造方法、および
溶媒中で、一般式(III) :
(SO2Cl)2NM (III)
で示されるビス(クロロスルホニル)イミド化合物と、周期表1〜12族から選択される1種以上の0価の金属とを反応させた後に、
一般式(II):
RfX (II)
で示されるパーフルオロアルキルハライドを添加し、反応させることを特徴とするビスパーフルオロアルキルスルホンイミド化合物の製造方法を含む。
【0011】
なお、上記3種のどの方法を用いても生成物の組成および収率はほぼ同じである。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。本発明の目的物質は、一般式(I):
(RfSO2)2NM (I)
で表されるビスパーフルオロアルキルスルホンイミド化合物であり、式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基であって、好ましくはCF3,C2F5,C3F7,C4F9である。また、M は1価の陽イオンを表し、好ましくはLi+ , Na+ , K + , Cu+ , Ag+ , H + である。
【0013】
本発明において、一般式(II)で示されるパーフルオロアルキルハライドにおけるX のハロゲン原子として好ましいものはヨウ素、臭素である。
【0014】
また、前記一般式(III) で示されるビス(クロロスルホニル)イミド化合物は、例えばInorg.Synth.,Vol.VIII,p105-107,1996.に記載されている方法、即ち五塩化リン、スルホン酸アミドおよびクロロスルホン酸より、またはUSP4321254,1982.に記載されている方法、即ちクロロスルホン酸およびクロロスルホニルイソシアネートより合成できるビス(クロロスルホニル)イミドをJ.Inorg.Nucl.Chem.,Vol.39,p441-442,1977.またはIndian J.Chem.,Vol.13,p612-619,1975.に記載されている方法、即ち金属塩化物または金属アセテートと反応させることにより合成できる。ビス(クロロスルホニル)イミド化合物の使用量としては、前記パーフルオロアルキルハライドに対して0.1 〜0.5 当量であり、反応効率および経済性の点から特に0.4 〜0.5 当量が好ましい。
【0015】
本発明の反応に用いられる周期表1〜12族から選択される1種以上の0価の金属としては、亜鉛、銅、カドミウム、及びマグネシウムの群から選択される金属である。形状としては、粉末状、塊状または切削片状等であり、大きさは適宜選択できる。使用量としては、前記パーフルオロアルキルハライドに対して1〜5当量であり、反応効率および経済性の点から特に1.2 〜1.7 当量が好ましい。
【0016】
本発明の反応に用いられる溶媒としては、反応工程中で原料および生成物と反応しない不活性有機溶媒が好ましく、例えば、ジエチルエーテル、ジメチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル、ジメチルホルムアミド、N−メチルピロリドン等のアミド、ジメチルスルホキシド等のスルホキシドなどが好適なものとして挙げられるが、これらに限定されるものではない。
【0017】
上記反応は−100 ℃から100 ℃の温度範囲で行うことが可能であり、低温では反応時間が長く、高温では収率が悪くなるため、最適には、0℃から50℃の温度範囲が好ましい。
【0018】
本発明の反応式は、次のように示される。
【0019】
2RfX + (SO2Cl)2NM1 + 2M2 → (RfSO2)2NM1 + M2X2 + M2Cl2
[式中、X はハロゲン原子、M1は1価の陽イオン、M2は1〜12族の0価の金属を表す。]
【0020】
【実施例】
以下に実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1(リチウムビストリフルオロメタンスルホンイミドの製造)
(1) ビス(クロロスルホニル)イミドの製造
コンデンサーを付した500ml 三つ口フラスコを窒素置換した後、クロロスルホン酸143 gおよびクロロスルホニルイソシアネート173 gを仕込み、炭酸ガスの発生が認められなくなるまで、油浴上沸騰還流下で22時間反応を行った。
【0021】
窒素雰囲気下で室温まで冷却した後、減圧蒸留を行い、ビス(クロロスルホニル)イミド:(SO2Cl)2NH 209g(収率80%)を得た。
(2) リチウムビス(クロロスルホニル)イミドの製造
コンデンサーを付した500ml 三つ口フラスコを窒素置換した後、(1) で得たビス(クロロスルホニル)イミド30g、塩化リチウム6gおよび無水四塩化炭素300ml を仕込み、塩化水素ガスの発生が認められなくなるまで、油浴上沸騰還流下で1時間反応を行った。
【0022】
窒素雰囲気下で室温まで冷却した後、結晶を濾別し無水四塩化炭素で洗浄した。得られた結晶を減圧乾燥して、リチウムビス(クロロスルホニル)イミド:(SO2Cl)2NLi 30g(収率96%)を得た。
(3) リチウムビストリフルオロメタンスルホンイミドの製造
コンデンサーおよびガス導入管を付した500ml ガラス製反応器を窒素置換した後、予め希塩酸で活性化処理を行った亜鉛粉末10gおよび無水ジエチルエーテル300ml を仕込み、氷浴中2℃に冷却した。撹拌しながら、反応液の温度が10℃を越えないようにガス導入管よりヨードトリフルオロメタン80gを少しづつ吹き込んだ。
【0023】
亜鉛が完全に溶解した後、反応液の温度が10℃を越えないように(2) で得たリチウムビス(クロロスルホニル)イミド10gを少しづつ加えた。その後、徐々に加熱していき沸騰還流下で1時間反応を行った。
【0024】
反応液は、窒素気流下で冷却した後、無水硫酸マグネシウムを加え1時間撹拌した。孔径 0.2μmのメンブランフィルター(日本ミリポール社製)により減圧濾過し、ハロゲン化亜鉛および硫酸マグネシウムを除去した。濾液から減圧下溶媒を留去した後、無水塩化メチレンを加えた。晶析した結晶を濾別した後、窒素雰囲気下150 ℃で乾燥を行った結果、純度99%以上のリチウムビストリフルオロメタンスルホンイミド:(CF3SO2)2NLi 12g(収率76%)を得た。得られた物質の物性値は以下の通りであった。
【0025】
融点:230 ℃
13C−NMR(DMSO,δ):120.9(q,J=320Hz)
19F−NMR(DMSO,δ):−73.9(S)
実施例2(リチウムビストリフルオロメタンスルホンイミドの製造)
コンデンサーおよびガス導入管を付した500ml ガラス製反応器を窒素置換した後、予め希塩酸で活性化処理を行った亜鉛粉末10gおよび無水ジエチルエーテル300ml を仕込み、氷浴中2℃に冷却した。撹拌しながら、反応液の温度が10℃を越えないように実施例1の(2) で得たリチウムビス(クロロスルホニル)イミド10gを少しづつ加えた。
【0026】
亜鉛が完全に溶解した後、反応液の温度が10℃を越えないようにガス導入管よりヨードトリフルオロメタン80gを少しづつ吹き込んだ。その後、徐々に加熱していき沸騰還流下で1時間反応を行った。次いで、実施例1の同様の処理を行った結果、純度99%以上のリチウムビストリフルオロメタンスルホンイミド12g(収率76%)を得た。
実施例3(リチウムビストリフルオロメタンスルホンイミドの製造)
ヨードトリフルオロメタンに代えてブロモトリフルオロメタンを用いた以外は実施例1の(3) と同様の条件で反応を行った結果、純度99%以上のリチウムビストリフルオロメタンスルホンイミド10g(収率63%)を得た。
実施例4(リチウムビストリフルオロメタンスルホンイミドの製造)
亜鉛粉末に代えてカドミウム粉末を用いた以外は実施例1の(3) と同様の条件で反応を行った結果、純度99%以上のリチウムビストリフルオロメタンスルホンイミド13g(収率82%)を得た。
実施例5(リチウムビストリフルオロメタンスルホンイミドの製造)
亜鉛粉末に代えてマグネシウム粉末を用いた以外は実施例2と同様の条件で反応を行った結果、純度99%以上のリチウムビストリフルオロメタンスルホンイミド9g(収率57%)を得た。
実施例6(リチウムビスペンタフルオロタンスルホンイミドの製造)
ヨードトリフルオロメタンに代えてヨードペンタフルオロタンを用いた以外は実施例1の(3) と同様の条件で反応を行った結果、純度99%以上のリチウムビスペンタフルオロタンスルホンイミド:(C2F5SO2)2NLi を得た。収率は81%であった。得られた物質の物性値は以下の通りであった。
【0027】
19F−NMR(CD3CN,δ):-78.6(6F,S), -117.0(4F,S)
IR(KBr,cm-1): 1367(SO2),1335(SO2), 1223(CF2), 1181(CF3),
1098(SO2), 980, 780, 760, 746, 649, 606, 525
実施例7(リチウムビスペンタフルオロエタンスルホンイミドの製造)
亜鉛粉末に代えて銅粉末を用いた以外は実施例6と同様の条件で反応を行った結果、純度99%以上のリチウムビスペンタフルオロメタンスルホンイミドを得た。収率は47%であった。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel process for producing a bisperfluoroalkylsulfonimide compound, which is a substance useful as a Lewis acid catalyst and an organic ion conductor.
[0002]
[Prior art]
Bisperfluoroalkylsulfonylimide compounds, that is, bisperfluoroalkylsulfonylimides or salts thereof, are useful substances in the field of organic synthesis and electrical materials as Lewis acid catalysts and organic ion conductors.
[0003]
As a manufacturing method of the bisperfluoroalkyl sulfonimide compound proposed so far, for example,
(1) A method of reacting perfluoroalkylsulfonyl halide with an alkali metal salt of N-trimethylsilylperfluoroalkylsulfonimide (EP 364340, JP-A-9-173856, etc.)
2R f SO 2 X + (Me 3 Si) 2 NLi → (R f SO 2 ) 2 NLi + 2Me 3 SiX
[Wherein X represents halogen. ]
(2) A method of reacting perfluoroalkylsulfonyl fluoride with an alkali metal salt of perfluoroalkylsulfonamide (J. Fluorine Chem., 52, 7, 1991, etc.)
R f SO 2 F + R f SO 2 NHLi → (R f SO 2 ) 2 NLi + HF
(3) A method of reacting perfluoroalkylsulfonic anhydride with urea or ammonium halide (JP-A-2-56805, etc.)
(R f SO 2 ) 2 O + CO (NH 2 ) 2 → (R f SO 2 ) 2 NH + NH 3 + CO 2
(R f SO 2 ) 2 O + NH 4 X → (R f SO 2 ) 2 NH + H 2 O + HX
[Wherein X represents halogen. ]
(4) Method of reacting perfluoroalkylsulfonyl halide with metal nitride (WO90 / 11999, etc.)
2R f SO 2 X + Li 3 N → (R f SO 2 ) 2 NLi + 2LiX
[Wherein X represents halogen. ]
(5) A method of reacting perfluoroalkylsulfonyl halide with ammonia or perfluoroalkylsulfonamide in the presence of a tertiary amine or a heterocyclic amine (WO97 / 23448, JP-A-8-81436, JP-A-11-209338) (Publication etc.)
2R f SO 2 X + NH 3 + 3NR 1 R 2 R 3 → (R f SO 2 ) 2 NNHR 1 R 2 R 3 + 2R 1 R 2 R 3 NHX
R f SO 2 X + R f SO 2 NH 2 + NR 1 R 2 R 3 → (R f SO 2 ) 2 NH + R 1 R 2 R 3 NHX
[Wherein R 1 , R 2 and R 3 are the same or different and each represents an alkyl group having 1 to 5 carbon atoms, and X represents a halogen. ]
(6) A method of oxidizing bis (perfluoroalkylthio) amine with sodium hypochlorite (Inorg. Chem., 35, 1918, 1996, etc.)
(R f S) 2 NH + 4NaClO → (R f SO 2 ) 2 NNa + HCl + 3NaCl
Etc. are known.
[0004]
However, in any of the above methods (1) to (5), an expensive perfluoroalkylsulfonyl compound must be used as a raw material. In particular, when a raw material other than perfluoroalkylsulfonyl chloride is used, it is necessary to carry out the reaction under high pressure, and therefore an expensive pressurized reactor must be used. Furthermore, the methods (1) and (2) are not industrial processes because they require many steps and use expensive silazane derivatives. In the method (3), since the product is difficult to purify, the isolation yield is very low. The method (4) is not industrial because it uses an unstable metal nitride in the air. The method (6) uses a corrosive oxidant, and the methods (2) and (5) generate a toxic corrosive gas, hydrogen halide, in the product purification process. Sex reactor is required.
[0005]
As described above, there is actually no satisfactory method for efficiently and inexpensively synthesizing a bisperfluoroalkylsulfonimide compound with a simple apparatus.
[0006]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a simple and efficient industrial method for producing a bisperfluoroalkylsulfonimide compound which has solved the problems caused by the methods (1) to (6).
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventor has found an industrial production method of a perfluoroalkylsulfonimide compound by using perfluoroalkyl halide as an alkylating agent.
[0008]
According to the present invention, the perfluoroalkyl halide and the bis (chlorosulfonyl) imide compound are selected from Group 1 to 12 of the periodic table without using an expensive perfluoroalkylsulfonyl compound as a raw material. By reacting in a solvent in the presence of a metal, a bisperfluoroalkylsulfonimide compound can be easily produced.
[0009]
That is, the present invention
General formula (II):
R f X (II)
[Wherein, R f represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, and X represents a halogen atom. ]
A perfluoroalkyl halide represented by
General formula (III):
(SO 2 Cl) 2 NM (III)
[Wherein M represents a monovalent cation. ]
Characterized in that a mixture comprising a bis (chlorosulfonyl) imide compound represented by formula (I) is reacted in a solvent in the presence of one or more zero-valent metals selected from Groups 1 to 12 of the periodic table, Formula (I):
(R f SO 2 ) 2 NM (I)
[Wherein, R f represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, and M represents a monovalent cation. ]
Is a method for producing a bisperfluoroalkylsulfonimide compound represented by the formula:
[0010]
The present invention also provides
In a solvent, general formula (II):
R f X (II)
Is reacted with one or more zero-valent metals selected from groups 1 to 12 of the periodic table,
General formula (III):
(SO 2 Cl) 2 NM (III)
In the process for producing a bisperfluoroalkylsulfonimide compound characterized by adding a bis (chlorosulfonyl) imide compound represented by formula (III):
(SO 2 Cl) 2 NM (III)
After reacting the bis (chlorosulfonyl) imide compound represented by the above and one or more zero-valent metals selected from groups 1 to 12 of the periodic table,
General formula (II):
R f X (II)
The manufacturing method of the bisperfluoroalkyl sulfonimide compound characterized by adding and making the perfluoroalkyl halide shown by react.
[0011]
In addition, the composition and yield of the product are almost the same regardless of which of the above three methods.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. The target substance of the present invention has the general formula (I):
(R f SO 2 ) 2 NM (I)
Wherein R f is a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, preferably CF 3 , C 2 F 5 , C 3 F 7 , C 4 F 9 . M 1 represents a monovalent cation, preferably Li + , Na + , K + , Cu + , Ag + , H + .
[0013]
In the present invention, iodine and bromine are preferable as the halogen atom for X 1 in the perfluoroalkyl halide represented by the general formula (II).
[0014]
Further, the bis (chlorosulfonyl) imide compound represented by the general formula (III) can be prepared by a method described in Inorg. Synth., Vol. VIII, p105-107, 1996. That is, phosphorus pentachloride, sulfonic acid. From amides and chlorosulfonic acid, or USP43212254, 1982. Bis (chlorosulfonyl) imide, which can be synthesized from chlorosulfonic acid and chlorosulfonyl isocyanate, is described in J. Inorg. Nucl. Chem., Vol. 39, p441-442, 1977. or Indian J. Chem. , Vol. 13, p612-619, 1975., that is, by reacting with metal chloride or metal acetate. The amount of the bis (chlorosulfonyl) imide compound used is 0.1 to 0.5 equivalent with respect to the perfluoroalkyl halide, and 0.4 to 0.5 equivalent is particularly preferable from the viewpoint of reaction efficiency and economy.
[0015]
The one or more zero-valent metals selected from Groups 1 to 12 of the periodic table used in the reaction of the present invention are metals selected from the group consisting of zinc, copper, cadmium, and magnesium. The shape is powder, lump, or cut piece, and the size can be appropriately selected. The amount used is 1 to 5 equivalents relative to the perfluoroalkyl halide, and 1.2 to 1.7 equivalents are particularly preferred from the viewpoint of reaction efficiency and economy.
[0016]
The solvent used in the reaction of the present invention is preferably an inert organic solvent that does not react with the raw materials and products in the reaction step. For example, ethers such as diethyl ether, dimethyl ether, tetrahydrofuran, dioxane, dimethylformamide, N-methylpyrrolidone Examples of suitable amides such as amide, dimethyl sulfoxide, and the like include, but are not limited to.
[0017]
The above reaction can be carried out in the temperature range from -100 ° C to 100 ° C, and since the reaction time is long at low temperatures and the yield is poor at high temperatures, the temperature range of 0 ° C to 50 ° C is optimal. .
[0018]
The reaction formula of the present invention is shown as follows.
[0019]
2R f X + (SO 2 Cl) 2 NM 1 + 2M 2 → (R f SO 2 ) 2 NM 1 + M 2 X 2 + M 2 Cl 2
[Wherein, X represents a halogen atom, M 1 represents a monovalent cation, and M 2 represents a zero-valent metal of Groups 1 to 12. ]
[0020]
【Example】
EXAMPLES The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.
Example 1 (Production of lithium bistrifluoromethanesulfonimide)
(1) Production of bis (chlorosulfonyl) imide A 500 ml three-necked flask equipped with a condenser was purged with nitrogen, and then charged with 143 g of chlorosulfonic acid and 173 g of chlorosulfonyl isocyanate, until carbon dioxide generation was not observed. The reaction was carried out for 22 hours under boiling reflux on an oil bath.
[0021]
After cooling to room temperature under a nitrogen atmosphere, vacuum distillation was performed to obtain 209 g of bis (chlorosulfonyl) imide: (SO 2 Cl) 2 NH (yield 80%).
(2) Production of lithium bis (chlorosulfonyl) imide A 500 ml three-necked flask equipped with a condenser was purged with nitrogen, and then 30 g of bis (chlorosulfonyl) imide obtained in (1), 6 g of lithium chloride and 300 ml of anhydrous carbon tetrachloride. The reaction was carried out for 1 hour under boiling reflux on an oil bath until no generation of hydrogen chloride gas was observed.
[0022]
After cooling to room temperature under a nitrogen atmosphere, the crystals were filtered off and washed with anhydrous carbon tetrachloride. The obtained crystals were dried under reduced pressure to obtain 30 g (yield 96%) of lithium bis (chlorosulfonyl) imide: (SO 2 Cl) 2 NLi.
(3) Production of lithium bistrifluoromethanesulfonimide A 500 ml glass reactor equipped with a condenser and a gas introduction tube was purged with nitrogen, and then charged with 10 g of zinc powder previously activated with dilute hydrochloric acid and 300 ml of anhydrous diethyl ether, Cool to 2 ° C. in an ice bath. While stirring, 80 g of iodotrifluoromethane was gradually blown from the gas introduction tube so that the temperature of the reaction solution did not exceed 10 ° C.
[0023]
After the zinc was completely dissolved, 10 g of lithium bis (chlorosulfonyl) imide obtained in (2) was added little by little so that the temperature of the reaction solution did not exceed 10 ° C. Then, it heated gradually and reacted for 1 hour under boiling reflux.
[0024]
The reaction solution was cooled under a nitrogen stream, anhydrous magnesium sulfate was added, and the mixture was stirred for 1 hour. The solution was filtered under reduced pressure through a membrane filter (manufactured by Nippon Millipole) having a pore size of 0.2 μm to remove zinc halide and magnesium sulfate. After evaporating the solvent from the filtrate under reduced pressure, anhydrous methylene chloride was added. After the crystallized crystals were separated by filtration and dried at 150 ° C. in a nitrogen atmosphere, lithium bistrifluoromethanesulfonimide having a purity of 99% or more: (CF 3 SO 2 ) 2 NLi 12 g (yield 76%) was obtained. Obtained. The physical properties of the obtained substance were as follows.
[0025]
Melting point: 230 ° C
13 C-NMR (DMSO, δ): 120.9 (q, J = 320 Hz)
19 F-NMR (DMSO, δ): −73.9 (S)
Example 2 (Production of lithium bistrifluoromethanesulfonimide)
A 500 ml glass reactor equipped with a condenser and a gas introduction tube was purged with nitrogen, and 10 g of zinc powder previously activated with dilute hydrochloric acid and 300 ml of anhydrous diethyl ether were charged and cooled to 2 ° C. in an ice bath. While stirring, 10 g of lithium bis (chlorosulfonyl) imide obtained in (2) of Example 1 was added little by little so that the temperature of the reaction solution did not exceed 10 ° C.
[0026]
After the zinc was completely dissolved, 80 g of iodotrifluoromethane was gradually blown from the gas introduction tube so that the temperature of the reaction solution did not exceed 10 ° C. Then, it heated gradually and reacted for 1 hour under boiling reflux. Next, as a result of performing the same treatment as in Example 1, 12 g (yield 76%) of lithium bistrifluoromethanesulfonimide having a purity of 99% or more was obtained.
Example 3 (Production of lithium bistrifluoromethanesulfonimide)
The reaction was conducted under the same conditions as in (3) of Example 1 except that bromotrifluoromethane was used instead of iodotrifluoromethane. As a result, 10 g of lithium bistrifluoromethanesulfonimide having a purity of 99% or more (yield 63%) Got.
Example 4 (Production of lithium bistrifluoromethanesulfonimide)
Except for using cadmium powder in place of zinc powder, the reaction was carried out under the same conditions as in (1) of Example 1. As a result, 13 g (yield 82%) of lithium bistrifluoromethanesulfonimide having a purity of 99% or more was obtained. It was.
Example 5 (Production of lithium bistrifluoromethanesulfonimide)
The reaction was carried out under the same conditions as in Example 2 except that magnesium powder was used instead of zinc powder. As a result, 9 g (yield 57%) of lithium bistrifluoromethanesulfonimide having a purity of 99% or more was obtained.
Example 6 (Preparation of Lithium bis pentafluoro et Tan sulfonimide)
Iodo-trifluoro except for using the iodo-pentafluoro et Tan instead methane results of reaction in the same condition as in Example 1 (3), lithium purity of 99% or more bis-pentafluoro et Tan sulfonimide: (C 2 F 5 SO 2 ) 2 NLi was obtained. The yield was 81%. The physical properties of the obtained substance were as follows.
[0027]
19 F-NMR (CD 3 CN, δ): -78.6 (6F, S), -117.0 (4F, S)
IR (KBr, cm −1 ): 1367 (SO 2 ), 1335 (SO 2 ), 1223 (CF 2 ), 1181 (CF 3 ),
1098 (SO 2 ), 980, 780, 760, 746, 649, 606, 525
Example 7 (Production of lithium bispentafluoroethanesulfonimide)
The reaction was carried out under the same conditions as in Example 6 except that copper powder was used instead of zinc powder. As a result, lithium bispentafluoromethanesulfonimide having a purity of 99% or more was obtained. The yield was 47%.

Claims (3)

一般式(I):
(RfSO2)2NM (I)
[式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基、M は1価の陽イオンを表す。]
で表されるビスパーフルオロアルキルスルホンイミド化合物の製造法であって、
一般式(II):
RfX (II)
[式中、Rfは前記定義の通りであり、X はハロゲン原子を表す。]
で示されるパーフルオロアルキルハライドと、
一般式(III) :
(SO2Cl)2NM (III)
[式中、M は前記定義の通りである。]
で示されるビス(クロロスルホニル)イミド化合物とからなる混合物を
溶媒中で、亜鉛、銅、カドミウム、及びマグネシウムの群から選択される1種以上の0価の金属の存在下で反応させることを特徴とするビスパーフルオロアルキルスルホンイミド化合物の製造方法。
Formula (I):
(R f SO 2 ) 2 NM (I)
[Wherein, R f represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, and M represents a monovalent cation. ]
A process for producing a bisperfluoroalkylsulfonimide compound represented by:
General formula (II):
R f X (II)
[Wherein, R f is as defined above, and X represents a halogen atom. ]
A perfluoroalkyl halide represented by
General formula (III):
(SO 2 Cl) 2 NM (III)
[Wherein M is as defined above. ]
A mixture comprising a bis (chlorosulfonyl) imide compound represented by the formula (I) is reacted in a solvent in the presence of one or more zero-valent metals selected from the group consisting of zinc, copper, cadmium, and magnesium. A process for producing a bisperfluoroalkylsulfonimide compound.
一般式(I):
(RfSO2)2NM (I)
[式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基、M は1価の陽イオンを表す。]
で表されるビスパーフルオロアルキルスルホンイミド化合物の製造法であって、
溶媒中で、一般式(II):
RfX (II)
[式中、Rfは前記定義の通りであり、X はハロゲン原子である。]
で示されるパーフルオロアルキルハライドと、亜鉛、銅、カドミウム、及びマグネシウムの群から選択される1種以上の0価の金属とを反応させた後に、
一般式(III) :
(SO2Cl)2NM (III)
[式中、M は前記定義の通りである。]
で示されるビス(クロロスルホニル)イミド化合物を添加し、反応させることを特徴とするビスパーフルオロアルキルスルホンイミド化合物の製造方法。
Formula (I):
(R f SO 2 ) 2 NM (I)
[Wherein, R f represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, and M represents a monovalent cation. ]
A process for producing a bisperfluoroalkylsulfonimide compound represented by:
In a solvent, general formula (II):
R f X (II)
[Wherein, R f is as defined above, and X is a halogen atom. ]
After reacting the perfluoroalkyl halide represented by the following with one or more zero-valent metals selected from the group consisting of zinc, copper, cadmium, and magnesium ,
General formula (III):
(SO 2 Cl) 2 NM (III)
[Wherein M is as defined above. ]
A process for producing a bisperfluoroalkylsulfonimide compound, characterized in that a bis (chlorosulfonyl) imide compound represented by the formula:
一般式(I):
(RfSO2)2NM (I)
[式中、Rfは炭素数1から6までの直鎖または分岐状のパーフルオロアルキル基、M は1価の陽イオンを表す。]
で表されるビスパーフルオロアルキルスルホンイミド化合物の製造法であって、
溶媒中で、一般式(III) :
(SO2Cl)2NM (III)
[式中、M は前記定義の通りである。]
で示されるビス(クロロスルホニル)イミド化合物と、亜鉛、銅、カドミウム、及びマグネシウムの群から選択される1種以上の0価の金属とを反応させた後に、
一般式(II):
RfX (II)
[式中、Rfは前記定義の通りであり、X はハロゲン原子である。]
で示されるパーフルオロアルキルハライドを添加し、反応させることを特徴とするビスパーフルオロアルキルスルホンイミド化合物の製造方法。
Formula (I):
(R f SO 2 ) 2 NM (I)
[Wherein, R f represents a linear or branched perfluoroalkyl group having 1 to 6 carbon atoms, and M represents a monovalent cation. ]
A process for producing a bisperfluoroalkylsulfonimide compound represented by:
In a solvent, the general formula (III):
(SO 2 Cl) 2 NM (III)
[Wherein M is as defined above. ]
After reacting the bis (chlorosulfonyl) imide compound represented by the following formula with one or more zero-valent metals selected from the group consisting of zinc, copper, cadmium, and magnesium ,
General formula (II):
R f X (II)
[Wherein, R f is as defined above, and X is a halogen atom. ]
A process for producing a bisperfluoroalkylsulfonimide compound, characterized by adding a perfluoroalkyl halide represented by the formula:
JP32827699A 1999-11-18 1999-11-18 Process for producing bisperfluoroalkylsulfonimide compound Expired - Lifetime JP4357053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32827699A JP4357053B2 (en) 1999-11-18 1999-11-18 Process for producing bisperfluoroalkylsulfonimide compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32827699A JP4357053B2 (en) 1999-11-18 1999-11-18 Process for producing bisperfluoroalkylsulfonimide compound

Publications (2)

Publication Number Publication Date
JP2001139540A JP2001139540A (en) 2001-05-22
JP4357053B2 true JP4357053B2 (en) 2009-11-04

Family

ID=18208427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32827699A Expired - Lifetime JP4357053B2 (en) 1999-11-18 1999-11-18 Process for producing bisperfluoroalkylsulfonimide compound

Country Status (1)

Country Link
JP (1) JP4357053B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4791092B2 (en) * 2005-06-30 2011-10-12 ステラケミファ株式会社 Method for producing silver sulfonylimido acid
JP4705476B2 (en) * 2006-01-10 2011-06-22 第一工業製薬株式会社 Method for producing fluorine compound
CN102405189B (en) * 2009-11-27 2014-07-09 株式会社日本触媒 Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
CN102917979B (en) 2010-05-28 2019-11-26 株式会社日本触媒 The alkali metal salt and preparation method thereof of fluorine sulfimide
JP6147523B2 (en) * 2013-02-25 2017-06-14 株式会社日本触媒 Method for producing fluorosulfonylimide salt

Also Published As

Publication number Publication date
JP2001139540A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
TWI454471B (en) Processes to make apoptosis promoters
US7999106B2 (en) Processes for the preparation of clopidogrel hydrogen sulfate polymorphic form I
WO2009083258A2 (en) Solid and crystalline dutasteride and processes for preparation thereof
KR101077609B1 (en) Process for preparing tricyclic derivatives
JP4357053B2 (en) Process for producing bisperfluoroalkylsulfonimide compound
JP4528123B2 (en) Process for the production of nitrooxy derivatives of naproxen
JPS59122470A (en) Preparation of quinoline-3-carboxylic acid derivative
CN106632014B (en) Preparation method of 2-amino-5-chloropyridine
JP2000086617A (en) Production of bisperfluoroalkylsulfonimide compound
JP3874585B2 (en) Method for producing alkali metal salt of sulfonimide
JP4265003B2 (en) Method for producing cyanuric acid derivative
JP2000204094A (en) Production of amineborane
JP5544892B2 (en) Process for producing 2-cyano-1,3-diketonate salt and ionic liquid
KR100302346B1 (en) A method of preparing 6-hydroxy-2-oxo-1,2,3,4-tetrahydroquinoline
JP3046258B2 (en) Method for producing 1-chlorocarbonyl-4-piperidinopiperidine or hydrochloride thereof
JP2001233849A (en) Method for producing sulfonimide
JP2815654B2 (en) Novel 4-substituted-3,5-dimethylpicolinic acid compound and method for producing the same
JPS6026097B2 (en) Method for producing xylylene dihalogen compound derivative
TW202311275A (en) Method for producing alkylsilyloxy substituted benzyl compound
JP2000226392A (en) Production of tris(perfluoroalkylsulfonyl)methide salt
WO2001077063A1 (en) Process for the preparation of quaternary alkylammonium salts represented by r1r2r3r4n+ • bf4?-¿
KR100498894B1 (en) Process for producing 1-chlorocarbonyl-4-piperidino- piperidine or hydrochloride thereof
CN117777325A (en) Sulfonyl fluoride resin and preparation method and application thereof
KR100543345B1 (en) A manufacturing process for 6-chlorobenzoxazol-2-one
JPS5852966B2 (en) Manufacturing method of organic fluorine compounds

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090804

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4357053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term