JP4356175B2 - Air conditioning load prediction method and apparatus in heat storage air conditioning system - Google Patents

Air conditioning load prediction method and apparatus in heat storage air conditioning system Download PDF

Info

Publication number
JP4356175B2
JP4356175B2 JP2000043601A JP2000043601A JP4356175B2 JP 4356175 B2 JP4356175 B2 JP 4356175B2 JP 2000043601 A JP2000043601 A JP 2000043601A JP 2000043601 A JP2000043601 A JP 2000043601A JP 4356175 B2 JP4356175 B2 JP 4356175B2
Authority
JP
Japan
Prior art keywords
air conditioning
conditioning load
heat storage
load
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000043601A
Other languages
Japanese (ja)
Other versions
JP2001227795A (en
Inventor
哲 橋本
耕一 石田
能成 佐々木
敏行 赤松
一朗 山口
健章 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000043601A priority Critical patent/JP4356175B2/en
Publication of JP2001227795A publication Critical patent/JP2001227795A/en
Application granted granted Critical
Publication of JP4356175B2 publication Critical patent/JP4356175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Air Conditioning Control Device (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、各系統の空調負荷を予測するための方法およびその装置に関する。
【0002】
【従来の技術】
従来から、氷蓄熱ユニットなどの蓄熱ユニットと空気調和機とを含む蓄熱空調系統が提案されている。このような蓄熱空調系統は、電力需要が集中しない時間帯(例えば、夜間)に蓄熱ユニットを蓄熱運転して熱を蓄積し、電力需要が集中する時間帯(例えば、昼間)に蓄積した熱を放出させながら空気調和機を運転することにより、電力需要が集中する時間帯における空気調和機の消費電力を低減し、電力需要の平準化を達成することができる。
【0003】
また、蓄熱空調系統においては、蓄熱量が多すぎると蓄熱運転を無駄に行うことになり、逆に蓄熱量が少なすぎると電力需要の十分な平準化を達成することができなくなってしまう。したがって、蓄熱空調系統においては、翌日の空調負荷を予測し、予測した空調負荷に対応させて蓄放熱運転を行わせることが一般的である。
【0004】
さらに、複数の蓄熱槽を有する場合において、複数の蓄熱槽に関する諸元を統合して1つの論理的蓄熱槽データを作成し、この論理的蓄熱槽データに基づいて運転計画を作成すること(特許第2501981号公報参照)が提案されている。
【0005】
【発明が解決しようとする課題】
前記の蓄熱空調系統を複数有する蓄熱空調システムにおいては、蓄熱空調系統毎に空調負荷を予測し、予測した空調負荷に基づいて蓄熱運転を行わせることになるので、蓄熱空調システム全体として、空調負荷を予測するための演算処理が煩雑になるという不都合がある。また、空調負荷の予測に長時間がかかると、蓄熱空調システムにおける蓄熱運転時間が不足してしまう危険性があるので、演算能力が高い計算機を用いることが必要になり、コストアップ、スペースの増加を招いてしまうという不都合もある。
【0006】
また、特許第2501981号公報の場合、論理的蓄熱槽データを作成するために、複数の蓄熱槽に関する諸元やプラント構成情報を入力するという煩雑な作業が必要である。また、複数の蓄熱槽に関する諸元などを統合し、矛盾のない論理的蓄熱槽データを作成するという処理が必要である。
【0007】
更に、このような方法は一つの系統に複数の蓄熱槽が接続されていた場合には有効な方法と思われるが、系統が独立して複数に分かれていた場合には、結局系統毎の空調負荷の予測が必要になるために、当初の効果が期待できないという不都合がある。
【0008】
【発明の目的】
この発明は上記の問題点に鑑みてなされたものであり、複数の蓄熱空調系統を有する蓄熱空調システムにおける各蓄熱空調系統の空調負荷の予測を、簡単な処理で、短時間で精度よく行うことができる蓄熱空調システムにおける空調負荷予測方法およびその装置を提供することを目的としている。
【0009】
【課題を解決するための手段】
請求項1の蓄熱空調システムにおける空調負荷予測方法は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する方法である。
【0010】
請求項2の蓄熱空調システムにおける空調負荷予測方法は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する方法である。
【0011】
請求項3の蓄熱空調システムにおける空調負荷予測方法は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する方法である。
【0012】
請求項4の蓄熱空調システムにおける空調負荷予測装置は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段とを含むものである。
【0014】
請求項5の蓄熱空調システムにおける空調負荷予測装置は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段とを含むものである。
【0015】
請求項6の蓄熱空調システムにおける空調負荷予測装置は、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段とを含むものである。
【0016】
【作用】
請求項1の蓄熱空調システムにおける空調負荷予測方法であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出するのであるから、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0018】
請求項2の蓄熱空調システムにおける空調負荷予測方法であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出するのであるから、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0019】
請求項3の蓄熱空調システムにおける空調負荷予測方法であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出するのであるから、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0020】
請求項4の蓄熱空調システムにおける空調負荷予測装置であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、合計空調負荷予測手段によって蓄熱空調システム全体としての合計空調負荷を予測し、系統空調負荷算出手段によって、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することができる。
【0021】
したがって、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0023】
請求項5の蓄熱空調システムにおける空調負荷予測装置であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、合計空調負荷予測手段によって蓄熱空調システム全体としての合計空調負荷を予測し、系統空調負荷算出手段によって、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することができる。
したがって、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0024】
請求項6の蓄熱空調システムにおける空調負荷予測装置であれば、蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、合計空調負荷予測手段によって蓄熱空調システム全体としての合計空調負荷を予測し、系統空調負荷算出手段によって、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することができる。
したがって、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができる。
【0025】
【発明の実施の形態】
以下、添付図面を参照して、この発明の蓄熱空調システムにおける空調負荷予測方法およびその装置の実施の態様を詳細に説明する。
【0026】
図1はこの発明の蓄熱空調システムにおける空調負荷予測方法の一実施態様を説明するフローチャートである。
【0027】
ステップSP1において、個々の蓄熱空調系統の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、ステップSP2において、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、ステップSP3において、各空調負荷と合計空調負荷とを用いて按分比を計算し、ステップSP4において、合計空調負荷に応じて按分比を保存する。
【0028】
このステップSP1からステップSP4の処理を反復することにより、図2に示す按分比テーブルを完成させることができる。
【0029】
次いで、ステップSP5において、ニューラルネットワークなどを用いて合計空調負荷と、外気温熱データ、室内温熱データとの関係の学習を行わせる。
【0030】
その後は、ステップSP6において、学習が完了したニューラルネットワークなどを用い、外気温熱データ(例えば、外気温熱データの予測値)、室内温熱データ(例えば、室内温熱データの実測値)から翌日の合計空調負荷を予測し、ステップSP7において、予測した合計空調負荷から該当する按分比を選択し、ステップSP8において、予測した合計空調負荷と選択した按分比とを用いて個別の蓄熱空調系統の予測空調負荷を算出する。
【0031】
以上のようにして個別の蓄熱空調系統の予測空調負荷が算出されれば、この算出された予測空調負荷に基づいて蓄熱ユニットを運転することにより、最適の蓄熱空調システムの運転を行うことができる。
【0032】
さらに説明する。
【0033】
このステップSP1からステップSP4の処理を反復することにより、図2に示す按分比テーブルを完成させることができる。そして、ステップSP1からステップSP5の処理を反復することにより、合計空調負荷と、外気温熱データ、室内温熱データとの関係の学習を達成することができる。
【0034】
したがって、按分比テーブルが完成し、かつ合計空調負荷と、外気温熱データ、室内温熱データとの関係の学習が達成された後は、ステップSP6以降の処理を行うだけでよく、簡単に個別の蓄熱空調系統の空調負荷の予測を行うことができる。ただし、按分比テーブル完成後も按分比テーブルを上書きして更新し、常に最新の按分比を使用することが好ましい。
【0035】
次いで、按分比テーブルについて説明する。
【0036】
空調負荷の変動要因には、電気機器や人体などの熱源や部屋の広さなどの建物内部の影響と、外気温、日射量などの建物外部の影響との2種類の要因がある。これらのうち、建物内部に起因する要因は比較的変化が小さいのに対し、建物外部に起因する要因は日々変動しており、その影響も大きい。
【0037】
つまり、各部屋の空調負荷の変動は建物外部負荷の変動に大きく起因する。逆に、建物外部の負荷が一定ならば、各部屋の空調負荷も各々一定になり、その按分比も一定になる。
【0038】
また、建物の外部から影響を受ける場合には、建物内の個々の空調ゾーンは、内側、北側、南側、東側、西側、最上階側、1階側など、様々な場所に位置しているので、影響の受け方も様々である。
【0039】
例えば、快晴時(高負荷時)、最上階や南側は、1階や北側に比べ直射日光の影響を大きく受けて室温が上昇し、空調負荷が大きくなる。そのため、負荷の按分比は、最上階や南側は大きくなり、1階や北側は小さくなる。
【0040】
同様に、建物の窓側は内側に比べ外気温の影響を多く受け、室温が変化し易く、逆に内側は変化しにくい。
【0041】
以上のように、個々の空調ゾーンは、外気温熱環境の影響の受け易さに差がある。
【0042】
そして、外気温熱環境、すなわち全体としての空調負荷が一定量増加しても、各空調ゾーンにおける空調負荷の増加率はその位置毎に異なるので、合計空調負荷に応じて按分比が変化することになる。
【0043】
具体的には、個別の蓄熱空調系統の空調負荷データが3、7、5である場合には、按分比が3/15、7/15、5/15になり、個別の蓄熱空調系統の空調負荷データが7、25、13である場合には、按分比が7/45、25/45、13/45になる。
【0044】
したがって、予測された合計空調負荷データが41である場合には、按分比7/45、25/45、13/45を用いて、個別の蓄熱空調系統の空調負荷データを41×7/45、41×25/45、41×13/45として算出することができる。
【0045】
この場合において、合計空調負荷が同じ範囲であっても、午前空調負荷/午後空調負荷に依存して按分比を保持することが好ましい(図3参照)。
【0046】
また、時刻別空調負荷は、毎日同じではなく、その日の天気(気温)の影響を大きく受けて変化することが知られている。そして、時刻別空調負荷が変化すれば按分比も大きく変化するはずであるから、按分比を、合計空調負荷のみならず天気に関連付けて蓄積し管理することが好ましい。ここで、天気と空調負荷との関係を整理すると概ね図4に示すとおりになり、空調負荷の「合計空調負荷」と「午前空調負荷/午後空調負荷」とがあれば、その日の天気を概ね特定することができる。
【0047】
この場合には、「合計空調負荷」と「午前空調負荷/午後空調負荷」とをそれぞれn、m等分してn×mの2次元空間を定義し、按分比は、この2次元空間内の位置情報と時刻情報とから格納アドレスを生成し、格納アドレスに従って蓄積する(図5参照)。
【0048】
格納された按分比を抽出する場合には、「合計空調負荷」と「午前空調負荷/午後空調負荷」と時刻情報とから該当する按分比の格納アドレスを生成し、この格納アドレスを用いて按分比の抽出を行う(図5参照)。この場合において、該当する按分比が格納されていなければ、8つの近傍の値の平均値を用い、これらの近傍の値も格納されていなければ等分値を用いることが好ましい。
【0049】
以上には、空調負荷を用いて按分比を格納するようにしているが、空調負荷に代えて外気温熱情報(温度、不快指数、エンタルピーなど)を採用することもできる。そして、按分比を格納するに当たって、前回の按分比と最新の按分比との荷重平均をとって格納することが可能であるほか、最新の複数の按分比を格納することが可能である。特に、後者の格納方法を採用する場合には、これらの平均値を出力することが好ましい。
【0050】
また、ニューラルネットに代えて、カルマンフィルター、指数平滑、その他の予測アルゴリズムなどを用いて合計空調負荷の予測を行うこともできる。
【0051】
図6はこの発明の蓄熱空調システムにおける空調負荷予測装置の一実施態様を組み込んだ蓄熱空調システムを示すブロック図である。
【0052】
この空調負荷予測装置を組み込んだ蓄熱空調システムは、複数の蓄熱空調系統(図には熱源のみを示している)1と、室内温熱データを検出する室内温熱データ検出部(例えば、温度センサ)2と、外気温熱データを検出する外気温熱データ検出部(例えば、温度センサ)3と、全ての蓄熱空調系統1の空調負荷、室内温熱データ、および外気温熱データを計測する計測部4と、計測部4から出力される計測データを入力として所定のデータ処理(例えば、合計空調負荷の算出処理、按分比の算出処理など)を行って按分比および予測用データを出力するデータ処理部5と、算出された按分比を記憶する按分比記憶部6と、算出された予測用データを記憶する予測用データ記憶部7と、予測用データおよび翌日の気象予報データを入力として合計空調負荷を予測する合計空調負荷予測部8と、予測された合計空調負荷を入力として按分比記憶部6から読み出される按分比および予測された合計空調負荷を入力として各蓄熱空調系統の空調負荷を算出する系統空調負荷算出部9と、算出された各蓄熱空調系統の空調負荷に基づいて該当する蓄熱空調系統1の熱源を制御する熱源制御部10とを含んでいる。
【0053】
なお、各部の作用は上記のフローチャートの各ステップの処理内容と同様であるから、詳細な説明を省略する。
【0054】
したがって、上記の構成の蓄熱空調システムを採用した場合には、合計空調負荷を予測するだけで、按分比を用いて簡単に、かつ正確に各蓄熱空調系統の空調負荷を予測することができる。この結果、蓄熱空調系統毎に空調負荷の予測を行う場合と比較して予測処理を簡単化することができ、しかも各蓄熱空調系統の空調負荷を正確に得ることができる。もちろん、各蓄熱空調系統の空調負荷を得るまでの所要時間を大幅に短縮することができる。
【0055】
【発明の効果】
請求項1の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【0057】
請求項の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【0058】
請求項の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【0059】
請求項の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【0061】
請求項の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【0062】
請求項の発明は、個別の蓄熱空調系統の空調負荷を直接に予測する場合と比較して、簡単な処理で、短時間で個別の蓄熱空調系統の空調負荷を予測することができ、しかも、個別の蓄熱空調系統の空調負荷を精度よく予測することができるという特有の効果を奏する。
【図面の簡単な説明】
【図1】この発明の蓄熱空調システムにおける空調負荷予測方法の一実施態様を説明するフローチャートである。
【図2】按分比テーブルの一例を示す図である。
【図3】按分比テーブルの他の例を示す図である。
【図4】天気と空調負荷との関係を示す図である。
【図5】按分比の格納、抽出を説明する図である。
【図6】この発明の蓄熱空調システムにおける空調負荷予測装置の一実施態様を組み込んだ蓄熱空調システムを示すブロック図である。
【符号の説明】
1 蓄熱空調系統 8 合計空調負荷予測部
9 系統空調負荷算出部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for predicting an air conditioning load of each system in a heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner.
[0002]
[Prior art]
Conventionally, a heat storage air conditioning system including a heat storage unit such as an ice heat storage unit and an air conditioner has been proposed. Such a heat storage air-conditioning system accumulates heat by performing heat storage operation of the heat storage unit during a time period when power demand is not concentrated (for example, at night), and stores heat accumulated during a time period when power demand is concentrated (for example, daytime). By operating the air conditioner while releasing it, it is possible to reduce the power consumption of the air conditioner in the time zone when the power demand is concentrated, and achieve leveling of the power demand.
[0003]
Further, in a heat storage air conditioning system, if the amount of stored heat is too large, the heat storage operation is wasted, and conversely if the amount of stored heat is too small, sufficient leveling of power demand cannot be achieved. Therefore, in the heat storage air conditioning system, it is common to predict the air conditioning load of the next day and perform the heat storage and heat radiation operation in correspondence with the predicted air conditioning load.
[0004]
Furthermore, in the case of having a plurality of heat storage tanks, the specifications relating to the plurality of heat storage tanks are integrated to create one logical heat storage tank data, and an operation plan is created based on the logical heat storage tank data (patent) No. 2501981) has been proposed.
[0005]
[Problems to be solved by the invention]
In the heat storage air conditioning system having a plurality of the heat storage air conditioning systems, the air conditioning load is predicted for each heat storage air conditioning system, and the heat storage operation is performed based on the predicted air conditioning load. There is an inconvenience that the arithmetic processing for predicting is complicated. Also, if it takes a long time to predict the air conditioning load, there is a risk that the heat storage operation time in the heat storage air conditioning system will be insufficient, so it will be necessary to use a computer with high computing capacity, increasing costs and increasing space There is also the inconvenience of inviting.
[0006]
In addition, in the case of Japanese Patent No. 2501981, complicated work of inputting specifications and plant configuration information regarding a plurality of heat storage tanks is necessary in order to create logical heat storage tank data. Moreover, the process of integrating the specifications regarding a plurality of heat storage tanks and creating logical heat storage tank data without contradiction is necessary.
[0007]
Furthermore, this method seems to be an effective method when multiple heat storage tanks are connected to one system. However, if the system is divided into a plurality of systems independently, the air conditioning for each system is eventually performed. Since it is necessary to predict the load, there is a disadvantage that the initial effect cannot be expected.
[0008]
OBJECT OF THE INVENTION
The present invention has been made in view of the above problems, and predicting the air conditioning load of each heat storage air-conditioning system in a heat storage air-conditioning system having a plurality of heat storage air-conditioning systems with a simple process and accurately in a short time. It aims at providing the air-conditioning load prediction method in the thermal storage air-conditioning system which can do, and its apparatus.
[0009]
[Means for Solving the Problems]
The method for predicting an air conditioning load in the heat storage air conditioning system according to claim 1 is the sum of the heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner, and predicting the total air conditioning load as the entire heat storage air conditioning system. From the air conditioning load, the outside air temperature heat data, room temperature heat data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time. The calculation is performed using the load and the total air conditioning load, and by repeating the process of storing the distribution ratio according to the total air conditioning load, each of the values is calculated based on the air conditioning load distribution ratio already set for the total air conditioning load. This is a method of calculating the air conditioning load of the system.
[0010]
The method for predicting the air conditioning load in the heat storage air conditioning system according to claim 2 predicts the total air conditioning load as a whole of the heat storage air conditioning system in the heat storage air conditioning system having a plurality of heat storage air conditioning systems including the heat storage unit and the air conditioner. From the air conditioning load, the outside air temperature heat data, room temperature heat data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time. By calculating the load and the total air conditioning load and repeating the process of storing the proration ratio according to the total air conditioning load, it has already been possible to cope with the predicted total air conditioning load and the ratio of the air conditioning load in different time zones. This is a method for calculating the air conditioning load of each system based on the set air conditioning load apportioning ratio.
[0011]
The method for predicting the air conditioning load in the heat storage air conditioning system according to claim 3 is the sum of the heat storage air conditioning system having a plurality of heat storage air conditioning systems including the heat storage unit and the air conditioner, and predicting the total air conditioning load as the entire heat storage air conditioning system. From the air conditioning load, the outside air temperature heat data, room temperature heat data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time. By calculating the load and the total air conditioning load and repeating the process of storing the distribution ratio according to the total air conditioning load, the air conditioning load distribution ratio that has already been set according to the outside air temperature thermal environment information This is a method of calculating the air conditioning load of each system.
[0012]
The air-conditioning load prediction device for a heat storage air-conditioning system according to claim 4 is a heat storage air-conditioning system having a plurality of heat storage air-conditioning systems including a heat storage unit and an air conditioner. The total air conditioning load of the heat storage air conditioning system is collected by collecting the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system by time from the means and the predicted total air conditioning load, and summing each air conditioning load by time Is calculated using each air conditioning load and the total air conditioning load, and by repeating the process of storing the proration ratio according to the total air conditioning load, the air conditioning load already set for the total air conditioning load is calculated. System air-conditioning load calculation means for calculating the air-conditioning load of each system based on the proration ratio.
[0014]
The air conditioning load predicting device for a heat storage air conditioning system according to claim 5 is a total air conditioning load prediction for predicting a total air conditioning load as a whole heat storage air conditioning system in a heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner. The total air conditioning load of the heat storage air conditioning system is collected by collecting the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system by time from the means and the predicted total air conditioning load, and summing each air conditioning load by time Is calculated using each air conditioning load and the total air conditioning load, and by repeating the process of storing the proration ratio according to the total air conditioning load , the predicted total air conditioning load and the air conditioning load in different time zones are calculated. System air-conditioning load calculation means for calculating the air-conditioning load of each system based on the air-conditioning load apportioning ratio already set corresponding to the ratio It is intended to include.
[0015]
The air-conditioning load prediction device for a heat storage air-conditioning system according to claim 6 is a heat storage air-conditioning system having a plurality of heat storage air-conditioning systems including a heat storage unit and an air conditioner. The total air conditioning load of the heat storage air conditioning system is collected by collecting the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system by time from the means and the predicted total air conditioning load, and summing each air conditioning load by time Is calculated using each air conditioning load and the total air conditioning load, and the air conditioning that has already been set according to the outside air temperature thermal environment information by repeating the process of storing the proration ratio according to the total air conditioning load System air-conditioning load calculation means for calculating the air-conditioning load of each system based on the load distribution ratio.
[0016]
[Action]
If it is the air-conditioning load prediction method in the heat storage air-conditioning system of Claim 1, in the heat storage air-conditioning system which has two or more heat storage air-conditioning systems containing a heat storage unit and an air conditioner, the total air-conditioning load as the whole heat storage air-conditioning system is estimated and predicted. From the total air conditioning load, the outside temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, Calculated using each air conditioning load and total air conditioning load, and based on the air conditioning load apportioning ratio already set for the total air conditioning load by repeating the process of storing the apportioning ratio according to the total air conditioning load Therefore, the air conditioning load of each system is calculated, so compared with the case of directly predicting the air conditioning load of an individual heat storage air conditioning system, In can be predicted air conditioning load of the separate heat storage air conditioning systems, moreover, can be predicted accurately air-conditioning load of the separate heat storage air conditioning system.
[0018]
If it is the air-conditioning load prediction method in the heat storage air-conditioning system of Claim 2, in the heat storage air-conditioning system which has two or more heat storage air-conditioning systems containing a heat storage unit and an air conditioner, the total air-conditioning load as the whole heat storage air-conditioning system is estimated and predicted. From the total air conditioning load, the outside temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, By calculating using each air conditioning load and the total air conditioning load and repeating the process of storing the proration ratio according to the total air conditioning load, the outside air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system are obtained. The total air conditioning load of the heat storage air conditioning system is calculated by collecting each air conditioning load by time and summing each air conditioning load by time. The air conditioning that has already been set in response to the predicted total air conditioning load and the ratio of the air conditioning load in different time zones is repeated by repeating the process of storing the apportion ratio according to the total air conditioning load. Since the air conditioning load of each system is calculated based on the load distribution ratio, individual heat storage air conditioning systems can be processed in a short time with simple processing compared to the case of directly predicting the air conditioning load of individual heat storage air conditioning systems. The air conditioning load of the individual heat storage air conditioning system can be accurately predicted.
[0019]
If it is the air-conditioning load prediction method in the thermal storage air-conditioning system of Claim 3, in the thermal storage air-conditioning system which has two or more thermal storage air-conditioning systems containing a thermal storage unit and an air conditioner, the total air-conditioning load as the whole thermal storage air-conditioning system is estimated and predicted. From the total air conditioning load, the outside temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, It is calculated using each air conditioning load and the total air conditioning load, and by repeating the process of storing the apportioning ratio according to the total air conditioning load, the air conditioning load apportioning ratio already set corresponding to the outside air temperature thermal environment information is obtained. Since the air conditioning load of each system is calculated based on this, compared to the case of directly predicting the air conditioning load of an individual heat storage air conditioning system, It can be predicted air conditioning load of the separate heat storage air conditioning system in time, moreover, it is possible to predict accurately the air-conditioning load of the separate heat storage air conditioning system.
[0020]
If it is an air-conditioning load prediction apparatus in the heat storage air-conditioning system of Claim 4, in the heat storage air-conditioning system which has two or more heat storage air-conditioning systems containing a heat storage unit and an air conditioner, total air conditioning as the whole heat storage air-conditioning system by a total air-conditioning load prediction means Predicts the load , collects the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system from the predicted total air conditioning load by the system air conditioning load calculation means, and sums each air conditioning load by time The total air conditioning load of the heat storage air conditioning system is calculated by using each air conditioning load and the total air conditioning load, and the process of saving the proration ratio according to the total air conditioning load is repeated to cope with the total air conditioning load. Thus, the air conditioning load of each system can be calculated based on the already set air conditioning load apportioning ratio.
[0021]
Therefore, as compared with the case of predicting direct the air-conditioning load of the separate heat storage air conditioning system, a simple process, it is possible to predict the air conditioning load of the separate heat storage air conditioning system in a short period of time, moreover, the individual heat storage air conditioner Ru can be predicted accurately air-conditioning load of the system.
[0023]
If it is the air-conditioning load prediction apparatus in the heat storage air-conditioning system of Claim 5, in the heat storage air-conditioning system which has two or more heat storage air-conditioning systems containing a heat storage unit and an air conditioner, total air conditioning as the whole heat storage air-conditioning system by a total air-conditioning load prediction means Predicts the load , collects the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system from the predicted total air conditioning load by the system air conditioning load calculation means, and sums each air conditioning load by time To calculate the total air conditioning load of the heat storage air conditioning system, calculate using each air conditioning load and the total air conditioning load, and repeat the process of storing the proration ratio according to the total air conditioning load, thereby predicting the total air conditioning load And each system based on the air-conditioning load distribution ratio already set corresponding to the ratio of air-conditioning load in different time zones It can be calculated air-conditioning load.
Therefore, compared to the case of directly predicting the air conditioning load of an individual heat storage air conditioning system, it is possible to predict the air conditioning load of an individual heat storage air conditioning system in a short time with a simple process. It is possible to accurately predict the air conditioning load of the system.
[0024]
If it is an air-conditioning load prediction apparatus in the heat storage air-conditioning system of Claim 6, in the heat storage air-conditioning system which has two or more heat storage air-conditioning systems containing a heat storage unit and an air conditioner, total air conditioning as the whole heat storage air-conditioning system by a total air-conditioning load prediction means Predicts the load , collects the air temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system from the predicted total air conditioning load by the system air conditioning load calculation means, and sums each air conditioning load by time By calculating the total air conditioning load of the heat storage air conditioning system, calculating using each air conditioning load and the total air conditioning load, and storing the distribution ratio according to the total air conditioning load , Correspondingly, the air conditioning load of each system can be calculated based on the air conditioning load apportioning ratio already set.
Therefore, compared to the case of directly predicting the air conditioning load of an individual heat storage air conditioning system, it is possible to predict the air conditioning load of an individual heat storage air conditioning system in a short time with a simple process. It is possible to accurately predict the air conditioning load of the system.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, with reference to an accompanying drawing, the embodiment of the air-conditioning load prediction method in the thermal storage air-conditioning system of this invention and its device is explained in detail.
[0026]
FIG. 1 is a flowchart for explaining an embodiment of a method for predicting an air conditioning load in a heat storage air conditioning system of the present invention.
[0027]
In step SP1, outside temperature heat data, indoor temperature data, and air conditioning load data of each heat storage air conditioning system are collected by time, and in step SP2, the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time. In step SP3, the distribution ratio is calculated using each air conditioning load and the total air conditioning load. In step SP4, the distribution ratio is stored according to the total air conditioning load.
[0028]
By repeating the processing from step SP1 to step SP4, the proration ratio table shown in FIG. 2 can be completed.
[0029]
Next, in step SP5, learning of the relationship between the total air conditioning load, outside temperature heat data, and room temperature data is performed using a neural network or the like.
[0030]
Thereafter, in step SP6, the total air conditioning load of the next day is calculated from the outside air temperature heat data (for example, the predicted value of the outside air temperature heat data) and the indoor temperature data (for example, the actually measured value of the indoor heat data) using a neural network that has been learned in step SP6. In step SP7, the apportioning ratio is selected from the predicted total air conditioning load. In step SP8, the predicted air conditioning load of the individual heat storage air conditioning system is calculated using the predicted total air conditioning load and the selected apportioning ratio. calculate.
[0031]
If the predicted air conditioning load of the individual heat storage air conditioning system is calculated as described above, the optimum heat storage air conditioning system can be operated by operating the heat storage unit based on the calculated predicted air conditioning load. .
[0032]
Further explanation will be given.
[0033]
By repeating the processing from step SP1 to step SP4, the proration ratio table shown in FIG. 2 can be completed. Then, by repeating the processing from step SP1 to step SP5, learning of the relationship between the total air conditioning load, the outside air temperature heat data, and the indoor temperature data can be achieved.
[0034]
Therefore, after the distribution ratio table is completed and learning of the relationship between the total air conditioning load, the outside temperature heat data, and the room temperature data is achieved, it is only necessary to perform the processing after step SP6, and individual heat storage is easily performed. The air conditioning load of the air conditioning system can be predicted. However, it is preferable that the distribution ratio table is overwritten and updated after the distribution ratio table is completed, and the latest distribution ratio is always used.
[0035]
Next, the proportional distribution table will be described.
[0036]
There are two types of factors that cause fluctuations in the air conditioning load: effects inside the building such as heat sources such as electrical equipment and human bodies and the size of the room, and effects outside the building such as outside air temperature and solar radiation. Among these, the factors originating from the inside of the building are relatively small, whereas the factors originating from the outside of the building fluctuate from day to day and have a large effect.
[0037]
That is, the change in the air conditioning load in each room is largely caused by the change in the building external load. On the contrary, if the load outside the building is constant, the air conditioning load in each room is also constant, and the proration ratio is also constant.
[0038]
In addition, when affected by the outside of the building, the individual air conditioning zones in the building are located in various locations such as the inside, north side, south side, east side, west side, top floor side, and 1st floor side. There are various ways to be affected.
[0039]
For example, at the time of fine weather (high load), the top floor and the south side are more affected by direct sunlight than the first floor and the north side, the room temperature rises, and the air conditioning load increases. For this reason, the load distribution ratio increases on the top floor and the south side, and decreases on the first floor and the north side.
[0040]
Similarly, the window side of the building is more affected by the outside air temperature than the inside, and the room temperature is likely to change, while the inside is less likely to change.
[0041]
As described above, the individual air conditioning zones are different in the sensitivity to the influence of the outside air temperature thermal environment.
[0042]
And even if the outside air temperature thermal environment, that is, the air conditioning load as a whole increases by a certain amount, the rate of increase of the air conditioning load in each air conditioning zone differs for each position, so that the distribution ratio changes according to the total air conditioning load. Become.
[0043]
Specifically, when the air conditioning load data of the individual heat storage air conditioning system is 3, 7, 5, the proration ratio becomes 3/15, 7/15, 5/15, and the air conditioning of the individual heat storage air conditioning system When the load data is 7, 25, and 13, the proration ratio is 7/45, 25/45, and 13/45.
[0044]
Therefore, when the predicted total air conditioning load data is 41, the air conditioning load data of the individual heat storage air conditioning system is 41 × 7/45, using the proration ratios 7/45, 25/45, and 13/45. It can be calculated as 41 × 25/45, 41 × 13/45.
[0045]
In this case, even if the total air conditioning load is in the same range, it is preferable to maintain the proration ratio depending on the morning air conditioning load / afternoon air conditioning load (see FIG. 3).
[0046]
In addition, it is known that the time-dependent air-conditioning load is not the same every day and is greatly affected by the weather (temperature) of the day. If the time-dependent air conditioning load changes, the apportioning ratio should also change greatly. Therefore, it is preferable to store and manage the apportioning ratio in association with the weather as well as the total air-conditioning load. Here, the relationship between the weather and the air conditioning load can be summarized as shown in FIG. 4, and if there are “total air conditioning load” and “morning air conditioning load / afternoon air conditioning load” as air conditioning loads, Can be identified.
[0047]
In this case, the “total air conditioning load” and the “morning air conditioning load / afternoon air conditioning load” are divided into n and m, respectively, to define a two-dimensional space of n × m, and the distribution ratio is within this two-dimensional space. The storage address is generated from the position information and the time information, and stored according to the storage address (see FIG. 5).
[0048]
When extracting the stored apportioning ratio, a storage address for the appropriate apportioning ratio is generated from the “total air conditioning load”, “morning air conditioning load / afternoon air conditioning load”, and time information, and apportioning is performed using this storage address. The ratio is extracted (see FIG. 5). In this case, it is preferable to use an average value of eight neighboring values if the corresponding proration ratio is not stored, and to use an equal value if these neighboring values are not stored.
[0049]
In the above, the proportionality ratio is stored using the air conditioning load, but it is also possible to adopt the outside air temperature heat information (temperature, discomfort index, enthalpy, etc.) instead of the air conditioning load. In storing the proration ratio, it is possible not only to store the load average of the previous apportion ratio and the latest apportion ratio, but also to store the latest plural apportion ratios. In particular, when the latter storage method is employed, it is preferable to output an average value of these.
[0050]
In addition, the total air conditioning load can be predicted using a Kalman filter, exponential smoothing, or other prediction algorithms instead of the neural network.
[0051]
FIG. 6 is a block diagram showing a heat storage air conditioning system incorporating an embodiment of an air conditioning load prediction device in the heat storage air conditioning system of the present invention.
[0052]
A heat storage air conditioning system incorporating this air conditioning load prediction device includes a plurality of heat storage air conditioning systems (only a heat source is shown in the figure) 1 and an indoor thermal data detection unit (for example, a temperature sensor) 2 that detects indoor thermal data. An outside air temperature heat data detection unit (for example, a temperature sensor) 3 that detects outside air temperature heat data, a measurement unit 4 that measures the air conditioning load, indoor temperature data, and outside air temperature heat data of all the heat storage air conditioning systems 1, and a measurement unit A data processing unit 5 that performs predetermined data processing (for example, total air conditioning load calculation processing, proportional distribution calculation processing, etc.) with measurement data output from 4 as an input, and outputs proportional distribution and prediction data; and calculation The distribution ratio storage unit 6 that stores the calculated distribution ratio, the prediction data storage unit 7 that stores the calculated prediction data, and the prediction data and the weather forecast data for the next day are input. Total air conditioning load prediction unit 8 that predicts the total air conditioning load, and the air conditioning load of each heat storage air conditioning system using the estimated total air conditioning load as an input and the distribution ratio read from the apportioning ratio storage unit 6 and the predicted total air conditioning load as an input And a heat source control unit 10 that controls the heat source of the corresponding heat storage air-conditioning system 1 based on the calculated air-conditioning load of each heat storage air-conditioning system.
[0053]
Since the operation of each part is the same as the processing content of each step in the above flowchart, detailed description thereof is omitted.
[0054]
Therefore, when the heat storage air conditioning system having the above-described configuration is adopted, it is possible to predict the air conditioning load of each heat storage air conditioning system simply and accurately using the proration ratio only by predicting the total air conditioning load. As a result, the prediction process can be simplified as compared with the case where the air conditioning load is predicted for each heat storage air conditioning system, and the air conditioning load of each heat storage air conditioning system can be obtained accurately. Of course, the time required to obtain the air conditioning load of each heat storage air conditioning system can be greatly shortened.
[0055]
【The invention's effect】
The invention of claim 1, as compared with the case of predicting direct the air-conditioning load of the separate heat storage air conditioning system, a simple process, it is possible to predict the air conditioning load of the separate heat storage air conditioning system in a short period of time, yet exhibits a unique effect that Ru can be predicted accurately air-conditioning load of the separate heat storage air conditioning system.
[0057]
The invention of claim 2 can predict the air conditioning load of an individual heat storage air-conditioning system in a short time with a simple process as compared with the case of directly predicting the air conditioning load of an individual heat storage air conditioning system. The air conditioning load of the individual heat storage air conditioning system can be accurately predicted.
[0058]
The invention of claim 3 can predict the air conditioning load of the individual heat storage air-conditioning system in a short time with a simple process as compared with the case of directly predicting the air conditioning load of the individual heat storage air conditioning system. The air conditioning load of the individual heat storage air conditioning system can be accurately predicted.
[0059]
A fourth aspect of the present invention, as compared with the case of predicting direct the air-conditioning load of the separate heat storage air conditioning system, a simple process, it is possible to predict the air conditioning load of the separate heat storage air conditioning system in a short period of time, yet exhibits a unique effect that Ru can be predicted accurately air-conditioning load of the separate heat storage air conditioning system.
[0061]
The invention of claim 5 can predict the air conditioning load of an individual heat storage air-conditioning system in a short time with a simple process as compared with the case of directly predicting the air conditioning load of an individual heat storage air conditioning system. The air conditioning load of the individual heat storage air conditioning system can be accurately predicted.
[0062]
The invention of claim 6 can predict the air conditioning load of the individual heat storage air-conditioning system in a short time with a simple process as compared with the case of directly predicting the air conditioning load of the individual heat storage air conditioning system. The air conditioning load of the individual heat storage air conditioning system can be accurately predicted.
[Brief description of the drawings]
FIG. 1 is a flowchart illustrating an embodiment of a method for predicting an air conditioning load in a heat storage air conditioning system according to the present invention.
FIG. 2 is a diagram illustrating an example of a proration ratio table.
FIG. 3 is a diagram showing another example of a proration rate table.
FIG. 4 is a diagram showing a relationship between weather and air conditioning load.
FIG. 5 is a diagram illustrating storage and extraction of a proration rate.
FIG. 6 is a block diagram showing a heat storage air conditioning system incorporating an embodiment of an air conditioning load prediction device in the heat storage air conditioning system of the present invention.
[Explanation of symbols]
1 Thermal storage air conditioning system 8 Total air conditioning load prediction unit 9 System air conditioning load calculation unit

Claims (6)

蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することを特徴とする蓄熱空調システムにおける空調負荷予測方法。In a heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner, the total air conditioning load as a whole heat storage air conditioning system is predicted, and the outside air temperature heat data of each heat storage air conditioning system is calculated from the predicted total air conditioning load , The indoor thermal data and air conditioning load data are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, and the total air conditioning is calculated using each air conditioning load and total air conditioning load. A heat storage air conditioner characterized in that the air conditioning load of each system is calculated based on the air conditioning load distribution ratio already set corresponding to the total air conditioning load by repeating the process of storing the distribution ratio according to the load A method for predicting air conditioning load in the system. 蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することを特徴とする蓄熱空調システムにおける空調負荷予測方法。In a heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner, the total air conditioning load as a whole heat storage air conditioning system is predicted, and the outside air temperature heat data of each heat storage air conditioning system is predicted from the predicted total air conditioning load , The indoor thermal data and air conditioning load data are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, and the total air conditioning is calculated using each air conditioning load and total air conditioning load. By repeating the process of storing the apportioning ratio according to the load, each system is based on the air conditioning load apportioning ratio that is already set corresponding to the predicted total air conditioning load and the ratio of the air conditioning load in different time zones. An air conditioning load prediction method in a heat storage air conditioning system, characterized by calculating an air conditioning load. 蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測し、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出することを特徴とする蓄熱空調システムにおける空調負荷予測方法。In a heat storage air conditioning system having a plurality of heat storage air conditioning systems including a heat storage unit and an air conditioner, the total air conditioning load as a whole heat storage air conditioning system is predicted, and the outside air temperature heat data of each heat storage air conditioning system is predicted from the predicted total air conditioning load , The indoor thermal data and air conditioning load data are collected by time, and the total air conditioning load of the heat storage air conditioning system is calculated by summing each air conditioning load by time, and the total air conditioning is calculated using each air conditioning load and total air conditioning load. Heat storage that is characterized by calculating the air conditioning load of each system based on the air conditioning load apportioning ratio that has already been set corresponding to the outside air temperature thermal environment information by repeating the process of storing the apportioning ratio according to the load An air conditioning load prediction method in an air conditioning system. 蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段(8)と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、合計空調負荷に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段(9)とを含むことを特徴とする蓄熱空調システムにおける空調負荷予測装置。In heat storage air conditioning system having a plurality of heat storage air conditioning system including a heat storage unit and air conditioner, and the total air-conditioning load estimating means for estimating the total air conditioning load of the entire heat storage air conditioning system (8), from the total air conditioning load expected, individual The total air conditioning load of the thermal storage air conditioning system is calculated by collecting the outside air temperature heat data, indoor thermal data, and air conditioning load data of each heat storage air conditioning system by time, and summing each air conditioning load by time, and calculating each air conditioning load and total air conditioning load. And by repeating the process of storing the apportioning ratio according to the total air conditioning load, the air conditioning load of each system is calculated based on the air conditioning load apportioning ratio already set for the total air conditioning load. An air conditioning load predicting apparatus in a heat storage air conditioning system, comprising: a system air conditioning load calculating means (9) for calculating. 蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段(8)と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、予測した合計空調負荷および互いに異なる時間帯における空調負荷の比率に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段(9)とを含むことを特徴とする蓄熱空調システムにおける空調負荷予測装置。In heat storage air conditioning system having a plurality of heat storage air conditioning system including a heat storage unit and air conditioner, and the total air-conditioning load estimating means for estimating the total air conditioning load of the entire heat storage air conditioning system (8), from the total air conditioning load expected, individual The total air conditioning load of the thermal storage air conditioning system is calculated by collecting the outside air temperature heat data, indoor thermal data, and air conditioning load data of each heat storage air conditioning system by time, and summing each air conditioning load by time, and calculating each air conditioning load and total air conditioning load. The air conditioning that has already been set in response to the predicted total air conditioning load and the ratio of the air conditioning load in different time zones is repeated by repeating the process of storing the apportion ratio according to the total air conditioning load. A heat storage air-conditioning system comprising a system air-conditioning load calculation means (9) for calculating an air-conditioning load of each system based on a load distribution ratio Kicking the air-conditioning load prediction apparatus. 蓄熱ユニットと空気調和機とを含む蓄熱空調系統を複数有する蓄熱空調システムにおいて、蓄熱空調システム全体としての合計空調負荷を予測する合計空調負荷予測手段(8)と、予測した合計空調負荷から、個々の蓄熱空調系の外気温熱データ、室内温熱データ、空調負荷データを時刻別に収集し、各空調負荷を時刻別に合計することにより蓄熱空調システムの合計空調負荷を算出し、各空調負荷と合計空調負荷とを用いて計算し、合計空調負荷に応じて按分比を保存する処理を反復することによって、外気温熱環境情報に対応して既に設定されている空調負荷按分比に基づいて各系統の空調負荷を算出する系統空調負荷算出手段(9)とを含むことを特徴とする蓄熱空調システムにおける空調負荷予測装置。In heat storage air conditioning system having a plurality of heat storage air conditioning system including a heat storage unit and air conditioner, and the total air-conditioning load estimating means for estimating the total air conditioning load of the entire heat storage air conditioning system (8), from the total air conditioning load expected, individual The total air conditioning load of the thermal storage air conditioning system is calculated by collecting the outside air temperature heat data, indoor thermal data, and air conditioning load data of each heat storage air conditioning system by time, and summing each air conditioning load by time, and calculating each air conditioning load and total air conditioning load. And by repeating the process of storing the distribution ratio according to the total air conditioning load, the air conditioning load of each system based on the air conditioning load distribution ratio that has already been set according to the outside air temperature thermal environment information An air conditioning load predicting device in a heat storage air conditioning system, comprising: a system air conditioning load calculating means (9) for calculating
JP2000043601A 2000-02-16 2000-02-16 Air conditioning load prediction method and apparatus in heat storage air conditioning system Expired - Fee Related JP4356175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000043601A JP4356175B2 (en) 2000-02-16 2000-02-16 Air conditioning load prediction method and apparatus in heat storage air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000043601A JP4356175B2 (en) 2000-02-16 2000-02-16 Air conditioning load prediction method and apparatus in heat storage air conditioning system

Publications (2)

Publication Number Publication Date
JP2001227795A JP2001227795A (en) 2001-08-24
JP4356175B2 true JP4356175B2 (en) 2009-11-04

Family

ID=18566493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000043601A Expired - Fee Related JP4356175B2 (en) 2000-02-16 2000-02-16 Air conditioning load prediction method and apparatus in heat storage air conditioning system

Country Status (1)

Country Link
JP (1) JP4356175B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008082642A (en) * 2006-09-28 2008-04-10 Shimizu Corp Control device and control method of heat storage tank heat source system
JP2008082641A (en) * 2006-09-28 2008-04-10 Shimizu Corp Control device and control method of heat storage tank heat source system
JP5559519B2 (en) * 2009-11-30 2014-07-23 アズビル株式会社 Air conditioning load estimation device and air conditioning load estimation method
JP5374394B2 (en) * 2010-01-14 2013-12-25 三菱電機ビルテクノサービス株式会社 Air conditioning energy usage prorated system
JP7281265B2 (en) * 2018-10-11 2023-05-25 三菱重工サーマルシステムズ株式会社 Power Consumption Calculation Device, Air Conditioning System, Power Consumption Calculation Method and Program

Also Published As

Publication number Publication date
JP2001227795A (en) 2001-08-24

Similar Documents

Publication Publication Date Title
Zhang et al. An IoT-based thermal model learning framework for smart buildings
CN1884934B (en) Air conditioner control device
US8457933B2 (en) Method for predicting cooling load
Hu et al. Model predictive control strategies for buildings with mixed-mode cooling
Ferrara et al. Energy systems in cost-optimized design of nearly zero-energy buildings
Salimi et al. Optimizing energy consumption and occupants comfort in open-plan offices using local control based on occupancy dynamic data
CN108474577A (en) Electronic device and its air-conditioning control method
KR102051600B1 (en) Real-time operation support methods to improve energy efficiency of building HVAC systems
Daaboul et al. Mixed-mode ventilation and air conditioning as alternative for energy savings: a case study in Beirut current and future climate
KR101301123B1 (en) Prediction method for cooling and heating load
KR20160042669A (en) Central control apparatus for controlling facilities, facility control system comprising the same, and method for controlling facilities
KR20190102391A (en) A method and apparatus for controlling the thermal energy system of a building by predicting individual satisfaction using an artificial neural network
JP2953317B2 (en) Air conditioning heat load prediction system
JP4356175B2 (en) Air conditioning load prediction method and apparatus in heat storage air conditioning system
Shareef et al. Urban block configuration and the impact on energy consumption: A case study of sinuous morphology
Zhang et al. Development of an ambient air temperature prediction model
Muslmani et al. Performance of combined displacement ventilation and cooled ceiling liquid desiccant membrane system in Beirut climate
CN114764521A (en) Garden building shape optimization method and system based on genetic algorithm
Terrill et al. Energy analysis of religious facilities in different climates through a long-term energy study
Fallahpour et al. Outdoor thermal comfort in urban neighbourhoods by coupling of building energy simulation and computational fluid dynamics
CN107392381A (en) A kind of railway vehicle air conditioner system energy consumption Forecasting Methodology, device and computer equipment
Ghiaus Equivalence between the load curve and the free-running temperature in energy estimating methods
JP2019049404A (en) Plan generation device, plan generation method, air conditioning system, and program
CN115689382A (en) Method for measuring and calculating urban building energy consumption by using urban morphology on macro scale
CN103574856B (en) Airconditioning control solution display unit and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090403

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees