JP4355522B2 - Material for treating hazardous substances in wastewater and method for producing the same - Google Patents

Material for treating hazardous substances in wastewater and method for producing the same Download PDF

Info

Publication number
JP4355522B2
JP4355522B2 JP2003161028A JP2003161028A JP4355522B2 JP 4355522 B2 JP4355522 B2 JP 4355522B2 JP 2003161028 A JP2003161028 A JP 2003161028A JP 2003161028 A JP2003161028 A JP 2003161028A JP 4355522 B2 JP4355522 B2 JP 4355522B2
Authority
JP
Japan
Prior art keywords
silicate
wastewater
iron
acid
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003161028A
Other languages
Japanese (ja)
Other versions
JP2004358396A (en
Inventor
徹 大石
良二 高木
勝弘 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Kankyo Engineering Co Ltd
Original Assignee
Nippon Steel Kankyo Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Kankyo Engineering Co Ltd filed Critical Nippon Steel Kankyo Engineering Co Ltd
Priority to JP2003161028A priority Critical patent/JP4355522B2/en
Priority to CNB2004800149735A priority patent/CN100355668C/en
Priority to AU2004245399A priority patent/AU2004245399B2/en
Priority to CA002523572A priority patent/CA2523572A1/en
Priority to PCT/JP2004/008153 priority patent/WO2004108603A1/en
Publication of JP2004358396A publication Critical patent/JP2004358396A/en
Application granted granted Critical
Publication of JP4355522B2 publication Critical patent/JP4355522B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃水中の砒素、カドミニウム、鉛等の重金属類や、リン酸、セレン酸、フッ素などを除去する有害物質処理材及びその製造方法に関する。
【0002】
【従来の技術】
【特許文献1】
特開平6−315681号公報
【特許文献2】
特開2000−73347号公報
【特許文献3】
W002−079100号公報
【特許文献4】
特開2003−112162号公報
【特許文献5】
特開2003−112163号公報
【0003】
廃水中の有害物質の除去方法として、消石灰の粉末又はスラリーを添加する方法が広く行われている。この方法は、薬剤コストが安価であって、有害物質の処理能力には優れているが、廃水中に多量の硫酸イオンと鉄イオンが含有される場合は、鉄イオンがpHの上昇に伴い水酸化第二鉄のコロイドとして析出する他、消石灰と硫酸イオンが反応して難溶性の石膏が生成し、中和材として使用した消石灰の未反応物と共に高含水で難脱水性のスライム状になって沈殿する。このスライムは、脱水性が悪く有害物質を含んだ高含水スラリーであるため、その処理のため高価なシックナー等の固液分離設備、沈殿池、人手のかかるフィルタープレス等のスライムの脱水減容化設備、最終処分用としてスライム堆積用のダム建設が必要となり、処理費用の増加と自然環境に対する影響が問題となっている。また、反応生成物の安定性が悪く、経時変化や酸性化により、水酸化鉄に吸着された砒素等の重金属類が再溶出する危険性があった。
【0004】
高含水・難脱水性のスライム発生を改善するために、発生スライムの脱水性能が高く石膏等の難溶性の反応生成物を生じない酸化マグネシウム粉末を中和材として使用することも検討されているが、薬剤のコストが高い欠点がある。また、低コスト化と発生スライムの脱水性能向上のため、中和材として炭酸カルシウム粉末や石灰石粒を使用することも試みられているが、表面に発生する石膏によりその表面が覆われて中和反応が阻害され、中和材の利用効率が低下する問題があった。また、炭酸カルシウム系の中和材はpHの上昇効果が小さく、廃水中の二価の鉄イオンを水酸化第一鉄として沈殿除去させることが不可能なため、事前にエアレーションや、鉄酸化細菌等によって二価の鉄イオンを三価に酸化しておく事前処理が必要となる。
【0005】
特許文献1は、無機繊維をろ過材や微生物付着用材料として用いることを開示しているが、重金属含有の酸性廃水を処理することは教えていない。特許文献2は、無機繊維と無機水硬性材料からなる暗渠疎水材を開示しているが、従来の藁(ワラ)代替品という位置付けである。また、特許文献3は、ロックウール等の鉱物繊維と、高炉セメント等の無機バインダーとの粒状固化物を用いる酸性廃水処理材を開示している。しかしながら、特許文献3は、多量の鉄イオンを含有する酸性廃水の処理材について開示するだけであり、砒素等の有害物質を含む廃水の処理について一切言及されていない。
【0006】
特許文献4は、砒素又は重金属を含む汚染土壌に、化学的に合成されたシュベルトマナイト、ゲータイト、ジャロサイト、フェリハイドライトのいずれかの鉄化合物を添加し、砒素又は重金属を収着させ、不動態化させることにより、汚染土壌を浄化する方法、特許文献5は、汚染土壌に鉄酸化細菌の培養液を添加し、シュベルトマナイト等の鉄化合物を生成させて、同様に砒素等を収着させる方法を開示している。しかしながら、特許文献4、5は、汚染土壌の浄化について開示するだけであり、砒素等の有害物質を含む廃水の処理について一切言及されていない。
【0007】
【発明が解決しようとする課題】
したがって、本発明の目的は、廃水中の砒素や、鉛、カドミウム等の重金属類や、リン酸、セレン酸、フッ素などを効率的に且つメンテナンスフリーで除去でき、反応生成物の安定性が良好で、経時変化や酸性化によって有害物質が再溶出することが無く、しかも多大な後処理が不要となる廃水の処理材及びその製造方法を提供することにある。
また、本発明の別の目的は、高含水で難脱水性のスライム状になって沈殿せず、高価なシックナー等の固液分離設備、沈殿池、人手のかかるフィルタープレス等のスライムの脱水減容化設備、最終処分用としてスライム堆積用のダム建設等が不要となる廃水の処理材及びその製造方法を提供することにある。
【0008】
【課題を解決するための手段】
すなわち、本発明は、砒素等の有害物質を含む廃水の処理材であって、酸反応性を有する珪酸塩系繊維状無機物質に由来し、少なくとも一部が酸と反応して珪酸分が増加した繊維状材料に担持された含水鉄酸化物からなることを特徴とする廃水中の有害物質処理材である。
前記の有害物質処理材において、珪酸塩系繊維状無機物質は、ロックウール、ニッケルスラグウール及びガラスウールから選ばれる少なくとも一種の珪酸塩系無機繊維を含有するものがよく、珪酸質繊維状無機物質は、ロックウール、ニッケルスラグウール及びガラスウールから選ばれる少なくとも一種より生成したものがよく、繊維状材料は、含水鉄酸化物で鞘状に囲まれたものがよく、空隙率が50%以上、嵩比重が0.1〜1.5であることがよい。前記含水鉄酸化物は、フェリハイドライト、シュベルトマナイト、赤金鉱、針鉄鉱、鱗鉄鉱、赤鉄鉱、磁鉄鉱、磁赤鉄鉱、鉄明礬石から選ばれる少なくとも一種がよい。
【0009】
また、本発明は、砒素等の有害物質を含む廃水の処理材を製造する方法であって、酸反応性を有する珪酸塩系繊維状無機物質又はこれを含む材料を含鉄酸性水で処理し、少なくとも一部が酸と反応して珪酸分が増加した繊維状材料に担持された含水鉄酸化物を得ることを特徴とする廃水中の有害物質処理材の製造方法である。
前記の有害物質処理材の製造方法において、珪酸塩系繊維状無機物質は、珪酸塩系無機繊維又はこれと珪酸塩系無機粉粒体との混合物がよく、含鉄酸性水で処理する際、更に鉄酸化細菌を存在させることがよく、珪酸塩系無機繊維は、ロックウール、ニッケルスラグウール、ガラスウールから選ばれる少なくとも一種であり、珪酸塩系無機粉粒体は、セメントクリンカー、製鉄スラグ、非鉄スラグ、フライアッシュ、コンクリート破砕物から選ばれる少なくとも一種であることがよい。
【0010】
更に、本発明は、珪酸塩系繊維状無機物質を含鉄酸性廃水の処理に使用し、少なくとも一部が酸と反応して珪酸分が増加した繊維状材料に担持された含水鉄酸化物を含む材料とし、次にこれを砒素等の有害物質を含む廃水の処理に使用することを特徴とする廃水の処理方法である。
【0011】
以下、本発明の廃水中の有害物質処理材(処理材というがある)とその製造方法について詳細に説明する。
本発明の処理材は、酸反応性を有する珪酸質繊維状無機物質に由来し、少なくとも一部が酸と反応して珪酸分が増加した繊維状材料に担持された含水鉄酸化物であり、好ましくは、該繊維状材料が含水鉄酸化物で鞘状に囲まれてなるものである。
【0012】
このような処理材は、ロックウール等の珪酸塩系無機繊維又はこれを含む材料を、含鉄酸性水中に浸漬し、中和反応や鉄酸化細菌によりアルカリ成分の一部又は全部を溶出させ、繊維状シリカを形成させると共にその表面へ含水鉄酸化物を析出させることによって製造することができる。
【0013】
この際、生成される含水鉄酸化物は、製造時のpHやエアレーションなどの操作によって、フェリハイドライト、シュベルトマナイト、赤金鉱、針鉄鉱、鱗鉄鉱、赤鉄鉱、磁鉄鉱、磁赤鉄鉱、鉄明礬石から選ばれる一種又は複数の鉱物の集合体である。これらのうち、有害物質の除去性能から、表面活性が高く比表面積が大きい、フェリハイドライト、シュベルトマナイト又は赤金鉱が好ましい。
【0014】
含鉄酸性水の酸性物質と珪酸塩系繊維状無機物質のアルカリ物質との関係にもよるが、処理条件が酸性(pH2〜5程度)である場合には、含水鉄酸化物として、シュベルトマナイト、赤金鉱、針鉄鉱、鉄明礬石が生成される。酸性条件の場合、鉄の酸化を促進するために、鉄酸化細菌が存在することが好ましい。なお、こうした含水鉄酸化物に砒素等の有害物質を吸着した後、アルカリ条件にすることにより、有害物質を放出でき、砒素等を回収することも可能である。一方、処理条件がアルカリ性(pH>7)である場合には、含水鉄酸化物として、フェリハイドライト、鱗鉄鉱、赤鉄鉱、磁鉄鉱、磁赤鉄鉱が生成される。この場合、鉄酸化細菌が存在しない空気酸化によって、鉄は酸化される。なお、こうした含水鉄酸化物に砒素等の有害物質を吸着した後、酸性条件にすることにより、有害物質を放出でき、砒素等を回収することも可能である。
【0015】
製造原料として使用する珪酸塩系無機繊維としては、アルカリ土類金属及び/又はアルカリ金属の珪酸塩を含有する人工又は天然の珪酸塩系無機繊維が挙げられ、好ましくは、ロックウール、ニッケルスラグウール、ガラスウールから選ばれた一種又は二種以上である。より好ましくは、SiO2:30〜50%、Al23:5〜20%、MgO及びCaO:30〜50%、Na2O及びK2O:0〜10%及びその他0〜10%を含有するロックウールである。なお、本明細書において、特に断りのないかぎり%は重量%を表す。その他、結晶質ケイ酸カルシウム水和物であるトバモライト、ゾノトライトや、これらを含有するケイ酸カルシウム板の破砕物も使用可能である。このような珪酸カルシウム板を破砕する場合、例えば数mm〜10mm程度の粒状にするとよい。これに対し、酸との反応性が低い炭素繊維や石英繊維は、含水鉄酸化物の付着性が低いので好ましくない。
【0016】
本発明で使用するロックウールは、未使用品(バージンロックウール)の他、ロックウールを50重量%以上とセメントを含有するロックウール耐火被覆材(吹付けロックウール)の廃棄物やその施工時の回収ロックウールなどでもよい。また、ロックウールと炭酸カルシウム分等を主成分とするロックウール天井板の廃棄物でもよい。未使用品のロックウールには、層状ロックウール、粒状ロックウール等いくつかの形状があるが、好ましくは粒状ロックウールである。粒状ロックウールは、層状ロックウールを粒化機や回転篩などにより粒状に加工したものであり、平均粒径1〜50mm程度、好ましくは5〜40mm程度のものがよい。また、回収ロックウールやバインダーを添加しボード状等に成形した成形ロックウールを粒状に裁断又は破砕したものを用いてもよい。このロックウールは、粒状製品に加工しやすく、透水性や保水性に優れ、空隙が微生物等の繁殖に適している。
【0017】
また、製造原料として、珪酸塩系無機繊維と珪酸塩系無機粉粒体との混合物を使用してもよい。珪酸塩系無機粉粒体としては、珪酸塩系無機繊維よりも珪酸含有量が少なく塩基度の高いものが好ましく、セメントクリンカー、製鉄スラグ、非鉄スラグ、フライアッシュ、コンクリート破砕物から選ばれた一種又は二種以上の粉末や粒子が挙げられる。これらのうち、塩基度がより高いセメントやコンクリートがより好ましい。
【0018】
珪酸塩系無機繊維と珪酸塩系無機粉粒体との混合物を用いる場合は、除去材の製造時に両者を混合してもよいし、あらかじめ両者を混合したものでもよいし、混合後成形したものでもよい。珪酸塩系無機繊維と珪酸塩系無機粉粒体との混合比率は、85:15〜35:65でよい。
【0019】
珪酸塩系無機繊維又はこれと珪酸塩系無機粉粒体との混合物を浸漬する含鉄酸性水としては、硫酸イオン含有量500〜4000mg/l、2価鉄イオン含有量50〜500mg/l、pH1.5〜3.5が好ましい。この酸性溶液1000ml中に珪酸塩系無機繊維又はこれと珪酸塩系無機粉粒体との混合物を10g添加し、常温で24時間攪拌反応させ、pHが2.5〜13に調整された溶液とすることがよい。pHが2.5より低いと反応性が高すぎて溶出量が増加し、芯となるべき多孔質繊維状珪酸が減少する。また、pHが13より高い場合でも同様に珪酸の溶出量が増加し、処理材の透水性や脱水性が悪くなる。好ましくは、pH3〜5未満であるか、あるいは7以上〜13未満である。pH5以上〜7未満では、生成する含水鉄酸化物の有害物質除去性能が小さくなる。
【0020】
また、本発明で使用する鉄酸化細菌は、Thiobacillus ferooxidans、Gallionella ferruginea、Leptothrix ochracea、Leptothrix trichogenes、Clonothrix sp.、Crenothrin sp.、Metallogenium sp.、Ochrobium sp.、Siderocapsa sp.等の一種又は二種以上が挙げられる。使用する含鉄酸性水の種類にもよるが、pH2以下の強酸性水にはThiobacillus ferooxidansが適し、それ以外にはGallionella、Leptothrixなどが好ましい。
【0021】
本発明の除去材の形状に制限はないが、粒状は好ましい形状の一つである。粒状の除去材の製造方法としては、リボンミキサー、回転造粒機等の混合機を用い、主要原料である珪酸塩系無機繊維を粒状に成形すればよい。原料に粒状ロックウールを用いると、粒状に成形する操作が省ける利点がある。粒状物の場合、平均粒径は約1〜200mm、好ましくは5〜50mmであることがよい。
【0022】
他の好ましい形状として層状成形品がある。すなわち、主要原料である珪酸塩系無機繊維を柔軟性バインダー樹脂で一体化した繊維層からなり、更にそれが親水性化処理されているものが好ましい。柔軟性バインダー樹脂としては、加熱によって接着性を発現する塩ビ系、スチレン系、ポリオレフィン系、ポリエステル系、ナイロン系、アクリル系等の熱可塑性樹脂の粉末、溶液、エマルジョンなどがあげられ、好ましくは、繊維状に成型加工された熱融着性繊維が使用できる。また、軟化温度の異なる複数の樹脂を組み合わせて使用することも可能である。
【0023】
これらを一体化して繊維層とする方法としては、珪酸塩系無機繊維と柔軟性バインダー樹脂を解繊し、次いで混合した後、加熱成形して所定の厚さのシート状又はフェルト状にしたものが使用できる。また、湿式抄造でもよい。このフェルトは、例えば柔軟性バインダー樹脂を配合したロックウールをシート状又はマット状に成形した後、剥離強度を向上させるために必要に応じてニードリング処理を行うことができる。この成形中又は成形後に加熱することにより、バインダー樹脂の接着力を発現させ、珪酸塩系無機繊維相互を結合する。この繊維層の密度は30〜300kg/m3、好ましくは60〜250kg/m3、繊維層の厚みは1〜30mm、好ましくは2〜20mm、幅と長さは任意でよい。
【0024】
本発明の除去材は、その形状に係らず、空隙率が50%以上、好ましくは70〜99%である。また、除去材の嵩比重は、0.1〜1.5、好ましくは0.15〜1.0であることがよい。空隙率が大きすぎたり、嵩比重が低すぎたりすると、体積当たりの除去材の量が不足し、中和処理が不十分となる場合がある。逆に、空隙率が低すぎたり、嵩比重が大きすぎたりすると、廃水と接触が十分に行われない。
【0025】
嵩比重は次の方法により測定する。まず、除去材を直径50mm、高さ51mmの円筒形に静かに切り出し(市販の土壌採取用サンプラーを使用するとよい。粒状物の場合は使用状態に合わせて容器内に充填する)、110℃で充分乾燥した後、除去材重量を測定し、その重量を内容積100mlで除して、嵩比重を求める。なお、除去材の厚さが51mmに満たない場合には、高さが51mm以上となるように必要枚数を積層して切り出し作業を行う。
【0026】
また、空隙率は次の方法により測定する。上記の方法で切り出した除去材を、直径50mm、高さが51mmの円筒形容器中に挿入し、上部より水を靜かに注入し、容器の上面と水面が一致した時の水量を計測する。この注入水量を容器の内容積100mlで除して、空隙率を求める。
【0027】
本発明の除去材は、ロックウール等の珪酸塩系無機繊維に由来する繊維状材料を基材とするため、極めて空隙率が高く嵩比重も低い。また、珪酸塩系無機粉粒体が存在しても、繊維状材料の内部には無機粉粒体がほとんど存在しない。したがって、透水性が極めて高く、廃水との反応性に優れると共に、反応後の水はけもよく、静置しておくだけで脱水処理可能であり、透水係数が1×10-3cm/s以上、さらには1×10-2cm/s以上という高い透水性を示すものである。また、廃水処理した後、特別の脱水操作を行うことなく水中から引き上げるだけで、含水率90%以下、さらには80%以下の固形を維持可能である。
【0028】
また、本発明の除去材は、前記の製造方法の他に、次の方法で製造したものも使用することができる。まず、本発明の主要原料(ロックウール等)を、含鉄酸性廃水の処理に使用し、ここで生成した除去材(繊維状材料に担持された含水鉄酸化物)を、次に、砒素等を含有する又は砒素等の除去を目的とする廃水処理現場に持ち込み、そこで使用する態様である。
【0029】
このような含鉄酸性廃水としては、鉱山から排出され、硫化鉄が酸化して生じる2価鉄イオンを含む坑廃水が挙げられる。前者は、坑道から滲み出した坑廃水は小さな流れとなり、これが集まって大きな流れとなったり、低部に溜まってポンプで汲み出されたりして、鉱山から流れ出す。鉱山から流れ出した坑廃水は、一旦貯槽や池に貯められ、処理されたのち河川に排出される。その他、鉱石分を含んだ廃石堆積場、鉱石の露頭、露天掘り等の採掘跡地、炭鉱のボタ山、精錬所の廃さい堆積場などで廃水が浸出してくる箇所や堆積場から、流出する含鉄廃水にも有効である。
【0030】
含鉄酸性廃水処理材は、廃水処理すべき場所、例えば旧鉱山の坑口、鉱石分を含んだ廃石堆積場、鉱石の露頭、露天掘り等の採掘跡地、炭鉱のボタ山、精錬所の廃さい堆積場などで廃水が滲み出す部分や、これらが小さな流れとなる箇所に施工することが好ましい。
【0031】
本発明の除去材は、廃水であればいかなるものにも適用可能であるが、砒素、カドミウム、鉛等の重金属類、リン酸、セレン酸、フッ素等のイオンを一種又は二種以上含有し、pH8以下、好ましくはpH2.5〜6である廃水に対し特に有効である。特に、重金属類やリン酸等を含む工業廃水、鉱山廃水、農業廃水、さらには試薬の後処理などにも適用可能である。
【0032】
廃水が大きな流れとなっている箇所に、本発明の除去材を使用する場合は、これを充填した容器を設け、ここに廃水を流すことが有利である。この場合、廃水と除去材の接触時間が15分以上、好ましくは30分〜5時間程度となるように充填層の厚みや廃水の流速を制御することがよい。そして、処理後の廃水のpHが低い場合には別途苛性ソーダ等の中和材を添加することがよい。
【0033】
また、廃水が一旦貯槽や池に貯められ箇所で、本発明の除去材を使用する場合は、粒状、層状の除去材をそのまま添加したり、かご状の容器に充填して、これを水中に沈めたり、つるしたりすることがよい。使用済みの除去材を新品と交換する場合は、容器に入れて使用することが有利である。そして、これらの処理方法を複数組合せて使用することも有利である。
【0034】
なお、本発明の除去材との接触温度は常温、接触時間は充填量、透水量、廃水中に含まれる有害物質のイオン濃度、処理水に求められる水質等によって変化するが、例えば30分以上、好ましくは60分以上である。
【0035】
本発明の除去材を使用した場合の能力は物理的に通水が困難となった時点で交換するか、処理水中の有害物質濃度が規制値に達する直前に取替えるか追加することが望ましい。
【0036】
そして、使用済みの除去材は多量の鉄分を含有するので、亜硫酸ガスの吸着除去材やダイオキシンの分解材となる活性酸化鉄の原料や鉄含有の土壌改良材、セメント用鉄原料、製鉄原料等として使用することができ、リサイクル活用が容易である。
【0037】
【実施例】
実施例1
珪酸塩系無機繊維としてロックウール(新日化ロックウール株式会社製、エスファイバー粒状綿、平均粒径30mm)、ニッケルスラグウール(太平洋金属株式会社製、粒状綿、平均粒径30mm)、グラスウール(樹脂なし短繊維)をそれぞれ75g用い、試薬の硫酸第一鉄、石膏及び硫酸を用いてpH2、総鉄イオン340mg/l、カルシウムイオン250mg/l、硫酸イオン2000mg/lの酸性溶液5L中に添加し、常温で28日間反応させた。
その時の各珪酸塩系無機繊維への鉄分の付着率を溶液中に残存する鉄分濃度を測定して算出した。また、反応後の溶液のpHを測定した。さらに、鉄分の繊維表面への付着性を見るため、溶液中で5分間攪拌し、繊維と反応生成物との分離状態を目視にて確認した。また、繊維表面に付着した鉄分を高出力型X線粉末回折装置で分析した。結果を表1に示す。
なお、表1において、RWはロックウール、NWはニッケルスラグウール、GWはグラスウール、CFは炭素繊維、SFは石英繊維であり、S+Gは低結晶度のシュベルトマナイトと針鉄鉱との混合物であり、−は生成物が少なく測定不能を示す。
【0038】
比較例1
無機繊維として炭素繊維(ピッチ系短繊維)、石英繊維(組織培養用短繊維)を使用した以外は、実施例1と同様の酸性溶液、反応条件とした場合の各繊維への鉄分の付着率、付着性と溶液のpHを表1に示す。
【0039】
実施例2
実施例1と同じ珪酸塩系無機繊維を使用し、実施例1と同じ酸性溶液を使用し、更に鉄酸化細菌Thiobacillus ferooxidansを含有するバイオマット15gを添加し、室温で28日間反応させた。その時の各珪酸塩系無機繊維への鉄分の付着率、付着性と反応後の溶液のpHを表1に示す。
【0040】
比較例2
比較例1と同様な試験において、実施例2と同じ鉄酸化細菌を存在させた場合の各繊維への鉄分の付着率、付着性と溶液のpHを表1に示す。
【0041】
【表1】

Figure 0004355522
【0042】
表1の結果から、珪酸塩系無機繊維としてロックウール、ニッケルスラグウール、グラスウールを使用した実施例1と2は、無機繊維として炭素繊維、石英繊維を使用した比較例1と2に比べて、含水鉄酸化物が効率よく繊維に担持されることが認められた。
【0043】
実施例3
珪酸塩系無機繊維としてロックウール(新日化ロックウール株式会社製、エスファイバー粒状綿、平均粒径30mm)、珪酸塩系無機粉粒体として高炉セメント(新日鐵高炉セメント株式会社製、B種高炉セメント)を使用した。
ロックウール60重量%、高炉セメント40重量%をリボンミキサーで攪拌混合し、平均粒径20mm、嵩比重0.15、空隙率94%の粒状混合物を得た。この粒状混合物の化学組成はSiO2:33.0%、Al23:10.2%、CaO:47.8%、MgO:4.2%、Fe23:1.4%、TiO2:0.5%、MnO:0.2%、SO3:0.7%、Ig.loss:1.2%であった。
次に、試薬の硫酸第一鉄、石膏及び硫酸を用いて、硫酸イオン1080mg/l、総鉄イオン137mg/l、カルシウムイオン250mg/lを含有するpH2.5の酸性溶液を準備した。
直径10.4cmの合成樹脂製カラム中に粒状混合物100gを厚さ6.8cm、嵩比重0.174になるように充填し、酸性溶液を5L/日の通水量で上面から50Lかけ流した。その時の粒状混合物への鉄分の付着率を溶液中に残存する鉄分濃度を測定して算出したところ、ほぼ100%であり、材1kgあたりの鉄分付着量は金属鉄換算で68.5gであった。また、反応終了時の排出溶液のpHと鉄分濃度を測定したところ、pH10.0、総鉄イオン0.01mg/lであった。
更に、反応後において含水鉄酸化物が担持された繊維質材料(処理材)について、その透水性を測定したところ、透水係数は4.0×10-1cm/secであり、反応終了時の含水率は76%であった。また、繊維表面に付着した鉄分を高出力型X線粉末回折装置で分析した結果、低結晶度のフェリハイドライトであった。
【0044】
実施例4
高炉セメントに代えてポルトランドセメントを使用した以外は実施例3と同じ粒状混合物、酸性溶液、実験装置を使用し、鉄酸化細菌Thiobacillus ferooxidansを添加した酸性溶液を5L/日の通水量で上面から300Lかけ流した。その時の粒状混合物への鉄分の付着率を溶液中に残存する鉄分濃度を測定して算出したところ、ほぼ99%であり、材1kgあたりの鉄分付着量は金属鉄換算で407gであった。また、反応終了時の排出溶液のpHと鉄分濃度を測定したところ、pH4.0、総鉄イオン1.4mg/l、硫酸イオン1000mg/l、珪酸16mg/l、カルシウムイオン297mg/lであった。
さらに、反応後において含水鉄酸化物が担持された繊維質材料(処理材)について、その透水性を測定したところ、透水係数は7.0×10-2cm/secであり、反応終了時の含水率は78%であった。
含水鉄酸化物が担持された繊維質材料(処理材)を電子顕微鏡で観察したところ、ロックウール繊維の周囲に数ミクロンの瘤状の生成物が連なって鞘状に沈積しており、この瘤状生成物はサブミクロンの針状粒子の集合体であった。また、反応後のロックウール繊維の化学組成をEPMAで分析したところ、SiO2:98.3%、Al23:0.8%、CaO:0.0%からなり、繊維形状を保持した多孔質シリカとなっていた。含水鉄酸化物全体の化学組成については、Fe23:85.6%、SiO2:2.8%、CaO:0.2%、SO3:11.0%であり、高出力型X線粉末回折装置で分析した結果、低結晶度のシュベルトマナイトであった。
図1に本実施例で得られた処理材の繊維構造のSEM写真を示す。図2は、図1の○で囲んだ箇所の拡大SEM写真である。これらの図において、繊維状物質の表面に生成担持されているのがシュベルトマナイトである。
【0045】
実施例5
実施例3で得られた処理材を用い、3価砒素イオン15mg/l、カドミウムイオン15mg/l、鉛イオン15mg/lを含むpH3.6の硝酸酸性溶液1L中に処理材9g/l添加し、常温で1時間反応させ、濾液中の濃度とpHを測定したところ、3価砒素イオン3.7mg/l、カドミウムイオン0.05mg/l、鉛イオン0.01mg/l、pH9.4であった。
【0046】
実施例6
実施例4で得られた処理材を用い、3価砒素イオン15mg/l、カドミウムイオン15mg/l、鉛イオン15mg/lを含むpH3.6の硝酸酸性溶液1L中に処理材9g/l添加し、常温で1時間反応させ、濾液中の濃度とpHを測定したところ、3価砒素イオン2.4mg/l、カドミウムイオン0.75mg/l、鉛イオン3.45mg/l、pH3.0であった。
【0047】
比較例3
試薬の硫酸第一鉄、石膏及び硫酸を用いて、硫酸イオン1080mg/l、総鉄イオン137mg/l、カルシウムイオン250mg/lを含有するpH2.5の酸性溶液1L中に、消石灰を580mg添加し、常温で24時間攪拌して含水鉄酸化物(フェリハイドライト)を生成した後、減圧濾過(ヌッチェ、内径70mm、ろ紙5Cを使用)で濾過試験を行ったところ、濾過時間は342秒、濾過殿物の透水性能は4×10-6cm/sであり、極めて透水性に劣るものであった。
【0048】
比較例4
比較例3の消石灰に代えて、1規定の水酸化ナトリウム水溶液を使用して含水鉄酸化物(フェリハイドライト)を生成した後、減圧濾過(ヌッチェ、内径70mm、ろ紙5Cを使用)で濾過試験を行ったところ、濾過時間は93秒、濾過殿物の透水性能は1×10-5cm/sであり、極めて透水性に劣るものであった。
【0049】
比較例5
比較例3と同様な酸性溶液中に、鉄酸化細菌Thiobacillus ferooxidansを添加し、常温で1L/分の空気を吹き込みながら7日間攪拌して含水鉄酸化物(シュベルトマナイト)を生成した後、減圧濾過(ヌッチェ、内径70mm、ろ紙5Cを使用)で濾過試験を行ったところ、濾過時間は342秒、濾過殿物の透水性能は6×10-6cm/sであり、極めて透水性に劣るものであった。
【0050】
実施例7
実施例4で得られた処理材を用い、含砒素人工廃水(3価砒素イオン50mg/l)を処理したところ、添加量5g/lで砒素除去率は45.2%であり、含リン人工廃水(リン酸98mg/l)を処理したところ、添加量5g/lでリン除去率は99.5%であり、含フッ素人工廃水(フッ素3.6mg/l)を処理したところ、添加量100g/lでフッ素除去率は40%であった。
また、廃水処理後の処理材は、繊維表面において繊維状シリカがシュベルトマナイトで鞘状に囲まれており、このシュベルトマナイトで砒素等が取り込まれているため、安定的に存在している。そのため、この処理材をそのまま取り出して後処理することが可能であった。
【0051】
実施例8
ニッケルスラグウール(太平洋金属株式会社製、粒状綿、平均粒径30mm)50重量部と、含水鉄酸化物として、人工含水鉄酸化物(シュベルトマナイト:SMN)、マグネタイト(MG)、針鉄鉱(GE)、フェリハイドライト(FH)のいずれか50重量部とアクリルエマルジョン2重量部を用い、リボンミキサーで攪拌混合し、平均粒径20mm、嵩比重0.2、空隙率95%の粒状混合物として、含水鉄酸化物が担持された処理材を得た。
人工含水鉄酸化物としてのシュベルトマナイトは、硫酸第一鉄、石膏及び硫酸を用いて、硫酸イオン1080mg/l、総鉄イオン137mg/l、カルシウムイオン250mg/lを含有するpH2.5の酸性溶液を準備し、その酸性溶液中に、鉄酸化細菌Thiobacillus ferooxidansを添加し、常温で1L/分の空気を吹き込みながら7日間攪拌して生成させたものを使用した。
また、マグネタイト、針鉄鉱、フェリハイドライトとしては、市販(テツゲン株式会社製)のものを使用した。
その処理材を用いて、含砒素人工廃水(3価砒素イオン50mg/l)や含リン人工廃水(リン酸98mg/l)を添加量10g/lで処理したところ、表2のとおり、優れた脱砒素率、脱リン率を示した。また、廃水処理後の処理材は、スライム状にならず、処理材をそのまま取り出して後処理することが可能であった。
【0052】
【表2】
Figure 0004355522
【0053】
実施例9
珪酸塩系無機繊維としてロックウール(新日化ロックウール株式会社製、エスファイバー粒状綿、平均粒径30mm)、珪酸塩系無機粉粒体として高炉セメント(新日鐵高炉セメント株式会社製、B種高炉セメント)を使用した。
ロックウール60重量%、高炉セメント40重量%をリボンミキサーで攪拌混合し、平均粒径20mm、嵩比重0.15、空隙率94%の粒状混合物を得た。幅120cm、高さ90cm、厚さ16cmの合成樹脂製カラム中に粒状混合物20kgを厚さ60cm、嵩比重0.174になるように充填した。
硫酸イオン875mg/l、総鉄イオン124mg/l、カルシウムイオン226mg/lを含有し、鉄酸化細菌Thiobacillus ferooxidansが生息するpH2.8の硫化鉄鉱山の酸性坑廃水を1L/日の通水量で上面から500L掛け流した。その時の粒状混合物への鉄分の付着率を溶液中に残存する鉄分濃度を測定して算出したところ、ほぼ100%であり、材20kgあたりの鉄分付着量は金属鉄換算で約6kgであった。また、反応終了時の排出溶液のpHと鉄分濃度を測定したところ、pH4.1、総鉄イオン0.09mg/lであった。また、透水性を測定したところ、透水係数(cm/sec)は0.6×10-2であり、反応終了時の含水率は78%であった。また、100℃乾燥物の嵩比重は0.18であった。構成鉱物を高出力型X線粉末回折装置で分析した結果、低結晶度のシュベルトマナイトと針鉄鉱の混合物であった。
次に、pH6.9、砒素イオン1.07mg/l、総鉄イオン0.07mg/l、鉛イオン0.003mg/lを含む坑廃水を0.5L/日の通水量で上面から10Lかけ流した。その時の処理水を分析したところ、pH3.9、砒素イオン0.01mg/l、総鉄イオン2.3mg/l、鉛イオンは不検出であった。さらに、反応後の透水性を測定したところ、透水係数0.5×10-2であり、反応終了時の含水率は77%であった。また、100℃乾燥物の嵩比重は、0.19であった。構成鉱物を高出力型X線粉末回折装置で分析した結果、低結晶度のシュベルトマナイトと針鉄鉱の混合物であった。
【0054】
【発明の効果】
本発明の有害物質処理材は、廃水中の鉛、砒素、カドミウム等の重金属類や、リン酸、セレン酸、フッ素などを効率的に除去することができ、使用後においても透水性能が維持され、長期間使用することができる。また、石灰中和処理のようなスライムの発生が少なく、使用済みの処理材は多量の鉄分を含有するので、ダイオキシン除去用・脱硫用等の活性酸化鉄の原料や土壌改良材、セメント用鉄原料、製鉄原料等として使用することができ、リサイクル活用が容易である。
【図面の簡単な説明】
【図1】 実施例4の処理材の繊維構造を示すSEM写真である。
【図2】 図1の拡大SEM写真である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hazardous substance treating material for removing heavy metals such as arsenic, cadmium, lead, etc., phosphoric acid, selenic acid, fluorine and the like in wastewater and a method for producing the same.
[0002]
[Prior art]
[Patent Document 1]
JP-A-6-315681
[Patent Document 2]
JP 2000-73347 A
[Patent Document 3]
W002-079100 gazette
[Patent Document 4]
JP 2003-112162 A
[Patent Document 5]
JP 2003-112163 A
[0003]
As a method for removing harmful substances from wastewater, a method of adding slaked lime powder or slurry is widely used. This method is low in drug cost and excellent in the ability to treat harmful substances. However, when a large amount of sulfate ions and iron ions are contained in the wastewater, the iron ions are dissolved in water as the pH increases. In addition to depositing as a ferric oxide colloid, slaked lime and sulfate ions react to form poorly soluble gypsum, which forms a highly water-containing and hardly dehydrated slime with unreacted slaked lime used as a neutralizer. To settle. Since this slime is a highly water-containing slurry with poor dehydration and containing harmful substances, dehydration and volume reduction of slime such as expensive solid-liquid separation equipment such as thickeners, sedimentation basins, and manual filter presses are required for the treatment. Construction of a dam for depositing slime is required for equipment and final disposal, and the increase in processing costs and the impact on the natural environment are problematic. Further, the stability of the reaction product was poor, and there was a risk that heavy metals such as arsenic adsorbed on iron hydroxide were re-eluted due to aging and acidification.
[0004]
In order to improve the generation of slime that has high water content and hardly dehydrated, the use of magnesium oxide powder, which has high dewatering performance of the generated slime and does not produce poorly soluble reaction products such as gypsum, is also being investigated. However, there is a drawback that the cost of the drug is high. In addition, in order to reduce the cost and improve the dewatering performance of the generated slime, it is also attempted to use calcium carbonate powder or limestone grains as a neutralizing material, but the surface is covered with gypsum generated on the surface and neutralized. There was a problem that the reaction was hindered and the utilization efficiency of the neutralizing material was lowered. In addition, the calcium carbonate-based neutralizer has a small effect of raising the pH, and it is impossible to precipitate and remove divalent iron ions in wastewater as ferrous hydroxide. For example, a pretreatment is required to oxidize divalent iron ions to trivalent.
[0005]
Although patent document 1 is disclosing using inorganic fiber as a filter medium or a material for microorganisms adhesion, it does not teach treating the heavy metal containing acidic waste water. Patent Document 2 discloses a dark phobic hydrophobic material made of inorganic fibers and an inorganic hydraulic material, but is positioned as a conventional straw substitute. Patent Document 3 discloses an acidic wastewater treatment material using a granular solidified product of mineral fibers such as rock wool and an inorganic binder such as blast furnace cement. However, Patent Document 3 only discloses a treatment material for acidic wastewater containing a large amount of iron ions, and does not mention any treatment of wastewater containing harmful substances such as arsenic.
[0006]
Patent Document 4 adds a chemically synthesized iron compound of Schwertmannite, goethite, jarosite, ferrihydrite to contaminated soil containing arsenic or heavy metal, and sorbs arsenic or heavy metal, Patent Document 5 discloses a method for purifying contaminated soil by passivating it, adding a culture solution of iron-oxidizing bacteria to the contaminated soil to produce iron compounds such as Schwbertmannite, and similarly collecting arsenic and the like. A method of wearing is disclosed. However, Patent Documents 4 and 5 only disclose the purification of contaminated soil, and do not mention any treatment of wastewater containing harmful substances such as arsenic.
[0007]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to remove arsenic in wastewater, heavy metals such as lead and cadmium, phosphoric acid, selenic acid, fluorine, etc. efficiently and maintenance-free, and the stability of the reaction product is good Thus, an object of the present invention is to provide a wastewater treatment material and a method for producing the same, in which harmful substances are not re-eluted due to aging and acidification, and a large amount of post-treatment is not required.
Further, another object of the present invention is to reduce the dehydration of slime such as solid water-liquid separation equipment such as expensive thickeners, sedimentation ponds, and laborious filter presses. It is an object of the present invention to provide a wastewater treatment material that eliminates the need for construction of a dam for depositing slime for final disposal, and a method for producing the same.
[0008]
[Means for Solving the Problems]
That is, the present invention is a wastewater treatment material containing a harmful substance such as arsenic, which is derived from a silicate-based fibrous inorganic substance having acid reactivity, and at least a part thereof reacts with an acid to increase the silicic acid content. A toxic substance treatment material in wastewater, characterized by comprising hydrous iron oxide supported on a fibrous material.
In the above hazardous substance treatment material, the silicate fibrous inorganic substance preferably contains at least one silicate inorganic fiber selected from rock wool, nickel slag wool and glass wool, and is a siliceous fibrous inorganic substance. Is preferably produced from at least one selected from rock wool, nickel slag wool and glass wool, and the fibrous material is preferably enclosed in a sheath with hydrous iron oxide, and the porosity is 50% or more, The bulk specific gravity is preferably 0.1 to 1.5. The hydrated iron oxide is preferably at least one selected from ferrihydrite, schbertmanite, hematite, goethite, sprite, hematite, magnetite, maghemite, and iron alunite.
[0009]
Further, the present invention is a method for producing a wastewater treatment material containing a harmful substance such as arsenic, wherein the silicate-based fibrous inorganic substance having acid reactivity or a material containing the same is treated with iron-containing acidic water, A method for producing a toxic substance treatment material in wastewater, characterized in that a hydrous iron oxide supported on a fibrous material at least partially reacted with an acid to increase a silicic acid content is obtained.
In the above method for producing a harmful substance treatment material, the silicate fibrous inorganic substance may be a silicate inorganic fiber or a mixture of the silicate inorganic powder and a silicate inorganic powder, and when treated with iron-containing acidic water, It is preferable that iron-oxidizing bacteria exist, and the silicate inorganic fiber is at least one selected from rock wool, nickel slag wool, and glass wool, and the silicate inorganic powder is cement clinker, iron slag, non-ferrous It may be at least one selected from slag, fly ash, and concrete crushed material.
[0010]
Furthermore, the present invention uses a silicate-based fibrous inorganic substance for the treatment of iron-containing acidic wastewater, and includes a hydrous iron oxide supported on a fibrous material at least partially reacted with an acid to increase the silicic acid content. It is a wastewater treatment method characterized in that it is used as a material and then used for treatment of wastewater containing harmful substances such as arsenic.
[0011]
Hereinafter, the hazardous substance treatment material (referred to as a treatment material) in the wastewater of the present invention and the production method thereof will be described in detail.
The treatment material of the present invention is a hydrous iron oxide supported on a fibrous material derived from a silicic fibrous inorganic substance having acid reactivity and at least partially reacting with an acid to increase the silicic acid content, Preferably, the fibrous material is surrounded by a hydrated iron oxide in a sheath shape.
[0012]
Such a treatment material is made by immersing a silicate-based inorganic fiber such as rock wool or a material containing the same in iron-containing acidic water, and eluting a part or all of the alkaline component by a neutralization reaction or iron-oxidizing bacteria. It can be produced by forming hydrated silica and precipitating hydrous iron oxide on its surface.
[0013]
At this time, the produced hydrous oxide is ferrihydrite, schbertmanite, hematite, goethite, sphalerite, hematite, magnetite, maghemite, iron by operations such as pH and aeration during production. It is an aggregate of one or more minerals selected from alunite. Among these, ferrihydrite, schwertmannite, or red gold ore, which have high surface activity and a large specific surface area, are preferable in terms of removing harmful substances.
[0014]
Depending on the relationship between the acidic substance of the iron-containing acidic water and the alkali substance of the silicate fibrous inorganic substance, if the treatment conditions are acidic (pH 2 to 5), the hydrated iron oxide is Schwbertmannite. , Red gold ore, goethite and iron alunite are produced. In the case of acidic conditions, iron-oxidizing bacteria are preferably present in order to promote iron oxidation. In addition, after adsorbing toxic substances such as arsenic to such hydrated iron oxide, the toxic substances can be released and recovered by using alkaline conditions. On the other hand, when the treatment conditions are alkaline (pH> 7), ferrihydrite, sphalerite, hematite, magnetite, and maghemite are produced as hydrous iron oxides. In this case, iron is oxidized by air oxidation in the absence of iron-oxidizing bacteria. In addition, after adsorbing toxic substances such as arsenic to such hydrated iron oxides, it is possible to release toxic substances and recover arsenic by using acidic conditions.
[0015]
Examples of the silicate inorganic fiber used as a raw material for production include artificial or natural silicate inorganic fibers containing alkaline earth metal and / or alkali metal silicate, preferably rock wool, nickel slag wool. , One or more selected from glass wool. More preferably, SiO 2 : 30-50%, Al 2 O Three : 5-20%, MgO and CaO: 30-50%, Na 2 O and K 2 O: Rock wool containing 0 to 10% and other 0 to 10%. In the present specification, “%” represents “% by weight” unless otherwise specified. In addition, tobermorite and zonotolite which are crystalline calcium silicate hydrates, and crushed materials of calcium silicate plates containing these can also be used. When such a calcium silicate board is crushed, it is preferable that the calcium silicate plate has a grain size of, for example, several mm to 10 mm. On the other hand, carbon fibers and quartz fibers having low reactivity with acids are not preferable because the adhesion of hydrous iron oxide is low.
[0016]
The rock wool used in the present invention is an unused product (virgin rock wool), waste of rock wool fireproof covering material (blown rock wool) containing 50% by weight or more of rock wool and cement, and at the time of its construction The recovered rock wool may be used. Moreover, the waste of the rock wool ceiling board which has rock wool, a calcium carbonate content, etc. as a main component may be sufficient. The unused rock wool has several shapes such as layered rock wool and granular rock wool, and granular rock wool is preferable. The granular rock wool is obtained by processing layered rock wool into a granular shape by a granulator or a rotary sieve, and has an average particle diameter of about 1 to 50 mm, preferably about 5 to 40 mm. Moreover, you may use what cut | judged or crush | pulverized the shaping | molding rock wool shape | molded in the board shape etc. by adding collection | recovery rock wool or a binder. This rock wool is easy to process into a granular product, has excellent water permeability and water retention, and the voids are suitable for propagation of microorganisms and the like.
[0017]
Moreover, you may use the mixture of a silicate type inorganic fiber and a silicate type inorganic granular material as a manufacturing raw material. As the silicate inorganic particles, those having a lower silicic acid content and higher basicity than the silicate inorganic fibers are preferable, and one kind selected from cement clinker, iron slag, non-ferrous slag, fly ash, and concrete crushed material Or 2 or more types of powder and particle | grains are mentioned. Among these, cement and concrete having higher basicity are more preferable.
[0018]
When using a mixture of silicate-based inorganic fibers and silicate-based inorganic particles, both may be mixed during the production of the removal material, or both may be mixed in advance, or molded after mixing But you can. The mixing ratio of the silicate inorganic fiber and the silicate inorganic powder may be 85:15 to 35:65.
[0019]
The iron-containing acidic water in which the silicate-based inorganic fiber or the mixture of the silicate-based inorganic particles and the silicate-based inorganic powder is immersed is sulfate-containing 500 to 4000 mg / l, divalent iron ion content 50 to 500 mg / l, pH 1 0.5 to 3.5 are preferred. 10 g of this silicate-based inorganic fiber or a mixture of this and a silicate-based inorganic powder is added to 1000 ml of this acidic solution, and the mixture is stirred at room temperature for 24 hours to adjust the pH to 2.5-13. It is good to do. When the pH is lower than 2.5, the reactivity is too high, the amount of elution increases, and the porous fibrous silicic acid to be the core decreases. In addition, even when the pH is higher than 13, the amount of silicic acid eluted increases in the same manner, and the water permeability and dewaterability of the treatment material deteriorate. Preferably, the pH is 3 to less than 5, or 7 or more to less than 13. When the pH is from 5 to less than 7, the ability to remove harmful substances from the produced hydrous iron oxide is reduced.
[0020]
The iron-oxidizing bacterium used in the present invention is one or more of Thiobacillus ferooxidans, Gallionella ferruginea, Leptothrix ochracea, Leptothrix trichogenes, Clonothrix sp., Crenothrin sp., Metallogenium sp., Ochrobium sp., Siderocapsa sp. Is mentioned. Depending on the type of iron-containing acidic water used, Thiobacillus ferooxidans is suitable for strongly acidic water having a pH of 2 or lower, and Gallionella, Leptothrix, etc. are preferred.
[0021]
Although there is no restriction | limiting in the shape of the removal material of this invention, a granule is one of the preferable shapes. As a method for producing the granular removal material, a silicate-based inorganic fiber as a main raw material may be formed into a granular shape using a mixer such as a ribbon mixer or a rotary granulator. When granular rock wool is used as a raw material, there is an advantage that the operation of forming into granular form can be omitted. In the case of a granular material, the average particle diameter is about 1 to 200 mm, preferably 5 to 50 mm.
[0022]
Another preferred shape is a layered molded product. That is, it is preferable to use a fiber layer obtained by integrating silicate-based inorganic fibers, which are main raw materials, with a flexible binder resin, and that has been subjected to a hydrophilic treatment. Examples of the flexible binder resin include polyvinyl chloride, styrene, polyolefin, polyester, nylon, acrylic, and other thermoplastic resin powders, solutions, emulsions, and the like that exhibit adhesiveness by heating. A heat-fusible fiber molded into a fiber can be used. It is also possible to use a plurality of resins having different softening temperatures in combination.
[0023]
As a method of integrating these into a fiber layer, a silicate-based inorganic fiber and a flexible binder resin are defibrated, then mixed, and then heat molded to form a sheet or felt having a predetermined thickness Can be used. Also, wet papermaking may be used. This felt can be subjected to needling treatment as necessary in order to improve the peel strength, for example, after rock wool blended with a flexible binder resin is formed into a sheet or mat shape. By heating during or after the molding, the adhesive strength of the binder resin is expressed and the silicate inorganic fibers are bonded to each other. The density of this fiber layer is 30 to 300 kg / m Three , Preferably 60-250kg / m Three The thickness of the fiber layer is 1 to 30 mm, preferably 2 to 20 mm, and the width and length may be arbitrary.
[0024]
The removal material of the present invention has a porosity of 50% or more, preferably 70 to 99%, regardless of its shape. Further, the bulk specific gravity of the removing material is 0.1 to 1.5, preferably 0.15 to 1.0. If the porosity is too large or the bulk specific gravity is too low, the amount of the removal material per volume may be insufficient and the neutralization treatment may be insufficient. On the other hand, if the porosity is too low or the bulk specific gravity is too large, the waste water cannot be sufficiently contacted.
[0025]
The bulk specific gravity is measured by the following method. First, the removal material is gently cut into a cylindrical shape with a diameter of 50 mm and a height of 51 mm (a commercially available sampler for soil collection may be used. In the case of a granular material, it is filled in a container according to the state of use) at 110 ° C. After sufficiently drying, the weight of the removal material is measured, and the weight is divided by the internal volume of 100 ml to determine the bulk specific gravity. When the thickness of the removal material is less than 51 mm, the necessary number of sheets are stacked so that the height is 51 mm or more, and the cutting operation is performed.
[0026]
The porosity is measured by the following method. The removal material cut out by the above method is inserted into a cylindrical container having a diameter of 50 mm and a height of 51 mm, water is injected from the upper part, and the amount of water when the upper surface of the container and the water surface coincide is measured. . The porosity is determined by dividing the amount of injected water by the internal volume of 100 ml of the container.
[0027]
Since the removing material of the present invention is based on a fibrous material derived from silicate-based inorganic fibers such as rock wool, it has an extremely high porosity and a low bulk specific gravity. Moreover, even if the silicate-based inorganic powder is present, the inorganic powder is hardly present inside the fibrous material. Therefore, the water permeability is extremely high, the reactivity with waste water is excellent, the water after the reaction is well drained, and it can be dehydrated just by standing, and the water permeability coefficient is 1 × 10. -3 cm / s or more, or 1 × 10 -2 It shows high water permeability of cm / s or more. In addition, after the waste water treatment, the solid content can be maintained at a moisture content of 90% or less, and further 80% or less simply by pulling it up from the water without performing a special dehydration operation.
[0028]
Moreover, what was manufactured with the following method other than the said manufacturing method can also be used for the removal material of this invention. First, the main raw material of the present invention (rock wool, etc.) is used for the treatment of iron-containing acidic wastewater, the removal material produced here (hydrous iron oxide supported on the fibrous material), then arsenic, etc. It is an embodiment in which it is brought into a wastewater treatment site for the purpose of containing or removing arsenic and used there.
[0029]
Examples of such iron-containing acidic wastewater include mine wastewater containing divalent iron ions that are discharged from a mine and oxidized from iron sulfide. In the former case, the mine drainage that has oozed out of the mine shaft becomes a small flow that collects into a large flow, or accumulates in the lower part and is pumped out by a pump and flows out of the mine. Mine wastewater flowing out of the mine is temporarily stored in storage tanks and ponds, treated, and then discharged into the river. In addition, outflows from places where the wastewater leaches out and deposits, such as ore deposits containing ore, ore outcrops, mining sites such as open-pit mining, coal mine pits, and smelting depots of smelters. It is also effective for iron-containing wastewater.
[0030]
Iron-containing acidic wastewater treatment materials are used for wastewater treatment, such as old mine wells, ore deposits containing ores, ore outcrops, mining sites such as open-pit mining, coal mine pits, and smelter waste deposits. It is preferable to construct it at a part where waste water oozes out at a place or the like where these become a small flow.
[0031]
The removal material of the present invention can be applied to any wastewater, but contains one or more ions such as arsenic, cadmium, lead and other heavy metals, phosphoric acid, selenic acid, fluorine, This is particularly effective for waste water having a pH of 8 or less, preferably 2.5 to 6. In particular, the present invention can be applied to industrial wastewater containing heavy metals, phosphoric acid and the like, mine wastewater, agricultural wastewater, and reagent post-treatment.
[0032]
When the removal material of the present invention is used at a location where the waste water is in a large flow, it is advantageous to provide a container filled with this and flow the waste water here. In this case, it is preferable to control the thickness of the packed bed and the flow rate of the waste water so that the contact time between the waste water and the removal material is 15 minutes or longer, preferably about 30 minutes to 5 hours. And when the pH of the wastewater after a process is low, it is good to add neutralizing materials, such as caustic soda, separately.
[0033]
In addition, when using the removing material of the present invention where the wastewater is once stored in a storage tank or pond, the granular or layered removing material can be added as it is, or it can be filled into a basket-like container and placed in water. It is good to sink or hang. When the used removal material is replaced with a new one, it is advantageous to use it in a container. It is also advantageous to use a combination of these treatment methods.
[0034]
The contact temperature with the removal material of the present invention is normal temperature, the contact time varies depending on the filling amount, water permeability, ion concentration of harmful substances contained in wastewater, water quality required for treated water, etc., for example, 30 minutes or more , Preferably 60 minutes or longer.
[0035]
It is desirable to replace the capacity when the removal material of the present invention is used when it becomes physically difficult to pass water, or to replace or add immediately before the concentration of harmful substances in the treated water reaches the regulation value.
[0036]
And since the used removal material contains a large amount of iron, the raw material for activated iron oxide, the iron-containing soil improvement material, the iron raw material for cement, the raw material for iron making, etc. Can be used as, and easy to recycle.
[0037]
【Example】
Example 1
Rock wool (manufactured by Nippon Kayaku Rock Wool Co., Ltd., S fiber granular cotton, average particle size 30 mm), nickel slag wool (manufactured by Taiheiyo Metal Co., Ltd., granular cotton, average particle size 30 mm), glass wool (silicate mineral inorganic fiber) 75g each of resin-free short fibers) and added to 5L of acidic solution of ferrous sulfate, gypsum and sulfuric acid at pH 2, total iron ion 340mg / l, calcium ion 250mg / l, sulfate ion 2000mg / l And allowed to react at room temperature for 28 days.
The adhesion rate of iron to each silicate inorganic fiber at that time was calculated by measuring the concentration of iron remaining in the solution. Further, the pH of the solution after the reaction was measured. Furthermore, in order to check the adhesion of iron to the fiber surface, the solution was stirred for 5 minutes, and the state of separation between the fiber and the reaction product was visually confirmed. Moreover, the iron adhering to the fiber surface was analyzed with a high-power X-ray powder diffractometer. The results are shown in Table 1.
In Table 1, RW is rock wool, NW is nickel slag wool, GW is glass wool, CF is carbon fiber, SF is quartz fiber, and S + G is a mixture of low-crystallinity Schwbertmannite and goethite -Indicates that the product is small and measurement is impossible.
[0038]
Comparative Example 1
Except for using carbon fibers (pitch-based short fibers) and quartz fibers (short fibers for tissue culture) as inorganic fibers, the adhesion rate of iron to each fiber under the same acidic solution and reaction conditions as in Example 1 Table 1 shows the adhesion and pH of the solution.
[0039]
Example 2
The same silicate-based inorganic fibers as in Example 1 were used, the same acidic solution as in Example 1 was used, 15 g of biomat containing iron-oxidizing bacteria Thiobacillus ferooxidans was added, and the mixture was allowed to react at room temperature for 28 days. Table 1 shows the adhesion rate of iron to each silicate-based inorganic fiber, the adhesion, and the pH of the solution after the reaction.
[0040]
Comparative Example 2
Table 1 shows the adhesion rate, adhesion, and pH of the solution to each fiber when the same iron-oxidizing bacteria as in Example 2 were present in the same test as Comparative Example 1.
[0041]
[Table 1]
Figure 0004355522
[0042]
From the results of Table 1, Examples 1 and 2 using rock wool, nickel slag wool, and glass wool as silicate inorganic fibers are compared with Comparative Examples 1 and 2 using carbon fibers and quartz fibers as inorganic fibers. It was confirmed that the hydrous iron oxide was efficiently supported on the fiber.
[0043]
Example 3
Rock wool (Shin Nikka Rockwool Co., Ltd., S fiber granular cotton, average particle size 30 mm) as silicate inorganic fiber, Blast furnace cement (Nippon Steel Blast Furnace Cement Co., Ltd., B) Seed blast furnace cement).
60% by weight of rock wool and 40% by weight of blast furnace cement were stirred and mixed with a ribbon mixer to obtain a granular mixture having an average particle size of 20 mm, a bulk specific gravity of 0.15, and a porosity of 94%. The chemical composition of this granular mixture is SiO 2 : 33.0%, Al 2 O Three : 10.2%, CaO: 47.8%, MgO: 4.2%, Fe 2 O Three : 1.4%, TiO 2 : 0.5%, MnO: 0.2%, SO Three : 0.7%, Ig.loss: 1.2%.
Next, using the ferrous sulfate, gypsum and sulfuric acid as reagents, an acidic solution having a pH of 2.5 containing sulfate ions of 1080 mg / l, total iron ions of 137 mg / l and calcium ions of 250 mg / l was prepared.
A synthetic resin column having a diameter of 10.4 cm was filled with 100 g of the granular mixture so as to have a thickness of 6.8 cm and a bulk specific gravity of 0.174, and an acidic solution was poured from the upper surface at a flow rate of 5 L / day from the upper surface by 50 L. The adhesion rate of iron to the granular mixture at that time was calculated by measuring the concentration of iron remaining in the solution. As a result, it was almost 100%, and the iron adhesion amount per kg of the material was 68.5 g in terms of metallic iron. . The pH and iron concentration of the discharged solution at the end of the reaction were measured and found to be pH 10.0 and total iron ions 0.01 mg / l.
Furthermore, when the water permeability of the fibrous material (treated material) carrying the hydrous iron oxide after the reaction was measured, the water permeability coefficient was 4.0 × 10. -1 cm / sec, and the water content at the end of the reaction was 76%. Moreover, as a result of analyzing the iron adhering to the fiber surface with a high-power X-ray powder diffractometer, it was a ferrihydrite with a low crystallinity.
[0044]
Example 4
The same granular mixture, acidic solution, and experimental apparatus as in Example 3 were used except that Portland cement was used instead of blast furnace cement, and an acidic solution added with iron-oxidizing bacteria Thiobacillus ferooxidans was 300 L from the top surface with a water flow rate of 5 L / day. I poured it away. The adhesion rate of iron to the granular mixture at that time was calculated by measuring the concentration of iron remaining in the solution. As a result, it was almost 99%, and the iron adhesion amount per kg of the material was 407 g in terms of metallic iron. Further, the pH and iron concentration of the discharged solution at the end of the reaction were measured and found to be pH 4.0, total iron ion 1.4 mg / l, sulfate ion 1000 mg / l, silicic acid 16 mg / l, calcium ion 297 mg / l. .
Furthermore, when the water permeability of the fibrous material (treated material) carrying the hydrous iron oxide after the reaction was measured, the water permeability coefficient was 7.0 × 10. -2 cm / sec, and the water content at the end of the reaction was 78%.
When the fibrous material (treatment material) carrying the hydrous iron oxide was observed with an electron microscope, a few micron-shaped products were continuously deposited around the rock wool fiber and deposited in a sheath shape. The product was an aggregate of submicron acicular particles. Moreover, when the chemical composition of the rock wool fiber after reaction was analyzed by EPMA, SiO 2 : 98.3%, Al 2 O Three : 0.8%, CaO: 0.0%, and was a porous silica retaining the fiber shape. For the chemical composition of the entire hydrous iron oxide, see Fe 2 O Three : 85.6%, SiO 2 : 2.8%, CaO: 0.2%, SO Three Was 11.0%, and was analyzed with a high-power X-ray powder diffractometer, and as a result, it was a low crystallinity Schwbertmannite.
FIG. 1 shows an SEM photograph of the fiber structure of the treatment material obtained in this example. FIG. 2 is an enlarged SEM photograph of a portion surrounded by a circle in FIG. In these figures, it is Schbertmanite that is produced and supported on the surface of the fibrous material.
[0045]
Example 5
Using the treatment material obtained in Example 3, 9 g / l of the treatment material was added to 1 liter of nitric acid acidic solution of pH 3.6 containing 15 mg / l of trivalent arsenic ions, 15 mg / l of cadmium ions and 15 mg / l of lead ions. When the concentration and pH in the filtrate were measured at room temperature for 1 hour, the trivalent arsenic ion was 3.7 mg / l, cadmium ion was 0.05 mg / l, lead ion was 0.01 mg / l, and pH was 9.4. It was.
[0046]
Example 6
Using the treatment material obtained in Example 4, 9 g / l of the treatment material was added to 1 liter of a nitric acid acidic solution having a pH of 3.6 containing 15 mg / l of trivalent arsenic ions, 15 mg / l of cadmium ions and 15 mg / l of lead ions. When the concentration and pH in the filtrate were measured at room temperature for 1 hour, the trivalent arsenic ion was 2.4 mg / l, cadmium ion was 0.75 mg / l, lead ion was 3.45 mg / l, and pH was 3.0. It was.
[0047]
Comparative Example 3
Using the reagents ferrous sulfate, gypsum and sulfuric acid, 580 mg of slaked lime was added to 1 L of pH 2.5 acidic solution containing 1080 mg / l sulfate ion, 137 mg / l total iron ion and 250 mg / l calcium ion. After stirring for 24 hours at room temperature to produce hydrous iron oxide (ferrihydrite), a filtration test was performed by filtration under reduced pressure (Nutche, inner diameter 70 mm, using filter paper 5C). The filtration time was 342 seconds, filtration The water permeability of the temple is 4 × 10 -6 It was cm / s and was extremely inferior in water permeability.
[0048]
Comparative Example 4
A hydrous iron oxide (ferrihydrite) was produced using a 1N aqueous sodium hydroxide solution instead of the slaked lime of Comparative Example 3, and then subjected to a filtration test by vacuum filtration (using Nutsche, inner diameter 70 mm, filter paper 5C). As a result, the filtration time was 93 seconds, and the water permeability of the filter was 1 × 10. -Five It was cm / s and was extremely inferior in water permeability.
[0049]
Comparative Example 5
The iron-oxidizing bacterium Thiobacillus ferooxidans was added to the same acidic solution as in Comparative Example 3 and stirred for 7 days while blowing air at 1 L / min at room temperature to produce hydrous iron oxide (Schbertmannite). When a filtration test was conducted by filtration (Nutche, inner diameter 70 mm, using filter paper 5C), the filtration time was 342 seconds, and the water permeability of the filtration residue was 6 × 10. -6 It was cm / s and was extremely inferior in water permeability.
[0050]
Example 7
When the treatment material obtained in Example 4 was used to treat arsenic-containing artificial wastewater (trivalent arsenic ions 50 mg / l), the arsenic removal rate was 45.2% with an addition amount of 5 g / l. When waste water (phosphoric acid 98 mg / l) was treated, the removal rate was 99.5% at an addition amount of 5 g / l. When fluorine-containing artificial waste water (fluorine 3.6 mg / l) was treated, the addition amount was 100 g. The fluorine removal rate was 40% at / l.
Further, the treated material after the wastewater treatment is stably present because fibrous silica is surrounded by a sheath with Schwertmannite on the fiber surface, and arsenic or the like is taken in by the Schwertmannite. . Therefore, it was possible to take out this processing material as it is and to perform post-processing.
[0051]
Example 8
Nickel slag wool (manufactured by Taiheiyo Metal Co., Ltd., granular cotton, average particle size 30 mm) and hydrous iron oxides, including artificial hydrous oxide (Schbertmannite: SMN), magnetite (MG), goethite ( GE), 50 parts by weight of either ferrihydrite (FH) and 2 parts by weight of acrylic emulsion, and stirring and mixing with a ribbon mixer, a granular mixture having an average particle size of 20 mm, a bulk specific gravity of 0.2, and a porosity of 95% A treatment material carrying hydrated iron oxide was obtained.
Schwartmannite as artificial hydrous iron oxide uses ferrous sulfate, gypsum and sulfuric acid, and is acidic at pH 2.5 containing sulfate ions 1080 mg / l, total iron ions 137 mg / l, calcium ions 250 mg / l. A solution was prepared, and an iron-oxidizing bacterium, Thiobacillus ferooxidans, was added to the acidic solution, and the solution produced by stirring for 7 days while blowing air at 1 L / min at room temperature was used.
As magnetite, goethite, and ferrihydrite, commercially available products (manufactured by Tetsugen Co., Ltd.) were used.
Using the treated material, arsenic-containing artificial wastewater (trivalent arsenic ions 50 mg / l) and phosphorus-containing artificial wastewater (phosphoric acid 98 mg / l) were treated at an added amount of 10 g / l. The arsenic removal rate and phosphorus removal rate were shown. Moreover, the treatment material after wastewater treatment did not become slime, and it was possible to take out the treatment material as it was and to perform post-treatment.
[0052]
[Table 2]
Figure 0004355522
[0053]
Example 9
Rock wool (Shin Nikka Rockwool Co., Ltd., S fiber granular cotton, average particle size 30 mm) as silicate inorganic fiber, Blast furnace cement (Nippon Steel Blast Furnace Cement Co., Ltd., B) Seed blast furnace cement).
60% by weight of rock wool and 40% by weight of blast furnace cement were stirred and mixed with a ribbon mixer to obtain a granular mixture having an average particle size of 20 mm, a bulk specific gravity of 0.15, and a porosity of 94%. A synthetic resin column having a width of 120 cm, a height of 90 cm, and a thickness of 16 cm was packed with 20 kg of the granular mixture so as to have a thickness of 60 cm and a bulk specific gravity of 0.174.
Acid mine wastewater of pH 2.8, containing sulfate ions 875mg / l, total iron ions 124mg / l, calcium ions 226mg / l, and inhabiting the iron-oxidizing bacterium Thiobacillus ferooxidans, with a flow rate of 1L / day To 500 L. The adhesion rate of iron to the granular mixture at that time was calculated by measuring the concentration of iron remaining in the solution. As a result, it was almost 100%, and the iron adhesion amount per 20 kg of the material was about 6 kg in terms of metallic iron. Further, when the pH and iron concentration of the discharged solution at the end of the reaction were measured, the pH was 4.1 and the total iron ion was 0.09 mg / l. Further, when the water permeability was measured, the water permeability coefficient (cm / sec) was 0.6 × 10. -2 The water content at the end of the reaction was 78%. The bulk specific gravity of the 100 ° C. dried product was 0.18. As a result of analyzing the constituent minerals with a high-power X-ray powder diffractometer, it was a mixture of low-crystallinity Schwbertmannite and goethite.
Next, mine wastewater containing pH 6.9, arsenic ions 1.07 mg / l, total iron ions 0.07 mg / l, lead ions 0.003 mg / l is flowed over 10 L from the top surface at a flow rate of 0.5 L / day. did. Analysis of the treated water at that time revealed that pH 3.9, arsenic ions 0.01 mg / l, total iron ions 2.3 mg / l, and lead ions were not detected. Furthermore, when the water permeability after the reaction was measured, the water permeability coefficient was 0.5 × 10. -2 The water content at the end of the reaction was 77%. The bulk specific gravity of the 100 ° C. dried product was 0.19. As a result of analyzing the constituent minerals with a high-power X-ray powder diffractometer, it was a mixture of low-crystallinity Schwbertmannite and goethite.
[0054]
【The invention's effect】
The hazardous substance treatment material of the present invention can efficiently remove heavy metals such as lead, arsenic, and cadmium, phosphoric acid, selenic acid, fluorine, etc. in wastewater, and the water permeability is maintained even after use. Can be used for a long time. In addition, there is little generation of slime, such as lime neutralization treatment, and used treatment materials contain a large amount of iron, so active iron oxide raw materials for soil removal, desulfurization, soil improvement materials, and iron for cement It can be used as a raw material, a steelmaking raw material, etc., and is easily recycled.
[Brief description of the drawings]
1 is a SEM photograph showing the fiber structure of a treated material of Example 4. FIG.
FIG. 2 is an enlarged SEM photograph of FIG.

Claims (11)

砒素、カドミウム、鉛、リン酸、セレン酸及びフッ素から選ばれる一種又は二種以上を有害物質として含む廃水の処理材であって、ロックウール、ニッケルスラグウール及びガラスウールから選ばれる一種又は二種以上の酸反応性を有する珪酸塩系繊維状無機物質に由来し、少なくとも一部が酸と反応して珪酸分濃度が増加した繊維状材料に担持されたフェリハイドライト、シュベルトマナイト及び針鉄鉱から選ばれる一種又は二種以上の含水鉄酸化物からなることを特徴とする廃水中の有害物質処理材。A wastewater treatment material containing one or more selected from arsenic , cadmium, lead, phosphoric acid, selenate and fluorine as harmful substances, one or two selected from rock wool, nickel slag wool and glass wool Ferrihydrite, Schwertmannite, and goethite derived from the above silicate-based fibrous inorganic substances having acid reactivity and supported on a fibrous material at least partially reacted with acid to increase the silicate content concentration A toxic substance treatment material in wastewater, characterized by comprising one or more hydrated iron oxides selected from: 繊維状材料が、含水鉄酸化物で鞘状に囲まれてなる請求項1に記載の廃水中の有害物質処理材。The toxic substance treatment material in wastewater according to claim 1, wherein the fibrous material is surrounded by a hydrated iron oxide in a sheath shape . 空隙率が50%以上、嵩比重が0.1〜1.5である請求項1又は2に記載の廃水中の有害物質処理材。The hazardous substance treatment material in wastewater according to claim 1 or 2, wherein the porosity is 50% or more and the bulk specific gravity is 0.1 to 1.5 . 砒素、カドミウム、鉛、リン酸、セレン酸及びフッ素から選ばれる一種又は二種以上を有害物質として含む廃水の処理材であって、ロックウール、ニッケルスラグウール及びガラスウールから選ばれる一種又は二種以上の酸反応性を有する珪酸塩系繊維状無機物質からなる繊維状材料に担持されたフェリハイドライト、シュベルトマナイト及び針鉄鉱から選ばれる一種又は二種以上の含水鉄酸化物からなることを特徴とする廃水中の有害物質処理材。 A wastewater treatment material containing one or more selected from arsenic, cadmium, lead, phosphoric acid, selenate and fluorine as harmful substances, one or two selected from rock wool, nickel slag wool and glass wool It consists of one or two or more hydrous iron oxides selected from ferrihydrite, schwertmannite and goethite supported on a fibrous material composed of the above silicate-based fibrous inorganic substance having acid reactivity Characteristic material for treating hazardous substances in wastewater. 砒素、カドミウム、鉛、リン酸、セレン酸及びフッ素から選ばれる一種又は二種以上を有害物質として含む廃水の処理材を製造する方法であって、酸反応性を有するロックウール、ニッケルスラグウール及びガラスウールから選ばれる一種又は二種以上珪酸塩系繊維状無機物質又はこれを含む材料を含鉄酸性水で処理し、少なくとも一部が酸と反応して珪酸分濃度が増加した繊維状材料に担持されたフェリハイドライト、シュベルトマナイト及び針鉄鉱から選ばれる一種又は二種以上の含水鉄酸化物を得ることを特徴とする廃水中の有害物質処理材の製造方法。A method for producing a wastewater treatment material containing one or more selected from arsenic, cadmium, lead, phosphoric acid, selenic acid and fluorine as a hazardous substance, comprising acid-reactive rock wool, nickel slag wool and One or more silicate-based fibrous inorganic substances selected from glass wool or a material containing the same are treated with iron-containing acidic water, and at least partly reacts with an acid to be supported on a fibrous material having an increased silicic acid concentration. A method for producing a hazardous substance treatment material in wastewater, characterized in that one or more hydrous iron oxides selected from ferrihydrite, schbertmanite and goethite are obtained. 珪酸塩系繊維状無機物質が、珪酸塩系無機繊維又はこれと珪酸塩系無機粉粒体との混合物である請求項5記載の廃水中の有害物質処理材の製造方法。 The method for producing a hazardous substance treatment material in wastewater according to claim 5, wherein the silicate fibrous inorganic substance is a silicate inorganic fiber or a mixture of the silicate inorganic fiber and a silicate inorganic powder . 含鉄酸性水で処理する際、更に鉄酸化細菌を存在させる請求項5又は6に記載の廃水中の有害物質処理材の製造方法。 The method for producing a hazardous substance treatment material in wastewater according to claim 5 or 6, wherein iron-oxidizing bacteria are further present when treating with iron-containing acidic water . 珪酸塩系無機粉粒体が、セメントクリンカー、製鉄スラグ、非鉄スラグ、フライアッシュ及びコンクリート破砕物から選ばれる少なくとも一種である請求項5〜7のいずれかに記載の廃水中の有害物質処理材の製造方法。 The silicate-based inorganic powder is at least one selected from cement clinker, iron slag, non-ferrous slag, fly ash and concrete crushed material. Production method. 砒素、カドミウム、鉛、リン酸、セレン酸及びフッ素から選ばれる一種又は二種以上を有害物質として含む廃水の処理材の製造方法であって、ロックウール、ニッケルスラグウール及びガラスウールから選ばれる一種又は二種以上の酸反応性を有する珪酸塩系繊維状無機物質からなる繊維状材料と、フェリハイドライト、シュベルトマナイト及び針鉄鉱から選ばれる一種又は二種以上の含水鉄酸化物を混合して含水鉄酸化物が繊維状材料に担持されたものとすることを特徴とする廃水中の有害物質処理材の製造方法。A method for producing a wastewater treatment material containing one or more selected from arsenic, cadmium, lead, phosphoric acid, selenate and fluorine as hazardous substances, one selected from rock wool, nickel slag wool and glass wool Alternatively, a fibrous material composed of two or more kinds of acid-reactive silicate fiber inorganic substances and one or two or more kinds of hydrous iron oxides selected from ferrihydrite, schwertmannite and goethite are mixed. A method for producing a hazardous substance treatment material in wastewater, characterized in that a hydrous iron oxide is supported on a fibrous material. 珪酸塩系繊維状無機物質が、珪酸塩系無機繊維又はこれと珪酸塩系無機粉粒体との混合物である請求項9記載の廃水中の有害物質処理材の製造方法。 The method for producing a hazardous substance treatment material in wastewater according to claim 9, wherein the silicate fibrous inorganic substance is a silicate inorganic fiber or a mixture of the silicate inorganic fiber and a silicate inorganic powder . ロックウール、ニッケルスラグウール及びガラスウールから選ばれる一種又は二種以上の珪酸塩系繊維状無機物質を含鉄酸性廃水の処理に使用し、少なくとも一部が酸と反応して珪酸分濃度が増加した繊維状材料に担持されたフェリハイドライト、シュベルトマナイト及び針鉄鉱から選ばれる一種又は二種以上の含水鉄酸化物を含む材料とし、次にこれを砒素、カドミウム、鉛、リン酸、セレン酸及びフッ素から選ばれる一種又は二種以上を有害物質として含む廃水の処理に使用することを特徴とする廃水の処理方法。 One or more silicate-based fibrous inorganic substances selected from rock wool, nickel slag wool and glass wool were used for the treatment of iron-containing acidic wastewater, and at least partly reacted with acid to increase the silicate concentration . A material containing one or more hydrous iron oxides selected from ferrihydrite, schwertmannite and goethite supported on a fibrous material, which is then arsenic , cadmium, lead, phosphoric acid, selenate And a method for treating wastewater, which is used for treating wastewater containing one or more selected from fluorine as a harmful substance .
JP2003161028A 2003-06-05 2003-06-05 Material for treating hazardous substances in wastewater and method for producing the same Expired - Lifetime JP4355522B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003161028A JP4355522B2 (en) 2003-06-05 2003-06-05 Material for treating hazardous substances in wastewater and method for producing the same
CNB2004800149735A CN100355668C (en) 2003-06-05 2004-06-04 Treating material for polluted water, method for production thereof and use thereof
AU2004245399A AU2004245399B2 (en) 2003-06-05 2004-06-04 Treating material for polluted water, method for production thereof and use thereof
CA002523572A CA2523572A1 (en) 2003-06-05 2004-06-04 Treating material for polluted water and methods for production and use thereof
PCT/JP2004/008153 WO2004108603A1 (en) 2003-06-05 2004-06-04 Treating material for polluted water, method for production thereof and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161028A JP4355522B2 (en) 2003-06-05 2003-06-05 Material for treating hazardous substances in wastewater and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004358396A JP2004358396A (en) 2004-12-24
JP4355522B2 true JP4355522B2 (en) 2009-11-04

Family

ID=34053631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161028A Expired - Lifetime JP4355522B2 (en) 2003-06-05 2003-06-05 Material for treating hazardous substances in wastewater and method for producing the same

Country Status (2)

Country Link
JP (1) JP4355522B2 (en)
CN (1) CN100355668C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
US8483120B2 (en) 1993-07-30 2013-07-09 Sherwin I. Seligsohn High efficiency sub-orbital high altitude telecommunications system

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3828887B2 (en) * 2003-02-05 2006-10-04 株式会社ソフィア Novel compound, stabilization method for Schwertmannite, purification method for contaminated water or soil, adsorption method for phosphoric acid
EP2055377A1 (en) 2006-08-25 2009-05-06 National University Corporation Nagoya University Magnetic chemical absorber, process for producing the same, method of regenerating the same, and method of treating waste liquid
JP2009279550A (en) * 2008-05-26 2009-12-03 Kankyo Succeed Co Ltd Purifying device of contaminant in contaminated soil and cleaning method using purifying device
CN101961635B (en) * 2009-07-24 2014-06-11 株式会社神户制钢所 Treating agent of a polluted water containing a heavy metal and treating method
CN101791534B (en) * 2010-04-14 2013-05-22 西南大学 Phosphorus-removing adsorbent and preparation method thereof
CN102380342A (en) * 2010-09-02 2012-03-21 中国科学院生态环境研究中心 Preparation technique for carbonyl iron coated arsenic-removal material
RU2477708C2 (en) * 2011-07-01 2013-03-20 Федеральное государственное образовательное учреждение высшего профессионального образования "Петербургский государственный университет путей сообщения" Method of cleaning effluents of copper ions
CN102502910B (en) * 2011-11-02 2013-09-18 中国科学院金属研究所 Method for extracting heavy metal ions from water body
CN102491555A (en) * 2011-12-01 2012-06-13 核工业北京化工冶金研究院 Method for removing fluorine in acid uranium process wastewater
JP2013255903A (en) * 2012-06-14 2013-12-26 Nippon Solid Co Ltd Environment improvement material
CN103011368A (en) * 2012-12-07 2013-04-03 常州大学 Method for removing arsenic in sewage
CN104098237A (en) * 2013-04-10 2014-10-15 阿酷尔商贸(上海)有限公司 Sludge or soil treatment method and heavy metal component stabilizing agent
CN103880111B (en) * 2014-03-28 2015-01-21 中国地质大学(武汉) Arsenic removal method based on surface in-situ iron plating technology
CN105582880A (en) * 2014-11-15 2016-05-18 百米马(天津)有限公司 Efficient biological adsorbent for sewage treatment
CN104525144B (en) * 2014-12-30 2017-04-05 中南大学 For the modified iron-based biomaterial of aluminum sulfate and its methods for making and using same of heavy metal adsorption
JP6835319B2 (en) * 2015-11-10 2021-02-24 ▲高▼橋金属株式会社 Adsorbent carrier
CN105776366B (en) * 2016-04-12 2019-01-22 合肥工业大学 A kind of material and method handling lead waste water
JP6853629B2 (en) * 2016-08-12 2021-03-31 清水建設株式会社 Adsorption method of inorganic oxoacid ion
JP2019018189A (en) * 2017-07-21 2019-02-07 株式会社山口土木 Adsorbent of phosphate ion, removal method of phosphate ion, and fertilizer
JP6949659B2 (en) * 2017-10-24 2021-10-13 清水建設株式会社 Manufacturing method of heavy metal adsorption mat and storage method of soil containing heavy metal
CN108686624B (en) * 2018-05-22 2020-10-02 福建师范大学 Preparation method and application of functionalized nano ferrihydrite
CN109292937A (en) * 2018-12-09 2019-02-01 安徽航天环境工程有限公司 A kind of iron content pickling sludge reuse method
CN109569500B (en) * 2018-12-13 2021-02-09 苏州大学 Microorganism-loaded acid-modified sepiolite biological nanocomposite and preparation method and application thereof
CN109647351B (en) * 2019-01-07 2022-10-21 武汉工程大学 Bagasse loaded iron hydroxide adsorbent and preparation method and application thereof
CN111204880A (en) * 2020-01-21 2020-05-29 西南科技大学 Method for removing uranium in ryegrass-enriched degradation residual liquid by microorganisms under anaerobic condition
JP7163978B2 (en) * 2021-01-04 2022-11-01 東洋紡株式会社 Anion adsorption sheet
CN113262804B (en) * 2021-05-31 2024-01-19 南京贝克特环保科技有限公司 Molybdenum disulfide modified schweitmann stone and preparation method and application thereof
CN115893698A (en) * 2021-09-30 2023-04-04 山东华光光电子股份有限公司 Treatment process of high-concentration arsenic-phosphorus-containing wastewater generated by III-V compound semiconductor epitaxial process
CN114700045A (en) * 2022-03-14 2022-07-05 浙江大学 Adsorbent for removing cadmium and arsenic in farmland polluted irrigation water and preparation and removal methods thereof
CN117438124B (en) * 2023-12-22 2024-04-09 中核第四研究设计工程有限公司 Method for long-term stable treatment of uranium-containing waste residues

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06102154B2 (en) * 1987-03-23 1994-12-14 三菱重工業株式会社 Honeycomb desulfurization agent and method for producing the same
JP3323271B2 (en) * 1993-03-19 2002-09-09 大平洋金属株式会社 Method of treating water containing organic pollutants
JPH09308877A (en) * 1996-05-21 1997-12-02 Mitsubishi Materials Corp Dephosphatizing agent and its preparation
JP2002210451A (en) * 2001-01-18 2002-07-30 Medical Zeolite Kk Method for treating harmful material and system therefor
JP2003112162A (en) * 2001-10-05 2003-04-15 Toho Leo Co Polluted soil cleaning method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7844218B2 (en) 1993-07-30 2010-11-30 International Multi-Media Corporation Sub-orbital, high altitude communications system
US8483120B2 (en) 1993-07-30 2013-07-09 Sherwin I. Seligsohn High efficiency sub-orbital high altitude telecommunications system

Also Published As

Publication number Publication date
CN100355668C (en) 2007-12-19
JP2004358396A (en) 2004-12-24
CN1798704A (en) 2006-07-05

Similar Documents

Publication Publication Date Title
JP4355522B2 (en) Material for treating hazardous substances in wastewater and method for producing the same
Rakotonimaro et al. Recovery and reuse of sludge from active and passive treatment of mine drainage-impacted waters: a review
He et al. Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review
Gomes et al. Alkaline residues and the environment: a review of impacts, management practices and opportunities
JP4096038B2 (en) Acid waste water treatment material and acid waste water treatment method
JP2012240017A (en) Treating material of harmful substance, and treating method of harmful substance
JP2007516922A (en) Porous granular material for fluid treatment, cementitious composition and method for producing them
KR101809171B1 (en) Environment-friendly block using soil of tidal field and shell
JP4344187B2 (en) Production method of Schwertmannite
JP4420634B2 (en) Treatment method of acid mine wastewater containing arsenic and iron
JP2005087833A (en) Water purifying material and its manufacturing method
JP2006247645A (en) Modification treatment agent, modification treatment method of heat history silicate and binding shape body modified it
Saliu et al. Assessing the suitability of solid aggregates for nutrient recovery from aqua systems
JP4383727B2 (en) Iron-containing acid wastewater treatment material and iron-containing acid wastewater treatment method
Su et al. Remediation treatment and resource utilization trends of electrolytic manganese residue
Li et al. Progress in comprehensive utilization of electrolytic manganese residue: a review
JP4420636B2 (en) Hazardous material treatment material and its manufacturing method
AU645231B2 (en) Composition and method for agglomerating ore
JP2005087834A (en) Water purification material and production method therefor
SI24681A (en) A method of manufacturing for the environment and human health acceptable construction material from contaminated soil containing water-soluble heavy metal compounds
AU2004245399B2 (en) Treating material for polluted water, method for production thereof and use thereof
CN108658194A (en) A kind of preparation method and applications except phosphorus composite material
JP2004174327A (en) Iron recovering and recycling method for iron-containing acidic wastewater
Min et al. Arsenic Pollution Control Technologies for Arsenic-Bearing Solid Wastes
Sebogodi et al. A review of technologies used in handling the acid mine drainage challenge: Perspectives on using green liquor dregs as a sustainable option for treatment of acid mine drainage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060522

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090803

R150 Certificate of patent or registration of utility model

Ref document number: 4355522

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term