JP4355175B2 - Separable transformer - Google Patents
Separable transformer Download PDFInfo
- Publication number
- JP4355175B2 JP4355175B2 JP2003198981A JP2003198981A JP4355175B2 JP 4355175 B2 JP4355175 B2 JP 4355175B2 JP 2003198981 A JP2003198981 A JP 2003198981A JP 2003198981 A JP2003198981 A JP 2003198981A JP 4355175 B2 JP4355175 B2 JP 4355175B2
- Authority
- JP
- Japan
- Prior art keywords
- iron core
- transformer
- joint
- magnetic flux
- electromagnetic steel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、構成する磁気回路の一部が着脱自在な構造を持つトランスにおいて、着脱する接合部からの漏洩磁束を最小にするとともに、着脱を容易に行うことができる分離式トランスの構造に関する。
【0002】
【従来の技術】
通常、トランスは一次コイルに電圧を印加して発生させた磁束が損失しない様に様々な工夫がなされている。たとえば、鉄損が小さく磁束密度の高い材質を選んだり、コイルの巻き方を工夫したり、電磁鋼板を積層する場合にコーナー部での磁束損失を防止するために45度や90度のラップをとるなど構造上の工夫をすること等によって磁束損失を最小に抑えており、トランスは極めてエネルギー変換効率の高い装置となっている。このように磁路が固定できる場合には、トランスはエネルギー損失が極めて少ない装置にできる。
一方、本発明者は例えば特許文献1等で、円筒状金属コイルを効率よく均一に急速加熱する方法において、被加熱物をトランスに挿入したり、加熱後取り出したりするために、トランスが分離できる構造になっているものを開示している。
【0003】
【特許文献1】
特開2001−192728号公報
【0004】
【発明が解決しようとする課題】
しかし、トランスが分離できる構造の場合、トランスの磁路を分離する位置、構造が磁束損失の大きさや作業性、作業時間に大きく影響を与える。すなわち、トランスの磁路を着脱自在な様に分離することは、磁気抵抗を増やすことになり、磁束の漏洩が起こりやすくなるとともに、接合部の着脱は、接合部の構造によって作業性が大きく左右され、作業時間にも大きな影響を与える。また、可動鉄心のサイズは小さくても、その質量は一般的には重く、ハンドリングを上手く行わないと接合部がぶつかって変形や損傷が起こりやすくなり、使う毎に変形が進みやすくなるという問題がある。
そこで、本発明はこれらの問題を解決するための分離式トランスの接合部の構造を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の要旨は下記の通りである。
(1)2箇所以上の接合部を有する着脱可能な積層トランスにおいて、接合部分の積層した電磁鋼板の圧延方向が一致する様に、着脱部の鉄心の断面が形成されると共に、接合部の両鉄心の外周に密着するように電磁鋼板又はフェライトの押さえ板が設けられたことを特徴とした分離式トランス。
(2)少なくとも着脱する鉄心部に方向性電磁鋼板が用いられていることを特徴とする(1)記載の分離式トランス。
(3)前記電磁鋼板又はフェライトの押さえ板が、開閉機能を有することを特徴とする(3)記載の分離式トランス。
【0006】
【発明の実施の形態】
以下、本発明の実施の形態について図面を用いて説明する。
図1は、本発明による分離式トランスを説明する正面模式図である。そして、図2は、図1の接合部A−A断面を示す平面図を示し、図3は図2のB−B断面の接合部近傍を示す正面断面図である。
【0007】
本発明による分離式トランスは、例えば図1の様に1次コイル2を巻いたコの字形の固定鉄心1と着脱自在なコの字形の可動鉄心3とから成り、図1上では高さ方向中央よりやや上で両鉄心の接合面が合う。この固定鉄心1と可動鉄心3の断面は、図2に示すように薄い電磁鋼板5が積層している。電磁鋼板5は、図2紙面の奥行き方向が圧延方向になっている。したがって、図1の接合部は、この積層した電磁鋼板5の圧延方向の面を途中で切断した様な形になる。尚、図1では固定鉄心1と可動鉄心3の接合面は、圧延方向に対して垂直な断面のものを例示しているが、圧延方向に対して斜めの面でも良い。
【0008】
この様な構成の固定鉄心1と可動鉄心3を接合させた場合、接合部分の積層した電磁鋼板の圧延方向が一致するため、コイルで発生させた磁束が、磁気抵抗の最も小さい圧延方向の磁路を通ることができ、損失を最小にして磁束密度を高めることができるという利点がある。
ここで、電磁鋼板の圧延方向というのは、言い換えればコイル巻き取り方向のことを意味している。
【0009】
また、この様な着脱可能な積層トランスの接合部は、上記の例の様にコの字形であれば2箇所であるが、Eの時字形であれば3箇所となり、さらにコの字形を2つ直角にクロスさせたものであれば4箇所となる等、2箇所以上の接合部を有するものを適宜選択することができる。
【0010】
さらに、接合部分の積層した鉄板としては、方向性電磁鋼板や無方向性電磁鋼板のいずれを用いても構わない。
但し、接合部分の積層した鉄板に方向性電磁鋼板を用いると、圧延した方向の磁気抵抗が小さいことから、磁束が圧延方向に通りやすいという性質があるため、図1の様に電磁鋼板の圧延方向に接合面を形成すると、磁気抵抗の小さな接合ができるためより好ましい。
【0011】
さらに、着脱可能な積層トランスにおいては、接合部分の積層した電磁鋼板の圧延方向が一致するか否かにかかわらず、この接合部は、通常数百〜数千枚の鋼板を切断し積み重ねて製作される。しかし、使用する電磁鋼板の枚数が多く面を揃えても、隙間無く完全に固定鉄心1と可動鉄心3の面を平面で合わせることは難しい。鉄心を組み上げてから接合面を研磨しても良いが、研磨時に積層した電磁鋼板がめくれやすいという問題がある。また、製作当初は接合面の密着性が良好であっても、使用中に接合部の変形や損傷などを受けたり、錆などの発生により平面での完全な接合が維持できなくなってくる。固定鉄心1と可動鉄心3との接合部が良好に面で合わせることができなくなると、接合部には空気の層ができ磁気抵抗となり、インダクタンスの増加をもたらすとともに、磁束が接合部から漏れやすくなり、効率の低下や他の導電体が誘導を受けたりすることも有り、極力漏れ磁束は避ける必要がある。
【0012】
この漏れ磁束を防止するため、本発明では固定鉄心1と可動鉄心3との接合部の周りを、良磁性体の押さえ板4(図2では4a〜4d)で密着させて取り囲む様にする。こうすることにより、仮に接合面が平面で良好に接合できなくなって、漏れ磁束が増えても、漏れた磁束が接合部の外に設けた良磁性の押さえ板体4a〜4dを通り、再び鉄心に戻るため、トランスの外部に磁束が漏れることはなくなる。
また、磁気抵抗の大きくなる接合部の磁路の面積が増えることから、結果として接合部の磁気抵抗は下がり、インダクタンスが低下し磁束が通りやすくなり、トランスの効率が上がる。
【0013】
ここで良磁性の押さえ板4a〜4dとは、電磁鋼板やフェライトなどの比透磁率の高い材質のものであれば良く、特に規定するものではない。また、これらの比透磁率の高い材質を、所望の磁気抵抗となるように、例えば電磁鋼板を積層したり、フェライトを成型したり、まとめて固定するなどして、必要な断面積、長さにして用いれば良い。
また、この押さえ板は、必ずしも接合部の4周全てに配置する必要は無く、漏れ磁束の出やすい方向に適宜設置すれば良い。
【0014】
次に、前記の良磁性の押さえ板が、開閉機能を有する場合について説明する。本発明では、固定鉄心1と可動鉄心3との接合作業を短縮するため、この接合部を取り囲む良磁性体の押さえ板4a〜4dを、可動鉄心3を接合部に導くためのガイドとしても使うことができる。ここでも押さえ板は、必ずしも接合部の4周全てに配置する必要は無く、漏れ磁束の出やすい方向に適宜設置すれば良い。
その際に、例えば開閉機能を有する良磁性の押さえ板を用いると、図4に例示するように良磁性体の押さえ板4a〜4dを固定鉄心1に密着して設置するとともに、接合部より上の部分をやや外側に開き気味に設定でき、可動鉄心3を挿入するときのガイドとすることにより、可動鉄心3は容易に接合面の定位置に導かれ固定鉄心1と接合される。
【0015】
次に、固定鉄心1と可動鉄心3との接合作業が終了した後、ガイドとして用いた良磁性体の押さえ板4a〜4dの上部を、ボルト締めなどにより閉じることにより、押さえ板4a〜4dの上部を可動鉄心に密着させ、固定鉄心1と可動鉄心3を固定することができる。この様にすることで、固定鉄心1と可動鉄心3との接合面を合わせるのに時間がかからないので、短時間に接合が可能となり、迅速に稼働準備ができるため好ましい。
また、接合した両鉄心を分離する場合は、良磁性体の押さえ板4a〜4dを開にすれば良い。
【0016】
上記では、良磁性の押さえ板の開閉機能として、押さえ板の上部のみに開閉機能を有するものを例示したが、押さえ板全面が平行に移動する形式のもの等でも良く、適宜設定すれば良い。また、良磁性の押さえ板の開閉機能としては、例えばボルト締めで固定する方式、バネなどを用いて固定する方式、あるいはエアーシリンダーや油圧シリンダーを用いた方式など特に方法は限定するものではない。
【0017】
以上説明した様に、本発明の分離式トランスは、接合部での漏れ磁束を抑えることができるため効率が良く、他の金属への漏れ磁束を防止できるとともに、可動鉄心と固定鉄心との接合作業が容易にできることから、トランス形成の準備時間短縮が可能となる。また、接合部の鉄心の変形や損傷なども防止ができることから、長期間にわたり安定した使用が可能である。
【0018】
【実施例】
本発明の効果を確認するため、実験を行った。表1は、各種着脱式トランスにおいて一次電圧で発生させた磁束密度の接合部での減少割合の平均を示す。
実験は、表1に示すような形態の、高さ10[cm]、幅14[cm]、断面積6[cm2]の電磁鋼板製のコの字形積み鉄心2つを中央で合わせた。
両鉄心の材質に無方向性電磁鋼板を用い、一方の鉄心に一次コイルを20回巻いた場合を、参考例Aとした。
また、参考例Aと同じ形状で、両鉄心の材質を方向性電磁鋼板とした場合を、参考例Bとした。
さらに、参考例Bの接合部の外周に方向性電磁鋼板を積んで作った厚み0.5[cm]、長さ5[cm]の押さえ板を配置した場合を、本発明による実施例Cとした。
比較例として両鉄心の材質に方向性電磁鋼板を使い、圧延方向と90°で接合する場合を、比較例Dとした。
【0019】
これらの場合について、一次コイルに50Hzの交流電圧をmax10Vまで印加したときの、一次コイルで発生させた磁束密度と接合部の磁束密度を測定し、
磁束密度損失割合=(接合部での磁束密度の減少量)/(一次コイルで発生させた磁束密度)×100
として平均の磁束密度損失割合を求めた。
接合部は、研磨をかけ0.2[mm]のギャップを故意に設け、その他の部分が完全接触するようにし接触割合を60%となるように調整したものを用いた。
【0020】
その結果、表1に示すように材質に無方向性電磁鋼板を用い、圧延方向を一致させて接合した参考例Aのトランスの場合には、平均の磁束損失割合は3.2%と良好であった。
次に、方向性電磁鋼板を用い、圧延方向を一致させて接合した参考例Bのトランスでは、平均の磁束損失割合は1.8%と良好であり、方向性電磁鋼板を用いた方が磁束密度の減少をより抑えることが可能であることを確認した。
さらに、接合部の周囲をトランスと同じ電磁鋼板製の押さえ板を配置した実施例Cの場合には、平均の磁束密度損失割合は0.3%と極めて良好であった。
それに対し、同じ材質で圧延方向が90°異なる向きで接触させて接合した比較例Dのトランスでは、平均の磁束損失割合は7.6%と大きくなり、接合は圧延方向を一致させないと、磁束の損失を減少させることができないことを確認した。
なお、表1の評価は、平均の磁束損失割合が1%未満を◎、1%以上5%未満が○、5%以上を×とした。
【0021】
本構造が、磁束密度損失の低下に効果があることがわかったので、1辺が10[cm]角の、断面積100[cm2]の分離式トランス(高さ1[m]、幅1[m])を製作し、固定側の鉄心に長さ20[cm](固定鉄心側に10[cm]、可動鉄心側に10[cm])の電磁鋼板製押さえ板で4周を囲むように固定した。可動鉄心側の押さえ板は、上端部を外側に5[mm]開いた形とし、両鉄心接合後、コンテナヒンジで可動鉄心に密着するように固定した。
この様な構造で、可動鉄心の脱着を100回繰り返し、接合面の変形、押さえ板の変形等が無いかどうかをテストした。その結果、全く接合部に異常はなく安定して使用できることを確認した。また、鉄心の接合に要する時間も2〜3分程度と極めて短時間で実施でき、作業性も良好なことを確認した。
以上の様に、本発明の分離式トランスは、磁束損失が極めて小さく、作業性も良好であった。
【0022】
【表1】
【0023】
【発明の効果】
本発明のトランスを用いれば、2カ所以上の接合部を有する分離式トランスでも接合部の磁束損失を小さくできる。
接合部の磁束密度損失は、漏洩磁束が周囲の金属部材を誘導加熱したり、ノイズの原因になったりするとともに、トランスのリアクタンスが大きくなり効率の低下をもたらしたりする。場合によっては、接合部の間隙に蓄えられた誘導エネルギーにより電源遮断時に異常電流が電源側に戻ったりするという問題がある。これに対し、本発明の分離式トランスは、これらの問題が起こらず安定した運転が可能となる。また、作業性が良く、短時間にトランスとして構成することが可能で、接合面の変形や異常も生じにくいため、長時間メンテナンスが不要になるなど、金属タイトコイルを加熱する電源として用いる場合など、その効果は大きい。
【図面の簡単な説明】
【図1】 本発明による分離式トランスの構造を説明する正面模式図である。
【図2】 本発明による、図1に示す分離式トランスのA−A断面の構造を示す断面模式図である。
【図3】 本発明による、図2に示す分離式トランスのB−B断面の構造を示す正面断面模式図である。
【図4】 本発明による、分離式トランスの接合部に設ける良磁性体押さえ板を可動鉄心挿入時のガイドとして使用する場合を説明する正面断面模式図である。
【符号の説明】
1 固定鉄心
2 1次コイル
3 可動鉄心
4、4a、4b、4c、4d 良磁性体押さえ板
5 電磁鋼板[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a separation-type transformer that can minimize the leakage magnetic flux from a joint part to be attached and detached and can be easily attached and detached in a transformer having a structure in which a part of a magnetic circuit constituting the structure can be attached and detached.
[0002]
[Prior art]
Usually, the transformer is devised in various ways so that the magnetic flux generated by applying a voltage to the primary coil is not lost. For example, choose a material with low iron loss and high magnetic flux density, devise how to wind the coil, or wrap 45 ° or 90 ° to prevent magnetic flux loss at the corner when laminating electromagnetic steel sheets. The magnetic flux loss is minimized by taking structural measures such as taking the transformer, and the transformer is a device with extremely high energy conversion efficiency. If the magnetic path can be fixed in this way, the transformer can be a device with very little energy loss.
On the other hand, the present inventor, for example, in
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-192728
[Problems to be solved by the invention]
However, in the case of a structure in which the transformer can be separated, the position and structure of separating the magnetic path of the transformer greatly affect the magnitude of magnetic flux loss, workability, and working time. In other words, separating the magnetic path of the transformer so as to be detachable increases the magnetic resistance, and magnetic flux leakage is likely to occur. The attachment and detachment of the transformer greatly depends on the structure of the joint. The work time will be greatly affected. Also, even if the size of the movable iron core is small, its mass is generally heavy, and if it is not handled well, the joint will collide and easily deform and damage, and it will be easy to deform each time it is used. is there.
Therefore, an object of the present invention is to provide a structure of a junction part of a separation type transformer for solving these problems.
[0005]
[Means for Solving the Problems]
The gist of the present invention is as follows.
(1) In the removable layer transformer having a junction of two or more places, as the rolling direction of the laminated electromagnetic steel plates of the joint portion is matched, it is formed cross sectional view of the core of the detachable portion Rutotomoni, both of the joint A separable transformer characterized in that an electromagnetic steel plate or a ferrite pressing plate is provided so as to be in close contact with the outer periphery of the iron core .
(2) A separable transformer according to (1), wherein a directional electromagnetic steel sheet is used at least in an iron core part to be attached and detached.
( 3 ) The separable transformer according to ( 3 ), wherein the electromagnetic steel plate or ferrite pressing plate has an opening / closing function.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic front view illustrating a separation type transformer according to the present invention. 2 is a plan view showing a cross section of the joint AA in FIG. 1, and FIG. 3 is a front cross section showing the vicinity of the joint in the BB cross section of FIG.
[0007]
The separation type transformer according to the present invention includes, for example, a U-shaped
[0008]
When the fixed
Here, the rolling direction of the electromagnetic steel sheet means, in other words, the coil winding direction.
[0009]
In addition, the number of joints of such a detachable laminated transformer is two in the case of a U-shape as in the above example, but in the case of an E-shaped time-shape, there are three places. If it is crossed at right angles, it is possible to select one having two or more joints, such as four places.
[0010]
Furthermore, as the iron plate on which the joint portions are laminated, either a directional electromagnetic steel plate or a non-oriented electromagnetic steel plate may be used.
However, when a grain-oriented electrical steel sheet is used for the iron plates on which the joining portions are laminated, the magnetic resistance in the rolled direction is small, and therefore, there is a property that the magnetic flux easily passes in the rolling direction. It is more preferable to form a bonding surface in the direction because bonding with a small magnetic resistance can be performed.
[0011]
Furthermore, in a detachable laminated transformer, regardless of whether or not the rolling directions of the magnetic steel sheets laminated at the joints coincide, this joint is usually manufactured by cutting and stacking several hundred to several thousand steel sheets. Is done. However, even if the number of electromagnetic steel sheets to be used is large and the surfaces are aligned, it is difficult to completely align the surfaces of the fixed
[0012]
In order to prevent this leakage magnetic flux, in the present invention, the periphery of the joint between the fixed
In addition, since the area of the magnetic path of the junction where the magnetic resistance increases increases, as a result, the magnetic resistance of the junction decreases, the inductance decreases, the magnetic flux easily passes, and the efficiency of the transformer increases.
[0013]
Here, the good magnetic press plates 4a to 4d may be made of a material having a high relative permeability such as an electromagnetic steel plate or ferrite, and are not particularly defined. Also, these cross-sectional areas and lengths required for these materials with high relative permeability can be obtained by, for example, laminating electromagnetic steel sheets, molding ferrite, or fixing them together to achieve the desired magnetic resistance. It can be used.
Further, the pressing plate does not necessarily have to be arranged on all four circumferences of the joint, and may be appropriately installed in a direction in which leakage magnetic flux is easily generated.
[0014]
Next, the case where the good magnetic pressing plate has an opening / closing function will be described. In the present invention, in order to shorten the joining operation of the fixed
At this time, for example, if a good magnetic holding plate having an opening / closing function is used, the holding plates 4a to 4d made of a good magnetic material are placed in close contact with the fixed
[0015]
Next, after the joining operation of the fixed
Moreover, what is necessary is just to open the press plates 4a-4d of a good magnetic body, when isolate | separating both joined iron cores.
[0016]
In the above description, the opening / closing function of the good magnetic pressing plate has been illustrated as having an opening / closing function only on the upper portion of the pressing plate. However, a type in which the entire pressing plate moves in parallel may be used and may be set as appropriate. Further, the opening / closing function of the good magnetic pressing plate is not particularly limited, for example, a method of fixing by bolting, a method of fixing using a spring or the like, or a method using an air cylinder or a hydraulic cylinder.
[0017]
As described above, the separation type transformer of the present invention is efficient because it can suppress the magnetic flux leakage at the joint, and can prevent the magnetic flux leakage to other metals, and can also be used to join the movable iron core to the fixed iron core. Since the work can be easily performed, preparation time for forming the transformer can be shortened. In addition, since deformation and damage of the iron core of the joint can be prevented, it can be used stably over a long period of time.
[0018]
【Example】
An experiment was conducted to confirm the effect of the present invention. Table 1 shows the average of the reduction ratios at the junction of the magnetic flux density generated at the primary voltage in various detachable transformers.
In the experiment, two U-shaped stacked iron cores made of electrical steel sheets having a form as shown in Table 1 and having a height of 10 [cm], a width of 14 [cm], and a cross-sectional area of 6 [cm2] were combined at the center.
A non-oriented electrical steel sheet was used as the material of both iron cores, and a case where a primary coil was wound 20 times around one iron core was designated as Reference Example A.
Further, the same shape as in Reference Example A, the case where the material of both the core was oriented electrical steel sheet, and Reference Example B.
Furthermore, the case where a press plate having a thickness of 0.5 [cm] and a length of 5 [cm] made by stacking directional electromagnetic steel sheets on the outer periphery of the joint portion of Reference Example B is arranged as Example C according to the present invention. did.
As a comparative example, a case where a grain-oriented electrical steel sheet was used as the material of both iron cores and was joined at 90 ° with the rolling direction was designated as Comparative Example D.
[0019]
For these cases, the magnetic flux density generated in the primary coil and the magnetic flux density of the joint when the AC voltage of 50 Hz is applied to the primary coil up to max 10V,
Magnetic flux density loss ratio = (Amount of decrease in magnetic flux density at the junction) / (Magnetic flux density generated in the primary coil) × 100
As an average magnetic flux density loss ratio.
The joint used was polished and deliberately provided with a gap of 0.2 [mm], and the other part was in full contact and the contact ratio was adjusted to 60%.
[0020]
As a result, as shown in Table 1, in the case of the transformer of Reference Example A in which the non-oriented electrical steel sheet was used as the material and the rolling directions were matched, the average magnetic flux loss ratio was as good as 3.2%. there were.
Next, in the transformer of Reference Example B, which uses a grain-oriented electrical steel sheet and is joined with the rolling direction matched, the average magnetic flux loss ratio is as good as 1.8%. It was confirmed that the decrease in density can be further suppressed.
Furthermore, in the case of Example C in which a pressing plate made of the same electromagnetic steel plate as that of the transformer was disposed around the joint, the average magnetic flux density loss ratio was very good at 0.3%.
On the other hand, in the transformer of Comparative Example D, which is made of the same material and brought into contact with each other in a rolling direction different by 90 °, the average magnetic flux loss ratio is as large as 7.6%. Confirmed that the loss of can not be reduced.
In the evaluation of Table 1, the average magnetic flux loss ratio is less than 1%, ◯, 1% to less than 5% is ◯, and 5% or more is ×.
[0021]
Since this structure was found to be effective in reducing the magnetic flux density loss, a separated transformer (height 1 [m], width 1) having a cross-sectional area of 100 [cm 2 ] with a side of 10 [cm] square. [M]) is manufactured, and the fixed iron core has a length of 20 [cm] (10 [cm] on the fixed iron core, 10 [cm] on the movable iron core) and surrounds four turns with a magnetic steel plate retainer plate. Fixed to. The holding plate on the movable iron core side had an upper end opened 5 mm outward, and was fixed so as to be in close contact with the movable iron core with a container hinge after joining both iron cores.
With such a structure, the removal and attachment of the movable iron core was repeated 100 times to test whether there was any deformation of the joint surface, deformation of the holding plate, or the like. As a result, it was confirmed that there was no abnormality at the joint and it could be used stably. In addition, it was confirmed that the time required for joining the iron core was as short as about 2 to 3 minutes, and the workability was also good.
As described above, the separation type transformer of the present invention has extremely small magnetic flux loss and good workability.
[0022]
[Table 1]
[0023]
【The invention's effect】
If the transformer of the present invention is used, the magnetic flux loss at the junction can be reduced even in a separation type transformer having two or more junctions.
The magnetic flux density loss at the junction causes the leakage magnetic flux to inductively heat the surrounding metal member and cause noise, and the reactance of the transformer increases, resulting in a decrease in efficiency. In some cases, there is a problem that the abnormal current returns to the power source side when the power is shut off due to the inductive energy stored in the gap between the joints. On the other hand, the separation type transformer of the present invention does not cause these problems and can be stably operated. In addition, workability is good, it can be configured as a transformer in a short time, and it is difficult to cause deformation and abnormality of the joint surface, so that maintenance is unnecessary for a long time, etc. When used as a power source for heating a metal tight coil, etc. The effect is great.
[Brief description of the drawings]
FIG. 1 is a schematic front view illustrating a structure of a separation type transformer according to the present invention.
2 is a schematic cross-sectional view showing the structure of the AA cross section of the separation type transformer shown in FIG. 1 according to the present invention.
3 is a schematic front cross-sectional view showing the structure of the BB cross section of the separable transformer shown in FIG. 2 according to the present invention.
FIG. 4 is a schematic front cross-sectional view for explaining a case where a good magnetic material pressing plate provided at a joint portion of a separation type transformer according to the present invention is used as a guide when a movable iron core is inserted.
[Explanation of symbols]
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198981A JP4355175B2 (en) | 2003-07-18 | 2003-07-18 | Separable transformer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003198981A JP4355175B2 (en) | 2003-07-18 | 2003-07-18 | Separable transformer |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005038987A JP2005038987A (en) | 2005-02-10 |
JP4355175B2 true JP4355175B2 (en) | 2009-10-28 |
Family
ID=34208568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003198981A Expired - Fee Related JP4355175B2 (en) | 2003-07-18 | 2003-07-18 | Separable transformer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4355175B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6566351B2 (en) * | 2015-07-08 | 2019-08-28 | 株式会社日立製作所 | Laminated iron core and stationary electromagnetic equipment |
CN112313762B (en) * | 2018-10-03 | 2024-02-09 | 日本制铁株式会社 | Coiled iron core and transformer |
KR102136026B1 (en) * | 2019-04-03 | 2020-07-20 | 한국전력공사 | Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same |
-
2003
- 2003-07-18 JP JP2003198981A patent/JP4355175B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005038987A (en) | 2005-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5562804B2 (en) | Non-contact power feeding device with variable inductance | |
EP2873078B1 (en) | Hybrid transformer cores | |
US6473961B1 (en) | Method of manufacturing magnetic cores for power transformers | |
US8872614B2 (en) | Transformer | |
WO2005027155A1 (en) | A method of making a three-phase transformer with triangular core structure and a three-phase transformer with triangular core structure thereof | |
JPWO2003017296A1 (en) | Apparatus and method for manufacturing laminated iron core | |
CA3045709C (en) | Semi-hybrid transformer core | |
JP4355175B2 (en) | Separable transformer | |
KR101481057B1 (en) | Production method of pole-mounted transformers | |
KR102136026B1 (en) | Combined structure of variable-capacity transformer structure using ferrite core for magnetic flux assistance and method for manufacturing the same | |
KR101506698B1 (en) | iron core winding assembly for transformer | |
JP2009054927A (en) | Stationary induction electric apparatus | |
JP2018032703A (en) | Transformer | |
US6611191B2 (en) | Transformer | |
JP2013128057A (en) | Scott connection transformer | |
JP5923908B2 (en) | Reactor | |
CN208986692U (en) | A kind of stator and the motor with the stator | |
CN203966799U (en) | A kind of transformer | |
JPH02138712A (en) | Transformer | |
US20040083599A1 (en) | Method of manufacturing a stacked core for a magnetic induction device | |
KR102124788B1 (en) | Method for fabricating metal plate of electric transformer core | |
CN109309412A (en) | The manufacturing method of stator, motor and stator | |
CN203966775U (en) | A kind of Amorphous Alloy Core Transformer | |
JP2862055B2 (en) | Winding lead structure and winding method for stationary induction equipment | |
JP2013062410A (en) | Wound core for transformer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050914 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080509 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080513 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090728 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090731 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120807 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130807 Year of fee payment: 4 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |