JP4354592B2 - Fluid pressure pump - Google Patents

Fluid pressure pump Download PDF

Info

Publication number
JP4354592B2
JP4354592B2 JP32148499A JP32148499A JP4354592B2 JP 4354592 B2 JP4354592 B2 JP 4354592B2 JP 32148499 A JP32148499 A JP 32148499A JP 32148499 A JP32148499 A JP 32148499A JP 4354592 B2 JP4354592 B2 JP 4354592B2
Authority
JP
Japan
Prior art keywords
pressure
valve
switching
switching valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32148499A
Other languages
Japanese (ja)
Other versions
JP2001140752A (en
Inventor
貢 一木
勝裕 来栖
孝夫 中澤
安勝 西片
尚道 高橋
川島  勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Entegris Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Entegris Inc filed Critical Entegris Inc
Priority to JP32148499A priority Critical patent/JP4354592B2/en
Publication of JP2001140752A publication Critical patent/JP2001140752A/en
Application granted granted Critical
Publication of JP4354592B2 publication Critical patent/JP4354592B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Reciprocating Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体圧駆動ポンプに関し、特に2位置方向切換弁を通じて駆動流体を駆動ポンプに給・排気する場合に2位置方向切換弁の駆動流体圧送方向を切り換える機構の改良に関するものである。
【0002】
【従来の技術】
図7は従来の流体圧駆動ポンプの一つであるベローズポンプ例を示している。ポンプ基本構造は、左右のシリンダケース1,2と、出入口8,9を形成しているポンプヘッド15と、ポンプヘッド15に開口端側を装着した状態でシリンダケース1,2とポンプヘッド15との間に形成されるシリンダ内に配置されたベローズ3,4と、ベローズ3,4同士の自由端面側に両端部を連結したシャフト5と、両側の駆動室に給排気される切換流体によりシリンダケース1,2へ駆動流体を交互に圧送する2位置方向切換弁6と、2位置方向切換弁6の駆動流体圧送方向を切り換える切換手段とを備えている。シリンダケース1,2は、各ポンプヘッド15にそれぞれ連結された状態で、装置本体13に対し組み付けられている。ベローズ3,4の固定側開口端はポンプヘッド15の出入口8,9に通じ、逆止弁10付きの液送管14に連通している。前記切換手段は、シャフト5に連結されて連動して往復動するパイロット弁作動部材である切換レバー12及びパイロット弁11A,11Bを有し、切換レバー12がパイロット弁11A,11Bを交互に作動させて2位置方向切換弁6の対応側へ順に切換流体を印加し、2位置方向切換弁6の作動方向を切り換える。これにより、2位置方向切換弁6は、三方弁7Aを介して圧送されてくる駆動流体をシリンダケース1,2内に交互に供給し、他方のシリンダケース内から排気する。連動して、ベローズ3,4は交互に伸縮して、出入口8,9から液体の吸い込みと吐き出しを行う。
【0004】
2位置方向切換弁6は、本発明で用いた図4の如くポートP1〜P5を形成している弁箱19と、弁箱19に配置されたスプール20と、スプール20の両側に設けられた駆動室21a及び22aを有し、駆動室21a及び22aに三方弁7Bからパイロット弁11A,11Bを介して給・排気される切換流体の流体圧を、駆動ピストン23a及び23bに作用させてスプール20を往復動させ、ポート間の連通を切り換える。なお、図6中、実線で示す配管16a,16b,16cは駆動流体側を、破線で示す配管17a,17b,17cは切換流体側である。
図4(a)は駆動室21aに切換流体が供給された状態である。このときは、入力ポートP1と出力ポートP3が連通し、出力ポートP2と排出ポートP4が連通する。ポンプとの関係ではシリンダケース1,2の一方側に駆動流体を圧送し、他方側から駆動流体を排気する。逆に、図4(b)は駆動室22aに切換流体が供給された状態である。このときは、入力ポートP1と出力ポートP2が連通し、出力ポートP3と排出ポートP5が連通する。ポンプ側との関係ではシリンダケース1,2の他方側に駆動流体を圧送し、一方側から駆動流体を排気する。このように、2位置方向切換弁6は、駆動室21aと22aとに交互に圧送される切換流体でスプール20を二位置間を移動し前記ポート間の連通を切り換える。
【0005】
【発明が解決しようとする課題】
以上のベローズポンプは、2位置方向切換弁6がシャフト5の往復動に連動する切換レバー12を両パイロット弁11A,11Bの接点部に交互に押圧することによりその押された側のパイロット弁11A,11Bを押された間だけ作動させて順次に切り換える構成である。ところが、このような2位置方向切換弁6の切換手段では、パイロット弁11A,11Bの構造が複雑で故障率が高く、高価であり、寿命も短く、比較的長い切換レバー12を用いるのでコンパクト化が図り難く、配管17a,17b,17cが複雑になる。また、前記切換手段として、パイロット弁11A,11B及び切換レバー12に代え、近接スイッチ等を用いることもあるが、雰囲気・温度によってセンサー感度が不安定となって、寿命も短くなり交換頻度が増え、信頼性の点から採用できないことが多い。
【0006】
本発明者らは、このような背景から、特開平11−22646号に開示される如く上記問題を解消できるようにした構造を開発した。本発明の目的は、それを更に改良し、2位置方向切換弁の切換手段を精度を維持してより簡易化し、コスト低減を可能にすると共に、部品交換頻度を低くして稼働率を上げることができるようにすることにある。他の目的は以下の内容説明と共に明らかにする。
【0007】
【課題を解決するための手段】
上記目的を達成するため本発明は、図1〜図5に例示される如く左右のシリンダケース1,2と、出入口8,9を持つポンプヘッド15と、ポンプヘッド15に開口端側を装着した状態でシリンダケース1,2及びポンプヘッド15で形成される各シリンダ内に配置された伸縮部材3,4と、各伸縮部材3,4の自由端側に両端部をそれぞれ連結したシャフト5と、両側の駆動室21a,22aに給排出される切換流体により前記各シリンダ内へ駆動流体を交互に圧送する2位置方向切換弁6と、2位置方向切換弁6の駆動流体圧送方向を切り換える切換手段とを備え、伸縮部材3,4同士を、シャフト5の往復動を伴って伸縮させることにより液体を前記入口9から吸い込み、出口8から吐き出す流体圧駆動ポンプにおいて、前記切換手段は、弁体49が弁ボディ46に対し通常は閉状態となり、両伸縮部材3,4のうち、膨張される伸縮部材の自由端側で押されたときに開状態となって、弁ボディ46に導入される前記切換流体をシリンダケース1,2内に排出する減圧式切換弁42A,42Bにて構成し、減圧式切換弁42A,42Bを各シリンダケース1,2に伸縮部材3,4の自由端側と対向してそれぞれ装着すると共に、両減圧式切換弁42A,42Bの入口46aと2位置方向切換弁6の対応駆動室21a,22aとをそれぞれ接続し、伸縮部材3又は4の膨張で開状態となる減圧式切換弁側と、伸縮部材4又は3の収縮で閉状態を維持する減圧式切換弁側とにより、前記2位置方向切換弁6の各駆動室21a,22aに圧力差を形成するものである。
【0008】
以上の本発明において、流体圧駆動ポンプは、図1や図6に例示されるベローズポンプの他、該ベローズポンプのベローズ部がダイアフラムであるダイアフラムポンプ等が挙げられる。減圧式切換弁42A,42Bは、例えば、弁ボディ46に弁体49を付勢手段50で閉じ方向へ付勢した簡易なものである。弁ボディ46は入口46aを持つ本体47及び出口48aを持つ筒部48から構成可能である。弁体49は出口48aから外へ突出される先端軸部49bを有していればよい。ここで、減圧式切換弁42A,42Bは、シリンダケース1,2に対し弁体49の先端軸部49bが伸縮部材3,4の自由端側と対向され、伸縮部材3,4の最大膨張時に押されて開状態に切り換えられるよう取り付けられる。減圧式切換弁42A,42Bの各入口46aは、2位置方向切換弁6の両駆動室21a,22a(ここには切換流体が配管18a,18bを介し同時に供給される)の対応配管側にそれぞれ接続される。
【0009】
そして、この構成では、切換流体が2位置方向切換弁6の両駆動室21a,22aに同時に印加される。その後、駆動流体が2位置方向切換弁6に供給されると、駆動流体が一方シリンダ室に印加され、対応する伸縮部材が収縮し、連結シャフト5も連動して移動する。他方の伸縮部材はこのシャフト5の移動により膨張し、これと対向している減圧式切換弁が前記膨張する伸縮部材で押されると作動し開に切り換えられ、供給されている切換流体を対応シリンダ室に排気する。この結果、2位置方向切換弁6は、両駆動室21a,22aに圧力差を形成し、スプール20が該圧力差により反対側に押されてポートの位置を切り換え、今度は駆動流体を他方シリンダ室に印加する。この動作の繰り返しにより、2位置方向切換弁6はスプール20の作動方向を交互に切り換えられることになる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について図1から図5を参照して説明する。この形態説明では、本発明の好適な例であるから技術的に好ましい種々の限定が付されているが、本発明の技術的範囲を制約するものではない。
【0011】
図1は本発明をベローズポンプに適用し駆動システムを含むポンプ全体の構造を模式的に示し、図2はポンプ本体の構成を示す模式断面図、図3は減圧式切換弁の構成例を示す断面図、図4は2位置方向切換弁の構成例を示し、図5は前記減圧式切換弁の模式作動図である。なお、図1において、図7に図示したものと作動的に同じ部位ないしは部材には同じ符号を使用している。
このベローズポンプは、左右のシリンダケース1,2と、出入口8,9を形成しているポンプヘッド15と、シリンダケース1,2とポンプヘッド15との間に形成されるシリンダ内に配置されたベローズ3,4と、ベローズ3,4同士の自由端面側にその両端部を連結したシャフト5と、シリンダケース1,2内に駆動流体を交互に圧送する2位置方向切換弁6と、その切換手段である減圧式切換弁42A,42Bとを備えている。そして、2位置方向切換弁6は、圧送されてくる駆動流体をシリンダケース1,2内に交互に供給し、逆に、他方のシリンダケース内から交互に排気することにより、ベローズ3,4を交互に伸縮して、ポンプヘッド15の液体出入口8,9から液体の吸引と吐出しを行う。
【0012】
ここで、シリンダケース1,2は、略筒状のケース本体31,32と、ケース本体31,32の後方開口を閉じるキャップ状のカバー34,35とからなる。ケース本体31,32は、前側がポンプヘッド15の対応端面側にそれぞれ接合配置され、後側がカバー34,35で閉じられている。カバー34,35には、エアー等の駆動流体をシリンダケース1,2内に導入したり排出するノズル36,37と、端面側に設けられて後述する減圧式切換弁42A,42Bを取り付ける取付孔34a,35aと、下面側に突設された脚部34b,35bと、図示を省略したベローズ3,4内からの液漏れを検出するリークセンサとを有している。
【0013】
ベローズ3,4はプラスチック製であり、水平方向に伸縮自在の円筒状をなし、一端側が開口され、他端側が閉じられている。ベローズ3,4の開口端は、ポンプヘッド15の対応側面に設けられた取付溝に配置され、一部がケース本体31,32の対応部分で押え込まれる。ベローズ3,4の他端側つまり自由端側には、径大で円盤状の連結板40がそれぞれ装着されている。両ベローズ3,4の連結板40同士は、ケース本体31,32及びポンプヘッド15を摺動自在に貫通配置された複数のシャフト5で連結されて、一方のベローズが収縮すると、他方のベローズがシャフト5を介しそれに連動して伸長するようになっている。
【0014】
ポンプヘッド15は、ケース本体31,32と略同径の円盤状をなし、入口9に通じる吸入通路36及び出口8に通じる吐出通路37、これらの一方にそれぞれ連通している一対の貫通孔38,39を形成している。貫通孔38,39は、ポンプヘッド15の上下にあって、吸入通路36と連通する貫通孔38が下側に、吐出通路37と連通する貫通孔39が上側に位置している。貫通孔38は液体をベローズ3,4に入口9,吸入通路36から導入する孔、貫通孔39はベローズ3,4内の液体を吐出通路37,出口8へ送り出す孔である。そして、吸入通路36は、ポンプヘッド15の前側又は後側から貫通孔38に連通し、不図示のジョイント用パイプが装着されて目的の液体を導入する。吐出通路37は、ポンプヘッド15の上側から貫通孔39に連通し、ジョイント用パイプ等の出口8から目的箇所まで液体を供給する。なお、符号41はポンプヘッド15とシリンダケース1,2とを結合している複数の連結ボルト等である。符号43aはポンプヘッド15とケース本体31,32との間に介在されたシール部材、符号43bはケース本体31,32とカバー34,35との間に介在されたシール部材である。
【0015】
貫通孔38の両側には吸込用の逆止弁44が、貫通孔39の両側には吐出用の逆止弁45がそれぞれ配設されている。これらの逆止弁44,45は、何れもが弁ボディの取付状態で弁体をばね部材であるスプリングにより付勢したスプリングチャッキ構造であり、開閉作動が対応する弁ボディの弁座にそれぞれ異方向に開閉作動する。すなわち、逆止弁44,45の作動は、図2の状態において、吸込用のうち右側逆止弁44aがスプリング圧で閉じ、左側逆止弁44bがスプリング圧に抗して開、吐出用のうち右側逆止弁45bが開じ、左側逆止弁45aが閉となる。このとき、ベローズ4の内圧は、液体を吸入した後、供給される駆動流体の圧力により収縮されて液体を吐出す過程で最大となる。そのときの駆動流体は、例えば、吐出側のベローズの内圧V0に加え、対応する逆止弁のスプリング圧Vsに比例した圧が必要となる。なお、逆止弁44,45としては、特開平11−11377号のものでもよい。
【0016】
前記減圧式切換弁42A,42Bは同じ構造であり、弁ボディ46と、弁体49と、付勢手段50とで構成されている。弁ボディ46は、切換流体を導入する入口46aを形成している本体47と、ベローズ3や4の自由端面側に対向配置される筒部48からなる。本体47は横向きの略凹状をなし、凹状の中心部に更に一段深い窪み47aに形成し、その窪み47aの径方向の孔に入口46aとなるノズル51を装着し、切換流体をノズル51を通じて窪み47aへ導入可能になっている。筒部48は、弁座となる先端面に貫通された出口48aと、外周に形成された取付用雄ねじ48bと、前記凹状の部分に係合される径大後部48cを有している。弁体49は、筒部48の内部に摺動自在に配置される胴部49aと、胴部49aの先端面に突出されて出口48aから外へ突出する軸部49bとからなる。胴部49aは、筒状をした後側の外周が水平方向に突出された複数の突起49cを介し筒部48内周に接し、端面で閉じた先端側の外周が多少径小になっていて、筒部48の内周との間に隙間Lを形成している。付勢手段50はコイルバネが用いられ、窪み47aから筒部48内に配置される。そして、筒部48は、本体47の凹状に対し、筒部48内に弁体49を図3の如く入れた状態から、径大後部48cを付勢手段50の付勢圧に抗しつつ係合した後、複数の取付ネジ52により固着される。この組立状態では、弁体49が付勢手段50の圧により出口48aから軸部49bを突出する方向へ摺動されて、導入される切換流体を出口48aから逃がさない閉状態となっている。なお、符号53aは本体47と筒部48との間に介在されたシール部材、符号53bは径大後部48cの取付基準面となる前側端面に装着されたシール部材、53cは胴部49aの前端面(弁座となる筒部48の先端面に対向する面)に装着されたシール部材である。
【0017】
次に、2位置方向切換弁に関連する構成を概説する。2位置方向切換弁6は、複数のポートP1,P2,P3,P4,P5を形成している弁箱19と、弁箱19に配置されたスプール20と、弁箱19の両側にネジ等で取り付けらているカバー部材21,22と、各カバー部材21,22の内部に設けられて、駆動ピストン23aを配置している駆動室21a及び駆動ピストン23bを配置している駆動室22aを有し、駆動室21a及び22aにシリンダー機構30を介して交互に供給される切換流体の流体圧により、駆動ピストン23aと23bが作動してスプール20を二つの切換位置間を移動させ、前記ポート間の連通を切り換える。なお、符号24aはスプール20の両側に装着されたパッキングで、符号24bは駆動ピストン23a,23bに装着されているパッキングである。また、カバー部材21,22は、従来と同様に駆動室21a及び22aに印加された切換流体が所定圧以上になったときに外へ逃がすことができるようになっている。
【0018】
以上の2位置方向切換弁6には、ベローズ3,4を伸縮する駆動流体を流す配管と、2位置方向切換弁6の作動方向を切り換える切換流体を流す配管とが連結されている。図1中、実線は駆動流体を流す配管を、破線は切換流体を流す配管を示している。このうち、駆動流体用の配管は、駆動流体源から三方弁7Aを介して2位置方向切換弁6の入力ポートP1に通じる配管16aと、2位置方向切換弁6の出力ポートP2,P3とシリンダケース1,2のノズル36,37とを接続する配管16b,16cとからなっている。符号16d,16eはベローズ3,4の縮小過程でシリンダケース1,2内の駆動流体を2位置方向切換弁6の排気ポートP4,P5から排気するための配管である。これに対し、切換流体用の配管は、切換流体源から三方弁7Bを介し切換流体を各駆動室21a,22aに同時に供給する配管18a,18bと、減圧式切換弁42A,42Bの各入口46aと各駆動室21a,22a側とを接続している配管18c,18dからなる。また、配管18aと配管18bにはオリフェスOR1,OR2がそれぞれ介在されている。このうち、この例ではオリフェスOR1が直径0.8mm、オリフェスOR2が直径1.0mmのものを用いている。これは、径の異なるオリフェスOR1,OR2を付設して、後述する両駆動室21a,22aの内圧に差を形成し易くするものであるが、省略しても差し支えない。
【0019】
次に、減圧式切換弁42A,42Bを組み込んだポンプ駆動を図1,図4,図5を参照し説明する。なお、ポンプ稼動前の2位置方向切換弁6において、スプール20の位置は停止時の状態を維持している。図4(b)がその状態と仮定する。先ず、切換流体源側の三方弁7Bをオンし、切換流体(例えば、2〜3kg/cm2)が2位置方向切換弁6の両駆動室21a,22aに同時に印加される。スプール20は、両駆動室21a,22aが同じ圧となっているため初期位置に保持されている。次に、駆動流体源側の三方弁7Aをオンし、駆動流体(例えば、4〜5kg/cm2)が2位置方向切換弁6の入力ポートP1に供給されると、該駆動流体が入力ポートP1から、出力ポートP2、配管16b、ノズル36を通じて右側のシリンダ室に印加され、図1の如く伸縮部材3が収縮し(液体の吐出態様)、連結シャフト5も連動して左側へ移動する。ベローズ4はこのシャフト5の移動により膨張し伸長(液体の吸入態様)する。左側の減圧式切換弁42Bは、ベローズ4が設計値まで伸長されたとき弁体49の先端軸部49bを連結板40を介し押圧することにより、作動し開に切り換えられる。図5の上段はそのときの状態を示している。すると、減圧式切換弁42Bは、供給されている切換流体をシリンダケース2内に排気する。この排気は、配管18dを介し接続されている駆動室22aの切換流体圧を下げ、両駆動室21a,22aに圧力差を形成する。この圧力差により、スプール20はバランスを崩し、相対的に高圧力となった駆動室21aから押されて図4(a)の状態に切り換えられ、入力ポートP1と連通する出力ポートをP2からP3に切り換える。すると、今度は駆動流体が入力ポートP1から、出力ポートP3、配管16c、ノズル37を通じて左側のシリンダ室に印加され、ベローズ4が収縮し(液体の吐出態様)、連結シャフト5も連動して右側へ移動する。ベローズ3はシャフト5の移動により膨張し伸長(液体の吸入態様)する。右側の減圧式切換弁42Aは、ベローズ3が設計値まで伸長されたとき弁体49の先端軸部49bを連結板30を介し押圧することにより、作動し開に切り換えられる。図5の下段はそのときの状態を示している。
【0020】
このように、減圧式切換弁42A,42Bは、ベローズ3,4と同期して両駆動室21a,22aの圧力バランスを崩すことにより、2置方向切換弁6の前記ポート間の連通を規則的に切り換えるのである。したがって、本発明構造では、簡易な減圧式切換弁42A,42Bによって、装置全体をより簡素化することが可能となる。換言すると、本発明は、簡易な減圧式切換弁42A,42Bによって従来のパイロット弁11A,11B及び切換レバー12を廃止できる。また、減圧式切換弁42A,42Bは2位置方向切換弁6で使用される切換流体を利用し、かつ伸縮部材3,4の伸縮状態と連動するようにしたことから、配管系の簡略化、切換弁の寿命を維持でき、コスト低減と共に性能的に優れている。
【0021】
図6は本発明を図7の従来ポンプに適用した変形例を示している。なお、図6において、図7及び図1〜図5に図示したものと作動的に同じ部位ないしは部材には同じ符号を使用している。この変形例は、図7の構造に対し、シリンダケース1,2に減圧式切換弁42A,42Bを取り付け、切換流体側の配管18a〜18dを上記した要領で付設したものである。したがって、2位置方向切換弁6の切換作動は、図1〜図5で説明した場合と同じである。このように、本発明は請求項1の構成要素を具備する限り、ポンプ構造的に種々変形されるものである。
【0022】
【発明の効果】
以上説明したとおり、本発明の流体圧駆動ポンプは、2位置方向切換弁の切換手段である減圧式切換弁が従来のパイロット弁及び切換レバーを用いる構造に対し簡易であり、コスト低減、小スペース化、簡素化が達成される。また、2位置方向切換弁に対する減圧式切換弁の切換作動は両伸縮部材の伸び縮みと連動するようにしたので、性能的に優れ、従来のような機械的な摩耗が起き難く動作寿命を長く維持でき、信頼性を向上することができる。
【図面の簡単な説明】
【図1】 本発明を適用した駆動ポンプの全体を示す模式構成図である。
【図2】 図1のポンプ本体を示す要部拡大断面図である。
【図3】 図1の減圧式切換弁の構成を示す断面図である。
【図4】 図1の2位置方向切換弁例の作動を示す拡大断面図である。
【図5】 図1の駆動ポンプの作動を説明するための参考図である。
【図6】 上記駆動ポンプの他の例を図1に対応して示す模式構成図である。
【図7】 従来のベローズポンプの駆動システム構造を示す図である。
【符号の説明】
1,2はシリンダケース
3,4はベローズ(伸縮部材)
5はシャフト
6は2位置方向切換弁
15はポンプヘッド15
8,9はポンプヘッドの出入口
42A,42Bは減圧式切換弁
46は弁ボディ
49は弁体
50は付勢手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid pressure drive pump, and more particularly, to an improvement in a mechanism for switching a drive fluid pumping direction of a two-position direction switching valve when supplying and exhausting a drive fluid to the drive pump through a two-position direction switching valve.
[0002]
[Prior art]
FIG. 7 shows an example of a bellows pump which is one of the conventional fluid pressure driven pumps. The basic structure of the pump is that the left and right cylinder cases 1 and 2, the pump head 15 forming the inlets 8 and 9, the cylinder cases 1 and 2, the pump head 15 with the pump head 15 mounted on the open end side. The bellows 3 and 4 disposed in the cylinder formed between the two, the shaft 5 having both ends connected to the free end face side of the bellows 3 and 4, and the switching fluid supplied and exhausted to the drive chambers on both sides A two-position direction switching valve 6 for alternately pumping the driving fluid to the cases 1 and 2 and a switching means for switching the driving fluid pumping direction of the two-position direction switching valve 6 are provided. The cylinder cases 1 and 2 are assembled to the apparatus main body 13 while being connected to the pump heads 15. The fixed side open ends of the bellows 3 and 4 communicate with the inlets 8 and 9 of the pump head 15 and communicate with the liquid feed pipe 14 with the check valve 10. The switching means includes a switching lever 12 and pilot valves 11A and 11B, which are connected to the shaft 5 and reciprocate in conjunction with each other. The switching lever 12 operates the pilot valves 11A and 11B alternately. The switching fluid is sequentially applied to the corresponding side of the two-position direction switching valve 6 to switch the operation direction of the two-position direction switching valve 6. Thereby, the two-position direction switching valve 6 alternately supplies the driving fluid pressure-fed via the three-way valve 7A into the cylinder cases 1 and 2 and exhausts it from the other cylinder case. In conjunction with this, the bellows 3 and 4 are alternately expanded and contracted to suck and discharge liquid from the entrances 8 and 9.
[0004]
As shown in FIG. 4, the two-position direction switching valve 6 is provided with a valve box 19 forming ports P1 to P5, a spool 20 disposed in the valve box 19, and both sides of the spool 20. The drive chambers 21a and 22a are provided, and the fluid pressure of the switching fluid supplied and exhausted from the three-way valve 7B to the drive chambers 21a and 22a via the pilot valves 11A and 11B is applied to the drive pistons 23a and 23b, and the spool 20 Reciprocate to switch communication between ports. In FIG. 6, pipes 16a, 16b and 16c indicated by solid lines are on the driving fluid side, and pipes 17a, 17b and 17c indicated by broken lines are on the switching fluid side.
FIG. 4A shows a state in which the switching fluid is supplied to the drive chamber 21a. At this time, the input port P1 and the output port P3 communicate with each other, and the output port P2 and the discharge port P4 communicate with each other. In relation to the pump, the driving fluid is pumped to one side of the cylinder cases 1 and 2 and the driving fluid is exhausted from the other side. Conversely, FIG. 4B shows a state in which the switching fluid is supplied to the drive chamber 22a. At this time, the input port P1 and the output port P2 communicate with each other, and the output port P3 and the discharge port P5 communicate with each other. In relation to the pump side, the driving fluid is pumped to the other side of the cylinder cases 1 and 2 and the driving fluid is exhausted from one side. In this way, the two-position direction switching valve 6 moves the spool 20 between two positions by the switching fluid that is alternately pumped to the drive chambers 21a and 22a to switch the communication between the ports.
[0005]
[Problems to be solved by the invention]
In the above bellows pump, the two-position direction switching valve 6 alternately presses the switching lever 12 interlocked with the reciprocating motion of the shaft 5 against the contact portions of both pilot valves 11A and 11B, thereby the pilot valve 11A on the side pressed. , 11B are operated only while they are pressed and sequentially switched. However, the switching means of the two-position direction switching valve 6 is compact because the structure of the pilot valves 11A and 11B is complicated, the failure rate is high, the cost is short, the life is short, and a relatively long switching lever 12 is used. However, the pipes 17a, 17b, and 17c are complicated. As the switching means, a proximity switch or the like may be used instead of the pilot valves 11A and 11B and the switching lever 12. However, the sensor sensitivity becomes unstable depending on the atmosphere and temperature, the service life is shortened, and the replacement frequency is increased. In many cases, it cannot be adopted from the viewpoint of reliability.
[0006]
From such a background, the present inventors have developed a structure that can solve the above problems as disclosed in JP-A-11-22646. The object of the present invention is to further improve it, simplify the switching means of the two-position direction switching valve while maintaining accuracy, enable cost reduction, and increase the operating rate by reducing the frequency of parts replacement. Is to be able to. Other purposes will be made clear with the following description.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has left and right cylinder cases 1 and 2, a pump head 15 having outlets 8 and 9, and an opening end side attached to the pump head 15 as illustrated in FIGS. 1 to 5. Expansion and contraction members 3 and 4 disposed in each cylinder formed by the cylinder cases 1 and 2 and the pump head 15 in a state, and a shaft 5 having both ends connected to the free end sides of the respective expansion and contraction members 3 and 4, A two-position direction switching valve 6 that alternately pumps driving fluid into the cylinders by switching fluid supplied to and discharged from the driving chambers 21a and 22a on both sides, and switching means that switches the driving fluid pumping direction of the two-position direction switching valve 6 In the fluid pressure driven pump that draws liquid from the inlet 9 and discharges it from the outlet 8 by expanding and contracting the expansion members 3 and 4 with reciprocation of the shaft 5, the switching means The valve body 49 is normally closed with respect to the valve body 46, and is opened when the valve body 49 is pushed on the free end side of the expandable expansion / contraction member among the expansion / contraction members 3 and 4. The introduced switching fluid is constituted by pressure-reducing switching valves 42A and 42B for discharging the cylinder fluid into the cylinder cases 1 and 2, and the pressure-reducing switching valves 42A and 42B are freely attached to the cylinder cases 1 and 2, respectively. Each is mounted opposite to the end side, and the inlet 46a of both pressure-reducing switching valves 42A and 42B is connected to the corresponding drive chambers 21a and 22a of the two-position direction switching valve 6, respectively. A pressure difference is generated in each of the drive chambers 21a and 22a of the two-position direction switching valve 6 by the pressure-reducing switching valve side that is opened and the pressure-reducing switching valve side that is kept closed by contraction of the expansion member 4 or 3. To form.
[0008]
In the present invention described above, examples of the fluid pressure driven pump include a bellows pump illustrated in FIGS. 1 and 6 and a diaphragm pump in which the bellows portion of the bellows pump is a diaphragm. The pressure-reducing switching valves 42A and 42B are, for example, simple ones in which the valve body 49 is urged to the valve body 46 by the urging means 50 in the closing direction. The valve body 46 can be composed of a main body 47 having an inlet 46a and a cylindrical portion 48 having an outlet 48a. The valve body 49 should just have the front-end | tip shaft part 49b projected outside from the exit 48a. Here, the pressure-reducing switching valves 42A and 42B are such that the distal end shaft portion 49b of the valve body 49 is opposed to the free end side of the telescopic members 3 and 4 with respect to the cylinder cases 1 and 2, It is attached so that it can be pushed and switched to the open state. The inlets 46a of the pressure-reducing switching valves 42A and 42B are respectively connected to the corresponding piping sides of the two drive chambers 21a and 22a of the two-position direction switching valve 6 (where switching fluid is supplied simultaneously via the pipings 18a and 18b). Connected.
[0009]
In this configuration, the switching fluid is simultaneously applied to both the drive chambers 21 a and 22 a of the two-position direction switching valve 6. Thereafter, when the driving fluid is supplied to the two-position direction switching valve 6, the driving fluid is applied to the one cylinder chamber, the corresponding expansion / contraction member contracts, and the connecting shaft 5 also moves in conjunction with it. The other expansion / contraction member is expanded by the movement of the shaft 5, and when the pressure-reducing switching valve facing the expansion / contraction member is pushed by the expansion / contraction member, the expansion / contraction member is activated and switched to the open state. Exhaust into the chamber. As a result, the two-position direction switching valve 6 creates a pressure difference between the drive chambers 21a and 22a, and the spool 20 is pushed to the opposite side by the pressure difference to switch the position of the port. Apply to the chamber. By repeating this operation, the two-position direction switching valve 6 can alternately switch the operating direction of the spool 20.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS. In the description of the embodiments, various technically preferable limitations are given because they are preferable examples of the present invention, but the technical scope of the present invention is not limited.
[0011]
FIG. 1 schematically shows the structure of an entire pump including a drive system in which the present invention is applied to a bellows pump, FIG. 2 is a schematic sectional view showing the structure of a pump body, and FIG. 3 shows a structural example of a pressure-reducing switching valve. FIG. 4 is a sectional view, FIG. 4 shows a configuration example of a two-position direction switching valve, and FIG. 5 is a schematic operation diagram of the pressure-reducing switching valve. In FIG. 1, the same reference numerals are used for the same parts or members as those shown in FIG.
The bellows pump is disposed in a cylinder formed between the cylinder cases 1 and 2 and the pump head 15 and the pump head 15 forming the left and right cylinder cases 1 and 2, the inlets 8 and 9. Bellows 3, 4, shaft 5 having both ends connected to the free end surfaces of the bellows 3, 4, two-position direction switching valve 6 for alternately pumping drive fluid into cylinder cases 1, 2, and switching thereof And pressure reducing switching valves 42A and 42B as means. The two-position direction switching valve 6 alternately supplies the pumped driving fluid into the cylinder cases 1 and 2, and conversely exhausts the bellows 3 and 4 from the other cylinder case. By alternately expanding and contracting, liquid is sucked and discharged from the liquid inlets 8 and 9 of the pump head 15.
[0012]
The cylinder cases 1 and 2 include substantially cylindrical case bodies 31 and 32 and cap-shaped covers 34 and 35 that close rear openings of the case bodies 31 and 32. The front sides of the case bodies 31 and 32 are joined and arranged on the corresponding end face sides of the pump head 15, and the rear sides are closed by covers 34 and 35. The cover 34, 35 is provided with nozzles 36, 37 for introducing or discharging a driving fluid such as air into the cylinder cases 1, 2 and mounting holes provided on the end face side for attaching pressure reducing switching valves 42A, 42B described later. 34a, 35a, leg portions 34b, 35b projecting on the lower surface side, and a leak sensor for detecting liquid leakage from the bellows 3, 4 (not shown).
[0013]
The bellows 3 and 4 are made of plastic, have a cylindrical shape that can be expanded and contracted in the horizontal direction, have one end opened, and the other end closed. The open ends of the bellows 3 and 4 are arranged in mounting grooves provided on the corresponding side surfaces of the pump head 15, and a part thereof is pressed by the corresponding portions of the case main bodies 31 and 32. On the other end side of the bellows 3, 4, that is, the free end side, a large-diameter disk-shaped connecting plate 40 is mounted. The connecting plates 40 of the bellows 3 and 4 are connected by a plurality of shafts 5 that are slidably disposed through the case main bodies 31 and 32 and the pump head 15, and when one bellows contracts, the other bellows The shaft 5 extends in conjunction with the shaft 5.
[0014]
The pump head 15 has a disk shape substantially the same diameter as the case main bodies 31 and 32, and includes a suction passage 36 leading to the inlet 9 and a discharge passage 37 leading to the outlet 8, and a pair of through holes 38 respectively communicating with one of them. , 39 are formed. The through holes 38 and 39 are located above and below the pump head 15, and the through hole 38 communicating with the suction passage 36 is located on the lower side, and the through hole 39 communicating with the discharge passage 37 is located on the upper side. The through hole 38 is a hole for introducing the liquid into the bellows 3 and 4 from the inlet 9 and the suction passage 36, and the through hole 39 is a hole for sending the liquid in the bellows 3 and 4 to the discharge passage 37 and the outlet 8. The suction passage 36 communicates with the through hole 38 from the front side or the rear side of the pump head 15, and a joint pipe (not shown) is attached to introduce the target liquid. The discharge passage 37 communicates with the through hole 39 from the upper side of the pump head 15 and supplies the liquid from the outlet 8 such as a joint pipe to the target location. Reference numeral 41 denotes a plurality of connecting bolts for connecting the pump head 15 and the cylinder cases 1 and 2. Reference numeral 43a denotes a seal member interposed between the pump head 15 and the case bodies 31, 32, and reference numeral 43b denotes a seal member interposed between the case bodies 31, 32 and the covers 34, 35.
[0015]
A check valve 44 for suction is disposed on both sides of the through hole 38, and a check valve 45 for discharge is disposed on both sides of the through hole 39. Each of these check valves 44 and 45 has a spring check structure in which the valve body is urged by a spring which is a spring member in the attached state of the valve body, and the opening and closing operation is different from the corresponding valve seat of the valve body. Open and close in the direction. That is, the check valves 44 and 45 are operated in the state shown in FIG. 2 in which the right check valve 44a is closed by spring pressure and the left check valve 44b is opened against discharge and discharged. Of these, the right check valve 45b is opened and the left check valve 45a is closed. At this time, the internal pressure of the bellows 4 is maximized in a process in which the liquid is sucked and then contracted by the pressure of the supplied driving fluid to discharge the liquid. The driving fluid at that time requires, for example, a pressure proportional to the spring pressure Vs of the corresponding check valve in addition to the internal pressure V0 of the discharge side bellows. The check valves 44 and 45 may be those disclosed in Japanese Patent Application Laid-Open No. 11-11377.
[0016]
The pressure-reducing switching valves 42A and 42B have the same structure, and are composed of a valve body 46, a valve body 49, and an urging means 50. The valve body 46 includes a main body 47 that forms an inlet 46 a for introducing a switching fluid, and a cylindrical portion 48 that is disposed to face the free end face side of the bellows 3 and 4. The main body 47 has a substantially concave shape in the lateral direction, and is formed as a deeper recess 47 a at the center of the recess. A nozzle 51 serving as an inlet 46 a is attached to the radial hole of the recess 47 a, and the switching fluid is recessed through the nozzle 51. 47a can be introduced. The cylindrical portion 48 has an outlet 48a that penetrates through the distal end surface serving as a valve seat, a mounting male screw 48b formed on the outer periphery, and a large-diameter rear portion 48c that engages with the concave portion. The valve body 49 includes a barrel portion 49a that is slidably disposed inside the cylindrical portion 48, and a shaft portion 49b that projects from the distal end surface of the barrel portion 49a and projects outward from the outlet 48a. The body portion 49a is in contact with the inner periphery of the cylinder portion 48 via a plurality of protrusions 49c whose outer periphery on the rear side that is cylindrical is protruded in the horizontal direction, and the outer periphery on the front end side that is closed at the end surface is slightly smaller in diameter. A gap L is formed between the inner periphery of the cylindrical portion 48. The urging means 50 is a coil spring and is disposed in the cylindrical portion 48 from the recess 47a. Then, the cylindrical portion 48 is engaged with the concave shape of the main body 47 while the valve body 49 is put in the cylindrical portion 48 as shown in FIG. After joining, the plurality of mounting screws 52 are fixed. In this assembled state, the valve body 49 is slid by the pressure of the urging means 50 in the direction of protruding the shaft portion 49b from the outlet 48a, so that the introduced switching fluid is not released from the outlet 48a. Reference numeral 53a denotes a seal member interposed between the main body 47 and the cylindrical portion 48, reference numeral 53b denotes a seal member attached to a front end surface serving as an attachment reference surface of the large diameter rear portion 48c, and 53c denotes a front end of the trunk portion 49a. It is a seal member mounted on a surface (a surface facing the front end surface of the cylindrical portion 48 serving as a valve seat).
[0017]
Next, the configuration related to the two-position direction switching valve will be outlined. The two-position direction switching valve 6 includes a valve box 19 having a plurality of ports P1, P2, P3, P4, and P5, a spool 20 disposed in the valve box 19, and screws or the like on both sides of the valve box 19. Cover members 21 and 22 that are attached, and a drive chamber 21a that is provided inside each cover member 21 and 22 and in which the drive piston 23a is disposed and a drive chamber 22a in which the drive piston 23b is disposed. The drive pistons 23a and 23b are actuated by the fluid pressure of the switching fluid supplied alternately to the drive chambers 21a and 22a via the cylinder mechanism 30 to move the spool 20 between the two switching positions. Switch communication. Reference numeral 24a denotes a packing attached to both sides of the spool 20, and reference numeral 24b denotes a packing attached to the drive pistons 23a and 23b. Further, the cover members 21 and 22 can escape to the outside when the switching fluid applied to the drive chambers 21a and 22a becomes a predetermined pressure or more as in the conventional case.
[0018]
The above-described two-position direction switching valve 6 is connected to a pipe for flowing a driving fluid that expands and contracts the bellows 3 and 4 and a pipe for flowing a switching fluid for switching the operation direction of the two-position direction switching valve 6. In FIG. 1, the solid line indicates a pipe for flowing the driving fluid, and the broken line indicates a pipe for flowing the switching fluid. Among these, the piping for the driving fluid includes the piping 16a leading from the driving fluid source to the input port P1 of the two-position direction switching valve 6 through the three-way valve 7A, the output ports P2, P3 of the two-position direction switching valve 6 and the cylinder. The pipes 16b and 16c connect the nozzles 36 and 37 of the cases 1 and 2, respectively. Reference numerals 16d and 16e are pipes for exhausting the driving fluid in the cylinder cases 1 and 2 from the exhaust ports P4 and P5 of the two-position direction switching valve 6 in the process of reducing the bellows 3 and 4, respectively. On the other hand, the switching fluid piping includes piping 18a and 18b for simultaneously supplying switching fluid from the switching fluid source to the drive chambers 21a and 22a via the three-way valve 7B, and inlets 46a of the pressure-reducing switching valves 42A and 42B. And pipes 18c and 18d connecting the drive chambers 21a and 22a. Orifices OR1 and OR2 are interposed in the pipe 18a and the pipe 18b, respectively. Of these, in this example, the ORIFES OR1 has a diameter of 0.8 mm and the ORIFES OR2 has a diameter of 1.0 mm. In this case, the orifices OR1 and OR2 having different diameters are attached to facilitate the formation of a difference in the internal pressures of both drive chambers 21a and 22a, which will be described later, but may be omitted.
[0019]
Next, the pump drive incorporating the pressure-reducing switching valves 42A and 42B will be described with reference to FIGS. Note that, in the two-position direction switching valve 6 before the pump is operated, the position of the spool 20 is maintained in a stopped state. FIG. 4B assumes that state. First, the three-way valve 7B on the switching fluid source side is turned on, and switching fluid (for example, 2 to 3 kg / cm 2 ) is simultaneously applied to both drive chambers 21a and 22a of the two-position direction switching valve 6. The spool 20 is held at the initial position because both the drive chambers 21a and 22a have the same pressure. Next, when the three-way valve 7A on the driving fluid source side is turned on and driving fluid (for example, 4 to 5 kg / cm 2 ) is supplied to the input port P1 of the two-position direction switching valve 6, the driving fluid is input to the input port. From P1, it is applied to the right cylinder chamber through the output port P2, the pipe 16b, and the nozzle 36, the expandable member 3 contracts (liquid discharge mode) as shown in FIG. 1, and the connecting shaft 5 moves to the left in conjunction with it. The bellows 4 expands and expands (liquid suction mode) by the movement of the shaft 5. The pressure-reducing switching valve 42B on the left side is operated and switched to open by pressing the tip shaft portion 49b of the valve body 49 through the connecting plate 40 when the bellows 4 is extended to the design value. The upper part of FIG. 5 shows the state at that time. Then, the pressure reducing switching valve 42 </ b> B exhausts the supplied switching fluid into the cylinder case 2. This exhaust gas lowers the switching fluid pressure in the drive chamber 22a connected via the pipe 18d, and forms a pressure difference between the drive chambers 21a and 22a. Due to this pressure difference, the spool 20 loses its balance and is pushed from the drive chamber 21a, which is relatively high in pressure, to be switched to the state shown in FIG. 4A, and the output ports communicating with the input port P1 are changed from P2 to P3. Switch to. Then, the driving fluid is applied from the input port P1 to the left cylinder chamber through the output port P3, the pipe 16c, and the nozzle 37, the bellows 4 contracts (liquid discharge mode), and the connecting shaft 5 is also interlocked with the right side. Move to. The bellows 3 expands and expands (liquid suction mode) by the movement of the shaft 5. The right pressure-reducing switching valve 42A is operated and switched to open by pressing the tip shaft portion 49b of the valve body 49 through the connecting plate 30 when the bellows 3 is extended to the design value. The lower part of FIG. 5 shows the state at that time.
[0020]
In this way, the pressure-reducing switching valves 42A and 42B regularly communicate between the ports of the two-way switching valve 6 by breaking the pressure balance between the drive chambers 21a and 22a in synchronization with the bellows 3 and 4. It is switched to. Therefore, in the structure of the present invention, the whole apparatus can be further simplified by the simple pressure-reducing switching valves 42A and 42B. In other words, according to the present invention, the conventional pilot valves 11A and 11B and the switching lever 12 can be eliminated by the simple pressure-reducing switching valves 42A and 42B. Further, since the pressure-reducing switching valves 42A and 42B use the switching fluid used in the two-position direction switching valve 6 and are interlocked with the expansion / contraction state of the expansion / contraction members 3 and 4, simplification of the piping system, The life of the switching valve can be maintained, and the cost is reduced and the performance is excellent.
[0021]
FIG. 6 shows a modification in which the present invention is applied to the conventional pump of FIG. In FIG. 6, the same reference numerals are used for the same parts or members as those shown in FIGS. 7 and 1 to 5. In this modification, pressure-reducing switching valves 42A and 42B are attached to cylinder cases 1 and 2 and piping 18a to 18d on the switching fluid side is attached as described above with respect to the structure of FIG. Therefore, the switching operation of the two-position direction switching valve 6 is the same as that described with reference to FIGS. As described above, the present invention can be variously modified in terms of the pump structure as long as the constituent elements of claim 1 are provided.
[0022]
【The invention's effect】
As described above, the fluid pressure driven pump according to the present invention is simpler than the structure in which the pressure reducing switching valve, which is the switching means of the two-position direction switching valve, uses the conventional pilot valve and the switching lever, reducing the cost and reducing the space. And simplification are achieved. In addition, the switching operation of the pressure-reducing switching valve with respect to the two-position direction switching valve is linked to the expansion and contraction of both expansion and contraction members, so that the performance is excellent and mechanical wear unlike conventional ones is difficult to occur and the operating life is extended. Can be maintained and reliability can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an entire drive pump to which the present invention is applied.
FIG. 2 is an enlarged cross-sectional view showing a main part of the pump body of FIG.
3 is a cross-sectional view showing the configuration of the pressure-reducing switching valve of FIG.
4 is an enlarged cross-sectional view showing the operation of the example of the two-position direction switching valve in FIG. 1. FIG.
FIG. 5 is a reference diagram for explaining the operation of the drive pump of FIG. 1;
6 is a schematic configuration diagram showing another example of the drive pump corresponding to FIG. 1. FIG.
FIG. 7 is a diagram showing a structure of a conventional bellows pump drive system.
[Explanation of symbols]
1 and 2 are cylinder cases 3 and 4 are bellows (expandable members)
5 is shaft 6 is 2-position direction switching valve 15 is pump head 15
8 and 9 are pump head inlets and outlets 42A and 42B.

Claims (4)

左右のシリンダケースと、出入口を形成しているポンプヘッドと、前記ポンプヘッドに開口端側を装着した状態でシリンダケース及びポンプヘッドで形成される各シリンダ内に配置された伸縮部材と、前記各伸縮部材の自由端側に両端部をそれぞれ連結したシャフトと、両側の駆動室に給排出される切換流体により前記各シリンダ内へ駆動流体を交互に圧送する2位置方向切換弁と、前記2位置方向切換弁の駆動流体圧送方向を切り換える切換手段とを備え、前記伸縮部材同士を、前記シャフトの往復動を伴って伸縮させることにより液体を前記入口から吸い込み、出口から吐き出す流体圧駆動ポンプにおいて、前記切換手段は、弁体が弁ボディに対し通常は閉状態となり、前記両伸縮部材のうち、膨張される伸縮部材の自由端側で押されたときに開状態となって、前記弁ボディに導入される前記切換流体を前記シリンダケース内に排出することにより前記切換流体を減圧する減圧式切換弁にて構成し、
前記減圧式切換弁を前記各シリンダケースに伸縮部材の自由端側と対向してそれぞれ装着すると共に、前記各減圧式切換弁の入口と2位置方向切換弁の対応駆動室側とをそれぞれ接続し、前記伸縮部材の膨張で開状態となる減圧式切換弁側と、前記伸縮部材の収縮で閉状態を維持する減圧式切換弁側とにより、2位置方向切換弁の両駆動室に圧力差を形成する、ことを特徴とする流体圧駆動ポンプ。
Left and right cylinder cases; a pump head forming an inlet / outlet; and a telescopic member disposed in each cylinder formed by the cylinder case and the pump head in a state where the opening end side is mounted on the pump head; A shaft having both ends connected to the free ends of the telescopic members, a two-position direction switching valve for alternately pumping the driving fluid into the cylinders by switching fluid supplied to and discharged from the driving chambers on both sides, and the two-position A fluid pressure drive pump that includes a switching unit that switches a driving fluid pumping direction of the direction switching valve, and draws liquid from the inlet and discharges it from the outlet by expanding and contracting the expansion members with the reciprocation of the shaft. In the switching means, the valve body is normally closed with respect to the valve body, and is pushed on the free end side of the expansion member that is inflated among the two expansion members. In the open state can constitute the switching fluids under reduced selector valve for reducing the pressure by discharging the switching fluids to be introduced into the valve body in the cylinder casing,
The pressure-reducing switching valve is mounted on each cylinder case so as to face the free end of the telescopic member, and the inlet of each pressure-reducing switching valve is connected to the corresponding drive chamber side of the two-position direction switching valve. A pressure difference is generated between the drive chambers of the two-position direction switching valve by the pressure-reducing switching valve side that is opened by expansion of the telescopic member and the pressure-reducing switching valve side that is maintained closed by contraction of the telescopic member. A fluid pressure driven pump characterized by forming.
前記減圧式切換弁の弁ボディが前記伸縮部材の自由端側に対向配置される筒部該筒部端面に貫通された出口及び前記弁体に対応して該端面内部に形成された弁座を有し、前記弁体が前記筒部内に摺動自在に配置された胴部及び該胴部の先端前記出口から外へ突出していて前記伸縮部材の自由端に接触可能な軸部を有している請求項1に記載の流体圧駆動ポンプ。A cylinder part in which the valve body of the pressure-reducing switching valve is arranged opposite to the free end side of the telescopic member, an outlet penetrating the end face of the cylinder part , and a valve formed inside the end face corresponding to the valve body A barrel having a seat , the valve body being slidably disposed in the cylindrical portion, and a shaft portion that protrudes outward from the outlet at the tip of the barrel and can contact the free end of the expansion member. The fluid pressure pump according to claim 1. 前記弁ボディに内蔵されて、前記弁体を閉状態の方向へ常に付勢する付勢手段を有している請求項1又は2に記載の流体圧駆動ポンプ。  The fluid pressure drive pump according to claim 1, further comprising a biasing unit that is built in the valve body and constantly biases the valve body in a closed state. 前記伸縮部材がベローズである請求項1から3の何れかに記載の流体圧駆動ポンプ。  The fluid pressure driven pump according to any one of claims 1 to 3, wherein the expandable member is a bellows.
JP32148499A 1999-11-11 1999-11-11 Fluid pressure pump Expired - Lifetime JP4354592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32148499A JP4354592B2 (en) 1999-11-11 1999-11-11 Fluid pressure pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32148499A JP4354592B2 (en) 1999-11-11 1999-11-11 Fluid pressure pump

Publications (2)

Publication Number Publication Date
JP2001140752A JP2001140752A (en) 2001-05-22
JP4354592B2 true JP4354592B2 (en) 2009-10-28

Family

ID=18133089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32148499A Expired - Lifetime JP4354592B2 (en) 1999-11-11 1999-11-11 Fluid pressure pump

Country Status (1)

Country Link
JP (1) JP4354592B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360000B2 (en) 2012-03-15 2016-06-07 Graco Fluid Handling (A) Inc. Reciprocating pumps and related methods
JP6644059B2 (en) * 2015-04-07 2020-02-12 株式会社イワキ Double reciprocating pump
CN111765061B (en) * 2020-07-07 2022-03-29 鹏城实验室 Differential pressure driving type suction and discharge mechanism
CN112302914B (en) * 2020-10-27 2021-09-28 浙江大学 Bellows pump with stroke compensation function and stroke compensation method thereof

Also Published As

Publication number Publication date
JP2001140752A (en) 2001-05-22

Similar Documents

Publication Publication Date Title
JP4547451B2 (en) Bellows pump and operation method of bellows pump
US4496294A (en) Diaphragm pump
WO1995010690A1 (en) Reciprocable device
CA2174710C (en) Lost motion pilot valve for diaphragm pump
US6722256B2 (en) Reduced icing valves and gas-driven motor and diaphragm pump incorporating same
EP0961032B1 (en) A reciprocating type refrigerant compressor with an improved internal sealing unit
JP4354592B2 (en) Fluid pressure pump
JPS634030B2 (en)
KR100225278B1 (en) Fluid machine
WO2020054322A1 (en) Hydraulic cylinder
US7367785B2 (en) Reduced icing valves and gas-driven motor and reciprocating pump incorporating same
JP5393815B2 (en) Fluid pressure machine
JP3111683B2 (en) Rotary shaft seal structure of swash plate compressor
JP2798664B2 (en) 2-position directional control valve
KR101335421B1 (en) Hermetic compressor
JPH0738698Y2 (en) Plunger pump
JP3568866B2 (en) Reciprocating pump
JP2000274554A (en) Air selector valve
JPH0326307Y2 (en)
CN115217734B (en) Hydraulic rotary machine
JPH116503A (en) Multistage type double acting cylinder device
JP3162368B2 (en) Stacking manifold
JP3111668B2 (en) Refrigerant gas suction structure in piston type compressor
JPH0740084Y2 (en) Reciprocating fluid pressure device switching valve
JPH1122646A (en) Fluid pressure drive pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051104

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060328

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081202

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20081205

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20081225

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090730

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4354592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term