JP4354052B2 - Cooling steam control method for gas turbine combustor - Google Patents

Cooling steam control method for gas turbine combustor Download PDF

Info

Publication number
JP4354052B2
JP4354052B2 JP24834099A JP24834099A JP4354052B2 JP 4354052 B2 JP4354052 B2 JP 4354052B2 JP 24834099 A JP24834099 A JP 24834099A JP 24834099 A JP24834099 A JP 24834099A JP 4354052 B2 JP4354052 B2 JP 4354052B2
Authority
JP
Japan
Prior art keywords
steam
pressure
cooling
control valve
cooling steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24834099A
Other languages
Japanese (ja)
Other versions
JP2001073801A (en
Inventor
国雄 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP24834099A priority Critical patent/JP4354052B2/en
Publication of JP2001073801A publication Critical patent/JP2001073801A/en
Application granted granted Critical
Publication of JP4354052B2 publication Critical patent/JP4354052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガスタービン燃焼器の冷却蒸気制御方法に関し、冷却蒸気の洩れ量を少なくし、燃焼空気への蒸気の混入を最小限に抑え、燃焼器の起動から定常運転にわたって燃焼の安定性を確保するように蒸気の流量、温度、圧力を制御するようにしたものである。
【0002】
【従来の技術】
近年のガスタービンの高温化に伴い、ガスタービンの燃焼器を蒸気で冷却する方式が採用され始めており、図2はその概略構成図である。10はガスタービン、11は圧縮機、12は燃焼器であり圧縮機11からの圧縮空気を導き、燃料を燃焼させて高温の燃焼ガスを発生させ、ガスタービン10に導き、ガスタービン10のロータを回転させ、ガスタービンロータに接続した発電機を回転させる。燃焼器12は高温のガスを発生させるために、壁内部に冷却通路14を設け、これに蒸気を導いて蒸気で冷却することが行なわれている。冷却用蒸気は蒸気タービンのボトミング系から抽気され、配管15、開閉弁(遮断弁)13を経由して燃焼器12の冷却通路14へ導かれ、燃焼器12壁面を冷却して回収され、蒸気タービン側で有効利用される。このような蒸気冷却方式においては、ガスタービン起動時から定常運転時に必要とされる最大の圧力、流量の蒸気が冷却蒸気通路14に供給されており、現状では特に蒸気流量や圧力は運転中に制御されていなかった。
【0003】
【発明が解決しようとする課題】
前述のように、ガスタービン燃焼器の冷却蒸気系統は、車室外部配管から外部車室を貫通して車室内の冷却蒸気ヘッダーに導かれ、燃焼器へ供給され、回収蒸気は逆に車室内から車室外へ導かれる。この車室内の蒸気ルート途上では、各部の熱膨張を緩和するためにシールリングが用いられており、これらシールリングからの蒸気の洩れが発生し、あるいは燃焼器壁内の冷却用通路に微少な傷があると、蒸気が燃焼器の冷却用通路から洩れる可能性がある。
【0004】
ガスタービンの起動、昇速途中、あるいは低負荷域で上記のような蒸気洩れが発生していると、燃焼用空気中に蒸気が混入することになり、燃焼が不安定になり、洩れ蒸気量が多くなると、失火を起こす可能性もある。又、このような蒸気冷却方式においては、高温の燃焼ガスが逆に蒸気配管側に侵入しないように、蒸気圧力は、通常燃焼ガス圧力(車室側燃焼用空気圧力)より高い状態としており、蒸気が燃焼器側に洩れやすい状況にある。
【0005】
そこで本発明では、起動中から高出力域において蒸気圧力、流量を制御することにより蒸気圧力と車室内圧力とのバランスを取り、蒸気圧力が最適な圧力、流量となるようにして、蒸気の洩れ量を最小限に抑えるような状態で冷却用蒸気を供給するガスタービン燃焼器の冷却蒸気制御方法を提供することを課題としてなされたものである。
【0006】
【課題を解決するための手段】
本発明は前述の課題を解決するために、次の手段を提供する。
【0007】
ガスタービン燃焼器(12)内の冷却通路(14)へ冷却蒸気を導き、同燃焼器(12)を冷却する方法であって、起動時には、前記冷却通路(14)へ前記冷却蒸気を供給する供給配管(15)から前記冷却蒸気をバイパスさせるバイパス配管(16)に設けられた流量制御弁(2)を所定量開くと共に、車室内圧力値に、前記冷却蒸気の逆流を防止する最小差圧となるバイアスを加えて設定値とし、この設定値となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)及び前記供給配管(15)に設けられた流量制御弁(4)の開度を制御し、負荷運転中には、前記冷却通路(14)の出口の蒸気温度を温度検出器(7)で検出し、出口温度の上限値を超えないように前記供給配管(15)に設けられた前記流量制御弁(4)で前記冷却蒸気流量を調整すると共に前記バイパス配管(16)における前記流量制御弁(2)の上流側に設けられた圧力検出器(6)で検出した冷却蒸気の圧力が予め定められた圧力となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)調整して、前記冷却蒸気圧力が前記車室内圧力よりも所定の圧力だけ高くなるように制御し、停止時には、前記冷却通路(14)へ乾燥空気を投入するための開閉弁(5)を所定時間開くことを特徴とするガスタービン燃焼器の冷却蒸気制御方法。
【0010】
本発明は、燃焼器の冷却通路へ導かれる蒸気圧力は車室内圧力より若干高めに設定されるので、蒸気圧力と車室内圧力の差圧を小さくすることができる。洩れ蒸気量は、この差圧によって決まり、差圧が大きい程、洩れ蒸気量は多くなるので、昇速中あるいは低出力域における蒸気洩れ量をできる限り少なくするために、この差圧を小さくする必要がある。このために、燃焼器へ供給される蒸気圧力を車室圧力+「逆流防止最小差圧」に制御することにより、燃焼用空気中への蒸気の洩れによる混入を最小限に抑えることができ、特に昇速中、あるいは低負荷域での燃焼への影響を最小限として燃焼の不安定、失火を防止することができる。しかも、本発明では、停止時には、冷却通路へ乾燥空気を投入するための開閉弁を所定時間開くことにより、蒸気系統に蒸気の滞留によるドレン発生を防止することができる。
【0011】
さらに、本発明は、車室内圧力に微少圧力、即ち「逆流防止最小差圧」を加えた圧力値を目標値として設定し、冷却蒸気の圧力を目標値に近づけるように制御するので、燃焼用空気中への蒸気の洩れによる混入を最小限に抑えることができ、特に昇速中、あるいは低負荷域での燃焼への影響を最小限にして燃焼の不安定、失火を防止することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について図面に基づいて具体的に説明する。図1は本発明の実施の一形態に係るガスタービン燃焼器の冷却蒸気制御方法を適用する制御系統図である。図において、15は冷却蒸気が導かれる供給配管で、蒸気は蒸気タービンのボトミング系から抽気して導かれる。2は流量制御弁であり、燃焼器12の冷却蒸気をバイパスさせて、燃焼器12の冷却通路14への蒸気の供給圧力を制御する。3は遮断弁であり、燃焼器12への供給蒸気を開閉する。4は流量制御弁であり、燃焼器12の冷却通路14への蒸気流量を制御する。5は開閉弁であり、ドレン排出用の乾燥空気の導入を開閉する。
【0014】
6は圧力検出器で、冷却通路14へ冷却蒸気を供給する供給配管15から冷却蒸気をバイパスさせるバイパス配管16における流量制御弁2の上流側に設けられて冷却蒸気の蒸気圧力を検出する。7は温度検出器であり、燃焼器12の冷却通路14の出口蒸気の温度を検出する。8は圧力検出器であり、冷却通路14内の蒸気圧力を検出し、車室内空気圧力と比較するためのものである。
【0015】
制御装置1には、上記の圧力検出器6、温度検出器7、圧力検出器8からの検出信号がそれぞれ入力され、後述するように蒸気供給側の供給圧力を調整する流量制御弁2、燃焼器冷却系の遮断弁3、燃焼器12へ蒸気を供給する流量制御弁4、ドレン系の開閉弁5をそれぞれ制御するものである。
【0016】
上記構成において、冷却蒸気系統の供給配管15には約300℃程度の冷却蒸気が導かれ、遮断弁3を開き、流量制御弁4を経由して蒸気が燃焼器12の冷却通路14へ導かれ、燃焼器12を冷却し冷却により温度が約500℃以上となり、回収される。まず、起動前には、蒸気系統をウォーミングアップするため、遮断弁3を微開として流量制御弁を開き、蒸気を冷却系統に流しウォーミングを行い、温度検出器7が所定の温度となるまで行う。
【0017】
起動時には、冷却蒸気の流量は少量で良く、制御装置1により流量制御弁2を所定量開き、入口側の流量制御弁4を制御して蒸気を燃焼器12へ流す。蒸気圧力は圧力検出器8の圧力を参照し、車室内圧力よりわずかに高い圧力に設定する。制御装置1は、車室内圧力を図示しない圧力検出器で検出し、この圧力値に「蒸気の逆流を防止する最小差圧」となるバイアスを加えて設定値とし、この設定値となるように流量制御弁2、流量制御弁4の開度を制御する。
【0018】
負荷運転中では、制御装置1は出口の蒸気温度を温度検出器7で検出し、出口蒸気温度が予め定められた負荷対設定温度となるように制御すると共に、出口温度の上限値を超えないように流量制御弁4で蒸気流量を調整することにより制御する。この場合の蒸気の供給圧力は、供給系の供給配管15をバイパスするバイパス配管16に設けられた流量制御弁2を調節し、圧力検出器6で検出した圧力が予め定められた圧力となるように制御し、冷却通路14へ流入する蒸気圧力が車室内圧力よりも高くなるように制御する。
【0019】
ガスタービンの停止時には、制御装置1は、蒸気系統に蒸気の滞留によるドレン発生を防止するため、ガスタービン停止信号(又は回転数信号)により開閉弁5を所定時間開き、乾燥空気を投入する。
【0020】
上記に説明のように、制御装置1は、ウォーミング、起動時、負荷運転時、停止時に、それぞれ圧力検出器6、温度検出器7、圧力検出器8の各検出器からの検出信号を取込み、流量制御弁2、遮断弁3、流量制御弁4、開閉弁5をそれぞれ制御し、蒸気圧力を車室内圧力よりも若干高い適正な圧力に制御し、蒸気の洩れを防ぎ、安定した燃焼性を確保する。
【0021】
上記の起動から負荷運転までの具体的な制御例について説明すると、ガスタービン着火回転数を定速の約20%速度とした場合、着火状態は約35%回転数で安定する。従って、第1の制御方法は、35%回転数以下では、流量制御弁4をできるだけ絞って供給蒸気圧力を(車室圧力)+(逆流防止最小差圧)に制御し、燃焼用空気中への蒸気の洩れによる混入を最小限とし、昇速中、あるいは低負荷域での燃焼への影響を少なくして燃焼不安定、失火を防止する。35%回転以上では、流量制御弁4の開度を次第に増加させる。
【0022】
第2の制御方法としては、蒸気の圧力を圧力検出器8で検出し、(車室圧力)+0.05〜0.1μPa )を制御目標値に設定し、流量制御弁2,4の開度を制御して燃焼器12の冷却通路14への蒸気の圧力と流量を制御し、目標値に近づけるようにする。又、第3の制御方法としては、燃料注入量に応じて、上記と同様に冷却蒸気の圧力、流量を制御し、燃料注入量が多い時には蒸気量も多く、注入量が少ないと蒸気量も少なくするように比例制御し、かつ、蒸気圧力が車室内圧力よりもわずかに高くなるように制御する。又、燃料注入量の代わりに回転数に比例させても良い。
【0023】
上記のように冷却蒸気圧力を車室内圧力よりもわずかに高めに設定し、適正に制御することにより、特にガスタービンの昇速中と低出力域において、燃焼用空気中への蒸気の洩れによる混入を最小限にすることができ、燃焼器の不安定な燃焼が防止され、失火も防止できる。
【0024】
【発明の効果】
本発明のガスタービン燃焼器の冷却蒸気制御方法は、ガスタービン燃焼器(12)内の冷却通路(14)へ冷却蒸気を導き、同燃焼器(12)を冷却する方法であって、起動時には、前記冷却通路(14)へ前記冷却蒸気を供給する供給配管(15)から前記冷却蒸気をバイパスさせるバイパス配管(16)に設けられた流量制御弁(2)を所定量開くと共に、車室内圧力値に、前記冷却蒸気の逆流を防止する最小差圧となるバイアスを加えて設定値とし、この設定値となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)及び前記供給配管(15)に設けられた流量制御弁(4)の開度を制御し、負荷運転中には、前記冷却通路(14)の出口の蒸気温度を温度検出器(7)で検出し、出口温度の上限値を超えないように前記供給配管(15)に設けられた前記流量制御弁(4)で前記冷却蒸気流量を調整すると共に前記バイパス配管(16)における前記流量制御弁(2)の上流側に設けられた圧力検出器(6)で検出した冷却蒸気の圧力が予め定められた圧力となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)調整して、前記冷却蒸気圧力が前記車室内圧力よりも所定の圧力だけ高くなるように制御し、停止時には、前記冷却通路(14)へ乾燥空気を投入するための開閉弁(5)を所定時間開くことを特徴としている。このような方法によれば、燃焼用空気中への蒸気の洩れによる混入を最小限に抑えることができ、特に、昇速中、あるいは低負荷域での燃焼への影響を最小限にして燃焼の不安定、失火を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の一形態に係るガスタービン燃焼器の冷却蒸気制御方法を適用する系統図である。
【図2】従来のガスタービン燃焼器の冷却蒸気システムの構成図である。
【符号の説明】
1 制御装置
2,4 流量制御弁
3 遮断弁
5 開閉弁
6,8 圧力検出器
7 温度検出器
10 ガスタービン
12 燃焼器
15 供給配管
16 バイパス配管
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a cooling steam control method for a gas turbine combustor, which reduces the amount of cooling steam leakage, minimizes the mixing of steam into combustion air, and ensures combustion stability from start-up to steady-state operation. Thus, the flow rate, temperature, and pressure of the steam are controlled.
[0002]
[Prior art]
With the recent increase in the temperature of gas turbines, a system for cooling a combustor of a gas turbine with steam has begun to be adopted, and FIG. 2 is a schematic configuration diagram thereof. 10 is a gas turbine, 11 is a compressor, and 12 is a combustor that guides compressed air from the compressor 11, burns fuel to generate high-temperature combustion gas, and guides it to the gas turbine 10. The rotor of the gas turbine 10 And the generator connected to the gas turbine rotor is rotated. In order to generate a high-temperature gas, the combustor 12 is provided with a cooling passage 14 inside the wall, and steam is introduced into the cooling passage 14 and cooled by the steam. The cooling steam is extracted from the bottoming system of the steam turbine, guided to the cooling passage 14 of the combustor 12 via the pipe 15 and the on-off valve (shutoff valve) 13, and recovered by cooling the wall of the combustor 12. It is effectively used on the turbine side. In such a steam cooling system, the steam at the maximum pressure and flow rate required during steady operation from the start of the gas turbine is supplied to the cooling steam passage 14, and at present the steam flow rate and pressure are particularly during operation. It was not controlled.
[0003]
[Problems to be solved by the invention]
As described above, the cooling steam system of the gas turbine combustor passes through the external casing from the casing external piping, is led to the cooling steam header in the casing, is supplied to the combustor, and the recovered steam is conversely in the casing. From outside the cabin. In the course of the steam route in the passenger compartment, seal rings are used to alleviate the thermal expansion of each part. Steam leaks from these seal rings, or there is a slight amount in the cooling passage in the combustor wall. If there is a flaw, steam may escape from the cooling passage of the combustor.
[0004]
If the above-mentioned steam leakage occurs during startup of the gas turbine, during acceleration, or in a low load range, the steam will be mixed into the combustion air, resulting in unstable combustion and the amount of leaked steam. If there is a large amount, misfire may occur. Moreover, in such a steam cooling system, the steam pressure is normally higher than the combustion gas pressure (combustion side combustion air pressure) so that high-temperature combustion gas does not enter the steam pipe side. Steam is likely to leak to the combustor.
[0005]
Therefore, the present invention balances the steam pressure and the cabin pressure by controlling the steam pressure and flow rate in the high output range from the start, so that the steam pressure becomes the optimum pressure and flow rate, and the steam leakage An object of the present invention is to provide a cooling steam control method for a gas turbine combustor that supplies cooling steam in a state where the amount is minimized.
[0006]
[Means for Solving the Problems]
The present invention is to solve the problems described above, provides the following hand stage.
[0007]
A cooling steam is guided to a cooling passage (14 ) in a gas turbine combustor (12) to cool the combustor (12), and the cooling steam is supplied to the cooling passage (14) at the time of start-up. flow control valve provided in a bypass pipe for bypassing the cooling steam from the supply pipe (15) (16) (2) with the opening a predetermined amount, the cabin pressure force value, the minimum difference to prevent backflow of the cooling steam A bias to be a pressure is added to obtain a set value, and the flow rate control valve (2) provided in the bypass pipe (16) and the flow rate control valve ( provided in the supply pipe (15) so as to become this set value ( 4) The opening degree is controlled, and during the load operation, the steam temperature at the outlet of the cooling passage (14) is detected by the temperature detector (7) , and the supply pipe is set so as not to exceed the upper limit value of the outlet temperature. (15) the flow control valve provided in Thereby adjusting the cooling steam flow rate at 4), the pressure of the cooling steam detected by the upstream pressure detector provided in (6) of said flow control valve in the bypass pipe (16) (2) is predetermined the adjusted flow rate control valve (2) which is provided in the bypass pipe (16) so that the pressure, the cooling steam pressure is controlled to be higher by a predetermined pressure than the vehicle interior pressure When the engine is stopped, the on-off valve (5) for injecting dry air into the cooling passage (14) is opened for a predetermined time .
[0010]
This onset Ming, steam pressure guided into the cooling passages of the combustor because it is set slightly higher than the cabin pressure, it is possible to reduce the differential pressure between the vapor pressure and the cabin pressure. The amount of leaked steam is determined by this differential pressure, and the larger the differential pressure, the greater the amount of leaked steam. Therefore, to reduce the amount of leaked steam during ascending or in the low output range as much as possible, reduce this differential pressure. There is a need. For this reason, by controlling the steam pressure supplied to the combustor to the cabin pressure + “minimum differential pressure to prevent backflow”, contamination due to steam leakage into the combustion air can be minimized, In particular, combustion instability and misfire can be prevented while minimizing the influence on combustion during acceleration or in a low load range. In addition, in the present invention, when the engine is stopped, the on-off valve for injecting dry air into the cooling passage is opened for a predetermined time, thereby preventing the generation of drain due to the residence of steam in the steam system.
[0011]
Furthermore, the present invention sets a pressure value obtained by adding a slight pressure, that is, “minimum differential pressure for preventing backflow” to the vehicle interior pressure, and controls the pressure of the cooling steam to approach the target value. Mixing due to steam leakage into the air can be minimized, and instability and misfire can be prevented by minimizing the impact on combustion especially during acceleration or at low loads. .
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a control system diagram to which a cooling steam control method for a gas turbine combustor according to an embodiment of the present invention is applied. In the figure, 15 is a supply pipe through which cooling steam is guided, and the steam is extracted and guided from the bottoming system of the steam turbine. A flow control valve 2 bypasses the cooling steam of the combustor 12 and controls the supply pressure of the steam to the cooling passage 14 of the combustor 12. 3 is a shut-off valve, which opens and closes the supply steam to the combustor 12. A flow control valve 4 controls the steam flow rate to the cooling passage 14 of the combustor 12. An open / close valve 5 opens and closes the introduction of dry air for draining.
[0014]
A pressure detector 6 is provided on the upstream side of the flow rate control valve 2 in the bypass pipe 16 that bypasses the cooling steam from the supply pipe 15 that supplies the cooling steam to the cooling passage 14 and detects the steam pressure of the cooling steam . A temperature detector 7 detects the temperature of the outlet steam of the cooling passage 14 of the combustor 12. 8 is a pressure detector for detecting the steam pressure in the cooling passage 14 and comparing it with the air pressure in the passenger compartment.
[0015]
The control device 1 receives detection signals from the pressure detector 6, the temperature detector 7, and the pressure detector 8, respectively, and a flow rate control valve 2 that adjusts the supply pressure on the steam supply side as described later, combustion It controls the shut-off valve 3 of the combustor cooling system, the flow control valve 4 for supplying steam to the combustor 12, and the on-off valve 5 of the drain system.
[0016]
In the above configuration, the cooling steam of about 300 ° C. is led to the supply pipe 15 of the cooling steam system, the shut-off valve 3 is opened, and the steam is led to the cooling passage 14 of the combustor 12 via the flow control valve 4. Then, the combustor 12 is cooled, and the temperature becomes about 500 ° C. or higher by cooling, and is recovered. First, in order to warm up the steam system before starting, the shutoff valve 3 is opened slightly, the flow control valve is opened, the steam is allowed to flow through the cooling system, and warming is performed until the temperature detector 7 reaches a predetermined temperature. .
[0017]
At the time of start-up, the flow rate of the cooling steam may be small, and the control device 1 opens the flow control valve 2 by a predetermined amount, and controls the flow control valve 4 on the inlet side to flow the steam to the combustor 12. The steam pressure refers to the pressure of the pressure detector 8 and is set to a pressure slightly higher than the pressure in the passenger compartment. The control device 1 detects the pressure in the passenger compartment with a pressure detector ( not shown ), adds a bias that is “minimum differential pressure to prevent backflow of steam” to this pressure value, and sets it as a set value. The opening degree of the flow control valve 2 and the flow control valve 4 is controlled.
[0018]
During the load operation, the control device 1 detects the steam temperature at the outlet with the temperature detector 7 and controls the outlet steam temperature to be a predetermined load versus the set temperature, and does not exceed the upper limit value of the outlet temperature. Thus, the flow rate is controlled by adjusting the steam flow rate with the flow rate control valve 4. In this case, the supply pressure of the steam is adjusted by adjusting the flow rate control valve 2 provided in the bypass pipe 16 that bypasses the supply pipe 15 of the supply system so that the pressure detected by the pressure detector 6 becomes a predetermined pressure. And the vapor pressure flowing into the cooling passage 14 is controlled to be higher than the cabin pressure.
[0019]
When the gas turbine is stopped, the control device 1 opens the on-off valve 5 for a predetermined time by the gas turbine stop signal (or the rotation speed signal) and supplies dry air in order to prevent drain generation due to the stay of steam in the steam system.
[0020]
As described above, the control device 1 outputs detection signals from the respective detectors, that is, the pressure detector 6, the temperature detector 7, and the pressure detector 8, during warming, start-up, load operation , and stop. Intake, flow control valve 2, shut-off valve 3, flow control valve 4 and open / close valve 5 are controlled to control the steam pressure to an appropriate pressure slightly higher than the cabin pressure to prevent steam leakage and stable combustion. Ensure sex.
[0021]
A specific control example from the start to the load operation will be described. When the gas turbine ignition rotation speed is about 20% of the constant speed, the ignition state is stabilized at about 35% rotation speed. Therefore, in the first control method, when the rotation speed is 35% or less, the flow control valve 4 is throttled as much as possible to control the supply steam pressure to (chamber pressure) + (back flow prevention minimum differential pressure) and into the combustion air. In order to prevent combustion instability and misfire by minimizing the contamination of steam due to steam leakage and reducing the effect on combustion during ascending or in low load range. Above 35% rotation, the opening degree of the flow control valve 4 is gradually increased.
[0022]
The second control method, the pressure of the steam is detected by the pressure detector 8, (casing pressure) + 0.05~0.1μP a) it was set to the control target value, the opening of the flow control valve 2 and 4 The degree of pressure is controlled to control the pressure and flow rate of steam to the cooling passage 14 of the combustor 12 so as to approach the target value. As a third control method, the pressure and flow rate of the cooling steam are controlled in the same manner as described above according to the fuel injection amount. When the fuel injection amount is large, the steam amount is large. When the fuel injection amount is small, the steam amount is also large. Proportional control is performed so as to reduce the steam pressure, and control is performed so that the steam pressure is slightly higher than the cabin pressure. Further, instead of the fuel injection amount, it may be proportional to the rotational speed.
[0023]
By setting the cooling steam pressure slightly higher than the passenger compartment pressure as described above and controlling it appropriately, it is caused by steam leakage into the combustion air, especially during the ascending and low power range of the gas turbine. Mixing can be minimized, unstable combustion of the combustor can be prevented, and misfire can also be prevented.
[0024]
【The invention's effect】
Cooling steam control method for a gas turbine combustor of the present invention leads to gas turbine combustor (12) cooling steam cooling passage to (14) in a method of cooling the same combustor (12), at startup The flow control valve (2) provided in the bypass pipe (16) for bypassing the cooling steam from the supply pipe (15) for supplying the cooling steam to the cooling passage (14) is opened by a predetermined amount, and the vehicle interior pressure A bias is set to a minimum differential pressure to prevent backflow of the cooling steam to the force value to obtain a set value, and the flow rate control valve (2) and the flow control valve (2) provided in the bypass pipe (16) so as to be the set value. The opening degree of the flow control valve (4) provided in the supply pipe (15) is controlled, and during the load operation, the steam temperature at the outlet of the cooling passage (14) is detected by the temperature detector (7). Do not exceed the upper limit of the outlet temperature Thereby adjusting the cooling steam flow rate in the supply pipe the flow control valve provided in (15) (4), said flow control valve (2) pressure detection provided upstream of the said bypass pipe (16) The flow control valve (2) provided in the bypass pipe (16 ) is adjusted such that the pressure of the cooling steam detected by the vessel (6) becomes a predetermined pressure, and the cooling steam pressure is adjusted to the vehicle. than chamber pressure is controlled to be higher by a predetermined pressure, at the time of stop, and the cooling passages (14) opening and closing valve for introducing dry air into the (5), characterized in that opening a predetermined time. According to such a way, contamination by leakage of steam into the combustion air can be minimized, especially to minimize the impact of the combustion in a speed-up phase, or low load region Combustion instability and misfire can be prevented.
[Brief description of the drawings]
FIG. 1 is a system diagram to which a cooling steam control method for a gas turbine combustor according to an embodiment of the present invention is applied.
FIG. 2 is a configuration diagram of a cooling steam system of a conventional gas turbine combustor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Control apparatus 2,4 Flow control valve 3 Shut-off valve 5 On-off valve 6,8 Pressure detector 7 Temperature detector 10 Gas turbine 12 Combustor
15 Supply piping
16 Bypass piping

Claims (1)

ガスタービン燃焼器(12)内の冷却通路(14)へ冷却蒸気を導き、同燃焼器(12)を冷却する方法であって、
起動時には、前記冷却通路(14)へ前記冷却蒸気を供給する供給配管(15)から前記冷却蒸気をバイパスさせるバイパス配管(16)に設けられた流量制御弁(2)を所定量開くと共に、車室内圧力値に、前記冷却蒸気の逆流を防止する最小差圧となるバイアスを加えて設定値とし、この設定値となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)及び前記供給配管(15)に設けられた流量制御弁(4)の開度を制御し、
負荷運転中には、前記冷却通路(14)の出口の蒸気温度を温度検出器(7)で検出し、出口温度の上限値を超えないように前記供給配管(15)に設けられた前記流量制御弁(4)で前記冷却蒸気流量を調整すると共に前記バイパス配管(16)における前記流量制御弁(2)の上流側に設けられた圧力検出器(6)で検出した冷却蒸気の圧力が予め定められた圧力となるように前記バイパス配管(16)に設けられた前記流量制御弁(2)調整して、前記冷却蒸気圧力が前記車室内圧力よりも所定の圧力だけ高くなるように制御し、
停止時には、前記冷却通路(14)へ乾燥空気を投入するための開閉弁(5)を所定時間開くことを特徴とするガスタービン燃焼器の冷却蒸気制御方法。
A method of directing cooling steam to a cooling passage (14 ) in a gas turbine combustor (12) to cool the combustor (12) ,
At startup, the flow control valve (2) provided in the bypass pipe (16) for bypassing the cooling steam from the supply pipe (15) for supplying the cooling steam to the cooling passage (14) is opened by a predetermined amount, and the vehicle chamber internal pressure force value, the reverse flow of cooling steam by adding bias the minimum differential pressure to prevent the setting value, the flow control valve provided in the bypass pipe so that the set value (16) (2 ) And the opening of the flow control valve (4) provided in the supply pipe (15) ,
During the load operation, the steam temperature at the outlet of the cooling passage (14) is detected by the temperature detector (7) , and the flow rate provided in the supply pipe (15) so as not to exceed the upper limit of the outlet temperature. thereby adjusting the cooling steam flow rate control valve (4), the pressure of the cooling steam is detected by said flow control valve in the bypass pipe (16) a pressure detector provided on the upstream side of (2) (6) wherein said flow rate control valve provided in the bypass pipe (16) (2) adjust the so that predetermined pressure, the so cooling steam pressure becomes higher by a predetermined pressure than the vehicle interior pressure Control to
A cooling steam control method for a gas turbine combustor , wherein the on-off valve (5) for injecting dry air into the cooling passage (14) is opened for a predetermined time when stopping .
JP24834099A 1999-09-02 1999-09-02 Cooling steam control method for gas turbine combustor Expired - Lifetime JP4354052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24834099A JP4354052B2 (en) 1999-09-02 1999-09-02 Cooling steam control method for gas turbine combustor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24834099A JP4354052B2 (en) 1999-09-02 1999-09-02 Cooling steam control method for gas turbine combustor

Publications (2)

Publication Number Publication Date
JP2001073801A JP2001073801A (en) 2001-03-21
JP4354052B2 true JP4354052B2 (en) 2009-10-28

Family

ID=17176640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24834099A Expired - Lifetime JP4354052B2 (en) 1999-09-02 1999-09-02 Cooling steam control method for gas turbine combustor

Country Status (1)

Country Link
JP (1) JP4354052B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2364125C (en) * 2000-11-28 2005-05-24 Mitsubishi Heavy Industries, Ltd. Steam cooling apparatus for gas turbine

Also Published As

Publication number Publication date
JP2001073801A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
US4519207A (en) Combined plant having steam turbine and gas turbine connected by single shaft
US4744723A (en) Method for starting thermal power plant
JP3564286B2 (en) Active clearance control system for interstage seal of gas turbine vane
JP2700797B2 (en) Gas turbine equipment
US4598551A (en) Apparatus and method for controlling steam turbine operating conditions during starting and loading
JP3481983B2 (en) How to start a steam turbine
KR100211341B1 (en) Fuel supply device and control device of gas turbine
JPS61237802A (en) Warming-up method for steam turbine
JPH04159402A (en) Combined cycle generating plant
KR20150115650A (en) Waste heat recovery system and waste heat recovery method
CZ20003306A3 (en) System of pressure modulation of turbine side wall cavities and method for carrying the same
JP2013050055A (en) Steam turbine plant and operation method therefor
CN112502796B (en) Operation control system and operation control method of SCO2 expander
JP4354052B2 (en) Cooling steam control method for gas turbine combustor
WO1998059158A1 (en) Steam cooling apparatus for gas turbine
JP2000130108A (en) Starting method for combined cycle power plant
JP4452092B2 (en) Combustion control method and apparatus for gas engine
JPS6336004A (en) Method for starting steam turbine plant
JPH04148035A (en) Vapor cooled gas turbine system
KR960038081A (en) How to operate a continuous ignition gas turbine group
JPH08284615A (en) Control method for single shaft type combined cycle generating facility and device thereof
CN110260577B (en) Supercooling method and cooling system for liquid methane
JPH0693880A (en) Gas turbine facility and operation thereof
JP2003120328A (en) Gas turbine, method for operating the same, and gas turbine combined electric power plant
JP2003083004A (en) Gas turbine, method for operating the same, and gas turbine combined power generating plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090729

R151 Written notification of patent or utility model registration

Ref document number: 4354052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term