JP4353672B2 - Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric - Google Patents

Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric Download PDF

Info

Publication number
JP4353672B2
JP4353672B2 JP2002038830A JP2002038830A JP4353672B2 JP 4353672 B2 JP4353672 B2 JP 4353672B2 JP 2002038830 A JP2002038830 A JP 2002038830A JP 2002038830 A JP2002038830 A JP 2002038830A JP 4353672 B2 JP4353672 B2 JP 4353672B2
Authority
JP
Japan
Prior art keywords
spun yarn
yarn fabric
fiber spun
carbon fiber
pan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038830A
Other languages
Japanese (ja)
Other versions
JP2003239157A (en
Inventor
賢司 島崎
慎太郎 田中
祐介 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Rayon Co Ltd
Original Assignee
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Rayon Co Ltd filed Critical Toho Rayon Co Ltd
Priority to JP2002038830A priority Critical patent/JP4353672B2/en
Publication of JP2003239157A publication Critical patent/JP2003239157A/en
Application granted granted Critical
Publication of JP4353672B2 publication Critical patent/JP4353672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inorganic Fibers (AREA)
  • Woven Fabrics (AREA)
  • Fuel Cell (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐熱性、断熱性に優れ、厚さが薄く且つ電気伝導性が良いと共に巻回時及び/又は巻回後に巻き皺が発生しないポリアクリロニトリル(PAN)系炭素繊維紡績糸織物、紡績糸織物の製造方法、及びその紡績糸織物を筒状に巻回してなるロールに関する。
【0002】
【従来の技術】
PAN系炭素繊維紡績糸織物は、耐熱性、断熱性に優れているので、耐熱材や断熱材等に応用され、また通電性が良いので、電極材等に応用されている。特に、薄いシート状のPAN系炭素繊維紡績糸織物は、高分子電解質型燃料電池用の炭素繊維材料として有用な素材である。
【0003】
これらの用途への応用に際しては、PAN系炭素繊維紡績糸織物は、樹脂、セラミック、触媒等を用いる、撥水処理や、電解質膜との一体化処理などの連続処理が施される場合がある。この場合、効率の良い連続処理が望まれるため、上記紡績糸織物は長尺の巻き形状(ロールの形態)で使用される。また、製品出荷に際しても通常その製品形態は長尺のロールである。
【0004】
図5は、長尺のロール72の一例を示すもので、芯材74の周囲にPAN系炭素繊維紡績糸織物76を渦巻状に巻回している。
【0005】
しかし、PAN系炭素繊維紡績糸織物は賦形性が良い場合であっても、そのロール72に巻回したPAN系炭素繊維紡績糸織物76は、ロール72中心Pを基準として内側表面78に、幅方向の巻き皺80が発生し易く、このため紡績糸織物の製品としての品位が低下し、製品率が低下する問題がある。また、PAN系炭素繊維紡績糸織物は、上記撥水処理や、電解質膜との一体化処理などの連続処理が施される場合、剛性が高くなる。紡績糸織物の剛性が高くなると、賦形性が悪くなり、ロールの内側表面における巻き皺は更に発生し易くなり、紡績糸織物の製品としての品位が低下し、製品率が低下する問題はますます大きくなる。
【0006】
高分子電解質型燃料電池用電極材には、前述のように従来よりPAN系酸化繊維紡績糸織物に樹脂等を含有させ、圧縮処理した後に炭素化したPAN系炭素繊維紡績糸織物がある。この炭素繊維材料は、電池のコンパクト化の為、より薄くて電極材特性が良好で均一な炭素繊維紡績糸織物が求められている。
【0007】
しかし、電極材製造原料として供給される炭素繊維紡績糸織物ロールは、前述のようにロール内面に幅方向の巻き皺が多く存在し、これらが均一な電極材の製造に支障を来している場合がある。
【0008】
【発明が解決しようとする課題】
本発明者等は、解決すべき上記問題について鋭意検討した結果、高分子電解質型燃料電池用電極材に炭素繊維紡績糸織物を応用するには、次の特徴を有する炭素繊維紡績糸織物が好ましいと考えた。
(1)炭素繊維紡績糸織物の一方の表面は、巨視的には平滑な面であるが、微視的には酸素や水素との接触効率の高く、通気性の良い、粗な表面であること。
(2)炭素繊維紡績糸織物の他方の表面は、高分子電解質膜との密着性が良い表面であること。即ち巨視的にも微視的にも平滑な面であること。
(3)炭素繊維紡績糸織物が、撥水処理や、電解質膜との一体化処理等を連続的に処理可能な物性を有すること。
(4)(3)の処理は、紡績糸織物の剛性を高め、賦形性を悪くするため、紡績糸織物をロールの形態にする場合、ロール内面に巻き皺が発生し易くなるものであるが、(3)の処理を施す場合でも、ロール内面に巻き皺を発生しない炭素繊維紡績糸織物であること。
【0009】
本発明者等は、更に検討を重ねた結果、一方の面の剛軟度(後述する測定方法により測定して得られる物性値)Aが所定範囲にあり、前記一方の面の剛軟度Aと、他方の面の剛軟度Bとの比B/Aが所定範囲にあるPAN系炭素繊維紡績糸織物は、上記の好ましい特徴を有する炭素繊維紡績糸織物であることを知得した。
【0010】
また、このPAN系炭素繊維紡績糸織物は、PAN系酸化繊維紡績糸織物若しくはPAN系炭素繊維紡績糸織物の一方の面のみ樹脂をコーティング処理し、必要に応じて圧縮処理し、次いで不活性ガス雰囲気下、加熱処理することによって製造できることを知得した。
【0011】
更に、上記PAN系炭素繊維紡績糸織物における剛軟度Aの面(A面)を巻回時の外面として、前記紡績糸織物が巻回されてなる炭素繊維紡績糸織物ロールは、ロール内面(剛軟度Bの面(B面))に巻き皺がないことを知得し、本発明を完成するに至った。
【0012】
従って、本発明の目的とするところは、上記問題を解決したPAN系炭素繊維紡績糸織物、炭素繊維紡績糸織物ロール、及び炭素繊維紡績糸織物の製造方法を提供することにある。
【0013】
【課題を解決するための手段】
上記の目的を達成する本発明は、以下に記載するものである。
【0014】
〔1〕 一方の面の剛軟度Aが2〜10mNcmであり、前記一方の面の剛軟度Aと、他方の面の剛軟度Bとの比B/Aが5.5〜45であるポリアクリロニトリル系炭素繊維紡績糸織物。
【0015】
〔2〕 厚さ方向の電気抵抗値が3.5mΩ以下である、〔1〕に記載のポリアクリロニトリル系炭素繊維紡績糸織物。
【0016】
〔3〕 厚さが0.20〜0.50mm、目付が60〜150g/m2である〔1〕に記載のポリアクリロニトリル系炭素繊維紡績糸織物。
【0017】
〔4〕 ポリアクリロニトリル系酸化繊維紡績糸織物の一方の面のみを、濃度1〜20質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のポリアクリロニトリル系酸化繊維紡績糸織物を得、前記コーティング処理後のポリアクリロニトリル系酸化繊維紡績糸織物を、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することを特徴とするポリアクリロニトリル系炭素繊維紡績糸織物の製造方法。
【0018】
〔5〕 ポリアクリロニトリル系炭素繊維紡績糸織物の一方の面のみを、濃度1〜20質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のポリアクリロニトリル系炭素繊維紡績糸織物を得、前記コーティング処理後のポリアクリロニトリル系炭素繊維紡績糸織物を、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することを特徴とするポリアクリロニトリル系炭素繊維紡績糸織物の製造方法。
【0019】
〔6〕 〔1〕に記載のポリアクリロニトリル系炭素繊維紡績糸織物における剛軟度Aの面を巻回時の外面として、前記紡績糸織物が直径70〜350mmの芯材に巻回されてなる炭素繊維紡績糸織物ロール。
【0020】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0021】
本発明のPAN系炭素繊維紡績糸織物は、一方の面の剛軟度Aが2〜10mNcmであり、前記一方の面の剛軟度Aと、他方の面の剛軟度Bとの比B/Aが5.5〜45である。
【0022】
この紡績糸織物を巻回して形成したロールは、剛軟度Aの面をロール中心から外側に、剛軟度Bの面を内側になるように紡績糸織物を巻回した場合、炭素繊維紡績糸織物ロールの剛軟度Bの面に巻き皺が発生するのを抑制する効果が高い。
【0023】
紡績糸織物における剛軟度Aが2mNcm未満の場合は、紡績糸織物が柔らか過ぎて剛軟度Aの面に皺が発生し易い、並びに、剛軟度Aの面が巨視的に平滑な面になりにくいなどの不具合を生ずるので好ましくない。
【0024】
紡績糸織物における剛軟度Aが10mNcmを超える場合は、剛軟度Aの面を外側にする紡績糸織物ロールのB面に巻き皺が発生し易い、並びに、紡績糸織物を高分子電解質型燃料電池用電極材として応用時、ガスの拡散性が低下する、及び電池性能が低下するなどの不具合を生ずるので好ましくない。
【0025】
剛軟度Aと剛軟度Bとの比B/Aが5.5未満の場合は、剛軟度Aの面を外側にする紡績糸織物ロールの巻き皺発生抑制効果が低下し、B面に巻き皺が発生し易くなるので好ましくない。
【0026】
剛軟度Aと剛軟度Bとの比B/Aが45を超える場合は、剛軟度Aの面を外側にする紡績糸織物ロールのB面に巻き皺が発生し易くなるので好ましくない。
【0027】
PAN系炭素繊維紡績糸織物の厚さ方向の電気抵抗値は、後述する測定方法により測定して得られる電気抵抗値で3.5mΩ以下が好ましく、通常は0.5〜3.5mΩである。
【0028】
PAN系炭素繊維紡績糸織物の厚さは、高分子電解質型燃料電池用電極材とする場合は、0.20〜0.50mmが好ましい。
【0029】
PAN系炭素繊維紡績糸織物の厚さが0.20mm未満の場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材として用いる場合、電極材の通電性は高いが、炭素化時、強度が低下する及び炭素微粉末が発生しやすいなどの不具合を生ずるので好ましくない。
【0030】
PAN系炭素繊維紡績糸織物の厚さが0.50mmを超える場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材として用いる場合、電極材の通電性が低く、電池性能が低下するので好ましくない。
【0031】
PAN系炭素繊維紡績糸織物の目付は、60〜150g/m2が好ましい。
【0032】
PAN系炭素繊維紡績糸織物の目付が60g/m2より低い場合は、炭素繊維紡績糸織物の強力が低下するなどの不具合を生ずるので好ましくない。
【0033】
PAN系炭素繊維紡績糸織物の目付が150g/m2を超える場合は、厚さ方向の電気抵抗値が増加するなどの不具合を生ずるので好ましくない。
【0034】
PAN系炭素繊維紡績糸織物の嵩密度は、0.15〜0.35g/cm3が好ましい。
【0035】
PAN系炭素繊維紡績糸織物の嵩密度が0.15g/cm3未満の場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性が低く、電池性能が低下するので好ましくない。
【0036】
PAN系炭素繊維紡績糸織物の嵩密度が0.35g/cm3を超える場合は、この炭素繊維紡績糸織物を高分子電解質型燃料電池用電極材とするとき、電極材の通電性は高いが、不活性ガス雰囲気下での加熱処理時、即ち炭素化時、強度が低下する及び炭素微粉末が発生し易いなどの不具合を生ずるので好ましくない。
【0037】
本発明のPAN系炭素繊維紡績糸織物は、種々の方法で製造でき、特に制限がない。以下に好ましい製造方法の例を示す。
【0038】
その一例は、PAN系酸化繊維紡績糸織物の一方の面のみを、濃度1〜20質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のPAN系酸化繊維紡績糸織物を得る。その後、前記コーティング処理したPAN系酸化繊維紡績糸織物を、必要に応じて圧力0.5〜10MPa、温度150〜250℃で圧縮処理する。次いで、前記必要に応じて圧縮処理したPAN系酸化繊維紡績糸織物を、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理する(炭素化)。
【0039】
このPAN系炭素繊維紡績糸織物の製造方法において、原料のPAN系酸化繊維紡績糸織物は、種々の方法で製造でき、特に制限がない。
【0040】
例えば、この原料のPAN系酸化繊維紡績糸織物は、PAN系酸化繊維のカットファイバーを混打綿加工後、カーディングしてスライバーを得、このスライバーを精紡加工して紡績糸を得、この紡績糸をシート状に製織加工することによって製造することができる。これらの加工方法は従来公知の方法が適宜採用できる。
【0041】
まず、PAN系酸化繊維紡績糸織物の一方の面(片面)のみを、濃度1〜20質量%の樹脂水溶液によりコーティング処理する。
【0042】
紡績糸織物の片面のみのコーティング処理方法は、ローラーによる片面コート法、片面ナイフコート法等の方法が採用できる。
【0043】
図1はローラーによる片面コート法の一例を示す概略説明図であり、図2は片面ナイフコート法の一例を示す概略説明図であり、図3はコーティング処理後のPAN系酸化繊維紡績糸織物の一例を示す模式的側面図である。
【0044】
図1において、2はPAN系酸化繊維紡績糸織物であり、この紡績糸織物2を、上部ローラー4aと下部ローラー4bとの間を通過させる。下部ローラー4bの下半分は、樹脂浴6に張った樹脂水溶液8に浸っている。回転している下部ローラー4b表面に付着している樹脂水溶液8は紡績糸織物2の下面で紡績糸織物に転写される。図1において、10、12及び14は紡績糸織物搬送用ローラーである。
【0045】
図2において、22はPAN系酸化繊維紡績糸織物であり、この紡績糸織物22を、漏斗状の樹脂浴24の下端と、ローラー26との間を通過させる。樹脂浴24に入れられた樹脂水溶液28は、樹脂浴24の下端において紡績糸織物22の上面にコーティングされる。樹脂コーティング後、紡績糸織物22を、ナイフ30の下端と、ローラー32との間を通過させる。過剰にコーティングされた樹脂は、ナイフ30の下端において除去される。図2において、34a及び34bは、それぞれ紡績糸織物搬送用の上部ローラー及び下部ローラーである。
【0046】
以上のようにして樹脂コーティング処理した後の紡績糸織物は、図3に示すように、PAN系酸化繊維紡績糸織物42の上部において、樹脂コーティング層44を形成している。
【0047】
コーティング処理用の樹脂水溶液としては、フッ素系樹脂、カルボキシメチルセルローズ(CMC)等のセルローズ系樹脂、アクリル系樹脂、ポリビニルアルコール(PVA)系樹脂などの水溶液又は乳濁液(エマルジョン)が好ましい。
【0048】
樹脂水溶液の粘度は、樹脂の種類や濃度等によって変化するが、0.1〜10Pa・s(100〜10000センチポアズ)が好ましい。
【0049】
樹脂水溶液の粘度が0.1Pa・s未満の場合は、樹脂が他方の面(反対面)へ滲み出したり、含浸深さの上限を超えてしまい所定の含浸深さ範囲内に調整できなくなるので好ましくない。
【0050】
樹脂水溶液の粘度が10Pa・sを超える場合は、PAN系酸化繊維紡績糸織物の表面に均一にコートできなくなるので好ましくない。
【0051】
PAN系酸化繊維紡績糸織物を、耐熱材料や断熱材料等に応用する場合は、樹脂水溶液において、チタン及び珪素等の無機化合物、並びに、カーボンナノチューブ、カーボンウイスカー及びカーボンブラック等の炭素微粒子などの添加物を樹脂量に対し1〜50質量%加えてもよい。
【0052】
上記樹脂以外の添加物の形状が粒子状の場合、その直径は0.01〜10μmが好ましく、添加物の形状が繊維状の場合、その直径は0.01〜20μm、長さは1.0〜100μmが好ましい。
【0053】
以上のようにしてPAN系酸化繊維紡績糸織物を樹脂水溶液でコーティング処理することにより、樹脂の含浸深さが紡績糸織物厚さに対して5〜35%のPAN系酸化繊維紡績糸織物を得る。
【0054】
樹脂の含浸深さが紡績糸織物厚さに対して5%未満の場合は、この酸化繊維紡績糸織物から得られる炭素繊維紡績糸織物の剛軟度Aが2mNcm未満になるので好ましくない。
【0055】
樹脂の含浸深さが紡績糸織物厚さに対して35%を超える場合は、この酸化繊維紡績糸織物から得られる炭素繊維紡績糸織物の剛軟度Aが10mNcmを超えるので好ましくない。
【0056】
上記コーティング処理後のPAN系酸化繊維紡績糸織物は、必要に応じ圧力0.5〜10MPa、温度150〜250℃で圧縮処理する。この必要に応じて圧縮処理された後のPAN系酸化繊維紡績糸織物は、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することにより即ち炭素化することにより目的とするPAN系炭素繊維紡績糸織物を得る。
【0057】
上記の製造方法において、原料紡績糸織物としては、PAN系酸化繊維紡績糸織物に代わって、PAN系炭素繊維紡績糸織物を用いても良い。
【0058】
この場合は、PAN系炭素繊維紡績糸織物の一方の面のみを、濃度1〜20質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のPAN系炭素繊維紡績糸織物を得、前記コーティング処理後のPAN系炭素繊維紡績糸織物を、必要に応じて圧力0.5〜10MPa、温度150〜250℃で圧縮処理し、前記必要に応じて圧縮処理された後のPAN系炭素繊維紡績糸織物を、窒素ガス、二酸化炭素、アルゴンガス等の不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することになる。
【0059】
以上の製造方法等で得られる本発明のPAN系炭素繊維紡績糸織物は、これを用いてロールにする場合、その紡績糸織物における剛軟度Aの面をロールの外方に向け、内直径70〜350mmの芯材に巻回することにより、ロール内面(剛軟度Bの面)に巻き皺がない炭素繊維紡績糸織物ロールを得ることができる。
【0060】
【実施例】
本発明を以下の実施例及び比較例により具体的に説明する。
【0061】
以下の実施例及び比較例の条件により酸化繊維紡績糸織物、及び炭素繊維紡績糸織物を作製した。原料酸化繊維、酸化繊維紡績糸織物、及び炭素繊維紡績糸織物の諸物性値を、以下の方法により測定した。
【0062】
比重:液置換法(JIS R 7601、置換液:エチルアルコール)により測定した。
【0063】
厚さ:直径30mmの円形圧板で200gの荷重(2.8kPa)時の厚さを測定した。
【0064】
目付:酸化繊維紡績糸織物又は炭素繊維紡績糸織物の寸法及び質量から、単位面積当たりの質量を算出した。
【0065】
嵩密度:上記条件により測定した厚さ及び目付から算出した。
【0066】
剛軟度:JIS L 1096記載の方法(B法)に準拠して測定した。具体的には、炭素繊維紡績糸織物から、2cm×約15cmの試験片をたて方向及びよこ方向にそれぞれ5枚採取し、図4の概略側面図に示す試験機を用い、以下の手順で炭素繊維紡績糸織物の剛軟度を測定した。
【0067】
まず、試験機本体52と移動台54の上面が一致するようにしてから、その上に試験片56及びウエイト58を取り付けた。ウエイト58は、試験片56上に試験機本体52と移動台54の境界からわずかに移動台54側に出るように置いた。次に、静かにハンドル60を回して移動台54を降下させ、試験片56の自由端が移動台54の境界から離れるときのδの値をスケール62によって読んだ。
【0068】
試験片56の単位面積当たりの質量(g/cm3)を量り、次の式
t=WL4/8δ
ここに、Bt:剛軟度(mN・cm)
W:試験片56の単位面積当たりの重力(mN/cm3
L:試験片56の長さ(cm)
δ:スケール62の読み(cm)
によって剛軟度(mN・cm)を求め、試験片56のたて方向及びよこ方向の各5枚合計10枚におけるA面及びB面それぞれについて剛軟度を測り、10枚の平均値を算出し、これらの値をそれぞれ剛軟度A及び剛軟度Bとした。図4において、64はバーニャであり、66は水準器である。
【0069】
電気抵抗値:2枚の50mm角(厚さ10mm)の金メッキした電極に炭素繊維紡績糸織物の両面を圧力1MPaで挟み、両電極間の電気抵抗値(R(mΩ))を測定し、これをその厚さにおける抵抗値と表示した。
【0070】
セル電圧:炭素繊維紡績糸織物を50mm角にカットし、これに触媒(Pt−Ru)を0.3mg/cm2担持させて、高分子電解質型燃料電池電極材を得た。高分子電解質膜(ナフィオン117)の両側に、上記50mm角にカットした電極材を接合してセルを構成し、温度80℃、電流密度1.6A/cm2においてセル電圧を測定した。
【0071】
実施例1
表1に示すように、繊度2.0dtex、比重1.39のPAN系酸化繊維のカットファイバー(カット長51mm)を混打綿加工後、カーディングし、スライバーを得た。
【0072】
上記スライバーを紡績糸加工し、20番手PAN系酸化繊維紡績糸を作製した。この酸化繊維紡績糸を製織し、織り形態:平織、紡績糸打込み本数15本/cm、目付150g/m2、厚さ0.39mm、嵩密度0.38g/cm3のPAN系酸化繊維紡績糸織物を得た。
【0073】
このPAN系酸化繊維紡績糸織物を、PVA水溶液(濃度2.0質量%)により片面(B面)のみを図1に示すローラーによる片面コート装置を用いてコーティング処理し、PVAの含浸深さが紡績糸織物厚さに対して20%のPAN系酸化繊維紡績糸織物を得た。
【0074】
このコーティング処理後のPAN系酸化繊維紡績糸織物を、圧力1MPa、温度180℃で圧縮処理した。
【0075】
この圧縮処理後のPAN系酸化繊維紡績糸織物を、窒素雰囲気下の炭素化装置に連続的に通して、処理温度1700℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0076】
このPAN系炭素繊維紡績糸織物は、表1に示すように目付が89g/m2、厚さが0.40mm、嵩密度が0.22g/cm3、電気抵抗値が2.3mΩ、セル電圧が0.71Vであった。更に、剛軟度Aが4mNcm、剛軟度Bが24mNcm、剛軟度比B/Aが6.0であり、且つA面を外側、B面を内側にして直径3in(76.2mm)の紙管に巻回した後の皺の発生はなく、良好な物性の紡績糸織物であった。
【0077】
実施例2
実施例1のPAN系酸化繊維紡績糸織物を、PVA水溶液(濃度5.0質量%)により片面(B面)のみを図1に示すローラーによる片面コート装置を用いてコーティング処理し、PVAの含浸深さが紡績糸織物厚さに対して20%のPAN系酸化繊維紡績糸織物を得た。
【0078】
このコーティング処理後のPAN系酸化繊維紡績糸織物を、圧力5MPa、温度200℃で圧縮処理した。
【0079】
この圧縮処理後のPAN系酸化繊維紡績糸織物を、窒素雰囲気下の炭素化装置に連続的に通して、処理温度1700℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0080】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が91g/m2、厚さが0.32mm、嵩密度が0.28g/cm3、電気抵抗値が2.2mΩ、セル電圧が0.73Vであった。更に、剛軟度Aが4mNcm、剛軟度Bが55mNcm、剛軟度比B/Aが14.8であり、且つA面を外側、B面を内側にして直径3in(76.2mm)の紙管に巻回した後の皺の発生はなく、良好な物性の紡績糸織物であった。
【0081】
実施例3
実施例1のPAN系酸化繊維紡績糸織物を、PVA水溶液(濃度10.0質量%)により片面(B面)のみを図1に示すローラーによる片面コート装置を用いてコーティング処理し、PVAの含浸深さが紡績糸織物厚さに対して18%のPAN系酸化繊維紡績糸織物を得た。
【0082】
このコーティング処理後のPAN系酸化繊維紡績糸織物を、圧力1MPa、温度180℃で圧縮処理した。
【0083】
この圧縮処理後のPAN系酸化繊維紡績糸織物を、窒素雰囲気下の炭素化装置に連続的に通して、処理温度1700℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0084】
得られたPAN系炭素繊維紡績糸織物は、表1に示すように目付が93g/m2、厚さが0.31mm、嵩密度が0.30g/cm3、電気抵抗値が2.0mΩ、セル電圧が0.74Vであった。更に、剛軟度Aが5mNcm、剛軟度Bが195mNcm、剛軟度比B/Aが39.0であり、且つA面を外側、B面を内側にして直径3in(76.2mm)の紙管に巻回した後の皺の発生はなく、良好な物性の紡績糸織物であった。
【0085】
【表1】

Figure 0004353672
【0086】
比較例1
実施例1のPAN系酸化繊維紡績糸織物を、CMC水溶液(濃度15.0質量%)により片面(B面)のみを図1に示すローラーによる片面コート装置を用いてコーティング処理し、CMCの含浸深さが紡績糸織物厚さに対して15%のPAN系酸化繊維紡績糸織物を得た。
【0087】
このコーティング処理後のPAN系酸化繊維紡績糸織物を、圧力1MPa、温度180℃で圧縮処理した。
【0088】
この圧縮処理後のPAN系酸化繊維紡績糸織物を、窒素雰囲気下の炭素化装置に連続的に通して、処理温度1700℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0089】
得られたPAN系炭素繊維紡績糸織物は、表2に示すように目付が95g/m2、厚さが0.30mm、嵩密度が0.32g/cm3、電気抵抗値が3.8mΩ、セル電圧が0.65Vであった。更に、剛軟度Aが5mNcm、剛軟度Bが240mNcm、剛軟度比B/Aが48.0であり、且つA面を外側、B面を内側にして直径3in(76.2mm)の紙管に巻回した後、皺が発生し、良好な物性の紡績糸織物ではなかった。
【0090】
比較例2
実施例1のPAN系酸化繊維紡績糸織物において、浸漬法によるコート装置を用いて、まず一方の面(A面)をPVA水溶液(濃度1.0質量%)に浸漬し、A面におけるPVAの含浸深さを紡績糸織物厚さに対して25%にした。次に他方の面(B面)をPVA水溶液(濃度5.0質量%)に浸漬し、B面におけるPVAの含浸深さを紡績糸織物厚さに対して20%にし、A面、B面それぞれがコーティング処理されたPAN系酸化繊維紡績糸織物を得た。
【0091】
このコーティング処理後のPAN系酸化繊維紡績糸織物を、圧力5MPa、温度200℃で圧縮処理した。
【0092】
この圧縮処理後のPAN系酸化繊維紡績糸織物を、窒素雰囲気下の炭素化装置に連続的に通して、処理温度1700℃で2分間炭素化し、PAN系炭素繊維紡績糸織物を得た。
【0093】
得られたPAN系炭素繊維紡績糸織物は、表2に示すように目付が87g/m2、厚さが0.35mm、嵩密度が0.25g/cm3、電気抵抗値が3.6mΩ、セル電圧が0.65Vであった。更に、剛軟度Aが65mNcm、剛軟度Bが65mNcm、剛軟度比B/Aが1.0であり、且つA面を外側、B面を内側にして直径3in(76.2mm)の紙管に巻回した後、皺が発生し、良好な物性の紡績糸織物ではなかった。
【0094】
【表2】
Figure 0004353672
【0095】
【発明の効果】
本発明のPAN系炭素繊維紡績糸織物は、一方の面と他方の面との剛軟度を所定範囲にしたので、これをロールにした場合、その表面に皺を生じない。
【0096】
本発明のPAN系炭素繊維紡績糸織物の製造方法は、PAN系酸化繊維紡績糸織物の片面に樹脂水溶液を含浸、乾燥させた後、炭素化するもので、簡単な操作で本発明のPAN系炭素繊維紡績糸織物を製造できる。
【0097】
更に、上記PAN系炭素繊維紡績糸織物における剛軟度Aの面を巻回時の外面として、前記紡績糸織物が巻回されてなる炭素繊維紡績糸織物ロールは、ロール内面(剛軟度Bの面)に巻き皺がなく、紡績糸織物の製品としての品位が高く、製品率も高い。
【図面の簡単な説明】
【図1】ローラーによる片面コート法の一例を示す概略説明図である。
【図2】片面ナイフコート法の一例を示す概略説明図であ
【図3】樹脂コーティング処理後のPAN系酸化繊維紡績糸織物の一例を示す模式的側面図である。
【図4】炭素繊維紡績糸織物の剛軟度を測定するための試験機の一例を示す概略説明図である。
【図5】従来のPAN系炭素繊維紡績糸織物ロールの一例を示す概略平面図である。
【符号の説明】
2 PAN系酸化繊維紡績糸織物
4a 上部ローラー
4b 下部ローラー
6 樹脂浴
8 樹脂水溶液
10、12、14 紡績糸織物搬送用ローラー
22 PAN系酸化繊維紡績糸織物
24 漏斗状の樹脂浴
26 ローラー
28 樹脂水溶液
30 ナイフ
32 ローラー
34a 紡績糸織物搬送用の上部ローラー
34b 紡績糸織物搬送用の下部ローラー
42 PAN系酸化繊維紡績糸織物
44 樹脂コーティング層
52 試験機本体
54 移動台
56 試験片
58 ウエイト
60 ハンドル
62 スケール
64 バーニャ
66 水準器
L 試験片の長さ
δ スケールの読み
72 PAN系炭素繊維紡績糸織物ロール
74 芯材
76 PAN系炭素繊維紡績糸織物
78 PAN系炭素繊維紡績糸織物ロールの内側表面
80 巻き皺
P PAN系炭素繊維紡績糸織物ロール中心[0001]
BACKGROUND OF THE INVENTION
The present invention provides a polyacrylonitrile (PAN) -based carbon fiber spun fabric, which is excellent in heat resistance and heat insulation, thin in thickness, has good electrical conductivity and does not generate curling at the time of winding and / or after winding. The present invention relates to a method for producing a yarn fabric and a roll formed by winding the spun yarn fabric into a cylindrical shape.
[0002]
[Prior art]
PAN-based carbon fiber spun yarn fabrics are excellent in heat resistance and heat insulation, and are therefore applied to heat-resistant materials and heat-insulating materials, and because they have good electrical conductivity, they are applied to electrode materials and the like. In particular, a thin sheet-like PAN-based carbon fiber spun yarn fabric is a useful material as a carbon fiber material for a polymer electrolyte fuel cell.
[0003]
In application to these uses, the PAN-based carbon fiber spun yarn fabric may be subjected to continuous treatment such as water repellent treatment or integration treatment with an electrolyte membrane using a resin, ceramic, catalyst, or the like. . In this case, since an efficient continuous process is desired, the spun yarn fabric is used in a long winding shape (in the form of a roll). Also, when shipping products, the product form is usually a long roll.
[0004]
FIG. 5 shows an example of a long roll 72 in which a PAN-based carbon fiber spun yarn fabric 76 is wound around a core material 74 in a spiral shape.
[0005]
However, even if the PAN-based carbon fiber spun yarn fabric has good formability, the PAN-based carbon fiber spun yarn fabric 76 wound around the roll 72 has an inner surface 78 on the basis of the center 72 of the roll 72. The wrinkle 80 in the width direction is likely to occur, so that there is a problem that the quality of the spun yarn fabric is lowered and the product rate is lowered. In addition, the PAN-based carbon fiber spun yarn fabric has high rigidity when subjected to a continuous treatment such as the above water-repellent treatment or an integral treatment with an electrolyte membrane. When the rigidity of the spun yarn fabric increases, the formability deteriorates, and curling on the inner surface of the roll is more likely to occur, resulting in a decrease in the quality of the spun yarn fabric product and a decrease in the product rate. It gets bigger and bigger.
[0006]
As described above, as a polymer electrolyte fuel cell electrode material, there is a PAN-based carbon fiber spun yarn fabric that has been conventionally carbonized after containing a resin or the like in a PAN-based oxidized fiber spun yarn fabric and subjected to a compression treatment. This carbon fiber material is required to be a carbon fiber spun yarn fabric that is thinner, has good electrode material properties, and is uniform in order to make the battery compact.
[0007]
However, as described above, the carbon fiber spun yarn roll supplied as the electrode material production raw material has many rolls in the width direction on the inner surface of the roll, and these hinder the production of a uniform electrode material. There is a case.
[0008]
[Problems to be solved by the invention]
As a result of intensive studies on the above problems to be solved by the present inventors, in order to apply a carbon fiber spun yarn fabric to a polymer electrolyte fuel cell electrode material, a carbon fiber spun yarn fabric having the following characteristics is preferred. I thought.
(1) One surface of the carbon fiber spun yarn fabric is a macroscopically smooth surface, but microscopically, it is a rough surface having high contact efficiency with oxygen and hydrogen, and good air permeability. thing.
(2) The other surface of the carbon fiber spun yarn fabric is a surface having good adhesion to the polymer electrolyte membrane. That is, the surface must be smooth both macroscopically and microscopically.
(3) The carbon fiber spun yarn fabric has physical properties capable of being continuously treated for water repellent treatment, integration treatment with an electrolyte membrane, and the like.
(4) The treatment of (3) increases the rigidity of the spun yarn fabric and deteriorates the formability. Therefore, when the spun yarn fabric is formed into a roll, curling tends to occur on the inner surface of the roll. However, it is a carbon fiber spun yarn fabric that does not generate curl on the inner surface of the roll even when the treatment of (3) is performed.
[0009]
As a result of further studies, the present inventors have found that the bending resistance (physical property value obtained by measuring by a measuring method described later) A of one surface is within a predetermined range, and the bending resistance A of the one surface is A. It was found that the PAN-based carbon fiber spun yarn fabric having a ratio B / A to the bending resistance B of the other surface within a predetermined range is a carbon fiber spun yarn fabric having the above-mentioned preferred characteristics.
[0010]
The PAN-based carbon fiber spun yarn fabric is coated with a resin only on one side of the PAN-oxidized fiber spun yarn fabric or the PAN-based carbon fiber spun yarn fabric, and is compressed as necessary, and then an inert gas. It was found that it can be produced by heat treatment in an atmosphere.
[0011]
Further, the carbon fiber spun yarn fabric roll formed by winding the spun yarn fabric with the surface of the PAN-based carbon fiber spun yarn fabric having the bending resistance A (A surface) as the outer surface at the time of winding is a roll inner surface ( It was learned that there was no curl on the surface (B surface) of the bending resistance B, and the present invention was completed.
[0012]
Accordingly, an object of the present invention is to provide a PAN-based carbon fiber spun yarn fabric, a carbon fiber spun yarn fabric roll, and a method for producing a carbon fiber spun yarn fabric that solves the above problems.
[0013]
[Means for Solving the Problems]
The present invention which achieves the above object is described below.
[0014]
[1] The bending softness A of one surface is 2 to 10 mNcm, and the ratio B / A between the bending softness A of the one surface and the bending softness B of the other surface is 5.5 to 45. A polyacrylonitrile-based carbon fiber spun yarn fabric.
[0015]
[2] The polyacrylonitrile-based carbon fiber spun yarn fabric according to [1], wherein an electrical resistance value in the thickness direction is 3.5 mΩ or less.
[0016]
[3] The thickness is 0.20 to 0.50 mm, and the basis weight is 60 to 150 g / m. 2 The polyacrylonitrile-based carbon fiber spun yarn fabric according to [1].
[0017]
[4] Only one surface of the polyacrylonitrile-based oxidized fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 20% by mass, and the resin impregnation depth is 5 to 35 with respect to the spun yarn fabric thickness. % Polyacrylonitrile-based oxidized fiber spun yarn fabric, and the coating-treated polyacrylonitrile-based oxidized fiber spun yarn fabric is heated at a temperature of 1300 to 2500 ° C. for 0.5 to 10 minutes in an inert gas atmosphere. A process for producing a polyacrylonitrile-based carbon fiber spun yarn fabric characterized by the following.
[0018]
[5] Only one surface of the polyacrylonitrile-based carbon fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 20% by mass, and the resin impregnation depth is 5 to 35 with respect to the spun yarn fabric thickness. % Polyacrylonitrile-based carbon fiber spun yarn fabric, and heat-treat the polyacrylonitrile-based carbon fiber spun yarn fabric after the coating treatment at a temperature of 1300 to 2500 ° C. for 0.5 to 10 minutes in an inert gas atmosphere. A process for producing a polyacrylonitrile-based carbon fiber spun yarn fabric characterized by the following.
[0019]
[6] The spun yarn fabric is wound around a core material having a diameter of 70 to 350 mm, with the surface of the polyacrylonitrile-based carbon fiber spun yarn fabric according to [1] having a bending resistance A as an outer surface at the time of winding. Carbon fiber spun yarn fabric roll.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0021]
In the PAN-based carbon fiber spun yarn fabric of the present invention, the bending resistance A on one surface is 2 to 10 mNcm, and the ratio B between the bending resistance A on the one surface and the bending resistance B on the other surface is B. / A is 5.5-45.
[0022]
A roll formed by winding this spun yarn fabric is a carbon fiber spun when the spun yarn fabric is wound so that the surface of the bending resistance A is on the outer side from the center of the roll and the surface of the bending resistance B is on the inner side. The effect of suppressing the occurrence of curling wrinkles on the surface of the yarn fabric roll having the bending resistance B is high.
[0023]
When the bending softness A in the spun yarn fabric is less than 2 mNcm, the spun yarn fabric is too soft and wrinkles are likely to occur on the surface of the bending softness A, and the surface of the bending softness A is macroscopically smooth. This is not preferable because it causes problems such as difficulty in becoming.
[0024]
When the bending softness A in the spun yarn fabric exceeds 10 mNcm, curling is likely to occur on the B surface of the spun yarn roll with the surface of the soft softness A facing outside, and the spun yarn fabric is made of a polymer electrolyte type. When applied as an electrode material for a fuel cell, the gas diffusibility is lowered and the battery performance is lowered.
[0025]
When the ratio B / A of the bending resistance A to the bending resistance B is less than 5.5, the curling generation suppressing effect of the spun yarn roll having the bending surface A on the outside is reduced, and the B surface This is not preferable because curling tends to occur.
[0026]
When the ratio B / A of the bending resistance A to the bending resistance B exceeds 45, curling is likely to occur on the B surface of the spun yarn roll having the bending surface A on the outside, which is not preferable. .
[0027]
The electrical resistance value in the thickness direction of the PAN-based carbon fiber spun yarn fabric is preferably 3.5 mΩ or less, and usually 0.5 to 3.5 mΩ, in terms of the electrical resistance value obtained by measurement by a measurement method described later.
[0028]
The thickness of the PAN-based carbon fiber spun yarn fabric is preferably 0.20 to 0.50 mm when the electrode material for polymer electrolyte fuel cell is used.
[0029]
When the thickness of the PAN-based carbon fiber spun yarn fabric is less than 0.20 mm, when this carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has high electrical conductivity, but the carbonization This is not preferable because it causes problems such as low strength and easy generation of carbon fine powder.
[0030]
When the thickness of the PAN-based carbon fiber spun yarn fabric exceeds 0.50 mm, when this carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has low electrical conductivity and the battery performance is low. Since it falls, it is not preferable.
[0031]
The basis weight of the PAN-based carbon fiber spun yarn fabric is 60 to 150 g / m. 2 Is preferred.
[0032]
PAN-based carbon fiber spun yarn fabric weight is 60g / m 2 If it is lower, it is not preferable because problems such as a decrease in the strength of the carbon fiber spun yarn fabric occur.
[0033]
PAN-based carbon fiber spun yarn fabric weight is 150g / m 2 In the case of exceeding the value, it is not preferable because the electric resistance value in the thickness direction is increased.
[0034]
The bulk density of the PAN-based carbon fiber spun yarn fabric is 0.15 to 0.35 g / cm. Three Is preferred.
[0035]
The bulk density of PAN-based carbon fiber spun yarn fabric is 0.15 g / cm Three When the carbon fiber spun yarn fabric is used as an electrode material for a polymer electrolyte fuel cell, the electrode material has low electrical conductivity and battery performance deteriorates.
[0036]
The bulk density of PAN-based carbon fiber spun yarn fabric is 0.35 g / cm Three When the carbon fiber spun yarn fabric is used as a polymer electrolyte fuel cell electrode material, the electrode material has high electrical conductivity, but during heat treatment in an inert gas atmosphere, that is, during carbonization, This is not preferable because it causes problems such as low strength and easy generation of carbon fine powder.
[0037]
The PAN-based carbon fiber spun yarn fabric of the present invention can be produced by various methods and is not particularly limited. The example of a preferable manufacturing method is shown below.
[0038]
For example, only one surface of a PAN-based oxidized fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 20% by mass, and the impregnation depth of the resin is 5 to 35 with respect to the spun yarn fabric thickness. % PAN-based oxidized fiber spun yarn fabric is obtained. Thereafter, the coated PAN-based oxidized fiber spun yarn fabric is compression-treated at a pressure of 0.5 to 10 MPa and a temperature of 150 to 250 ° C. as necessary. Next, the PAN-based oxidized fiber spun yarn fabric subjected to the compression treatment as necessary is heat-treated at a temperature of 1300 to 2500 ° C. for 0.5 to 10 minutes (carbonization) in an inert gas atmosphere.
[0039]
In this method for producing a PAN-based carbon fiber spun yarn fabric, the raw material PAN-based oxidized fiber spun yarn fabric can be produced by various methods and is not particularly limited.
[0040]
For example, the PAN-based oxidized fiber spun yarn fabric of this raw material is obtained by blending a PAN-based oxidized fiber cut fiber and carding to obtain a sliver, and then spinning the sliver to obtain a spun yarn. It can be manufactured by weaving the spun yarn into a sheet. Conventionally known methods can be appropriately employed as these processing methods.
[0041]
First, only one side (one side) of the PAN-based oxidized fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 20% by mass.
[0042]
As a method for coating only one side of the spun yarn fabric, methods such as a single-sided coating method using a roller and a single-sided knife coating method can be employed.
[0043]
FIG. 1 is a schematic explanatory view showing an example of a single-sided coating method using a roller, FIG. 2 is a schematic explanatory view showing an example of a single-sided knife coating method, and FIG. 3 is a drawing of a PAN-based oxidized fiber spun yarn fabric after coating treatment. It is a typical side view which shows an example.
[0044]
In FIG. 1, 2 is a PAN-based oxidized fiber spun yarn fabric, and this spun yarn fabric 2 is passed between the upper roller 4a and the lower roller 4b. The lower half of the lower roller 4b is immersed in an aqueous resin solution 8 stretched on the resin bath 6. The aqueous resin solution 8 attached to the surface of the rotating lower roller 4b is transferred to the spun yarn fabric on the lower surface of the spun yarn fabric 2. In FIG. 1, 10, 12, and 14 are rollers for conveying spun yarn fabric.
[0045]
In FIG. 2, reference numeral 22 denotes a PAN-based oxidized fiber spun yarn fabric. The spun yarn fabric 22 is passed between a lower end of a funnel-shaped resin bath 24 and a roller 26. The aqueous resin solution 28 placed in the resin bath 24 is coated on the upper surface of the spun yarn fabric 22 at the lower end of the resin bath 24. After the resin coating, the spun yarn fabric 22 is passed between the lower end of the knife 30 and the roller 32. Excess coated resin is removed at the lower end of knife 30. In FIG. 2, 34a and 34b are an upper roller and a lower roller for conveying a spun yarn fabric, respectively.
[0046]
The spun yarn fabric after the resin coating treatment as described above has a resin coating layer 44 formed on the top of the PAN-based oxidized fiber spun yarn fabric 42 as shown in FIG.
[0047]
As the resin aqueous solution for coating treatment, an aqueous solution or emulsion (emulsion) such as fluorine resin, cellulose resin such as carboxymethyl cellulose (CMC), acrylic resin, polyvinyl alcohol (PVA) resin or the like is preferable.
[0048]
The viscosity of the aqueous resin solution varies depending on the type and concentration of the resin, but is preferably 0.1 to 10 Pa · s (100 to 10,000 centipoise).
[0049]
When the viscosity of the aqueous resin solution is less than 0.1 Pa · s, the resin oozes out to the other surface (opposite surface) or exceeds the upper limit of the impregnation depth and cannot be adjusted within the predetermined impregnation depth range. It is not preferable.
[0050]
When the viscosity of the aqueous resin solution exceeds 10 Pa · s, it is not preferable because the surface of the PAN-based oxidized fiber spun yarn fabric cannot be uniformly coated.
[0051]
When applying PAN-based oxidized fiber spun yarn fabric to heat-resistant materials and heat-insulating materials, addition of inorganic compounds such as titanium and silicon, and carbon fine particles such as carbon nanotubes, carbon whiskers, and carbon black in resin aqueous solutions You may add 1-50 mass% of things with respect to the amount of resin.
[0052]
When the shape of the additive other than the resin is particulate, the diameter is preferably 0.01 to 10 μm, and when the shape of the additive is fibrous, the diameter is 0.01 to 20 μm and the length is 1.0. ˜100 μm is preferred.
[0053]
By coating the PAN-based oxidized fiber spun yarn fabric with the resin aqueous solution as described above, a PAN-based oxidized fiber spun yarn fabric having a resin impregnation depth of 5 to 35% with respect to the spun yarn fabric thickness is obtained. .
[0054]
When the resin impregnation depth is less than 5% with respect to the spun yarn fabric thickness, the bending resistance A of the carbon fiber spun yarn fabric obtained from the oxidized fiber spun fabric is less than 2 mNcm, which is not preferable.
[0055]
When the resin impregnation depth exceeds 35% with respect to the spun yarn fabric thickness, the bending resistance A of the carbon fiber spun yarn fabric obtained from this oxidized fiber spun yarn fabric exceeds 10 mNcm, which is not preferable.
[0056]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment is subjected to compression treatment at a pressure of 0.5 to 10 MPa and a temperature of 150 to 250 ° C. as necessary. The PAN-based oxidized fiber spun yarn fabric after being subjected to the compression treatment according to the necessity is subjected to a heat treatment in an inert gas atmosphere at a temperature of 1300 to 2500 ° C. for 0.5 to 10 minutes, that is, by carbonization. A PAN-based carbon fiber spun yarn fabric is obtained.
[0057]
In the above production method, as the raw material spun yarn fabric, a PAN-based carbon fiber spun yarn fabric may be used in place of the PAN-based oxidized fiber spun yarn fabric.
[0058]
In this case, only one surface of the PAN-based carbon fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 20% by mass, and the resin impregnation depth is 5 to 35 with respect to the spun yarn fabric thickness. % PAN-based carbon fiber spun yarn fabric, the PAN-based carbon fiber spun yarn fabric after the coating treatment is subjected to a compression treatment at a pressure of 0.5 to 10 MPa and a temperature of 150 to 250 ° C. as necessary. Accordingly, the PAN-based carbon fiber spun yarn fabric after being subjected to compression treatment is subjected to heat treatment at a temperature of 1300 to 2500 ° C. for 0.5 to 10 minutes in an inert gas atmosphere such as nitrogen gas, carbon dioxide, and argon gas. Become.
[0059]
When the PAN-based carbon fiber spun yarn fabric of the present invention obtained by the above-described production method is used as a roll, the surface of the spun yarn fabric with the bending resistance A facing the outside of the roll, the inner diameter By winding on a core material of 70 to 350 mm, a carbon fiber spun yarn fabric roll having no curl on the inner surface of the roll (surface of the softness B) can be obtained.
[0060]
【Example】
The present invention will be specifically described with reference to the following examples and comparative examples.
[0061]
Oxidized fiber spun yarn fabric and carbon fiber spun yarn fabric were prepared under the conditions of the following Examples and Comparative Examples. Various physical properties of raw material oxidized fiber, oxidized fiber spun yarn fabric, and carbon fiber spun yarn fabric were measured by the following methods.
[0062]
Specific gravity: Measured by liquid replacement method (JIS R 7601, replacement liquid: ethyl alcohol).
[0063]
Thickness: The thickness at a load (2.8 kPa) of 200 g was measured with a circular pressure plate having a diameter of 30 mm.
[0064]
Mass per unit area: The mass per unit area was calculated from the size and mass of oxidized fiber spun yarn fabric or carbon fiber spun yarn fabric.
[0065]
Bulk density: Calculated from the thickness and basis weight measured under the above conditions.
[0066]
Bending softness: Measured according to the method described in JIS L 1096 (Method B). Specifically, 5 pieces of test pieces of 2 cm × about 15 cm are sampled from the carbon fiber spun yarn fabric in the warp direction and the weft direction, respectively, and using the test machine shown in the schematic side view of FIG. The bending resistance of the carbon fiber spun yarn fabric was measured.
[0067]
First, after making the upper surface of the tester main body 52 and the movable table 54 coincide with each other, the test piece 56 and the weight 58 were attached thereon. The weight 58 was placed on the test piece 56 so as to slightly protrude from the boundary between the tester main body 52 and the moving table 54 to the moving table 54 side. Next, the handle 60 was gently turned to lower the moving table 54, and the value of δ when the free end of the test piece 56 moved away from the boundary of the moving table 54 was read by the scale 62.
[0068]
Mass per unit area of test piece 56 (g / cm Three ) And measure the following formula
B t = WL Four / 8δ
Where B t : Bending softness (mN · cm)
W: Gravity per unit area of the test piece 56 (mN / cm Three )
L: Length of the test piece 56 (cm)
δ: Reading of scale 62 (cm)
To obtain the bending resistance (mN · cm), and measure the bending resistance of each of the A and B surfaces of the test piece 56 in a total of 10 sheets in the vertical and transverse directions, and calculate the average value of 10 sheets. These values were defined as bending resistance A and bending resistance B, respectively. In FIG. 4, 64 is a vernier and 66 is a level.
[0069]
Electrical resistance value: Two sides of a 50 mm square (10 mm thick) gold-plated electrode were sandwiched on both sides of a carbon fiber spun yarn fabric at a pressure of 1 MPa, and the electrical resistance value (R (mΩ)) between the two electrodes was measured. Is represented as a resistance value at the thickness.
[0070]
Cell voltage: A carbon fiber spun yarn fabric is cut into a 50 mm square, and a catalyst (Pt-Ru) is 0.3 mg / cm. 2 The polymer electrolyte type fuel cell electrode material was obtained by carrying it. A cell is constructed by joining the electrode material cut to 50 mm square on both sides of the polymer electrolyte membrane (Nafion 117), and the temperature is 80 ° C. and the current density is 1.6 A / cm. 2 The cell voltage was measured.
[0071]
Example 1
As shown in Table 1, a cut fiber (cut length 51 mm) of a PAN-based oxidized fiber having a fineness of 2.0 dtex and a specific gravity of 1.39 was carded and then carded to obtain a sliver.
[0072]
The above sliver was processed into spun yarn to produce a 20th PAN-based oxidized fiber spun yarn. Weaving this oxidized fiber spun yarn, weaving form: plain weave, spun yarn number of yarns 15 / cm, basis weight 150g / m 2 , Thickness 0.39mm, bulk density 0.38g / cm Three A PAN-based oxidized fiber spun yarn fabric was obtained.
[0073]
This PAN-based oxidized fiber spun yarn fabric is coated with a PVA aqueous solution (concentration of 2.0% by mass) on only one side (B side) using a single side coating apparatus with a roller shown in FIG. A PAN-based oxidized fiber spun yarn fabric of 20% with respect to the spun yarn fabric thickness was obtained.
[0074]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment was compressed at a pressure of 1 MPa and a temperature of 180 ° C.
[0075]
The PAN-based oxidized fiber spun yarn fabric after the compression treatment was continuously passed through a carbonization apparatus under a nitrogen atmosphere and carbonized at a treatment temperature of 1700 ° C. for 2 minutes to obtain a PAN-based carbon fiber spun yarn fabric.
[0076]
As shown in Table 1, this PAN-based carbon fiber spun yarn fabric has a basis weight of 89 g / m. 2 , Thickness is 0.40mm, bulk density is 0.22g / cm Three The electric resistance value was 2.3 mΩ, and the cell voltage was 0.71V. Further, the bending resistance A is 4 mNcm, the bending resistance B is 24 mNcm, the bending resistance ratio B / A is 6.0, and the diameter is 3 inches (76.2 mm) with the A surface on the outside and the B surface on the inside. There was no generation of wrinkles after winding on a paper tube, and the spun yarn fabric had good physical properties.
[0077]
Example 2
The PAN-based oxidized fiber spun yarn fabric of Example 1 was coated with a PVA aqueous solution (concentration of 5.0% by mass) on only one side (B side) using a single side coating apparatus with a roller shown in FIG. A PAN-based oxidized fiber spun yarn fabric having a depth of 20% with respect to the spun yarn fabric thickness was obtained.
[0078]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment was compressed at a pressure of 5 MPa and a temperature of 200 ° C.
[0079]
The PAN-based oxidized fiber spun yarn fabric after the compression treatment was continuously passed through a carbonization apparatus under a nitrogen atmosphere and carbonized at a treatment temperature of 1700 ° C. for 2 minutes to obtain a PAN-based carbon fiber spun yarn fabric.
[0080]
The obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 91 g / m as shown in Table 1. 2 , Thickness is 0.32mm, bulk density is 0.28g / cm Three The electric resistance value was 2.2 mΩ, and the cell voltage was 0.73V. Further, the bending resistance A is 4 mNcm, the bending resistance B is 55 mNcm, the bending resistance ratio B / A is 14.8, and the diameter is 3 inches (76.2 mm) with the A surface being the outside and the B surface being the inside. There was no generation of wrinkles after winding on a paper tube, and the spun yarn fabric had good physical properties.
[0081]
Example 3
The PAN-based oxidized fiber spun yarn fabric of Example 1 was coated with a PVA aqueous solution (concentration: 10.0% by mass) on only one side (B side) using a single side coating apparatus with a roller shown in FIG. A PAN-based oxidized fiber spun yarn fabric having a depth of 18% of the spun yarn fabric thickness was obtained.
[0082]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment was compressed at a pressure of 1 MPa and a temperature of 180 ° C.
[0083]
The PAN-based oxidized fiber spun yarn fabric after the compression treatment was continuously passed through a carbonization apparatus under a nitrogen atmosphere and carbonized at a treatment temperature of 1700 ° C. for 2 minutes to obtain a PAN-based carbon fiber spun yarn fabric.
[0084]
The obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 93 g / m as shown in Table 1. 2 , Thickness is 0.31 mm, bulk density is 0.30 g / cm Three The electric resistance value was 2.0 mΩ, and the cell voltage was 0.74V. Further, the bending resistance A is 5 mNcm, the bending resistance B is 195 mNcm, the bending resistance ratio B / A is 39.0, and the diameter is 3 inches (76.2 mm) with the A surface being the outside and the B surface being the inside. There was no generation of wrinkles after winding on a paper tube, and the spun yarn fabric had good physical properties.
[0085]
[Table 1]
Figure 0004353672
[0086]
Comparative Example 1
The PAN-based oxidized fiber spun yarn fabric of Example 1 was coated with a CMC aqueous solution (concentration: 15.0% by mass) only on one side (B side) using a single side coating apparatus with a roller shown in FIG. A PAN-based oxidized fiber spun yarn fabric having a depth of 15% with respect to the spun yarn fabric thickness was obtained.
[0087]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment was compressed at a pressure of 1 MPa and a temperature of 180 ° C.
[0088]
The PAN-based oxidized fiber spun yarn fabric after the compression treatment was continuously passed through a carbonization apparatus under a nitrogen atmosphere and carbonized at a treatment temperature of 1700 ° C. for 2 minutes to obtain a PAN-based carbon fiber spun yarn fabric.
[0089]
The obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 95 g / m as shown in Table 2. 2 , Thickness is 0.30mm, bulk density is 0.32g / cm Three The electric resistance value was 3.8 mΩ, and the cell voltage was 0.65V. Further, the bending resistance A is 5 mNcm, the bending resistance B is 240 mNcm, the bending resistance ratio B / A is 48.0, and the diameter is 3 inches (76.2 mm) with the A surface on the outside and the B surface on the inside. After being wound around the paper tube, wrinkles occurred, and the spun yarn fabric was not good in physical properties.
[0090]
Comparative Example 2
In the PAN-based oxidized fiber spun yarn fabric of Example 1, first, one surface (A surface) was immersed in a PVA aqueous solution (concentration: 1.0% by mass) using a coating apparatus by an immersion method, and the PVA on the A surface was The impregnation depth was 25% with respect to the thickness of the spun yarn fabric. Next, the other side (B side) is immersed in a PVA aqueous solution (concentration of 5.0% by mass), and the PVA impregnation depth on the B side is set to 20% with respect to the spun yarn fabric thickness. PAN-based oxidized fiber spun yarn fabrics each coated were obtained.
[0091]
The PAN-based oxidized fiber spun yarn fabric after the coating treatment was compressed at a pressure of 5 MPa and a temperature of 200 ° C.
[0092]
The PAN-based oxidized fiber spun yarn fabric after the compression treatment was continuously passed through a carbonization apparatus under a nitrogen atmosphere and carbonized at a treatment temperature of 1700 ° C. for 2 minutes to obtain a PAN-based carbon fiber spun yarn fabric.
[0093]
The obtained PAN-based carbon fiber spun yarn fabric has a basis weight of 87 g / m as shown in Table 2. 2 , Thickness is 0.35mm, bulk density is 0.25g / cm Three The electric resistance value was 3.6 mΩ, and the cell voltage was 0.65V. Further, the bending resistance A is 65 mNcm, the bending resistance B is 65 mNcm, the bending resistance ratio B / A is 1.0, and the diameter is 3 inches (76.2 mm) with the A surface on the outside and the B surface on the inside. After being wound around the paper tube, wrinkles occurred, and the spun yarn fabric was not good in physical properties.
[0094]
[Table 2]
Figure 0004353672
[0095]
【The invention's effect】
In the PAN-based carbon fiber spun yarn fabric of the present invention, since the bending resistance between one side and the other side is set within a predetermined range, when this is used as a roll, no wrinkle is generated on the surface.
[0096]
The method for producing a PAN-based carbon fiber spun yarn fabric of the present invention involves impregnating an aqueous resin solution on one side of a PAN-based oxidized fiber spun yarn fabric, drying it, and then carbonizing the PAN-based carbon fiber spun yarn fabric. Carbon fiber spun yarn fabric can be manufactured.
[0097]
Further, with the surface of the PAN-based carbon fiber spun yarn fabric having the bending resistance A as the outer surface at the time of winding, the carbon fiber spun yarn fabric roll wound with the spun yarn fabric is wound on the inner surface of the roll (bending softness B There is no curl in the surface), and the quality of the spun yarn fabric is high, and the product rate is also high.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view showing an example of a single-side coating method using a roller.
FIG. 2 is a schematic explanatory view showing an example of a single-sided knife coating method.
FIG. 3 is a schematic side view showing an example of a PAN-based oxidized fiber spun yarn fabric after resin coating treatment.
FIG. 4 is a schematic explanatory view showing an example of a testing machine for measuring the bending resistance of a carbon fiber spun yarn fabric.
FIG. 5 is a schematic plan view showing an example of a conventional PAN-based carbon fiber spun yarn fabric roll.
[Explanation of symbols]
2 PAN-based oxidized fiber spun yarn fabric
4a Upper roller
4b Lower roller
6 Resin bath
8 Resin aqueous solution
10, 12, 14 Rolls for conveying spun yarn fabrics
22 PAN-based oxidized fiber spun yarn fabric
24 Funnel-shaped resin bath
26 Roller
28 Resin aqueous solution
30 knives
32 rollers
34a Upper roller for transporting spun yarn fabrics
34b Lower roller for transporting spun yarn fabrics
42 PAN-based oxidized fiber spun yarn fabric
44 Resin coating layer
52 Testing machine body
54 Moving platform
56 specimens
58 weights
60 handle
62 scale
64 Bagna
66 Level
L Length of specimen
δ scale reading
72 PAN-based carbon fiber spun yarn fabric roll
74 Core
76 PAN-based carbon fiber spun yarn fabric
78 Inside surface of PAN-based carbon fiber spun yarn roll
80 rolls
P PAN-based carbon fiber spun yarn fabric roll center

Claims (6)

ポリアクリロニトリル系酸化繊維紡績糸織物の一方の面のみを、ローラーによる片面コート法又は片面ナイフコート法で、濃度1〜10質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のポリアクリロニトリル系酸化繊維紡績糸織物を得、前記コーティング処理後のポリアクリロニトリル系酸化繊維紡績糸織物を、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することを特徴とする、他方の面の剛軟度Aが2〜10mNcmであり、前記方の面の剛軟度Aと、方の面の剛軟度Bとの比B/Aが5.5〜45であるポリアクリロニトリル系炭素繊維紡績糸織物の製造方法 Only one surface of the polyacrylonitrile-based oxidized fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 10% by mass by a single-sided coating method or a single-sided knife coating method using a roller, and the impregnation depth of the resin is the spun yarn. A polyacrylonitrile-based oxidized fiber spun yarn woven fabric of 5 to 35% with respect to the fabric thickness is obtained, and the polyacrylonitrile-based oxidized fiber spun yarn fabric after the coating treatment is 0 at a temperature of 1300 to 2500 ° C. in an inert gas atmosphere. wherein the heat treatment .5~10 min, a bending resistance a surface of the other side is 2~10MNcm, and bending resistance a surface of the other side, bending resistance of hand surface A method for producing a polyacrylonitrile-based carbon fiber spun yarn fabric having a ratio B / A to B of 5.5 to 45. ポリアクリロニトリル系炭素繊維紡績糸織物の一方の面のみを、ローラーによる片面コート法又は片面ナイフコート法で、濃度1〜10質量%の樹脂水溶液によりコーティング処理し、樹脂の含浸深さが前記紡績糸織物厚さに対して5〜35%のポリアクリロニトリル系炭素繊維紡績糸織物を得、前記コーティング処理後のポリアクリロニトリル系炭素繊維紡績糸織物を、不活性ガス雰囲気下、温度1300〜2500℃で0.5〜10分間加熱処理することを特徴とする、他方の面の剛軟度Aが2〜10mNcmであり、前記他方の面の剛軟度Aと、一方の面の剛軟度Bとの比B/Aが5.5〜45であるポリアクリロニトリル系炭素繊維紡績糸織物の製造方法。Only one side of the polyacrylonitrile-based carbon fiber spun yarn fabric is coated with a resin aqueous solution having a concentration of 1 to 10% by mass by a single-side coating method using a roller or a single-side knife coating method, and the impregnation depth of the resin is the spun yarn. A polyacrylonitrile-based carbon fiber spun yarn fabric of 5 to 35% with respect to the fabric thickness is obtained, and the polyacrylonitrile-based carbon fiber spun yarn fabric after the coating treatment is 0 at a temperature of 1300 to 2500 ° C. in an inert gas atmosphere. Heat treatment for 5 to 10 minutes, the bending resistance A of the other surface is 2 to 10 mNcm, and the bending resistance A of the other surface and the bending resistance B of the one surface A method for producing a polyacrylonitrile-based carbon fiber spun yarn fabric having a ratio B / A of 5.5 to 45. 請求項1又は2に記載の製造方法により得られる、他方の面の剛軟度Aが2〜10mNcmであり、前記他方の面の剛軟度Aと、一方の面の剛軟度Bとの比B/Aが5.5〜45であるポリアクリロニトリル系炭素繊維紡績糸織物。The bending resistance A of the other surface obtained by the manufacturing method according to claim 1 or 2 is 2 to 10 mNcm, and the bending resistance A of the other surface and the bending resistance B of the one surface are Polyacrylonitrile-based carbon fiber spun yarn fabric having a ratio B / A of 5.5 to 45. 厚さ方向の電気抵抗値が3.5mΩ以下である請求項に記載のポリアクリロニトリル系炭素繊維紡績糸織物。The polyacrylonitrile-based carbon fiber spun yarn fabric according to claim 3 , wherein an electrical resistance value in the thickness direction is 3.5 mΩ or less. 厚さが0.20〜0.50mm、目付が60〜150g/m2である請求項に記載のポリアクリロニトリル系炭素繊維紡績糸織物。Thickness 0.20~0.50Mm, polyacrylonitrile-based carbon fiber spun yarn fabric according to claim 3 basis weight is 60 to 150 g / m 2. 請求項に記載のポリアクリロニトリル系炭素繊維紡績糸織物における剛軟度Aの面を巻回時の外面として、前記紡績糸織物が直径70〜350mmの芯材に巻回されてなる炭素繊維紡績糸織物ロール。The carbon fiber spinning formed by winding the spun yarn fabric around a core material having a diameter of 70 to 350 mm using the surface of the polyacrylonitrile-based carbon fiber spun yarn fabric according to claim 3 as the outer surface during winding. Yarn fabric roll.
JP2002038830A 2002-02-15 2002-02-15 Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric Expired - Fee Related JP4353672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038830A JP4353672B2 (en) 2002-02-15 2002-02-15 Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038830A JP4353672B2 (en) 2002-02-15 2002-02-15 Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric

Publications (2)

Publication Number Publication Date
JP2003239157A JP2003239157A (en) 2003-08-27
JP4353672B2 true JP4353672B2 (en) 2009-10-28

Family

ID=27780043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038830A Expired - Fee Related JP4353672B2 (en) 2002-02-15 2002-02-15 Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric

Country Status (1)

Country Link
JP (1) JP4353672B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4446721B2 (en) 2003-12-01 2010-04-07 株式会社クレハ Carbon fiber spun yarn and its woven fabric
JP4876441B2 (en) * 2005-06-06 2012-02-15 株式会社デンソー Method and apparatus for producing carbon nanotube fiber
JP6178041B2 (en) * 2012-01-13 2017-08-09 トヨタ自動車株式会社 Method for producing diffusion layer for fuel cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981667B2 (en) * 1989-02-16 1999-11-22 日本石油株式会社 Manufacturing method of carbon fiber fabric
JPH06218073A (en) * 1993-09-08 1994-08-09 Showa Electric Wire & Cable Co Ltd Fireproof sheet
JP3440616B2 (en) * 1994-03-31 2003-08-25 東レ株式会社 Carbon fiber woven fabric, prepreg, fiber reinforced composite material, and method for producing them
JPH08158207A (en) * 1994-12-05 1996-06-18 Kanebo Ltd Production of texture-fixed fabric
JPH08325890A (en) * 1995-06-01 1996-12-10 Gunze Ltd Fluorine-based fiber woven fabric
EP1162296A4 (en) * 1999-02-18 2005-11-09 Showa Denko Kk Carbon fiber woven fabric and method for production thereof
JP2001226850A (en) * 2000-02-10 2001-08-21 Mitsubishi Rayon Co Ltd Reinforcing fiber fabric, method for producing the same and prepreg using the reinforcing fiber fabric
JP3995861B2 (en) * 2000-03-24 2007-10-24 東邦テナックス株式会社 Polyacrylonitrile-based oxidized fiber, carbon fiber structure, and method for producing carbon fiber structure
JP2002249984A (en) * 2001-02-23 2002-09-06 Mitsubishi Rayon Co Ltd Rolled material of reinforcing fiber cloth, method and apparatus for producing the same
JP4329296B2 (en) * 2001-02-28 2009-09-09 三菱化学株式会社 Conductive carbon fiber sheet and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2003239157A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
US20050260909A1 (en) Carbonic fiber woven fabric, carbonic fiber woven fabric roll, gas diffusion layer material for solid polymer fuel cell, method for producing carbonic fiber woven fabric and method for producing gas diffusion layer material for solid polymer fuel cell
WO2002042534A1 (en) Carbon fiber sheet and method for producing the same
JP7078027B2 (en) Porous electrode base material and its manufacturing method
CN109314252B (en) Gas diffusion electrode and fuel cell
JP6743805B2 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
JP5988009B1 (en) Porous carbon sheet and precursor fiber sheet thereof
EP1237214A2 (en) Conductive carbonaceous-fiber sheet and solid polymer electrolyte fuel cell
JPWO2016152851A1 (en) Porous carbon electrode substrate, method for producing the same, gas diffusion layer, and membrane-electrode assembly for fuel cell
JP4329296B2 (en) Conductive carbon fiber sheet and polymer electrolyte fuel cell
JP2009283259A (en) Porous carbon electrode base material
JPWO2019159945A1 (en) Hydrophilic porous carbon electrode and its manufacturing method
JP2008201005A (en) Carbon fiber sheet and its manufacturing method
JP4353672B2 (en) Polyacrylonitrile-based carbon fiber spun yarn fabric, carbon fiber spun yarn fabric roll, and method for producing carbon fiber spun yarn fabric
JP2002270191A (en) Carbon electrode material and manufacturing method thereof
JP3954860B2 (en) Polyacrylonitrile-based carbon fiber nonwoven fabric, carbon fiber nonwoven fabric roll, and method for producing carbon fiber nonwoven fabric
JP2007002394A (en) Carbon fiber sheet, method for producing the same and heat treatment furnace for sheet-like material
JP2003045443A (en) Nonwoven carbon fiber fabric for electrode material of high polymer electrolyte fuel cell and its manufacturing method
JP4282964B2 (en) Carbon fiber woven fabric
JP7265367B2 (en) polymer electrolyte membrane
JP7114858B2 (en) Gas diffusion electrode and fuel cell
JP4002426B2 (en) Carbon fiber spun woven fabric structure for polymer electrolyte fuel cell electrode material and method for producing the same
JP2018032465A (en) Porous carbon electrode base material, and gas diffusion layer using the same
JP2002348743A (en) Structural material of woven fabric made of flat carbon fiber-spun yarn
JP3993151B2 (en) Method for producing carbon fiber woven fabric and method for producing gas diffusion layer material for polymer electrolyte fuel cell
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090728

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees