JP4353118B2 - Signal extraction structure for semiconductor microelectromechanical devices - Google Patents

Signal extraction structure for semiconductor microelectromechanical devices Download PDF

Info

Publication number
JP4353118B2
JP4353118B2 JP2005083170A JP2005083170A JP4353118B2 JP 4353118 B2 JP4353118 B2 JP 4353118B2 JP 2005083170 A JP2005083170 A JP 2005083170A JP 2005083170 A JP2005083170 A JP 2005083170A JP 4353118 B2 JP4353118 B2 JP 4353118B2
Authority
JP
Japan
Prior art keywords
substrate
electrode
hole
electrode pad
signal extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005083170A
Other languages
Japanese (ja)
Other versions
JP2006269584A (en
Inventor
澄夫 赤井
英一 古久保
浩司 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005083170A priority Critical patent/JP4353118B2/en
Publication of JP2006269584A publication Critical patent/JP2006269584A/en
Application granted granted Critical
Publication of JP4353118B2 publication Critical patent/JP4353118B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体微小電子機械デバイスから電気信号を取り出すための半導体微小電子機械デバイスの信号取り出し構造に関する。   The present invention relates to a signal extraction structure of a semiconductor microelectromechanical device for extracting an electrical signal from the semiconductor microelectromechanical device.

従来より、ガラス等からなる基板と半導体からなる基板とを接合した構造からなり、圧力や加速度等を検出するために用いられる半導体微小電子機械デバイスが用いられている。例えば、特許文献1に示されるように、半導体板3枚とブラスト加工により貫通孔が設けられたガラス板2枚を交互に接合した構造の加速度センサが知られている。この加速度センサの中層部の半導体板には梁部によって支持された可動電極である構造体が形成されており、この構造体の両側のガラス板にはその構造体と対向するように固定電極が設けられている。それぞれの固定電極はガラス板の貫通孔を通して設けられる電極膜を介して、外層部の半導体板と電気的に接続されている。   2. Description of the Related Art Conventionally, a semiconductor microelectromechanical device having a structure in which a substrate made of glass or the like and a substrate made of a semiconductor are joined and used for detecting pressure, acceleration, or the like has been used. For example, as disclosed in Patent Document 1, an acceleration sensor having a structure in which three semiconductor plates and two glass plates provided with through holes by blasting are alternately joined is known. A structure which is a movable electrode supported by a beam portion is formed on the semiconductor plate of the middle layer of the acceleration sensor, and fixed electrodes are provided on the glass plates on both sides of the structure so as to face the structure. Is provided. Each fixed electrode is electrically connected to the semiconductor plate in the outer layer portion through an electrode film provided through the through hole of the glass plate.

この加速度センサに加速度が加わると、構造体が慣性力により変位し、それぞれの固定電極と構造体との間の距離が変化して、中層部の半導体板と両外層部の半導体板との間の静電容量がそれぞれ変化する。この静電容量の変化が電気信号の変化として外部に取り出されて、外部回路等がこの信号を元に当該加速度を検出する。この加速度センサにおいては、貫通孔を通して設けられる電極膜が外層部の半導体板と接合するガラス板の面上にも延設して設けられており、電極膜が確実に外層部の半導体板と接合するようにしている。   When acceleration is applied to the acceleration sensor, the structure is displaced by the inertial force, and the distance between each fixed electrode and the structure is changed, so that the intermediate layer semiconductor plate and the outer layer semiconductor plate are separated from each other. The capacitance of each changes. This change in capacitance is taken out as a change in electrical signal, and an external circuit or the like detects the acceleration based on this signal. In this acceleration sensor, the electrode film provided through the through hole is also provided so as to extend on the surface of the glass plate to be joined to the semiconductor plate of the outer layer portion, and the electrode film is securely joined to the semiconductor plate of the outer layer portion. Like to do.

また、上述の加速度センサとは別の半導体微小電子機械デバイスの信号取り出し構造の一例を図6(a)(b)(c)に示す。この半導体微小電子機械デバイスは、貫通孔81aを有するガラス板81と、ガラス板81との接合面に電極パッド84が形成された半導体板82とを接合したものであり、半導体板82に上述の加速度センサの可動電極のような構造体(図示なし)が形成されているものである。貫通孔81aの内面とガラス板81の上面には電極膜85が電極パッド84と電気的に接続されるよう形成されている。電極パッド84は、ガラス板81に形成されて構造体の変位に応じて電気信号が発生する固定電極86と接続され、また、半導体板82とは絶縁膜87が設けられることで絶縁されている。固定電極86で発生する電気信号は、電極パッド84を介して電極膜85から外部へ取り出される。   FIGS. 6A, 6B, and 6C show an example of a signal extraction structure of a semiconductor microelectromechanical device different from the above-described acceleration sensor. This semiconductor microelectromechanical device is obtained by joining a glass plate 81 having a through hole 81a and a semiconductor plate 82 having an electrode pad 84 formed on the joining surface of the glass plate 81. A structure (not shown) such as a movable electrode of the acceleration sensor is formed. An electrode film 85 is formed on the inner surface of the through hole 81 a and the upper surface of the glass plate 81 so as to be electrically connected to the electrode pad 84. The electrode pad 84 is formed on the glass plate 81 and connected to a fixed electrode 86 that generates an electric signal in accordance with the displacement of the structure, and is insulated from the semiconductor plate 82 by providing an insulating film 87. . An electrical signal generated at the fixed electrode 86 is taken out from the electrode film 85 through the electrode pad 84.

この半導体微小電子機械デバイスの貫通孔81aは、図6(a)に示されるように、ガラス板81の上面にフォトレジスト等のパターン815を形成し、図の矢印方向からブラスト加工することによって形成される。貫通孔81aを形成した後、パターン815が取り除かれ、図6(b)に示されるように、固定電極86が形成されたガラス板と電極パッド84及び絶縁膜87が形成された半導体板とが接合される。そして、貫通孔81aの内面とガラス板81の上面に電極膜85が形成され、固定電極86から電気信号を取り出す経路が構成される。
特開平7−128364号公報
As shown in FIG. 6A, the through hole 81a of this semiconductor microelectromechanical device is formed by forming a pattern 815 such as a photoresist on the upper surface of the glass plate 81 and blasting from the arrow direction in the figure. Is done. After forming the through hole 81a, the pattern 815 is removed, and as shown in FIG. 6B, a glass plate on which the fixed electrode 86 is formed and a semiconductor plate on which the electrode pad 84 and the insulating film 87 are formed. Be joined. An electrode film 85 is formed on the inner surface of the through hole 81 a and the upper surface of the glass plate 81, and a path for taking out an electric signal from the fixed electrode 86 is configured.
JP-A-7-128364

しかしながら、上述のような加速度センサ等の半導体微小電子機械デバイスの信号取り出し構造において、ガラス板81上にブラスト加工によって貫通孔81aを形成するとき、ガラス板81を貫通するときに貫通孔の端縁部でチッピング等が発生するという問題がある。例えば図6(b)に示されるように、チッピングの発生により貫通孔81a内面に欠け部81bが生じると、図6(c)に示されるように、ガラス板81の上面からの電極膜85の成膜時に、電極膜85が欠け部81bにうまく成膜されずに途切れてしまい、電極パッド84と電極膜85が絶縁状態となって固定電極86と電極膜85との導通が確保できず、電気信号を取り出すことができないという不具合が発生する恐れがある。   However, in the signal extraction structure of the semiconductor microelectromechanical device such as the acceleration sensor as described above, when the through hole 81a is formed on the glass plate 81 by blasting, the edge of the through hole when penetrating the glass plate 81 There is a problem that chipping or the like occurs in the part. For example, as shown in FIG. 6B, when chipping 81b occurs in the inner surface of the through hole 81a due to the occurrence of chipping, the electrode film 85 from the upper surface of the glass plate 81 is shown in FIG. At the time of film formation, the electrode film 85 is not formed well in the chipped portion 81b and is interrupted, the electrode pad 84 and the electrode film 85 are in an insulating state, and the conduction between the fixed electrode 86 and the electrode film 85 cannot be secured, There is a possibility that a problem that the electric signal cannot be taken out may occur.

チッピングが発生しても、上述の特許文献1に記載のように、電極膜85をガラス板81の両面に面するように形成すれば上記不具合が発生する恐れは少なくなるが、製造工程が複雑となってコストが高くなるという問題があり、また、ガラス板81と半導体板82とを接合した後に電極膜85を形成する場合には適用できない。   Even if chipping occurs, if the electrode film 85 is formed so as to face both surfaces of the glass plate 81 as described in the above-mentioned Patent Document 1, the risk of occurrence of the above problems is reduced, but the manufacturing process is complicated. Therefore, there is a problem that the cost is increased, and the method is not applicable when the electrode film 85 is formed after the glass plate 81 and the semiconductor plate 82 are joined.

本発明は、上記問題点を鑑みてなされたものであり、電極膜を貫通孔内面に生じる欠け部を避けて成膜することで、容易且つ確実にこの電極膜と電極パッドとの導通を確保して導電信頼性が高い半導体微小電子機械デバイスの信号取り出し構造を提供することを目的とする。   The present invention has been made in view of the above problems, and by ensuring that the electrode film is formed while avoiding the chipped portion formed on the inner surface of the through-hole, the conduction between the electrode film and the electrode pad is ensured easily and reliably. Another object of the present invention is to provide a signal extraction structure for a semiconductor microelectromechanical device having high conductivity reliability.

上記目的を達成するため請求項1の発明は、主表面から主表面と反対側の面まで貫通孔を形成した第1の基板と、この第1の基板と接合される面に電気信号を取り出すための電極パッドを形成した第2の基板と接合され、前記貫通孔内面に前記電極パッドと電気的に接続される電極膜形成された構造の半導体微小電子機械デバイスの信号取り出し構造であって、前記電極パッドは、その前記主表面側の面の面積がその反対側の面の面積よりも小さく、且つ、前記電極パッドの前記主表面側の部分が前記貫通孔の内部に嵌め入れられており、前記電極膜は、前記第1の基板の前記主表面側に成膜され、前記貫通孔の内面及び前記電極パッドの露出部分を覆うように形成されていることを特徴とするIn order to achieve the above object, according to the first aspect of the present invention, an electrical signal is taken out from a first substrate in which a through hole is formed from a main surface to a surface opposite to the main surface, and a surface bonded to the first substrate. A signal extraction structure of a semiconductor microelectromechanical device having a structure in which an electrode film electrically connected to the electrode pad is formed on the inner surface of the through hole is bonded to a second substrate on which an electrode pad is formed. The electrode pad has an area of the main surface side smaller than an area of the opposite surface, and a portion of the electrode pad on the main surface side is fitted into the through hole. The electrode film is formed on the main surface side of the first substrate and is formed so as to cover an inner surface of the through hole and an exposed portion of the electrode pad .

請求項2の発明は、主表面から主表面と反対側の面まで貫通孔を形成した第1の基板と、この第1の基板と接合される面に電気信号を取り出すための電極パッドを形成した第2の基板とが接合され、前記貫通孔内面に前記電極パッドと電気的に接続される電極膜が形成された構造の半導体微小電子機械デバイスの信号取り出し構造であって、前記電極パッド上に電気的に接続されるように、前記貫通孔内面の前記第2の基板接合面側端縁部の寸法よりも大きい導電性突起物が形成され、前記電極膜は、前記第1の基板の前記主表面側に成膜され、前記導電性突起物及び前記貫通孔の内面の露出部分を覆うように形成されていることを特徴とするAccording to a second aspect of the present invention, a first substrate in which a through hole is formed from a main surface to a surface opposite to the main surface, and an electrode pad for taking out an electric signal are formed on a surface bonded to the first substrate. A signal extraction structure of a semiconductor microelectromechanical device having a structure in which an electrode film electrically connected to the electrode pad is formed on the inner surface of the through-hole, Conductive protrusions larger than the dimension of the second substrate bonding surface side edge of the inner surface of the through hole are formed, and the electrode film is formed on the first substrate. The film is formed on the main surface side, and is formed so as to cover the exposed portions of the conductive protrusion and the inner surface of the through hole .

請求項3の発明は、請求項1に記載の半導体微小電子機械デバイスの信号取り出し構造において、前記第1の基板と前記第2の基板とは陽極接合によって接合され、前記電極パッドは、陽極接合時の熱により軟化又は溶融する低融点材料からなることを特徴とするAccording to a third aspect of the present invention, in the signal extraction structure of the semiconductor microelectromechanical device according to the first aspect, the first substrate and the second substrate are bonded by anodic bonding, and the electrode pad is anodic bonded. It consists of a low melting point material that softens or melts with the heat of time .

請求項4の発明は、請求項2に記載の半導体微小電子機械デバイスの信号取り出し構造において、前記第1の基板と前記第2の基板とは陽極接合によって接合され、前記電極パッド及び前記導電性突起物は、陽極接合時の熱により軟化又は溶融する低融点材料からなることを特徴とするAccording to a fourth aspect of the present invention, in the signal extraction structure of the semiconductor microelectromechanical device according to the second aspect, the first substrate and the second substrate are bonded by anodic bonding, and the electrode pad and the conductive material are connected. The protrusion is made of a low-melting-point material that is softened or melted by heat during anodic bonding .

請求項の発明によれば、電極パッドの主表面側の部分が、貫通孔内部に嵌め入れることができるように形成されているので、電極パッドの主表面側の部分の位置が、貫通孔の第2の基板接合面側端縁部よりも主表面側に位置する。これにより、貫通孔内面の第2の基板接合面側端縁部に欠け部があるときにも、この欠け部を避けて、容易、且つ確実に電極膜と電極パッドとの導通を確保して電極膜を成膜することが可能となり、信号取り出し構造の導電信頼性が向上する。 According to the first aspect of the present invention, since the portion on the main surface side of the electrode pad is formed so as to be fitted into the through hole, the position of the portion on the main surface side of the electrode pad is determined to be the through hole. It is located on the main surface side of the second substrate bonding surface side edge. As a result, even when there is a chipped portion on the edge of the second substrate bonding surface side of the inner surface of the through hole, avoid this chipped portion and ensure the conduction between the electrode film and the electrode pad easily and reliably. An electrode film can be formed, and the conductive reliability of the signal extraction structure is improved.

請求項の発明によれば、電極パッド上に貫通孔の第2の基板接合面側端縁部よりも大きい導電性突起物を形成されているので、導電性突起物の主表面側の部分の位置が、貫通孔の第2の基板接合面側端縁部よりも主表面側に位置し、上述と同様に、信号取り出し構造の導電信頼性が向上する。 According to the invention of claim 2 , since the conductive protrusion larger than the edge of the second substrate bonding surface side edge of the through hole is formed on the electrode pad, the portion on the main surface side of the conductive protrusion Is positioned on the main surface side with respect to the second substrate bonding surface side edge portion of the through hole, and the conductive reliability of the signal extraction structure is improved as described above.

請求項3又は4の発明によれば、電極パッド及び/又は導電性突起物が、第1の基板と第2の基板との陽極接合時の熱により軟化するので、陽極接合時の第1の基板と第2の基板との間に発生する静電気力によって、電極パッド及び/又は導電性突起物の第1の基板の主表面側の部分が第1の基板の主表面側に向けて近づくように貫通孔内部で変形する。これにより、電極パッド及び/又は導電性突起物の第1の基板の主表面側の部分が、貫通孔内面の第2の基板接合面側端縁部よりも主表面側に位置し、上述と同様に、信号取り出し構造の導電信頼性が向上する。 According to the invention of claim 3 or 4 , since the electrode pad and / or the conductive protrusion is softened by heat at the time of anodic bonding between the first substrate and the second substrate, the first at the time of anodic bonding. Due to the electrostatic force generated between the substrate and the second substrate, the portion of the electrode pad and / or the conductive protrusion on the main surface side of the first substrate approaches the main surface side of the first substrate. It deforms inside the through hole. Thereby, the portion of the electrode pad and / or the conductive protrusion on the main surface side of the first substrate is located on the main surface side with respect to the second substrate bonding surface side edge portion of the inner surface of the through hole, and Similarly, the conductive reliability of the signal extraction structure is improved.

まず、本発明の前提となる半導体微小電子機械デバイスの一例を図1を参照しつつ説明する。この半導体微小電子機械デバイスは、第1の基板1、半導体からなる第2の基板2、第3の基板3、第2の基板2の上面に設けられる電極パッド4、第1の基板1の上面に形成される電極膜5、第1の基板1の下面に形成される固定電極6、及び絶縁膜7を備えている。この半導体微小電子機械デバイスは、マイクロマシニング技術を用いて可動の構造体が形成された第2の基板2の上面、下面に、第1の基板1、第3の基板3をそれぞれ接合した3層構造である。この半導体微小電子機械デバイスは、いわゆる静電容量型の1軸の加速度センサであり、加速度が加わると第2の基板2の構造体が動き、この構造体を可動電極として、固定電極6と第2の基板2との間の静電容量が変化する。この加速度センサからは、この静電容量の変化が電気信号の変化として取り出される。   First, an example of a semiconductor microelectromechanical device which is a premise of the present invention will be described with reference to FIG. The semiconductor microelectromechanical device includes a first substrate 1, a second substrate 2 made of a semiconductor, a third substrate 3, an electrode pad 4 provided on the upper surface of the second substrate 2, and an upper surface of the first substrate 1. An electrode film 5 formed on the first substrate 1, a fixed electrode 6 formed on the lower surface of the first substrate 1, and an insulating film 7. This semiconductor microelectromechanical device has three layers in which a first substrate 1 and a third substrate 3 are respectively bonded to an upper surface and a lower surface of a second substrate 2 on which a movable structure is formed using a micromachining technique. Structure. This semiconductor microelectromechanical device is a so-called capacitance-type uniaxial acceleration sensor. When acceleration is applied, the structure of the second substrate 2 moves, and this structure is used as a movable electrode, and the fixed electrode 6 and the first electrode. The capacitance between the two substrates 2 changes. From this acceleration sensor, this change in capacitance is taken out as a change in electrical signal.

第2の基板2には、上記の可動の構造体として、錘部2aとそれを支える梁部2bとが形成されている。梁部2bは、錘部2aの周囲に設けられており、撓み易い形状に形成されている。錘部2aの上下には第1の基板1との間の空間2c、第3の基板3との間の空間2dが設けられており、錘部2aが図1の矢示方向に可動となるように構成されている。   On the second substrate 2, a weight portion 2a and a beam portion 2b that supports the weight portion 2a are formed as the movable structure. The beam portion 2b is provided around the weight portion 2a and is formed in a shape that is easily bent. A space 2c between the first substrate 1 and a space 2d with the third substrate 3 are provided above and below the weight portion 2a, and the weight portion 2a is movable in the direction of the arrow in FIG. It is configured as follows.

第1の基板1、第3の基板3はガラス等の絶縁体で構成されている。第1の基板1には上面から下面に向けてブラスト加工によって形成され、上端縁部の寸法が下端縁部の寸法に比べて大きい貫通孔1aが設けられている。電極パッド4は、後述のようにこの加速度センサの発生する電気信号を取り出すためのものであって、この貫通孔1aと対応する位置の第2の基板2の上面に設けられており、第1の基板1の上面と貫通孔1aの内面に形成される、例えばAl−Si形の合金からなる電極膜5と電気的に接続される。これにより、電極パッド4から貫通孔1aと電極膜5を介して第1の基板1の上面まで導通する信号取り出し構造が構成されている。この電極膜5と外部の回路等とをワイヤボンディング等により接続することで、電気信号が外部回路に伝送可能となる。   The first substrate 1 and the third substrate 3 are made of an insulator such as glass. The first substrate 1 is formed by blasting from the upper surface to the lower surface, and is provided with a through hole 1a in which the size of the upper edge is larger than the size of the lower edge. The electrode pad 4 is for taking out an electric signal generated by the acceleration sensor, as will be described later, and is provided on the upper surface of the second substrate 2 at a position corresponding to the through hole 1a. The electrode film 5 made of, for example, an Al—Si type alloy is electrically connected to the upper surface of the substrate 1 and the inner surface of the through hole 1a. Thereby, a signal extraction structure is formed which conducts from the electrode pad 4 to the upper surface of the first substrate 1 through the through hole 1a and the electrode film 5. By connecting the electrode film 5 and an external circuit or the like by wire bonding or the like, an electric signal can be transmitted to the external circuit.

この貫通孔1a、電極パッド4、及び電極膜5により構成される信号取り出し構造は、第1の基板1の下面の、錘部2aと対向する位置に設けられる固定電極6から電気信号を取り出す固定電極6側のものと、第2の基板2の可動電極となる錘部2aから電気信号を取り出す可動電極側のものとがある。図1は、上記のうち固定電極6側の信号取り出し構造を示すものであって、電極パッド4は固定基板6と電気的に接続されており、また、シリカ等の絶縁膜7によって第2の基板2とは絶縁されている。一方、可動電極側の信号取り出し構造については図示していないが、電極パッド4が固定電極6とは接続されておらず、第2の基板2の上面に直接電気的に接続するように形成されている他は上述の固定電極6側の信号取り出し構造と同様の構成とされている。   The signal extraction structure constituted by the through-hole 1a, the electrode pad 4, and the electrode film 5 is a fixed that extracts an electric signal from the fixed electrode 6 provided on the lower surface of the first substrate 1 at a position facing the weight portion 2a. There are the one on the electrode 6 side and the one on the movable electrode side that takes out an electric signal from the weight portion 2a that becomes the movable electrode of the second substrate 2. FIG. 1 shows a signal extraction structure on the fixed electrode 6 side, in which the electrode pad 4 is electrically connected to the fixed substrate 6, and the second is formed by an insulating film 7 such as silica. It is insulated from the substrate 2. On the other hand, the signal extraction structure on the movable electrode side is not shown, but the electrode pad 4 is not connected to the fixed electrode 6 and is formed so as to be directly electrically connected to the upper surface of the second substrate 2. Otherwise, the configuration is the same as the signal extraction structure on the fixed electrode 6 side described above.

この加速度センサは、貫通孔1aが設けられた第1の基板1に固定電極6が形成され、マイクロマシニング技術を用いて錘部2a及び梁部2bが形成された第2の基板2に電極パッド及び絶縁膜7が形成された状態で、第1の基板1と第2の基板2とが例えば陽極接合により接合され、その後、第1の基板1の上面に向けてスパッタリング又は蒸着等の成膜法により電極膜5が形成されて製造される。電極膜5は、電極パッド4の第1の基板1の上側に露出する部分にも形成され、電極パッド4と電気的に接続される。第2の基板2及び第3の基板3も同様にして例えば陽極接合により接合される。   In this acceleration sensor, an electrode pad is formed on a second substrate 2 on which a fixed electrode 6 is formed on a first substrate 1 provided with a through hole 1a, and a weight portion 2a and a beam portion 2b are formed using a micromachining technique. In the state where the insulating film 7 is formed, the first substrate 1 and the second substrate 2 are bonded by, for example, anodic bonding, and then film formation such as sputtering or vapor deposition is performed on the upper surface of the first substrate 1. The electrode film 5 is formed and manufactured by the method. The electrode film 5 is also formed on a portion of the electrode pad 4 exposed above the first substrate 1 and is electrically connected to the electrode pad 4. Similarly, the second substrate 2 and the third substrate 3 are bonded by, for example, anodic bonding.

この加速度センサに加速度が加わると、可動電極である錘部2aが慣性力により図の矢示方向に変位し、錘部2aと固定電極6との距離が変化する。これにより、錘部2aと固定電極6との間の静電容量が変化する。錘部2aは可動電極側の信号取り出し構造と接続されており、固定電極6は固定電極6側の信号取り出し構造と接続されており、静電容量の変化は、錘部2a及び固定電極6それぞれと接続された電極膜5同士の間の電位差の変化として外部回路等により検出可能となる。つまり、加速度センサの発生した電気信号がこの信号取り出し構造によって外部に取り出される。   When acceleration is applied to this acceleration sensor, the weight 2a, which is a movable electrode, is displaced in the direction indicated by the arrow due to inertial force, and the distance between the weight 2a and the fixed electrode 6 changes. Thereby, the electrostatic capacitance between the weight part 2a and the fixed electrode 6 changes. The weight portion 2a is connected to the signal extraction structure on the movable electrode side, the fixed electrode 6 is connected to the signal extraction structure on the fixed electrode 6 side, and the change in capacitance is caused by the weight portion 2a and the fixed electrode 6 respectively. As a change in potential difference between the electrode films 5 connected to each other, it can be detected by an external circuit or the like. That is, the electrical signal generated by the acceleration sensor is extracted to the outside by this signal extraction structure.

次に、本発明の第1の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造について、図2(a)(b)(c)を参照しつつ説明する。以下、半導体微小電子機械デバイスの信号取り出し構造の説明は、上述の可動電極側の信号取り出し構造についての図を参照しつつ行うが、この信号取り出し構造は可動電極側に限らず、固定電極6側についても適用されるものである。本実施形態においては、貫通孔1a内面の下端縁部である第2の基板2との接合面側端縁部に封止材10が形成されており、電極膜5がこの封止材10及び貫通孔1aの内面の露出部分を覆うように形成されている。   Next, the signal extraction structure of the semiconductor microelectromechanical device according to the first embodiment of the present invention will be described with reference to FIGS. 2 (a), 2 (b), and 2 (c). Hereinafter, the signal extraction structure of the semiconductor microelectromechanical device will be described with reference to the drawings of the above-described signal extraction structure on the movable electrode side. However, this signal extraction structure is not limited to the movable electrode side, but is on the fixed electrode 6 side. This also applies to In the present embodiment, the sealing material 10 is formed on the joint surface side edge with the second substrate 2 which is the lower edge of the inner surface of the through hole 1a, and the electrode film 5 includes the sealing material 10 and It is formed so as to cover the exposed portion of the inner surface of the through hole 1a.

この封止材10は、パターニング可能な材料からなっており、図2(a)に示されるように第1の基板1と第2の基板2とが接合された後に形成されるものである。第1の基板1と第2の基板2とが接合された後、封止材10は、先ず、貫通孔1a内面と電極パッド4を含む第1の基板1の上側の露出面全体に成膜又は塗布される。そして、貫通孔1a内面の下端縁部に封止材10を残すようにパターニングが行われることで封止材10が形成される。ここで、図2(b)に示されるように、貫通孔1a内面の下端縁部(請求項でいう第2の基板接合面側端縁部)にはブラスト加工の際に発生するチッピング等により形成された欠け部1bが存在するが、封止材10はこの欠け部1bを覆うように形成される。そして、封止材10が形成された後、図2(c)に示されるように、電極膜5が第1の基板1の上側の露出面全体に成膜されて封止材10及び貫通孔1aの内面の露出部分を覆うように形成される。   The sealing material 10 is made of a material that can be patterned, and is formed after the first substrate 1 and the second substrate 2 are bonded as shown in FIG. After the first substrate 1 and the second substrate 2 are bonded, the sealing material 10 is first formed on the entire exposed surface on the upper side of the first substrate 1 including the inner surface of the through hole 1 a and the electrode pad 4. Or applied. And the sealing material 10 is formed by patterning so that the sealing material 10 may be left in the lower end edge part of the through-hole 1a inner surface. Here, as shown in FIG. 2 (b), the lower end edge (the second substrate bonding surface side edge in the claims) of the inner surface of the through hole 1a is caused by chipping or the like generated during blasting. Although the formed chipped portion 1b exists, the sealing material 10 is formed so as to cover the chipped portion 1b. Then, after the sealing material 10 is formed, as shown in FIG. 2C, the electrode film 5 is formed on the entire exposed surface on the upper side of the first substrate 1, and the sealing material 10 and the through hole are formed. It is formed so as to cover the exposed portion of the inner surface of 1a.

このように封止材10を形成することで、貫通孔1a内面の下縁端部に欠け部1bがあるときにも、電極膜5を欠け部1bで途切れることなく成膜して容易且つ確実に電極膜5と電極パッド4との導通を確保することができ、この半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   By forming the sealing material 10 in this manner, the electrode film 5 can be easily and reliably formed without interruption at the chipped portion 1b even when the chipped portion 1b is present at the lower edge of the inner surface of the through hole 1a. In addition, electrical conduction between the electrode film 5 and the electrode pad 4 can be secured, and the conductive reliability of the signal extraction structure of this semiconductor microelectromechanical device can be improved.

ここで、本実施形態においては、例えば、スピンオングラス(SOG)を封止材10として用いることができる。スピンオングラスは、半導体の配線上に形成された層間絶縁膜の段差緩和や配線間の溝埋め込みに従来から使用されており、既存の製造プロセスとの親和性が高く、封止材10を形成するために製造プロセスを大きく変更する必要が少ない。そして、ガラス製の第1の基板1との密着性に優れており、また、その粘度を容易に調整することが可能である。このため、貫通孔1a内面の下端縁部に欠け部1bがあるときにも、容易且つ確実にこの欠け部1bを覆うことができる。これにより、電極膜5を途切れることなく成膜させることが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   Here, in the present embodiment, for example, spin-on glass (SOG) can be used as the sealing material 10. Spin-on-glass has been conventionally used for step reduction of an interlayer insulating film formed on a semiconductor wiring and filling a groove between wirings, and has high affinity with an existing manufacturing process, and forms a sealing material 10. Therefore, there is little need to change the manufacturing process greatly. And it is excellent in adhesiveness with the glass 1st board | substrate 1, and it is possible to adjust the viscosity easily. For this reason, even when there is a chipped portion 1b at the lower edge of the inner surface of the through hole 1a, the chipped portion 1b can be covered easily and reliably. As a result, the electrode film 5 can be formed without interruption, and the conductive reliability of the signal extraction structure of the semiconductor microelectromechanical device can be improved.

また、本実施形態において、例えば、感光性フォトレジストを封止材10として用いてもよい。このとき封止材10を形成する工程は、通常のフォトリゾグラフィ技術と同様に、感光性フォトレジストを成膜する工程と、パターニング工程と、不要部の除去工程のみとなる。このように封止材10を形成することが可能となるので、電極膜5が途切れることがなく導電信頼性が高い半導体微小電子機械デバイスを、単純な製造プロセスで安価に製造することが可能となる。   In the present embodiment, for example, a photosensitive photoresist may be used as the sealing material 10. At this time, the process for forming the sealing material 10 includes only a process for forming a photosensitive photoresist, a patterning process, and a process for removing unnecessary portions, as in a normal photolithographic technique. Since it becomes possible to form the sealing material 10 in this way, it is possible to manufacture a semiconductor microelectromechanical device having high conductivity reliability without interruption of the electrode film 5 at a low cost by a simple manufacturing process. Become.

図3(a)(b)(c)は、本発明の第2の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造を示す。この信号取り出し構造は、上述の電極パッド4の換わりに、例えば先端を切り落とした円錐形状のように、上面(主表面側の面)14aの面積が下面(その反対側の面)14bの面積よりも小さく、且つ、上部(主表面側の部分)が貫通孔1aの内部に嵌め入れ可能となるように形成された電極パッド14を設けたものである。   FIGS. 3A, 3B, and 3C show a signal extraction structure of a semiconductor microelectromechanical device according to the second embodiment of the present invention. In this signal extraction structure, instead of the electrode pad 4 described above, the area of the upper surface (surface on the main surface side) 14a is larger than the area of the lower surface (surface on the opposite side) 14b, such as a conical shape with the tip cut off. The electrode pad 14 is provided so that the upper portion (the main surface side portion) can be fitted into the through hole 1a.

図4(a)(b)(c)(d)は、本実施形態において電極パッド14を第2の基板2上に形成する工程を示す。先ず、図4(a)に示されるように、電極パッド14の素材であり、例えば、Al‐Si系の合金である電極材料141が第2の基板2上に成膜され、この電極材料141の上面にレジストマスク145が成膜される。レジストマスク145は、図に示されるように、電極材料141上面の、電極パッド14を形成したい部分と、その部分の近傍を除いた全面に形成される。次に、その電極材料141の等方エッチングが行われ、図4(b)に示されるように、電極材料141が電極パッド14と不要部142とに分割される。このとき、電極材料141はレジストマスク145の設けられていない部位の上面からのみ全方向に等速にエッチングされるので、電極パッド14はその下面14bより上面14aの面積が小さい先端を切り落とした円錐形状となる。   4A, 4B, 4C, and 4D show a process of forming the electrode pad 14 on the second substrate 2 in the present embodiment. First, as shown in FIG. 4A, an electrode material 141, which is a material of the electrode pad 14, for example, an Al—Si alloy, is formed on the second substrate 2, and this electrode material 141 is formed. A resist mask 145 is formed on the upper surface of the film. As shown in the figure, the resist mask 145 is formed on the entire surface of the upper surface of the electrode material 141 excluding the part where the electrode pad 14 is to be formed and the vicinity of the part. Next, isotropic etching of the electrode material 141 is performed, and the electrode material 141 is divided into the electrode pad 14 and the unnecessary portion 142 as shown in FIG. At this time, since the electrode material 141 is etched at a constant speed in all directions only from the upper surface of the portion where the resist mask 145 is not provided, the electrode pad 14 has a conical shape with the tip of the upper surface 14a having a smaller area than the lower surface 14b. It becomes a shape.

その後、レジストマスク145が除去され、図4(c)に示されるように電極パッド14をマスク材146でマスクした状態で、電極材料141の全面エッチングが行われる。電極材料141の全面エッチングを行い、マスク材146を除去すると、図4(d)に示されるように、電極パッド14のみが第2の基板2上に残り、電極パッド14が形成される。   Thereafter, the resist mask 145 is removed, and the entire surface of the electrode material 141 is etched in a state where the electrode pad 14 is masked with the mask material 146 as shown in FIG. When the entire surface of the electrode material 141 is etched and the mask material 146 is removed, only the electrode pad 14 remains on the second substrate 2 and the electrode pad 14 is formed as shown in FIG.

本実施形態においては、上述のように第2の基板2上に電極パッド14が形成された状態で第1の基板1及び第2の基板2が接合される。このとき、電極パッド14の上部が貫通孔1aの内部に嵌め入れ可能となるような大きさとされているため、図3(b)に示されるように、電極パッドの上面14aが貫通孔1aの下端縁部よりも上方に位置する状態となる。そして、このように第1の基板1と第2の基板2とが接合された後、図3(c)に示されるように、電極膜5が第1の基板1の上側の露出面全体に成膜されて、貫通孔1a内面と電極パッド14の露出部分を覆うように形成される。ここで、上記第1の実施形態と同様に、貫通孔1aの下端縁部には欠け部1bが存在するが、電極パッド14の上面14aはこの欠け部1bよりも上方となるため、電極膜5は、この欠け部1bを避けて電極パッド14と電気的に接続される。   In the present embodiment, the first substrate 1 and the second substrate 2 are bonded together with the electrode pads 14 formed on the second substrate 2 as described above. At this time, since the upper portion of the electrode pad 14 is sized so that it can be fitted into the through hole 1a, the upper surface 14a of the electrode pad is formed on the through hole 1a as shown in FIG. It will be in the state located above a lower end edge part. And after the 1st board | substrate 1 and the 2nd board | substrate 2 were joined in this way, as FIG.3 (c) shows, the electrode film 5 is the whole exposed surface of the upper side of the 1st board | substrate 1. FIG. The film is formed so as to cover the inner surface of the through hole 1a and the exposed portion of the electrode pad 14. Here, as in the first embodiment, the chip 1b is present at the lower edge of the through hole 1a, but the upper surface 14a of the electrode pad 14 is above the chip 1b. 5 is electrically connected to the electrode pad 14 while avoiding the chipped portion 1b.

このように、電極パッド14の上面14aが貫通孔1aの下端縁部よりも上方に位置するように形成されているので、貫通孔1aの下端縁部に欠け部1bがあるときにも、この欠け部1bを避けて容易且つ確実に電極膜5と電極パッド14との導通を確保して電極膜5を成膜することが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   Thus, since the upper surface 14a of the electrode pad 14 is formed so as to be positioned above the lower end edge of the through hole 1a, even when the chip 1b is present at the lower end edge of the through hole 1a, It is possible to form the electrode film 5 by easily and reliably securing the conduction between the electrode film 5 and the electrode pad 14 while avoiding the chipped portion 1b, and the conductive reliability of the signal extraction structure of the semiconductor microelectromechanical device can be improved. It becomes possible to improve.

ここで、本実施形態においては、第1の基板1と第2の基板2とを陽極接合によって接合し、電極パッド14を陽極接合時の熱により軟化するような低融点材料で形成してもよい。第1の基板1と第2の基板2との陽極接合時には、数百℃に昇温された後に第1の基板1と第2の基板2の間に直流の高電圧が印加されて静電引力が発生し、第1の基板1と第2の基板2とが接合される。このときの熱で電極パッド14が軟化すると、第1の基板1と第2の基板2との間の静電引力により、電極パッド14は、その上部が第1の基板1の主表面側に近づくように貫通孔1aの内部で変形する。この変形により、電極パッド14は、その上部が貫通孔1aの下縁端部から、より上方に離れた形状となる。これにより、貫通孔1a内面の下端縁部に欠け部1bがあるときにも、この欠け部1bを避けて容易且つ確実に電極膜5と電極パッド14との導通を確保して電極膜5を成膜することが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   Here, in the present embodiment, the first substrate 1 and the second substrate 2 may be bonded by anodic bonding, and the electrode pad 14 may be formed of a low melting point material that is softened by heat during anodic bonding. Good. At the time of anodic bonding between the first substrate 1 and the second substrate 2, a high DC voltage is applied between the first substrate 1 and the second substrate 2 after the temperature is raised to several hundred degrees C. An attractive force is generated, and the first substrate 1 and the second substrate 2 are joined. When the electrode pad 14 is softened by the heat at this time, the upper portion of the electrode pad 14 is brought to the main surface side of the first substrate 1 due to electrostatic attraction between the first substrate 1 and the second substrate 2. It deforms inside the through hole 1a so as to approach. Due to this deformation, the electrode pad 14 has a shape in which the upper part is further away from the lower edge of the through hole 1a. As a result, even when there is a chipped portion 1b at the lower end edge of the inner surface of the through hole 1a, the electrode film 5 is secured by easily and reliably ensuring the conduction between the electrode film 5 and the electrode pad 14 by avoiding the chipped portion 1b. It is possible to form a film, and it is possible to improve the conductive reliability of the signal extraction structure of the semiconductor microelectromechanical device.

図5(a)(b)(c)は、本発明の第3の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造を示す。本実施形態においては、電極パッド4上に電気的に接続されるように導電性突起物20を形成しており、電極膜5が、この導電性突起物20及び貫通孔1a内面の露出部分を覆うように形成される。この半導体微小電子機械デバイスは、第1の基板1と第2の基板2とが陽極接合により接合されるものである。   FIGS. 5A, 5B, and 5C show a signal extraction structure of a semiconductor microelectromechanical device according to the third embodiment of the present invention. In the present embodiment, the conductive protrusion 20 is formed so as to be electrically connected to the electrode pad 4, and the electrode film 5 covers the exposed portions of the conductive protrusion 20 and the inner surface of the through hole 1a. It is formed to cover. In this semiconductor microelectromechanical device, a first substrate 1 and a second substrate 2 are bonded by anodic bonding.

この導電性突起物20は、その大きさが貫通孔1aの下縁端部の寸法よりも大きくなるように形成されており、また、陽極接合時の熱により軟化する低融点材料で形成されている。図5(a)(b)に示されるように、第1の基板1と第2の基板2との接合時に、上述の第2の実施形態の電極パッド14と同様に、陽極接合時の熱で導電性突起物20が軟化すると、第1の基板1と第2の基板2との間の静電引力により、この導電性突起物20は、その上部が第1の基板1の主表面側に近づくように、電極パッド4と導通を保ちながら貫通孔1aの内部で変形する。この変形により、導電性突起物20は、その上部が貫通孔1aの下縁端部から上方に離れた形状となる。そして、図5(c)に示されるように、この状態で電極膜5が導電性突起物20と貫通孔1aの内面の露出部分に形成される。これにより、貫通孔1a内面の下端縁部に欠け部1bがあるときにも、この欠け部1bを避けて容易且つ確実に電極膜5と電極パッド4との導通を確保して電極膜5を成膜することが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   The conductive protrusion 20 is formed so that the size thereof is larger than the size of the lower edge portion of the through hole 1a, and is formed of a low melting point material that is softened by heat during anodic bonding. Yes. As shown in FIGS. 5A and 5B, when the first substrate 1 and the second substrate 2 are bonded, the heat at the time of anodic bonding is the same as that of the electrode pad 14 of the second embodiment described above. When the conductive protrusion 20 is softened, the upper portion of the conductive protrusion 20 is on the main surface side of the first substrate 1 due to electrostatic attraction between the first substrate 1 and the second substrate 2. So as to approach the electrode pad 4 while being electrically connected to the electrode pad 4 and deformed inside the through hole 1a. As a result of this deformation, the conductive protrusion 20 has a shape in which the upper part is separated upward from the lower edge end of the through hole 1a. Then, as shown in FIG. 5C, in this state, the electrode film 5 is formed on the exposed portions of the conductive protrusions 20 and the inner surfaces of the through holes 1a. As a result, even when there is a chipped portion 1b at the lower edge of the inner surface of the through hole 1a, the electrode film 5 can be easily and reliably secured to avoid the chipped portion 1b and the electrode film 5 can be secured. It is possible to form a film, and it is possible to improve the conductive reliability of the signal extraction structure of the semiconductor microelectromechanical device.

このとき、導電性突起物20と同様に、電極パッド4も低融点材料で形成し、第1の基板1と第2の基板2との接合時に、ともに軟化して貫通孔1a内部で変形するようにしてもよい。上述と同様に、この欠け部1bを避けて容易且つ確実に電極膜5と電極パッド4との導通を確保して電極膜5を成膜することが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   At this time, like the conductive protrusions 20, the electrode pads 4 are also formed of a low melting point material, and are softened and deformed inside the through hole 1 a when the first substrate 1 and the second substrate 2 are joined. You may do it. Similarly to the above, it is possible to form the electrode film 5 by easily and reliably ensuring the conduction between the electrode film 5 and the electrode pad 4 while avoiding the chipped portion 1b, and the signal extraction of the semiconductor microelectromechanical device can be performed. It becomes possible to improve the conductive reliability of the structure.

ここで、本実施形態においては、導電性突起物20を上述のような低融点材料ではない材料で形成してもよい。このとき、導電性突起物20の大きさが貫通孔1aの下縁端部よりも大きいので、導電性突起物20は第1の基板1と第2の基板2とが接合された後に電極パッド4上に形成される。このとき、導電性突起物20の上部は貫通孔1a内面の下縁端部よりも上方に位置しており、この状態で電極膜5が導電性突起物20と貫通孔1aの内面の露出部分に形成される。これにより、上述と同様に、貫通孔1a内面の下端縁部に欠け部1bがあるときにもこの欠け部1bを避けて、容易、且つ確実に電極膜5と電極パッド4との導通を確保して電極膜5を成膜することが可能となり、半導体微小電子機械デバイスの信号取り出し構造の導電信頼性を向上させることが可能となる。   Here, in the present embodiment, the conductive protrusion 20 may be formed of a material that is not a low melting point material as described above. At this time, since the size of the conductive protrusion 20 is larger than that of the lower edge of the through hole 1a, the conductive protrusion 20 is formed on the electrode pad after the first substrate 1 and the second substrate 2 are joined. 4 is formed. At this time, the upper part of the conductive protrusion 20 is located above the lower edge of the inner surface of the through hole 1a, and in this state, the electrode film 5 is exposed on the inner surface of the conductive protrusion 20 and the through hole 1a. Formed. Thus, similarly to the above, even when there is a chipped portion 1b at the lower end edge portion of the inner surface of the through hole 1a, the chipped portion 1b is avoided and the conduction between the electrode film 5 and the electrode pad 4 is ensured easily and reliably. Thus, the electrode film 5 can be formed, and the conductive reliability of the signal extraction structure of the semiconductor microelectromechanical device can be improved.

なお、本発明は上記各実施形態の構成に限定するものではなく、発明の範囲を変更しない範囲で適宜に種々の変形が可能である。例えば、本発明における半導体微小電子機械デバイスは、上述の1軸の加速度センサに限らず、例えば、2軸又は3軸の加速度センサであったり、また、第2の基板2に構造体として薄膜が形成された圧力センサであってもよい。いずれの半導体微小電子機械デバイスにおいても、その電気信号の取り出し構造を上述のように構成することにより、導通の信頼性を向上させることが可能である。   In addition, this invention is not limited to the structure of said each embodiment, A various deformation | transformation is suitably possible in the range which does not change the range of invention. For example, the semiconductor microelectromechanical device according to the present invention is not limited to the above-described uniaxial acceleration sensor, but may be, for example, a biaxial or triaxial acceleration sensor, or a thin film as a structure on the second substrate 2. It may be a formed pressure sensor. In any semiconductor microelectromechanical device, it is possible to improve the reliability of conduction by configuring the electrical signal extraction structure as described above.

本発明の前提となる半導体微小電子機械デバイスの断面図。1 is a cross-sectional view of a semiconductor microelectromechanical device as a premise of the present invention. (a)は本発明の第1の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造の第1の基板1と第2の基板2の接合前を示す断面図、(b)はそれらを接合して封止材10を形成したときの断面図、(c)は電極膜5を成膜したときの断面図。(A) is sectional drawing which shows before joining the 1st board | substrate 1 and the 2nd board | substrate 2 of the signal extraction structure of the semiconductor microelectromechanical device which concerns on the 1st Embodiment of this invention, (b) is joining them. The sectional view when the sealing material 10 is formed, and (c) is the sectional view when the electrode film 5 is formed. (a)は本発明の第2の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造の第1の基板1と第2の基板2の接合前を示す断面図、(b)はそれらを接合したときの断面図、(c)は電極膜5を成膜したときの断面図。(A) is sectional drawing which shows before joining of the 1st board | substrate 1 and the 2nd board | substrate 2 of the signal extraction structure of the semiconductor micro electro mechanical device which concerns on the 2nd Embodiment of this invention, (b) is bonding them. FIG. 6C is a cross-sectional view when the electrode film 5 is formed. (a)は同上デバイスの第2の基板2に電極材料141を成膜したときの断面図、(b)はそれを等方エッチングしたときの断面図、(c)は(b)のレジストマスク145を除去したときの断面図、(d)は(c)の不要部142を除去したときの断面図。(A) is a cross-sectional view when the electrode material 141 is formed on the second substrate 2 of the same device, (b) is a cross-sectional view when isotropically etched, (c) is a resist mask of (b) Sectional drawing when 145 is removed, (d) is a sectional view when the unnecessary part 142 of (c) is removed. (a)は本発明の第3の実施形態に係る半導体微小電子機械デバイスの信号取り出し構造の第1の基板1と第2の基板2の接合前を示す断面図、(b)はそれらを接合したときの断面図、(c)は電極膜5を成膜したときの断面図。(A) is sectional drawing which shows before joining the 1st board | substrate 1 and the 2nd board | substrate 2 of the signal extraction structure of the semiconductor microelectromechanical device concerning the 3rd Embodiment of this invention, (b) is joining them. FIG. 6C is a cross-sectional view when the electrode film 5 is formed. (a)は従来の半導体微小電子機械デバイスの第1の基板81のブラスト加工を説明する断面図、(b)は同デバイスの信号取り出し構造の第1の基板1と第2の基板2の接合前を示す断面図、(c)はそれらを接合して電極膜5を形成したときの断面図。(A) is sectional drawing explaining the blasting of the 1st board | substrate 81 of the conventional semiconductor microelectromechanical device, (b) is joining of the 1st board | substrate 1 and the 2nd board | substrate 2 of the signal extraction structure of the device. Sectional drawing which shows the front, (c) is sectional drawing when joining them and forming the electrode film 5. FIG.

符号の説明Explanation of symbols

1 第1の基板
1a 貫通孔
1b 欠け部(第2の基板接合面側端縁部)
2 第2の基板
4,14 電極パッド
5 電極膜
10 封止材
14a 上面(主表面側の面)
14b 下面(その反対側の面)
20 導電性突起物
DESCRIPTION OF SYMBOLS 1 1st board | substrate 1a Through-hole 1b Chipping part (2nd board | substrate joining surface side edge part)
2 Second substrate 4, 14 Electrode pad 5 Electrode film 10 Sealing material 14 a Upper surface (surface on the main surface side)
14b Lower surface (opposite surface)
20 Conductive protrusion

Claims (4)

主表面から主表面と反対側の面まで貫通孔を形成した第1の基板と、この第1の基板と接合される面に電気信号を取り出すための電極パッドを形成した第2の基板と接合され、前記貫通孔内面に前記電極パッドと電気的に接続される電極膜形成された構造の半導体微小電子機械デバイスの信号取り出し構造であって、
前記電極パッドは、その前記主表面側の面の面積がその反対側の面の面積よりも小さく、且つ、前記電極パッドの前記主表面側の部分が前記貫通孔の内部に嵌め入れられており、
前記電極膜は、前記第1の基板の前記主表面側に成膜され、前記貫通孔の内面及び前記電極パッドの露出部分を覆うように形成されていることを特徴とする半導体微小電子機械デバイスの信号取り出し構造。
A first substrate having a through hole is formed from the major surface and the main surface to the opposite surface, a second substrate formed with an electrode pad for taking out an electric signal to the first substrate and the surface to be bonded is are joined, a signal extraction structure of a semiconductor microelectromechanical device of said electrode pad and electrically connected to the electrode film in the through-hole inner surface formed structure,
The electrode pad is smaller the area of the surface of the said main surface side than the area of the opposite surface, and, the main surface portion of the electrode pad has been fitted to the inside of the through hole ,
The semiconductor microelectromechanical device, wherein the electrode film is formed on the main surface side of the first substrate and covers an inner surface of the through hole and an exposed portion of the electrode pad. Signal extraction structure.
主表面から主表面と反対側の面まで貫通孔を形成した第1の基板と、この第1の基板と接合される面に電気信号を取り出すための電極パッドを形成した第2の基板と接合され、前記貫通孔内面に前記電極パッドと電気的に接続される電極膜形成された構造の半導体微小電子機械デバイスの信号取り出し構造であって、
前記電極パッド上に電気的に接続されるように、前記貫通孔内面の前記第2の基板接合面側端縁部の寸法よりも大きい導電性突起物形成され
前記電極膜は、前記第1の基板の前記主表面側に成膜され、前記導電性突起物及び前記貫通孔内面の露出部分を覆うように形成されていることを特徴とする半導体微小電子機械デバイスの信号取り出し構造。
A first substrate having a through hole is formed from the major surface and the main surface to the opposite surface, a second substrate formed with an electrode pad for taking out an electric signal to the first substrate and the surface to be bonded is are joined, a signal extraction structure of a semiconductor microelectromechanical device of said electrode pad and electrically connected to the electrode film in the through-hole inner surface formed structure,
Wherein on the electrode pads to be electrically connected, the larger conductive protrusions than the dimensions of the second substrate bonding surface side edge portion of the through hole inner surface is formed,
The electrode film, the deposited on the main surface side of the first substrate, a semiconductor microelectronic, characterized in that it is formed so as to cover the exposed portion of the inner surface of the conductive protrusions and the through-hole Mechanical device signal retrieval structure.
前記第1の基板と前記第2の基板とは陽極接合によって接合され、
前記電極パッドは、陽極接合時の熱により軟化又は溶融する低融点材料からなることを特徴とする請求項1に記載の半導体微小電子機械デバイスの信号取り出し構造。
The first substrate and the second substrate are bonded by anodic bonding,
2. The signal extraction structure of a semiconductor microelectromechanical device according to claim 1, wherein the electrode pad is made of a low melting point material that is softened or melted by heat during anodic bonding.
前記第1の基板と前記第2の基板とは陽極接合によって接合され、
前記電極パッド及び前記導電性突起物は、陽極接合時の熱により軟化又は溶融する低融点材料からなることを特徴とする請求項2に記載の半導体微小電子機械デバイスの信号取り出し構造。
The first substrate and the second substrate are bonded by anodic bonding,
The signal extraction structure for a semiconductor microelectromechanical device according to claim 2, wherein the electrode pad and the conductive protrusion are made of a low melting point material that is softened or melted by heat during anodic bonding .
JP2005083170A 2005-03-23 2005-03-23 Signal extraction structure for semiconductor microelectromechanical devices Expired - Fee Related JP4353118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083170A JP4353118B2 (en) 2005-03-23 2005-03-23 Signal extraction structure for semiconductor microelectromechanical devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083170A JP4353118B2 (en) 2005-03-23 2005-03-23 Signal extraction structure for semiconductor microelectromechanical devices

Publications (2)

Publication Number Publication Date
JP2006269584A JP2006269584A (en) 2006-10-05
JP4353118B2 true JP4353118B2 (en) 2009-10-28

Family

ID=37205253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083170A Expired - Fee Related JP4353118B2 (en) 2005-03-23 2005-03-23 Signal extraction structure for semiconductor microelectromechanical devices

Country Status (1)

Country Link
JP (1) JP4353118B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5259197B2 (en) * 2008-01-09 2013-08-07 ソニー株式会社 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2006269584A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
US7919346B2 (en) Micromechanical component and manufacturing method
US7393758B2 (en) Wafer level packaging process
KR100952027B1 (en) Micromechanical component and method for fabricating a micromechanical component
JP4438786B2 (en) MEMS vibrator and manufacturing method thereof
JP4447940B2 (en) Microswitching device manufacturing method and microswitching device
JP5107539B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5350339B2 (en) Micro-electromechanical system and manufacturing method thereof
KR20030077754A (en) Micro inertia sensor and method thereof
JP2009016717A (en) Semiconductor device and method of manufacturing the same
EP2346083B1 (en) Mems sensor
TW201249736A (en) MEMS device with central anchor for stress isolation
CN111115550A (en) Integrated CMOS-MEMS device and method of making the same
JP5222947B2 (en) MEMS sensor
JP2010069599A (en) Mems sensor
JP5237733B2 (en) MEMS sensor
US20180168034A1 (en) Wiring-buried glass substrate, and inertial sensor element and inertial sensor using same
JP4353118B2 (en) Signal extraction structure for semiconductor microelectromechanical devices
JPWO2008143191A1 (en) MEMS sensor and manufacturing method thereof
JP5520691B2 (en) Semiconductor device and manufacturing method of semiconductor device
WO2011118785A1 (en) Glass substrate having silicon wiring embedded therein and method for manufacturing the glass substrate
JP2007192588A (en) Dynamic quantity sensor having three-dimensional wiring, and method of manufacturing dynamic quantity sensor
JP5314979B2 (en) MEMS sensor
JP2004202604A (en) Package structure and manufacturing method
WO2011016348A1 (en) Mems sensor
CN115196580A (en) MEMS switch with cover contact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees