JP4352623B2 - Method for producing nickel foil for secondary battery current collector - Google Patents

Method for producing nickel foil for secondary battery current collector Download PDF

Info

Publication number
JP4352623B2
JP4352623B2 JP2001066836A JP2001066836A JP4352623B2 JP 4352623 B2 JP4352623 B2 JP 4352623B2 JP 2001066836 A JP2001066836 A JP 2001066836A JP 2001066836 A JP2001066836 A JP 2001066836A JP 4352623 B2 JP4352623 B2 JP 4352623B2
Authority
JP
Japan
Prior art keywords
nickel
foil
drum
nickel foil
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001066836A
Other languages
Japanese (ja)
Other versions
JP2002270186A (en
Inventor
宏久 瀬戸
忠之 玉置
俊明 塩田
亮一 能見
国博 福井
雅也 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001066836A priority Critical patent/JP4352623B2/en
Publication of JP2002270186A publication Critical patent/JP2002270186A/en
Application granted granted Critical
Publication of JP4352623B2 publication Critical patent/JP4352623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池の集電体に用いるニッケル箔製造する方法に関する。
【0002】
【従来の技術】
携帯型電子機器は、小型化、作動の長時間化および高性能化が進み、その駆動電源には小型で高性能の二次電池(蓄電池)が使用されている。また最近は、コードレス電動工具などの電源としてもこの二次電池が使用されつつあり、ますます大容量化が要望されている。これらの二次電池の代表例には、ニッケル・水素電池またはリチウムイオン電池がある。
【0003】
ニッケル・水素電池は、多孔性ニッケル基板にペースト状の水酸化ニッケルを塗布した正極と水素吸蔵合金粒のペーストを塗布した負極とから構成され、高いエネルギー密度を備える電池である。
【0004】
リチウムイオン二次電池は、高いエネルギー密度を備え、自己放電も小さく、充電・放電のサイクル特性などに優れた性能を持っている。
【0005】
ニッケル・水素電池の負極は、活物質の高密度化と密着性(担持性)を高めるため、多孔金属箔の両表面に活物質をスラリー状として塗布して乾燥した後、圧延ロールなどで圧着加工が施されて製造される。
【0006】
特開平10-188994号公報には、電池のエネルギー密度を高めるため、負電極心材として総厚さが20〜50μmのニッケルめっきした穿孔鋼箔、およびこの心材を熱処理し、引張強度と展性をもたせた穿孔鋼箔を用いたアルカリ蓄電池の発明が開示されている。この鋼箔は、穿孔(パンチング)加工を行うときの孔の形状が良く、しかも高速パンチングするために硬さを高くしているため、このままニッケルめっきを施した後に活物質を塗布し、圧着させると活物質の付着性が悪い。このためパンチング作業を圧延加工されたままで行い、ニッケルめっきを施した後、軟化焼鈍を行う方法が採られている。
【0007】
蓄電池の高性能化は、高出力化することと高容量化することで得られる。電池容量を高めるには、(1)蓄電池の容積を大きくする、(2)活物質(水素吸蔵合金など)の性能を向上させる、(3)活物質の充填量を増やす、(4)電池の構成材料を小容積化する、といった方法がある。
【0008】
上記(3)の活物質の充填量を増やすことおよび(4)の電池の構成材料を小容積化する対策として、負電極に種々改良を加えた提案がなされている(たとえば、特公昭58-46827号公報、特開昭53-33332号公報、特開昭61-163569号公報、特開平10-188994号公報など、参照)。
【0009】
これらの二次電池の電極は、活物質および結着剤などを非水溶媒でペースト状としたものを集電体(金属箔)の両表面に塗布、乾燥した後、ロールなどによって圧着処理を施して製造される。たとえば負極集電体には、電池の電解液と反応しないニッケル箔、銅箔または鉄箔にニッケルめっきを施したものなどがある。
【0010】
これらの金属箔は、ロールによる圧延法または回転ドラム表面に金属を析出させる電解析出法によって製造される。そして活物質の担持性を改善するため金属箔に多数の孔を設けたり、表面粗さを調整することが提案されている。
【0011】
多数の孔を設けた金属箔(以下、これを「多孔金属箔」という)は、たとえば特開昭61-163569号公報に、鋼板を冷間圧延によって厚さ50〜70μmの鋼箔とし、それにプレス穿孔機(パンチング・マシン)などを用いて多数の小孔を穿った後、その表面にニッケルめっきを施した厚さがおよそ60〜80μmのニッケルめっき鋼箔が開示されている。また、特開平10-188994号公報には、電池のエネルギー密度を高めるため、負電極心材として総厚さが20〜50μmのニッケルめっきした穿孔鋼箔、またはこの心材を熱処理し、引張強度と展性をもたせた穿孔鋼箔を用いたアルカリ蓄電池が開示されている。
【0012】
金属箔の表面に凹凸を形成させて活物質の担持性を改善する方法は、たとえば特開平6-260168号公報に、金属箔の厚さが50μm以下で、その両面に高さが0.1〜20μmの凹凸が形成されている負極集電体を用い、負極の結着剤量を減少させて放電特性を改善したリチウム二次電池が開示されている。また、特開平9-306504号公報には、電解析出箔からなり、その箔の主面の表面あらさが10点平均あらさにして3.0μmより小さく、この主面と他方の主面との表面あらさの差が10点平均あらさにして2.5μmより小さい集電体を正極および負極のいずれかに使用した非水電解液二次電池が開示されている。
【0013】
【発明が解決しようとする課題】
上記の金属箔(集電体)と電池の活物質との担持性を改善する方法は、(1)多孔金属箔とする、(2)エッチング処理などで表面あらさを特定の範囲におさめる、ことにあった。
【0014】
本発明の目的は、多孔ニッケル箔とすることなく、また特別な表面処理をすることもなく、活物質との担持性を改善し、電気伝導性に優れたニッケル箔を製造する方法を提供することにある。
【0015】
【課題を解決するための手段】
本発明者らは、活物質をニッケル箔の表面に塗布、乾燥した後、圧着加工を施した試験材を調査した結果、従来のニッケル箔に付与された表面あらさなどの小さな凹凸よりも大きな凹凸にすることによって活物質の担持性を改善できることを見いだし、本発明を完成した。
【0016】
本発明の要旨は、下記の二次電池集電体用ニッケル箔を製造する方法にある。
0017
面が半円弧状の陽極とこれに対向して回転するドラム陰極とを有する電解析出装置の陰極として表面に規則的な凹凸を形成したドラムを用い、ドラム表面に析出したニッケルを回収する二次電池集電体用ニッケル箔の製造方法。
0018
【発明の実施の形態】
本発明の二次電池集電体用ニッケル箔の製造方法は、表面に凹凸を有するニッケル箔に関する。その凹凸は、ニッケル箔の片側の面が窪んでいるとき、その反対側の面が突出している形状であり、ニッケル箔を平面でみたとき、その凹凸は規則的に分散して形成されている。これは、後述する図3に示すような表面に規則的な凹凸を有する電解回転ドラムの表面にニッケルを電解析出させることによって製造することができる。
0019
図1は、本発明の規則的な凹凸をもった金属箔の外観を示す模式図であり、(a)は長手方向に山部および谷部を有する波板状の金属箔、(b)ないし(e)は角錐状の凹凸を有する金属箔である。図において(b)と(c)、(d)と(e)とは同じ金属箔であり、(b)と(d)とは箔を上からみた図、同じく(c)と(e)とは箔を下からみた図である。
0020
図1(a)に示すニッケル箔は、山部および谷部からなる凹凸が長手方向に規則的に形成された波板状の箔である。その凹凸は、ニッケル箔の片側の面が谷部であれば(窪んでおれば)、その反対側の面が山部である(突出している)形状である。
0021
図1(b)および(c)に示すニッケル箔は、角錐状の凹凸が交互に規則的に形成されており、(b)に示すように箔の表面側が凸部であれば(突出しておれば)、その位置の裏面では(c)に示すように凹部になっている(窪んでいる)。
0022
図1(d)および(e)に示すニッケル箔は、角錐状の凹凸が千鳥状に規則的に形成されており、その凹凸の形状は図(b)および(c)に示すものと同じである。
0023
図1から明らかなように、本発明のニッケル箔は表面に規則的な凹凸を有するニッケル箔である。その凹凸は、ニッケル箔の片側の面が窪んでおれば、その反対側の面が突出している形状である。このような凹凸を有することによって、電池の活物質の担持性を改善し、活物質と集電体(ニッケル箔)との接触面積を大きくして電気伝導性を高めることができる。
0024
図2は、ドラム電極による連続ニッケル箔電解析出装置を示す概念図である。
0025
ニッケル箔1は、チタン製のドラム電極2を陰極、断面が半円弧状に形成された電極3を陽極とし、回転するドラム電極2の表面に電解浴4からニッケルを析出させ、その析出物を連続に剥離して製作される。
0026
電解浴4は、金属めっきに使用される公知の浴、たとえばニッケル箔を製造する場合には、ワット浴、スルファミン酸浴などが使用できる。これらの浴にニッケル箔の柔軟性を調整するため、必要に応じてサッカリン、パラトルエンスルホンアミド、ベンゼンスルホン酸ナトリウム、ナフタリントリスルホン酸ナトリウムのような添加剤、およびその調合剤である市販の添加剤を添加する。
0027
図3は、本発明のニッケル箔を製造するためのドラム電極2の表面の一部を模式的に示す図であり、(a)は円周部に溝(谷部)が規則的に形成されたドラムの表面であり、(b)は円周部に角錐状の突起が交互に規則的に形成されたドラムの表面であり、(c)は円周部に角錐状の窪みが千鳥状に規則的に形成されたドラムの表面である。
0028
図3(a)に示すドラム電極を設けた回転ドラム式電解析出装置を使用すれば、図1(a)に示す凹凸条を有するニッケル箔を製造することができる。すなわち、ドラム表面の凹凸条に沿ってニッケルが電解析出するので、これを剥がせば図1(a)に示すような波板状のニッケル箔が得られる。
0029
図3(b)に示すドラム電極を設けた回転ドラム式電解析出装置を使用すれば、ドラム表面の角錐状の突起に沿ってニッケルが電解析出するので、これを剥がせば図1(b)に示すような角錐状の凹凸を交互に規則的に形成されたニッケル箔が得られる。
0030
図3(c)に示すドラム電極を設けた回転ドラム式電解析出装置を使用すれば、ドラム表面の窪みに沿ってニッケルが電解析出するので、これを剥がせば図1(c)に示すような角錐状の窪みが千鳥状に規則的に形成されたニッケル箔が得られる。
0031
図4は、本発明のニッケル箔の製造に使用するドラム電極表面の一部を示す模式図であり、(a)は図3(a)に示す凹凸条を製作している状況、(b)~(d)は図3(b)に示す角錐状の突起を有するドラム表面とその断面を示す図である。
0032
図3(a)に示すドラム電極表面の凹凸は、図4(a)に示すように、旋削によって製作することができる。先端角α°をたとえば90°とした切削工具5を用い、工具の送りfをたとえば100μm/回転、切り込みをたとえば50μm以上で旋削することによって、ピッチ100μm、深さ50μmの凹凸溝が得られる。
0033
図3(b)に示すドラム電極表面の凹凸は、先端角α°をたとえば115°とした切削工具5を用い、工具の送りfをたとえば250μm/回転、切り込みをたとえば80μm以上で図4(a)に示すような旋削を行った後、得られた凹凸溝を有するドラムを、さらに旋削に使用した工具に等しい形状の工具を用いて工具の送りピッチpをたとえば250μm、切り込みdをたとえば80mm(正確には、前記凹凸溝の底に工具の先端を合わせる)としてドラムの長手方向に切削することによって得られる。得られた凹凸の形状は、図4(b)〜(d)に示すように底辺の一辺の長さが約250μm、高さが約80μmの角錐状となる。
0034
図3(c)に示す電解ドラム表面の窪みは、たとえば先端の角度α°が135°の角錐の押し込み工具を用い、ドラム表面に約20μm押し込み加工することによって得られる。得られた窪みの形状は、底辺の長さが約100μm、深さが約20μmの角錐状である。
0035
電解析出によって得られたニッケル箔は、チタンドラムなどの陰極にニッケルを析出させ、これを連続的に剥離して得られるので、チタンドラムの表面形状が転写される。しかし、従来の方法では、ドラムの表面を研磨加工などで表面粗さを小さく仕上げられているため、表面粗さの小さなニッケル箔が得られていた。そのため、活物質の担持性を改善するには、エッチング処理などで粗面化する必要があった。
0036
本発明のニッケル箔は、ドラム表面の形状が転写されることを利用したものであり、ニッケル箔の表面に従来の表面粗さよりも大きな凹凸を付けることができるため、活物質の粒子を担持しやすいようにしたものである。
0037
【実施例】
図2に示すような連続ニッケル箔電解析出装置を用い、規則的な凹凸を有する電解析出ニッケル箔を製作した。
0038
この電解析出装置には、図3に示すような電解ドラムが取り付けられるようになっている。ドラムは、直径が400mm、幅が250mm(電解部の幅120mm)の純チタン製である。
0039
上記の電解析出ドラムを使用して、表1に示す電解ニッケル箔(番号1〜4)を製造した。また、比較例として、通常の仕上げ状態の電解析出ドラムを使用して得たニッケル箔をエッチング処理したもの(番号5)、参考例として多孔電解析出ドラムを使用して得たニッケル箔(番号6)を製造した。
0040
その電解析出条件を下記に示す。
0041
電解液:
硫酸ニッケル・・・・ 250g/L
塩化ニッケル・・・・ 45g/L
ほう酸・・・・・・・・ 40g/L
pH・・・・・・・・・・ 3.5
温度・・・・・・・・ 50℃
電流密度:20 A/dm
0042
【表1】

Figure 0004352623
0043
電解析出ニッケル箔のエッチング処理は、4%フッ化水素と15%硫酸とを混合した30℃のエッチング液にニッケル箔を浸漬して行った。
0044
得られたこれらのニッケル電解箔は、下記の方法で活物質を担持させた。
0045
活物質には、市販の希土類系のAB型水素吸蔵合金(粒径が50μmアンダー)を用い、活物質の100gに対してCMC(カルボキシ・メチル・セルロース)を0.8gおよび水20 cmを混合し、スラリー状とした。このスラリーをアプリケータ塗装器を使用して塗布したままの厚さが片面で100μmとなるように箔の両面に塗布した。塗布後、温風乾燥機を用い、100℃の温風を1時間吹き付け、乾燥した。乾燥後、プレス機を用い、面圧150 N/mm(1.5 Ton/cm)で圧着加工を行って電極とした。
0046
電解箔の性能試験として、活物質の箔への担持性試験を行った。
0047
活物質の担持性試験は、180°折り曲げを繰り返して活物質が脱落を開始するまでの曲げ回数を求めた。それらの試験結果を表1に示した。
0048
表1から明らかなように、本発明例の番号1から4の箔は、図3(a)〜(c)に示すような規則的な凹凸を表面に形成した電解ドラムにニッケルを析出させ、図1に示すような凹凸を有するニッケル箔となっている。このため曲げ試験の結果では、従来のエッチング処理したニッケル箔よりも格段に優れ、参考例の多孔電解ニッケル箔と同等以上の性能を有する。また、番号1、3および4から明らかなように、本発明の箔は、多孔を形成しなくとも活物質の担持性を改善できるので、箔の厚さを薄くすることができる。
0049
【発明の効果】
本発明のニッケル箔は、規則的な比較的大きな凹凸を形成させることができるため、電池の活物質の担持性に優れ、また活物質とニッケル箔との接触面積も大きくなり、導電性能に優れている。さらに、多孔にする必要がないので、強度面で箔の厚さを薄くすることができる。このニッケル箔は、陰極として表面に規則的な凹凸を形成した回転ドラムを用い、析出したニッケルを剥離することによって製造することができる。このニッケル箔を電池集電体に使用すれば、電池容量を高めることができる。
【図面の簡単な説明】
【図1】 本発明の規則的な凹凸をもったニッケル箔の外観を示す模式図であり、(a)は山部および谷部を有する波板状のニッケル箔、(b)ないし(e)は角錐状の凹凸を有するニッケル箔である。図1の(b)および(d)はニッケル箔を上からみた図、同じく(c)および(e)はニッケル箔を下からみた図である。
【図2】 ドラム電極による連続ニッケル箔電解析出装置を示す概念図である。
【図3】 本発明のニッケル箔を製造するための電解ドラムの表面の一部を模式的に示す図であり、(a)は円周部に溝(谷部)が規則的に形成されたドラムの表面であり、(b)は円周部に角錐状の突起が規則的に形成されたドラムの表面であり、(c)は円周部に角錐状の窪みが千鳥状に形成されたドラムの表面である。
【図4】 本発明のニッケル箔の製造に使用する電解ドラム表面の一部を示す模式図であり、(a)は図2(a)に示す凹凸条を製作している状況、(b)~(d)は図2(b)に示す角錐状の突起を有するドラム表面とその断面を示す図である。
【符号の説明】
1.ニッケル箔 2.陰極回転ドラム 3.陽極
4.電解液 5.切削工具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a nickel foil used for a current collector of a secondary battery.
[0002]
[Prior art]
Portable electronic devices have become smaller, longer in operation and higher in performance, and small and high-performance secondary batteries (storage batteries) are used as driving power sources. Recently, this secondary battery is being used as a power source for cordless electric tools and the like, and an increase in capacity has been demanded. Typical examples of these secondary batteries include nickel / hydrogen batteries and lithium ion batteries.
[0003]
The nickel-hydrogen battery is composed of a positive electrode obtained by applying paste-like nickel hydroxide to a porous nickel substrate and a negative electrode obtained by applying a paste of hydrogen storage alloy particles, and has a high energy density.
[0004]
Lithium ion secondary batteries have high energy density, small self-discharge, and excellent performance in charge / discharge cycle characteristics.
[0005]
In order to increase the density of the active material and improve adhesion (supportability), the negative electrode of the nickel-hydrogen battery is coated with a rolling roll after the active material is applied to both surfaces of the porous metal foil as a slurry and dried. Processed and manufactured.
[0006]
In Japanese Patent Laid-Open No. 10-188994, in order to increase the energy density of a battery, a nickel-plated perforated steel foil having a total thickness of 20 to 50 μm as a negative electrode core material, and this core material are heat-treated to increase tensile strength and malleability. An invention of an alkaline storage battery using a pierced perforated steel foil is disclosed. This steel foil has a good hole shape when drilling (punching), and has a high hardness for high-speed punching. Therefore, after applying nickel plating, the active material is applied and crimped. And the adhesion of the active material is bad. For this reason, the punching operation is performed while being rolled, and after nickel plating, a method of performing soft annealing is employed.
[0007]
The high performance of the storage battery can be obtained by increasing the output and increasing the capacity. To increase the battery capacity, (1) increase the capacity of the storage battery, (2) improve the performance of the active material (hydrogen storage alloy, etc.), (3) increase the filling amount of the active material, (4) battery There is a method of reducing the volume of the constituent material.
[0008]
As countermeasures for increasing the filling amount of the active material in (3) and reducing the volume of the constituent material of the battery in (4), various improvements have been made to the negative electrode (for example, Japanese Patent Publication No. 58-58). No. 46827, JP-A 53-33332, JP-A 61-163569, JP-A 10-188994, etc.).
[0009]
The electrodes of these secondary batteries are applied to both surfaces of a current collector (metal foil) by pasting an active material and a binder in a non-aqueous solvent, and then subjected to pressure-bonding treatment with a roll or the like. Manufactured. For example, the negative electrode current collector includes a nickel foil, a copper foil, or an iron foil that does not react with the battery electrolyte, and nickel plating.
[0010]
These metal foils are manufactured by a rolling method using a roll or an electrolytic deposition method in which a metal is deposited on the surface of a rotating drum. In order to improve the supportability of the active material, it has been proposed to provide a large number of holes in the metal foil or to adjust the surface roughness.
[0011]
A metal foil provided with a large number of holes (hereinafter referred to as “porous metal foil”) is disclosed in, for example, Japanese Patent Application Laid-Open No. 61-163569, and a steel sheet is formed into a steel foil having a thickness of 50 to 70 μm by cold rolling. A nickel-plated steel foil having a thickness of approximately 60 to 80 μm is disclosed in which a large number of small holes are drilled using a press punching machine (punching machine) or the like, and then the surface thereof is plated with nickel. Japanese Patent Laid-Open No. 10-188994 discloses a nickel-plated perforated steel foil having a total thickness of 20 to 50 μm as a negative electrode core material or heat treatment of the core material to increase the energy density of the battery. An alkaline storage battery using a perforated steel foil having a property is disclosed.
[0012]
A method for improving the support of the active material by forming irregularities on the surface of the metal foil is disclosed, for example, in JP-A-6-260168, in which the thickness of the metal foil is 50 μm or less and the height on both sides is 0.1 to 20 μm. There is disclosed a lithium secondary battery using a negative electrode current collector in which unevenness is formed and reducing the amount of binder of the negative electrode to improve discharge characteristics. Japanese Patent Laid-Open No. 9-306504 discloses an electrodeposited foil, and the surface roughness of the main surface of the foil is less than 3.0 μm in terms of 10-point average roughness, and the surface between this main surface and the other main surface A non-aqueous electrolyte secondary battery is disclosed in which a current collector having a roughness difference of 10 points on average and smaller than 2.5 μm is used for either the positive electrode or the negative electrode.
[0013]
[Problems to be solved by the invention]
The method for improving the support of the above metal foil (current collector) and the active material of the battery is (1) porous metal foil, (2) surface roughness within a specific range by etching treatment, etc. It was in.
[0014]
An object of the present invention is to provide a method for producing a nickel foil excellent in electrical conductivity by improving supportability with an active material without making a porous nickel foil and without performing a special surface treatment. There is.
[0015]
[Means for Solving the Problems]
As a result of investigating a test material subjected to pressure bonding after applying and drying an active material on the surface of the nickel foil, the present inventors found that the unevenness larger than the small unevenness such as the surface roughness imparted to the conventional nickel foil It was found that the supportability of the active material can be improved by making it, and the present invention has been completed.
[0016]
Gist of the present invention is a method of manufacturing a secondary battery current collector for nickel foil under SL.
[ 0017 ]
Using a drum cross section formed a regular unevenness on the surface as the cathode of an electrolytic deposition apparatus having a drum cathode which rotates in opposition to the anode of the semicircular, to recover the nickel deposited on the drum surface The manufacturing method of the nickel foil for secondary battery electrical power collectors.
[ 0018 ]
DETAILED DESCRIPTION OF THE INVENTION
The manufacturing method of the nickel foil for secondary battery collectors of this invention is related with the nickel foil which has an unevenness | corrugation on the surface. The unevenness is a shape in which the surface on one side of the nickel foil is recessed when the surface of the nickel foil is depressed, and the unevenness is regularly dispersed when the nickel foil is viewed in a plane. . This can be manufactured by electrolytically depositing nickel on the surface of an electrolytic rotating drum having regular irregularities on the surface as shown in FIG.
[ 0019 ]
FIG. 1 is a schematic view showing the appearance of a metal foil having regular irregularities according to the present invention. (A) is a corrugated metal foil having peaks and valleys in the longitudinal direction, and (b) to (b) (e) is a metal foil having pyramidal irregularities. In the figure, (b) and (c), (d) and (e) are the same metal foil, (b) and (d) are views of the foil from above, and (c) and (e) Is a view of the foil from below.
[ 0020 ]
The nickel foil shown in FIG. 1 (a) is a corrugated foil in which irregularities formed by peaks and valleys are regularly formed in the longitudinal direction. If the surface on one side of the nickel foil is a trough (depressed), the unevenness is a shape in which the surface on the opposite side is a peak (projects).
[ 0021 ]
The nickel foils shown in FIGS. 1 (b) and 1 (c) have pyramid-like irregularities formed alternately and regularly. If the surface of the foil is convex as shown in FIG. And the back surface of the position is a recess (depressed) as shown in (c).
[ 0022 ]
The nickel foils shown in FIGS. 1 (d) and (e) have pyramidal irregularities regularly formed in a staggered pattern, and the irregularities are the same as those shown in FIGS. (B) and (c). is there.
[ 0023 ]
As is apparent from FIG. 1, the nickel foil of the present invention is a nickel foil having regular irregularities on the surface. The unevenness is a shape in which if the surface on one side of the nickel foil is depressed, the surface on the opposite side protrudes. By having such irregularities, it is possible to improve the supportability of the battery active material, increase the contact area between the active material and the current collector (nickel foil), and increase the electrical conductivity.
[ 0024 ]
FIG. 2 is a conceptual diagram showing a continuous nickel foil electrolytic deposition apparatus using a drum electrode.
[ 0025 ]
The nickel foil 1 has a titanium drum electrode 2 as a cathode and an electrode 3 having a semicircular cross section formed as an anode. Nickel is deposited from the electrolytic bath 4 on the surface of the rotating drum electrode 2, and the precipitate is Manufactured with continuous peeling.
[ 0026 ]
As the electrolytic bath 4, a well-known bath used for metal plating, for example, when producing a nickel foil, a Watt bath, a sulfamic acid bath, or the like can be used. In order to adjust the flexibility of the nickel foil in these baths, additives such as saccharin, paratoluenesulfonamide, sodium benzenesulfonate, sodium naphthalene trisulfonate, and commercial additives that are the preparations, as necessary Add agent.
[ 0027 ]
FIG. 3 is a view schematically showing a part of the surface of the drum electrode 2 for producing the nickel foil of the present invention. FIG. 3 (a) shows that grooves (valleys) are regularly formed in the circumferential part. (B) is the surface of the drum in which pyramidal protrusions are alternately and regularly formed on the circumferential portion, and (c) is a staggered pyramidal depression on the circumferential portion. It is the surface of a regularly formed drum.
[ 0028 ]
If the rotating drum type electrolytic deposition apparatus provided with the drum electrode shown in FIG. 3 (a) is used, the nickel foil having the uneven stripes shown in FIG. 1 (a) can be produced. That is, nickel is electrolytically deposited along the irregularities on the drum surface, and if this is removed, a corrugated nickel foil as shown in FIG. 1 (a) is obtained.
[ 0029 ]
If the rotating drum type electrolytic deposition apparatus provided with the drum electrode shown in FIG. 3 (b) is used, nickel is electrolytically deposited along the pyramidal projections on the drum surface. A nickel foil in which pyramidal irregularities as shown in b) are regularly and alternately formed is obtained.
[ 0030 ]
If the rotating drum type electrolytic deposition apparatus provided with the drum electrode shown in FIG. 3 (c) is used, nickel is electrolytically deposited along the depression on the surface of the drum. The nickel foil in which the pyramid-shaped depressions as shown are regularly formed in a staggered pattern is obtained.
[ 0031 ]
FIG. 4 is a schematic view showing a part of the surface of the drum electrode used for the production of the nickel foil of the present invention, where (a) shows the situation where the ridges shown in FIG. (d) is a diagram showing a drum surface having a pyramidal projection shown in FIG. 3 (b) and a cross section thereof.
[ 0032 ]
The irregularities on the drum electrode surface shown in FIG. 3 (a) can be produced by turning as shown in FIG. 4 (a). By using a cutting tool 5 with a tip angle α ° of 90 °, for example, turning the tool feed f at 100 μm / rotation and cutting at, for example, 50 μm or more, an uneven groove with a pitch of 100 μm and a depth of 50 μm can be obtained.
[ 0033 ]
The irregularities on the surface of the drum electrode shown in FIG. 3 (b) are shown in FIG. After turning as shown in Fig. 4), using the obtained drum having concave and convex grooves, a tool having a shape equal to the tool used for turning, the feed pitch p of the tool is 250 μm, for example, and the cut d is 80 mm (for example) Exactly, it is obtained by cutting in the longitudinal direction of the drum as a tool tip is aligned with the bottom of the concave and convex grooves. As shown in FIGS. 4B to 4D, the obtained uneven shape is a pyramid having a base length of about 250 μm and a height of about 80 μm.
[ 0034 ]
The depression on the surface of the electrolytic drum shown in FIG. 3 (c) can be obtained by, for example, using a pyramid pressing tool having a tip angle α ° of 135 ° and pressing the drum surface by about 20 μm. The shape of the obtained depression is a pyramid with a base length of about 100 μm and a depth of about 20 μm.
[ 0035 ]
Since the nickel foil obtained by electrolytic deposition is obtained by depositing nickel on a cathode such as a titanium drum and continuously peeling it, the surface shape of the titanium drum is transferred. However, in the conventional method, since the surface of the drum is finished to a small surface roughness by polishing or the like, a nickel foil having a small surface roughness has been obtained. Therefore, in order to improve the supportability of the active material, it has been necessary to roughen the surface by an etching process or the like.
[ 0036 ]
The nickel foil of the present invention utilizes the fact that the shape of the drum surface is transferred, and since the surface of the nickel foil can be provided with irregularities larger than the conventional surface roughness, it carries active material particles. It was made easy.
[ 0037 ]
【Example】
Using a continuous nickel foil electrolytic deposition apparatus as shown in FIG. 2, an electrolytic deposited nickel foil having regular irregularities was produced.
[ 0038 ]
An electrolytic drum as shown in FIG. 3 is attached to the electrolytic deposition apparatus. The drum is made of pure titanium having a diameter of 400 mm and a width of 250 mm (electrolytic part width of 120 mm).
[ 0039 ]
Using the electrolytic deposition drum, electrolytic nickel foils (numbers 1 to 4) shown in Table 1 were produced. In addition, as a comparative example, a nickel foil obtained by using an electrolytic deposition drum in a normal finished state was etched (No. 5), and a nickel foil obtained using a porous electrolytic deposition drum as a reference example ( No. 6) was produced.
[ 0040 ]
The electrolytic deposition conditions are shown below.
[ 0041 ]
Electrolyte:
Nickel sulfate ... 250g / L
Nickel chloride ... 45g / L
Boric acid ・ ・ ・ 40g / L
pH 3.5
Temperature ... 50 ℃
Current density: 20 A / dm 2
[ 0042 ]
[Table 1]
Figure 0004352623
[ 0043 ]
The electrolytic deposition nickel foil was etched by immersing the nickel foil in an etching solution at 30 ° C. in which 4% hydrogen fluoride and 15% sulfuric acid were mixed.
[ 0044 ]
These obtained nickel electrolytic foils supported an active material by the following method.
[ 0045 ]
As the active material, a commercially available rare earth AB 5 type hydrogen storage alloy (under 50 μm particle size) is used. 0.8 g of CMC (carboxymethylcellulose) and 20 cm 3 of water are used for 100 g of the active material. Mixed to form a slurry. This slurry was applied to both sides of the foil so that the thickness as applied with an applicator applicator was 100 μm on one side. After application, warm air at 100 ° C. was blown for 1 hour using a hot air dryer to dry the coating. After drying, using a press machine, it was crimped at a surface pressure of 150 N / mm 2 (1.5 Ton / cm 2 ) to obtain an electrode.
[ 0046 ]
As a performance test of the electrolytic foil, a supportability test of the active material on the foil was performed.
[ 0047 ]
In the active material supportability test, the number of times of bending until the active material starts to fall off after repeated 180 ° bending was determined. The test results are shown in Table 1.
[ 0048 ]
As is clear from Table 1, the foils of Nos. 1 to 4 of the present invention example deposit nickel on an electrolytic drum having regular irregularities as shown in FIGS. 3 (a) to 3 (c). The nickel foil has irregularities as shown in FIG. For this reason, in the result of a bending test, it is far superior to the nickel foil which carried out the conventional etching process, and has the performance equivalent to or more than the porous electrolytic nickel foil of a reference example. Further, as is clear from the numbers 1, 3 and 4, the foil of the present invention can improve the supportability of the active material without forming porosity, so that the thickness of the foil can be reduced.
[ 0049 ]
【The invention's effect】
Since the nickel foil of the present invention can form regular and relatively large irregularities, it is excellent in carrying the active material of the battery, and also has a large contact area between the active material and the nickel foil, and is excellent in conductive performance. ing. Furthermore, since it is not necessary to make it porous, the thickness of the foil can be reduced in terms of strength. This nickel foil can be manufactured by using a rotating drum having regular irregularities on its surface as a cathode and peeling the deposited nickel. If this nickel foil is used for a battery current collector, the battery capacity can be increased.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the appearance of a nickel foil having regular irregularities according to the present invention, wherein (a) is a corrugated nickel foil having peaks and valleys, (b) to (e) Is a nickel foil having pyramidal irregularities. (B) and (d) of FIG. 1 are views of the nickel foil as viewed from above, and (c) and (e) are views of the nickel foil as viewed from below.
FIG. 2 is a conceptual diagram showing a continuous nickel foil electrolytic deposition apparatus using a drum electrode.
FIG. 3 is a diagram schematically showing a part of the surface of an electrolytic drum for producing the nickel foil of the present invention, and (a) shows a regular formation of grooves (valleys) in the circumferential part. The surface of the drum, (b) is the surface of the drum in which pyramidal protrusions are regularly formed on the circumference, and (c) is a pyramid-shaped depression formed in a zigzag on the circumference. It is the surface of the drum.
FIG. 4 is a schematic view showing a part of the surface of an electrolytic drum used for the production of the nickel foil of the present invention, where (a) shows a situation in which the concave and convex strips shown in FIG. (d) is a diagram showing a drum surface having a pyramidal projection shown in FIG. 2 (b) and a cross section thereof.
[Explanation of symbols]
1. Nickel foil 2. Cathode rotating drum Anode 4. 4. Electrolyte solution Cutting tools

Claims (2)

断面が半円弧状の陽極とこれに対向して回転するドラム陰極とを有する電解析出装置の陰極として表面に規則的な波板状の凹凸を形成したチタン製のドラムを用い、ドラム表面に析出したニッケルを回収して、片側の面が窪んでおればその反対側の面が突出している形状のニッケル箔を作製することを特徴とする二次電池集電体用ニッケル箔の製造方法。A titanium drum having regular corrugated irregularities on the surface is used as a cathode of an electrolytic deposition apparatus having a semicircular arc-shaped anode and a drum cathode rotating opposite to the anode. A method for producing a nickel foil for a secondary battery current collector, wherein the deposited nickel is collected, and a nickel foil having a shape in which the opposite surface protrudes if one surface is depressed is formed . 断面が半円弧状の陽極とこれに対向して回転するドラム陰極とを有する電解析出装置の陰極として表面に規則的な角錐状の凹凸を形成したチタン製のドラムを用い、ドラム表面に析出したニッケルを回収して、片側の面が窪んでおればその反対側の面が突出している形状のニッケル箔を作製することを特徴とする二次電池集電体用ニッケル箔の製造方法。Using a titanium drum with regular pyramid-shaped irregularities on the surface as a cathode of an electrolytic deposition apparatus having a semicircular arc-shaped anode and a drum cathode rotating opposite to the anode, deposition is performed on the drum surface. A method for producing a nickel foil for a secondary battery current collector, wherein the nickel foil is collected, and a nickel foil having a shape in which the opposite surface protrudes if one surface is depressed is formed .
JP2001066836A 2001-03-09 2001-03-09 Method for producing nickel foil for secondary battery current collector Expired - Fee Related JP4352623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066836A JP4352623B2 (en) 2001-03-09 2001-03-09 Method for producing nickel foil for secondary battery current collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066836A JP4352623B2 (en) 2001-03-09 2001-03-09 Method for producing nickel foil for secondary battery current collector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008118277A Division JP5040794B2 (en) 2008-04-30 2008-04-30 Nickel foil for secondary battery current collector

Publications (2)

Publication Number Publication Date
JP2002270186A JP2002270186A (en) 2002-09-20
JP4352623B2 true JP4352623B2 (en) 2009-10-28

Family

ID=18925278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066836A Expired - Fee Related JP4352623B2 (en) 2001-03-09 2001-03-09 Method for producing nickel foil for secondary battery current collector

Country Status (1)

Country Link
JP (1) JP4352623B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785515A (en) * 2017-11-09 2020-02-11 株式会社Lg化学 Apparatus for manufacturing electrolytic copper foil

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10136890B4 (en) * 2001-07-25 2006-04-20 Siemens Ag Method and apparatus for producing a crystal textured textured metal strip and ribbon
JP4599070B2 (en) * 2004-03-17 2010-12-15 株式会社東芝 Nonaqueous electrolyte secondary battery
US7838153B2 (en) 2006-08-29 2010-11-23 Panasonic Corporation Current collector, electrode, and non-aqueous electrolyte secondary battery
US8202642B2 (en) 2006-11-15 2012-06-19 Panasonic Corporation Current collector for non-aqueous secondary battery, electrode plate for non-aqueous secondary battery using the same, and non-aqueous secondary battery
US20100003599A1 (en) * 2006-11-15 2010-01-07 Takashi Nonoshita Method for producing current collector for non-aqueous electrolyte secondary battery, method for producing electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
KR100992961B1 (en) * 2010-07-30 2010-11-08 주식회사 동화엔텍 Heat exchanger in plate type
DE102012009413A1 (en) * 2012-05-11 2013-11-14 Hans Kilian Fremmer Cathode plate for use in lead rechargeable battery of motor car, has partly porous surface and baggy structure, where plate is dipped in diluted sulfur-acid solution and separated at cathode metallic lead
KR101328303B1 (en) 2012-09-05 2013-11-14 주식회사 포스코 Anode electrode plate for electro-forming, method for preparing the same and method for preparing metal supporting body by using the same
KR101406550B1 (en) 2012-09-05 2014-06-11 주식회사 포스코 Anode Electrode Plate for Electro-forming, Method for Preparing the Same and Method for Preparing Metal Supporting Body by Using the Same
EP3389120B1 (en) 2016-07-18 2022-06-22 LG Energy Solution, Ltd. Method for manufacturing electrode and current collector for electrochemical device
CN114430026A (en) * 2022-03-08 2022-05-03 国网浙江省电力有限公司电力科学研究院 Electrode, alkaline storage battery using same and preparation method of electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110785515A (en) * 2017-11-09 2020-02-11 株式会社Lg化学 Apparatus for manufacturing electrolytic copper foil
US11492717B2 (en) 2017-11-09 2022-11-08 Lg Energy Solution, Ltd. Manufacturing apparatus of electrolytic copper foil

Also Published As

Publication number Publication date
JP2002270186A (en) 2002-09-20

Similar Documents

Publication Publication Date Title
US6979517B2 (en) Electrode plate for cell and method for manufacturing the same
JP4352623B2 (en) Method for producing nickel foil for secondary battery current collector
JP5033164B2 (en) Manufacturing method of paste type thin electrode for battery
JPH11195415A (en) Nonaqueous electrolyte battery and its manufacture
JP6535662B2 (en) Method of manufacturing metal foil for current collector
JP5598884B2 (en) Lithium ion secondary battery, current collector constituting the negative electrode of the secondary battery, and electrolytic copper foil constituting the negative electrode current collector
CN109599563A (en) Affluxion body in lithium ion batteries and preparation method thereof
JP2006269362A (en) Negative electrode for lithium ion secondary battery
EP0860518B1 (en) Process for preparing porous electrolytic metal foil
KR100523149B1 (en) Porous nickel foil for alkaline battery cathode, production method therefor and production device therefor
JP5040794B2 (en) Nickel foil for secondary battery current collector
JP2000048823A (en) Non-sintering type electrode and manufacture thereof
JP2002198055A (en) Paste-like thin electrode for battery, its manufacturing method and secondary battery
JP3582524B2 (en) Electrode plate material for secondary batteries
JP2001085015A (en) Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor
JPH08124579A (en) Manufacture of metallic porous material and electrode for storage battery
CN111575761B (en) Alumina template, highly vertical ordered antimony nanowire array and preparation method thereof
JP4298578B2 (en) Porous metal foil with carrier foil and method for producing the same
US20090191459A1 (en) Electrode for nonaqueous electrolyte secondary battery
JP2002216771A (en) Electrolytic metal foil for secondary battery negative electrode collector and its production
JP3928039B2 (en) Active material filling method of nickel electrode for secondary battery
JP3759589B2 (en) Method for producing alkaline storage battery
JPH10116621A (en) Base of electrode
CN116646462A (en) Secondary battery pole piece, secondary battery and preparation method thereof
JP2019008941A (en) Electrode, alkali storage battery and method for manufacturing electrode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050221

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090720

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120807

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130807

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees