JP4351985B2 - Underground pipe exploration equipment - Google Patents

Underground pipe exploration equipment Download PDF

Info

Publication number
JP4351985B2
JP4351985B2 JP2004332153A JP2004332153A JP4351985B2 JP 4351985 B2 JP4351985 B2 JP 4351985B2 JP 2004332153 A JP2004332153 A JP 2004332153A JP 2004332153 A JP2004332153 A JP 2004332153A JP 4351985 B2 JP4351985 B2 JP 4351985B2
Authority
JP
Japan
Prior art keywords
buried
exposed portion
current
buried pipe
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004332153A
Other languages
Japanese (ja)
Other versions
JP2006145249A (en
Inventor
志伸 佐竹
晶晴 井上
宗一郎 濱野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2004332153A priority Critical patent/JP4351985B2/en
Publication of JP2006145249A publication Critical patent/JP2006145249A/en
Application granted granted Critical
Publication of JP4351985B2 publication Critical patent/JP4351985B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、埋設配管路に繋がる探査対象管を探査する埋設管探査装置に関する。   The present invention relates to a buried pipe exploration device for exploring an exploration target pipe connected to a buried piping path.

探査対象管を探査する方法として、埋設配管路から分岐して延びる2本の供給管のそれぞれの露出部に交流の探査電流を供給し、この探査電流によって探査対象管から発生する磁界を地上に設置した検出器によって検出する方法(以下、「ダブル1点法」と記す。)がある(特許文献1参照)。この検出方法は、図6に示すように、発信器80の接続線を、地中に埋設された埋設配管路(文献では本管)Hから分岐して地上に延びる2つの供給管Kの露出部Kr、Kr'とアース電極Grに接続し、発信器80から2つの露出部Kr、Kr'のそれぞれに供給される交流の探査電流を一方に対して他方を相対的に変化させて、埋設配管路H上において電流値がゼロとなる地点Qを、探査対象となる探査対象管M(文献では分岐管)が埋設配管路Hから分岐する分岐位置Pに近づける。   As a method of exploring the exploration target pipe, an alternating exploration current is supplied to each exposed portion of the two supply pipes that branch off from the buried pipeline, and the magnetic field generated from the exploration target pipe by this exploration current is brought to the ground. There is a method of detecting with an installed detector (hereinafter referred to as “double one-point method”) (see Patent Document 1). In this detection method, as shown in FIG. 6, the connection line of the transmitter 80 is exposed from two supply pipes K that branch from a buried pipe line (main pipe in the literature) H that is buried in the ground and extend to the ground. Connected to the parts Kr and Kr ′ and the ground electrode Gr, the alternating exploration current supplied from the transmitter 80 to each of the two exposed parts Kr and Kr ′ is changed relative to one to the other and buried The point Q at which the current value is zero on the pipe line H is brought close to the branch position P where the search target pipe M (branch pipe in the literature) to be searched branches from the buried pipe line H.

その結果、地点Qから埋設配管路Hにおける分岐位置Pまでの埋設配管路Hに流れる電流の大きさを小さくし、探査対象管Mを流れる電流の大きさを大きくすることができる。このため、地点Qの近傍位置から発生する磁界分布は、地点Qに対応する磁界がゼロとなり、地点Qから分岐位置P側の埋設配管路Hに対応する磁界が地点Qから遠ざかるに従って増加し、探査対象管Mに対応する磁界がさらに増加してピーク値を示す。このため、地上に設置した検出器81によって磁界を検出すると、磁界のピーク値から探査対象管Mの存在を確認することができる。   As a result, the magnitude of the current flowing through the buried piping H from the point Q to the branch position P in the buried piping H can be reduced, and the magnitude of the current flowing through the exploration target pipe M can be increased. For this reason, the magnetic field distribution generated from the position in the vicinity of the point Q increases as the magnetic field corresponding to the point Q becomes zero and the magnetic field corresponding to the buried piping H on the branching position P side from the point Q increases from the point Q. The magnetic field corresponding to the exploration target tube M further increases to show a peak value. For this reason, when the magnetic field is detected by the detector 81 installed on the ground, the existence of the exploration target pipe M can be confirmed from the peak value of the magnetic field.

特開昭63−300990号公報JP 63-300990 A

ところで、探査対象管に繋がる埋設配管路が非導通状態であると、電流値がゼロとなる地点Qを埋設配管路H上に作ることができず、探査対象管に流れる電流値をピーク値とするダブル1点法による探査対象管の探査の効果を得ることが出来ないが、埋設配管路の導通状態が確認できれば、ダブル1点法によって探査対象管を大きな電流値のピーク値として現して、探査対象管の探査を容易にすることができる。このため、探査対象管の探査の容易化のため、供給管には電流値の大きな電流が供給される。ここで、埋設配管路が導通状態にあるときの供給管に供給された電流は、埋設配管路及び探査対象管を通ってアース電極に戻る一方で、埋設配管路が非導通状態にあるときの供給管に供給された電流は、埋設配管路から漏れ出して大地を通ってアース電極に戻る。そして、埋設配管路が非導通状態にあるときのアース電極に戻る電流の大きさは、埋設配管路が導通状態にあるときのそれと殆ど変らない。このため、従来の埋設管探査装置は、ダブル1点法による探査対象管の探査ができない場合でも探査対象管の探査が行われて、見かけ上の信頼性の低い探査結果を得ていた。つまり、従来の埋設管探査装置は、探査対象管の探査結果の信頼性が低くなる場合があるという問題があった。   By the way, if the buried pipeline connected to the exploration target pipe is in a non-conducting state, the point Q where the current value becomes zero cannot be created on the buried pipeline H, and the current value flowing through the exploration target pipe becomes the peak value. However, if the continuity of the buried pipe line can be confirmed, the double-point method will show the pipe to be searched as a peak value of a large current value. The exploration of the exploration target pipe can be facilitated. For this reason, in order to facilitate the exploration of the exploration target pipe, a current having a large current value is supplied to the supply pipe. Here, the current supplied to the supply pipe when the buried pipeline is in the conductive state returns to the ground electrode through the buried pipeline and the exploration target pipe, while the buried pipeline is in the non-conductive state. The current supplied to the supply pipe leaks from the buried piping line and returns to the ground electrode through the ground. And the magnitude | size of the electric current which returns to an earth electrode when a buried piping path is a non-conduction state hardly changes with it when a buried piping path is a conduction state. For this reason, in the conventional buried pipe exploration apparatus, even when the exploration target pipe cannot be explored by the double one-point method, the exploration target pipe is explored, and an exploration result with low apparent reliability has been obtained. That is, the conventional buried pipe exploration device has a problem that the reliability of the exploration result of the exploration target pipe may be lowered.

本発明は、このような問題に鑑みてなされたものであり、埋設配管路に繋がる探査対象管の探査結果の信頼性が高い埋設管探査装置を提供することを目的とする。   This invention is made | formed in view of such a problem, and it aims at providing the buried pipe | tube search apparatus with high reliability of the exploration result of the investigation object pipe | tube connected to a buried piping path.

このような課題を解決するために、本発明は、埋設配管路から分岐して延びる2本の供給管のそれぞれの露出部に発信器からの信号電流を大きさ調整可能に供給し、前記埋設配管路に繋がる検査対象管に流れる電流によって発生する磁界を検出することにより、前記検査対象管を探査する埋設管探査装置において、前記発信器は、前記2本の供給管の一方の露出部に接続される端子と接地端子との間に接続可能で、前記一方の露出部に信号電流を大きさ調整可能に供給する第1電流調整手段と、前記2本の供給管の他方の露出部に接続される端子と接地端子との間に接続可能で、前記他方の露出部に信号電流を大きさ調整可能に供給する第2電流調整手段と、前記2本の供給管の一方の露出部に接続される端子から信号電流を供給して前記埋設配管路を流れて前記2本の供給管の他方の露出部に接続される端子に戻る電流の大きさから該埋設配管路の導通状態を検査する埋設配管路導通検査手段とを備え、前記埋設配管路導通検査手段は、前記2本の供給管の一方の露出部に接続される端子に前記第1電流調整手段を接続すると共に前記2本の供給管の他方の露出部に接続される端子に前記第2電流調整手段を接続する第1の状態と、前記2本の供給管の一方の露出部に接続される端子と前記2本の供給管の他方の露出部に接続される端子との間に通電検査用の電源を接続する第2の状態とを切り替えるスイッチを備えることを特徴とする。 In order to solve such a problem, the present invention supplies the signal current from the transmitter to each exposed portion of the two supply pipes that branch off from the buried pipeline so that the magnitude can be adjusted. In the buried pipe exploration device for exploring the inspection target pipe by detecting a magnetic field generated by a current flowing in the inspection target pipe connected to the pipe line, the transmitter is connected to one exposed portion of the two supply pipes. A first current adjusting means that can be connected between a terminal to be connected and a ground terminal and supplies a signal current to the one exposed portion so as to be adjustable in magnitude, and to the other exposed portion of the two supply pipes A second current adjusting means that is connectable between a terminal to be connected and a ground terminal and supplies a signal current to the other exposed portion so as to be adjustable in magnitude; and one exposed portion of the two supply tubes A signal current is supplied from a connected terminal to A buried pipe line continuity inspection means for inspecting the conduction state of the buried pipe line from the magnitude of the current flowing through the pipe line and returning to the terminal connected to the other exposed portion of the two supply pipes, The pipe line continuity inspection means connects the first current adjusting means to a terminal connected to one exposed part of the two supply pipes and a terminal connected to the other exposed part of the two supply pipes A first state of connecting the second current adjusting means, a terminal connected to one exposed part of the two supply pipes, and a terminal connected to the other exposed part of the two supply pipes A switch for switching between a second state in which a power supply for energization inspection is connected is provided.

この発明によれば、埋設配管路の導通状態を検査する埋設配管路導通検査手段を備えることにより、探査対象管を探査する前に、この探査対象管に繋がる埋設配管路の導通状態を検査することができる。このため、導通状態にある埋設配管路に繋がる探査対象管のみを探査対象とすることができ、探査対象管の探査結果の信頼性を向上させることができる。   According to this invention, by providing the buried pipe line continuity inspection means for inspecting the continuity state of the buried pipe line, before conducting the exploration of the exploration target pipe, the conduction state of the buried pipe line connected to the exploration target pipe is inspected. be able to. For this reason, only the exploration target pipe connected to the buried piping path in the conductive state can be the exploration target, and the reliability of the exploration result of the exploration target pipe can be improved.

また本発明は、埋設配管路導通検査手段に第1電流調整手段及び第2電流調整手段を備え、これらのいずれかによって供給される信号電流を一方の露出部に供給することにより、露出部に供給される信号電流の大きさを任意に調整することができ、そして、この調整された信号電流を埋設配管路に供給することができる。このため、埋設配管路の長さに応じて埋設配管路の導通検査を行うために必要な信号電流を容易に確保することができる。 Further, according to the present invention, the buried pipe line continuity inspection means includes a first current adjusting means and a second current adjusting means, and the signal current supplied by any one of these is supplied to one exposed portion, whereby the exposed portion is The magnitude of the supplied signal current can be arbitrarily adjusted, and this adjusted signal current can be supplied to the buried pipeline. For this reason, it is possible to easily ensure a signal current necessary for conducting a continuity inspection of the buried piping path according to the length of the buried piping path.

また本発明は、埋設配管路導通検査手段に、一方の露出部に信号電流を供給する電源を備えることを特徴とする。   According to the present invention, the buried pipe line continuity inspection means includes a power source for supplying a signal current to one of the exposed portions.

この発明によれば、埋設配管路導通検査手段に一方の露出部に信号電流を供給する電源(例えば、実施形態における導通検査用電源27)を備えることにより、この電源を、導通検査を行うときの専用にすることができ、導通検査の作業性を向上させることができる。   According to this invention, the power supply for supplying a signal current to one exposed part (for example, the power supply for continuity test 27 in the embodiment) is provided in the buried pipe line continuity test means, and this power supply is subjected to the continuity test. The operability of the continuity test can be improved.

また本発明は、埋設配管路導通検査手段によって一方の露出部に供給される信号電流は交流であることを特徴とする。   Further, the present invention is characterized in that the signal current supplied to the one exposed portion by the buried pipe line continuity inspection means is an alternating current.

この発明によれば、一方の露出部に供給される信号電流を交流にすることにより、迷走電流や配管の表面に被覆された絶縁膜に生じる分極が埋設配管路を流れる電流に与える影響を排除することができ、埋設配管路が導通状態にあるか否かの判断の精度を向上させることができる。   According to the present invention, by changing the signal current supplied to one of the exposed portions to an alternating current, the influence of stray current and polarization generated in the insulating film coated on the surface of the piping on the current flowing through the buried piping is eliminated. It is possible to improve the accuracy of the determination as to whether or not the buried pipeline is in a conductive state.

また本発明は、埋設配管路導通検査手段は、一方の露出部に供給する交流の信号電流を周波数調整可能に供給することを特徴とする。   Further, according to the present invention, the buried pipe line continuity inspection means supplies an AC signal current supplied to one of the exposed portions so that the frequency can be adjusted.

この発明によれば、一方の露出部に供給される交流の信号電流の周波数を調整可能にすることにより、埋設配管路の途中の配管が他の別系統の配管と平行に延びている場合、この平行に延びる配管の長さが長いと、この配管と土中との間の接触抵抗が大きくなってこの平行に延びる配管と土中との間の静電容量が交流電流の流れに対して支配的となるが、信号電流の周波数を小さくするように調整すると、埋設配管路を流れる電流が土中を流れて埋設管探査装置に戻る電流の大きさが小さくなって、インピーダンスを大きくすることができる。このため、この埋設配管が非導通状態にあることを明確に判断することができる。   According to this invention, by enabling adjustment of the frequency of the AC signal current supplied to one exposed part, when the pipe in the middle of the buried pipe line extends in parallel with the other system pipe, If the length of the pipe extending in parallel is long, the contact resistance between the pipe and the soil increases, and the capacitance between the pipe extending in parallel and the soil is reduced with respect to the flow of alternating current. Although it becomes dominant, if the frequency of the signal current is adjusted to be small, the current flowing through the buried pipe line will flow through the soil and return to the buried pipe exploration device, thereby reducing the impedance. Can do. For this reason, it can be judged clearly that this buried piping is in a non-conductive state.

さらに本発明は、埋設配管路導通検査手段に、埋設配管路を流れる信号電流の大きさが所定値を超えると、埋設配管路が導通状態にあることを知らせる告知手段を設けることを特徴とする。   Furthermore, the present invention is characterized in that the buried pipe line continuity inspection means is provided with notification means for notifying that the buried pipe line is in a conductive state when the magnitude of the signal current flowing through the buried pipe line exceeds a predetermined value. .

この発明によれば、埋設配管路を流れる信号電流の大きさが所定値を超えると、告知手段によって埋設配管路が導通状態にあることを知らせることにより、埋設配管路が導通状態にあることを容易に知らせることができる。   According to this invention, when the magnitude of the signal current flowing through the buried pipeline exceeds a predetermined value, the notification means informs that the buried pipeline is in a conductive state, thereby confirming that the buried pipeline is in a conductive state. Can be easily informed.

本発明に係わる埋設管探査装置によれば、埋設配管路から分岐して延びる2本の供給管のそれぞれの露出部のうちのいずれか一方の露出部に信号電流を供給して埋設配管路を流れて他方の露出部に戻る電流の大きさから埋設配管路の導通状態を検査する埋設配管路導通検査手段を備えることによって、埋設配管路管に繋がる探査対象管の探査結果の信頼性を向上させることができる。   According to the buried pipe exploration device according to the present invention, a signal current is supplied to one of the exposed portions of each of the two supply pipes that branch off from the buried pipeline to extend the buried pipeline. Improving the reliability of the exploration result of the pipe to be probed connected to the buried pipe line pipe by providing a buried pipe line continuity inspection means that inspects the continuity state of the buried pipe line from the magnitude of the current flowing back to the other exposed part. Can be made.

以下、本発明に係わる埋設管探査装置の好ましい実施の形態を図1から図5に基づいて説明する。本発明の埋設管探査装置1は、埋設配管路Hに繋がって探査対象である探査対象管に探査電流を流してこれから発生する磁界を捉えるための前提として、埋設配管路Hが導通状態にあるか否かを判断可能な機能を備えたものである。   A preferred embodiment of the buried pipe exploration device according to the present invention will be described below with reference to FIGS. In the buried pipe exploration device 1 of the present invention, the buried pipe H is connected to the buried pipe H, and the buried pipe H is in a conductive state as a premise for capturing a magnetic field generated from the exploration current flowing through the exploration target pipe. It has a function that can determine whether or not.

埋設管探査装置1は、図1に示すように、埋設配管路Hに交流の信号電流を供給する発信装置10と、埋設配管路Hに繋がる探査対象管Mを流れる電流から発生した磁界を検出して知らせる磁界検出装置70とを有してなり、発信装置10が埋設配管路Hの導通状態の有無判断を可能にする機能を備える。このため、磁界検出装置70は本発明の非主要部分であるので、磁界検出装置70については概略のみを説明する。即ち、磁界検出装置70は、地上に設置されて磁界を検出する検出器71と、検出器71で検出された磁界に応じて作動するメータを備えた受信器73とを有してなる。   As shown in FIG. 1, the buried pipe exploration device 1 detects a magnetic field generated from a transmission device 10 that supplies an AC signal current to the buried piping line H and a current flowing through the investigation target pipe M that is connected to the buried piping line H. The transmitter 10 has a function that enables the transmitting device 10 to determine whether or not the buried piping line H is in a conductive state. For this reason, since the magnetic field detection device 70 is a non-essential part of the present invention, only the outline of the magnetic field detection device 70 will be described. That is, the magnetic field detection device 70 includes a detector 71 that is installed on the ground and detects a magnetic field, and a receiver 73 that includes a meter that operates according to the magnetic field detected by the detector 71.

さて、発信装置10は、埋設配管路Hから分岐して延びる2本の供給管Kのそれぞれの露出部Kr、Kr'に大きさ調整された探査電流を供給して探査対象管Mを探査するとともに、前述した埋設配管路Hの導通状態を検査する機能を有する。発信装置10は、図2に示すように、交流の信号電流を発生する発振回路11と、発振回路11から出力された信号電流を所望の大きさに調整して出力する第1電流調整出力回路13及び第2電流調整出力回路14と、2つの露出部Kr、Kr'のうちの一方の露出部(図2ではKr)に信号電流を供給して埋設配管路Hを流れて他方の露出部(図2ではKr')に戻る戻り電流の大きさから埋設配管路Hの導通状態を検査する導通検査回路20と、埋設配管路Hの導通状態を表示するメータ60と、メータ60及び各回路に電力を供給する電源回路65とを有してなる。   The transmitting device 10 searches the pipe M to be searched by supplying a search current whose size is adjusted to the exposed portions Kr and Kr ′ of the two supply pipes K that branch off from the buried pipe H. At the same time, it has a function of inspecting the conduction state of the buried piping line H described above. As shown in FIG. 2, the transmission device 10 includes an oscillation circuit 11 that generates an alternating signal current, and a first current adjustment output circuit that adjusts and outputs the signal current output from the oscillation circuit 11 to a desired magnitude. 13 and the second current adjustment output circuit 14 and one exposed portion (Kr in FIG. 2) of the two exposed portions Kr and Kr ′ to supply a signal current to flow through the buried piping H and the other exposed portion. (Kr ′ in FIG. 2) The continuity inspection circuit 20 for inspecting the continuity state of the buried pipeline H from the magnitude of the return current, the meter 60 for displaying the continuity state of the buried pipeline H, the meter 60, and each circuit And a power supply circuit 65 for supplying electric power.

第1電流調整出力回路13及び第2電流調整出力回路14は手動で調整可能に構成され、メータ60の表示に基づいて第1電流調整出力回路13及び第2電流調整出力回路14を調整することも可能である。このため、第1電流調整出力回路13及び第2電流調整出力回路14の両方から探査電流が出力されない状態にすることができる。   The first current adjustment output circuit 13 and the second current adjustment output circuit 14 are configured to be manually adjustable, and adjust the first current adjustment output circuit 13 and the second current adjustment output circuit 14 based on the display of the meter 60. Is also possible. For this reason, it is possible to make a state where no exploration current is output from both the first current adjustment output circuit 13 and the second current adjustment output circuit 14.

導通検査回路20は、図3に示すように、出力スイッチ21及び入力スイッチ24と導通検査用電源27とを有して構成される。出力スイッチ21の一方側端子21cは出力端子66に電気的に接続され、出力スイッチ21の他方側端子の第1端子21bは第1電流調整出力回路13のプラス側に電気的に接続され、出力スイッチ21の他方側端子の第2端子21aは導通検査用電源27に電気的に接続される。導通検査用電源27はメータ60に電気的に接続され、メータ60は入力スイッチ24の他方側端子の第2端子24aに電気的に接続されている。入力スイッチ24の一方側端子24cは入力端子67に電気的に接続され、入力スイッチ24の他方側端子の第1端子24bは第2電流調整出力回路14のプラス側に電気的に接続されている。   As shown in FIG. 3, the continuity test circuit 20 includes an output switch 21, an input switch 24, and a continuity test power supply 27. One side terminal 21c of the output switch 21 is electrically connected to the output terminal 66, and the first terminal 21b of the other side terminal of the output switch 21 is electrically connected to the plus side of the first current adjustment output circuit 13 for output. The second terminal 21 a of the other terminal of the switch 21 is electrically connected to the continuity test power supply 27. The continuity test power supply 27 is electrically connected to the meter 60, and the meter 60 is electrically connected to the second terminal 24 a of the other terminal of the input switch 24. One terminal 24 c of the input switch 24 is electrically connected to the input terminal 67, and the first terminal 24 b of the other terminal of the input switch 24 is electrically connected to the plus side of the second current adjustment output circuit 14. .

このため、出力スイッチ21のスイッチ部22を第2端子21aに接続し、入力スイッチ24のスイッチ部25を第2端子24aに接続すると、導通検査用電源27から供給される信号電流は、出力スイッチ21→出力端子66→一方側の露出部Kr→埋設配管路H→他方側の露出部Kr'→入力端子67→入力スイッチ24→メータ60へと流れて閉回路を形成する。   For this reason, when the switch part 22 of the output switch 21 is connected to the second terminal 21a and the switch part 25 of the input switch 24 is connected to the second terminal 24a, the signal current supplied from the continuity test power supply 27 is 21 → output terminal 66 → exposed portion Kr on one side → buried piping H → exposed portion Kr ′ on the other side → input terminal 67 → input switch 24 → meter 60 to form a closed circuit.

出力スイッチ21及び入力スイッチ24は、第1電流調整出力回路13及び第2電流調整出力回路14の両方から出力される探査電流がゼロになるように調整されると連動して作動する。なお、これらのスイッチ21、24は、別個に設けた図示しない導通検査スイッチがON作動又はOFF作動すると連動して作動するようにしてもよい。   The output switch 21 and the input switch 24 operate in conjunction with adjustment of the search current output from both the first current adjustment output circuit 13 and the second current adjustment output circuit 14 to be zero. These switches 21 and 24 may be operated in conjunction with a separately provided continuity check switch (not shown) that is turned on or off.

このように、導通検査回路20に出力スイッチ21、入力スイッチ24及び導通検査用電源27を備えることにより、この電源を、導通検査を行うときの専用にすることができ、第1電流調整出力回路13及び第2電流調整出力回路14の出力調整が不要となり、導通検査の作業性を向上させることができる。また導通検査用電源27は、一方の露出部Krに供給する交流の信号電流の周波数を小さくして出力するように設定されている(例えば、約1KHz)。これは、埋設配管路Hに対して塗覆膜が施され、埋設配管路Hの途中の配管が他の別系統の配管と平行に延びている場合、信号電流の周波数を小さくすると、平行に延びる配管と土中との間の静電容量の影響が小さくなって、配管から土中を流れて埋設管探査装置1に戻る電流の大きさを小さくすることができ、その結果として、埋設配管路Hが導通状態にあるか否かの判断の精度を向上させることができるからである。   Thus, by providing the continuity test circuit 20 with the output switch 21, the input switch 24, and the continuity test power supply 27, it is possible to dedicate this power supply when conducting the continuity test. 13 and the output adjustment of the second current adjustment output circuit 14 become unnecessary, and the workability of the continuity test can be improved. The continuity test power supply 27 is set so as to reduce the frequency of the AC signal current supplied to one of the exposed portions Kr (for example, about 1 KHz). This is because, when a coating film is applied to the buried piping line H and the pipe in the middle of the buried piping line H extends in parallel with the pipes of other systems, if the frequency of the signal current is reduced, it is parallel. The influence of the electrostatic capacity between the extending pipe and the soil is reduced, and the magnitude of the current flowing from the pipe through the soil and returning to the buried pipe exploration device 1 can be reduced. As a result, the buried pipe This is because the accuracy of determining whether or not the path H is in a conductive state can be improved.

なお、導通検査回路20は、他方の露出部Kr'に戻される電流のうちの一方の露出部Krに供給された信号電流の位相と同一位相の電流波形を検出するようにして、この検出した電流の大きさに応じてメータ60を作動させると、実際に埋設配管路Hに流れた電流をメータ60に表示させることができ、埋設配管路Hの導通状態のより正確な判断を可能にすることができる。また発信装置10には一対の電流調整出力回路13、14及び導通検査回路20を接地する接地端子68が設けられている。このため、これらの出力回路13、14から出力される信号電流や戻り電流の基準電位が明確になり、戻り電流の大きさを正確に判断することができる。   The continuity test circuit 20 detects the current waveform having the same phase as the phase of the signal current supplied to one of the exposed portions Kr out of the current returned to the other exposed portion Kr ′. When the meter 60 is operated according to the magnitude of the current, the current that has actually flowed through the buried piping line H can be displayed on the meter 60, thereby enabling more accurate determination of the conduction state of the buried piping line H. be able to. Further, the transmitting device 10 is provided with a ground terminal 68 for grounding the pair of current adjustment output circuits 13 and 14 and the continuity test circuit 20. For this reason, the reference potential of the signal current and the return current output from these output circuits 13 and 14 becomes clear, and the magnitude of the return current can be accurately determined.

次に、このように構成された埋設管探査装置1の発信装置10によって埋設配管路Hの導通状態を検査する方法について説明する。先ず、図1に示すように、発信装置10の出力端子66にケーブルCの一方側を接続し、ケーブルCの他方側を埋設配管路Hから分岐して延びる2本の供給管Kの一方の露出部Krに接続する。また発信装置10の入力端子67にケーブルC'の一方側を接続し、このケーブルC'の他方側を他方の露出部Kr'に接続する。さらに、接地端子68に繋いだ接地ケーブルCsを接地する。   Next, a method for inspecting the conduction state of the buried piping line H by the transmitting device 10 of the buried pipe searching device 1 configured as described above will be described. First, as shown in FIG. 1, one side of the cable C is connected to the output terminal 66 of the transmitting device 10, and the other side of the cable C is branched from the buried piping line H to one of the two supply pipes K. Connect to the exposed portion Kr. Further, one side of the cable C ′ is connected to the input terminal 67 of the transmitting device 10, and the other side of the cable C ′ is connected to the other exposed portion Kr ′. Further, the ground cable Cs connected to the ground terminal 68 is grounded.

そして、図2に示すように、発信装置10の電源回路65を駆動させて各回路を作動させる。そして、第1電流調整出力回路13及び第2電流調整出力回路14を調整して、これらの出力回路から出力される信号電流の大きさをゼロにする。そして、信号電流の大きさがゼロになるように第1電流調整出力回路13及び第2電流調整出力回路14が調整されると、図3に示すように、出力スイッチ21及び入力スイッチ24が連動して作動して、導通検査用電源27から信号電流が一方の露出部Krに供給されて、この信号電流は、一方側の露出部Kr→埋設配管路H→他方側の露出部Kr'→入力端子67→入力スイッチ24→メータ60へと流れて閉回路を形成する。   And as shown in FIG. 2, the power supply circuit 65 of the transmitter 10 is driven, and each circuit is operated. Then, the first current adjustment output circuit 13 and the second current adjustment output circuit 14 are adjusted so that the magnitude of the signal current output from these output circuits becomes zero. When the first current adjustment output circuit 13 and the second current adjustment output circuit 14 are adjusted so that the magnitude of the signal current becomes zero, the output switch 21 and the input switch 24 are interlocked as shown in FIG. Then, a signal current is supplied from the power supply 27 for continuity testing to one exposed portion Kr, and this signal current is applied to the exposed portion Kr on one side → the buried piping line H → the exposed portion Kr ′ on the other side. The input terminal 67 → input switch 24 → meter 60 flows to form a closed circuit.

ここで、導通検査回路20は、戻ってきた電流の電流値が所定値の範囲内であれば、メータ60の指針を埋設配管路Hの導通状態を示す領域内に移動させ、電流値が所定値の範囲外であれば、メータ60の指針を非導通状態を示す領域内に移動させる。   Here, if the current value of the returned current is within a predetermined value range, the continuity test circuit 20 moves the pointer of the meter 60 into a region indicating the conductive state of the buried piping line H, and the current value is predetermined. If it is out of the range of the value, the pointer of the meter 60 is moved into a region showing a non-conduction state.

その結果、メータ60の指針によって埋設配管路Hが非導通状態であることが示されると、作業者は埋設配管路Hに繋がる探査対象管Mの探査ができないと判断することができ、メータ60の指針が埋設配管路Hの導通状態を示すと、作業者は探査対象管Mの探査が可能であると判断する。その結果、導通状態にある埋設配管路Hに繋がる探査対象管Mのみを探査対象とすることができる。このため、図1に示すように、発信器10から2つの露出部Kr、Kr'のそれぞれに供給される交流の探査電流を一方に対して他方を相対的に変化させて、埋設配管路H上において電流値がゼロとなる地点Qを、探査対象となる探査対象管Mが埋設配管路Hから分岐する分岐位置Pに近づけて、地上に設置した検出器70によって磁界を検出すると、地点Q、分岐位置P及び探査対象管Mの位置を正確に探査することができ、その結果、探査対象管Mを確実に探査することができる。   As a result, when the indicator of the meter 60 indicates that the buried piping H is in a non-conducting state, the operator can determine that the exploration target pipe M connected to the buried piping H cannot be searched. Indicates that the exploration pipe M can be searched. As a result, only the exploration target pipe M connected to the buried piping path H in the conductive state can be the exploration target. For this reason, as shown in FIG. 1, the alternating exploration current supplied from the transmitter 10 to each of the two exposed portions Kr and Kr ′ is changed relative to one to the other, and the embedded piping H When the magnetic field is detected by the detector 70 installed on the ground, the point Q where the current value becomes zero is brought close to the branch position P where the exploration target pipe M branches from the buried pipe H, and the point Q is detected. In addition, the branch position P and the position of the search target pipe M can be accurately searched, and as a result, the search target pipe M can be reliably searched.

なお、メータ60を、図4に示すように、電流弁別回路40とこれに繋がるランプ41及びブザー43の少なくともいずれかで置き換えてもよい。電流弁別回路40は、図3に示す埋設配管路Hを流れて戻った戻り電流の大きさが所定値を超えると、ランプ41を点灯又は点滅させたり、ブザー43を鳴らしたりするように作動する。このように、ランプ41やブザー43を備えることで、埋設配管路Hの導通状態の告知を容易にするとともに、作業者によって埋設配管路Hが導通状態にあることを容易に認識することができる。なお、埋設配管路Hが導通状態にあるときにランプ41が消灯するようにしてもよい。   As shown in FIG. 4, the meter 60 may be replaced with at least one of a current discriminating circuit 40 and a lamp 41 and a buzzer 43 connected thereto. The current discriminating circuit 40 operates so as to turn on or blink the lamp 41 or sound the buzzer 43 when the magnitude of the return current flowing back through the buried pipe H shown in FIG. 3 exceeds a predetermined value. . Thus, by providing the lamp 41 and the buzzer 43, it is easy to notify the conduction state of the buried piping line H, and the operator can easily recognize that the buried piping line H is in the conduction state. . The lamp 41 may be turned off when the buried piping line H is in a conductive state.

また、図5に示すように、導通検査回路20は、埋設配管路Hの導通検査を行う際に、入力端子67が第1電流調整出力回路13及び第2電流調整出力回路14のマイナス側に電気的に接続されるように構成されてもよい。この導通検査回路20は、前述した電流弁別回路40と入力スイッチ24と接地切換スイッチ30とを有して構成され、信号電流は第1電流調整出力回路13から供給される。   Further, as shown in FIG. 5, when the continuity inspection circuit 20 performs the continuity inspection of the buried piping line H, the input terminal 67 is on the negative side of the first current adjustment output circuit 13 and the second current adjustment output circuit 14. It may be configured to be electrically connected. The continuity test circuit 20 includes the current discriminating circuit 40, the input switch 24, and the ground changeover switch 30, and the signal current is supplied from the first current adjustment output circuit 13.

電流弁別回路40は、第1電流調整出力回路13のプラス側と出力端子66との間に電気的に接続されるとともに、ランプ41及びブザー43の少なくともいずれかが接続される。入力スイッチ24の一方側端子24cは入力端子67に電気的に接続され、入力スイッチ24の他方側端子の第1端子24bは第2電流調整出力回路14のプラス側に電気的に接続され、入力スイッチ24の他方側端子の第2端子24aは接地切換スイッチ30の一方側端子の第2端子30aに電気的に接続されている。また接地切換スイッチ30の一方側端子の第1端子30bは接地端子68に電気的に接続され、接地切換スイッチ30の他方側端子30cは第2電流調整出力回路14のマイナス側に電気的に接続されている。このため、入力スイッチ24のスイッチ部25を第2端子24aに接続し、接地切換スイッチ30のスイッチ部31を第2端子30cに接続すると、第1電流調整出力回路13から出力された信号電流は、電流弁別回路40→出力端子66→一方の露出部Kr→埋設配管路H→他方の露出部Kr'→入力端子67→入力スイッチ24及び接地切換スイッチ30→を流れて第1電流調整出力回路13に戻されて閉回路路を形成する。なお、第1電流調整出力回路13から出力される信号電流は、前述した静電容量の影響を小さくするために小さい周波数に予め設定されている。   The current discriminating circuit 40 is electrically connected between the plus side of the first current adjustment output circuit 13 and the output terminal 66, and at least one of the lamp 41 and the buzzer 43 is connected. One side terminal 24c of the input switch 24 is electrically connected to the input terminal 67, and the first terminal 24b of the other side terminal of the input switch 24 is electrically connected to the plus side of the second current adjustment output circuit 14 for input. The second terminal 24 a of the other side terminal of the switch 24 is electrically connected to the second terminal 30 a of the one side terminal of the ground changeover switch 30. Further, the first terminal 30 b on one side of the ground changeover switch 30 is electrically connected to the ground terminal 68, and the other side terminal 30 c of the ground changeover switch 30 is electrically connected to the negative side of the second current adjustment output circuit 14. Has been. For this reason, when the switch section 25 of the input switch 24 is connected to the second terminal 24a and the switch section 31 of the ground changeover switch 30 is connected to the second terminal 30c, the signal current output from the first current adjustment output circuit 13 is The current discriminating circuit 40 → the output terminal 66 → the one exposed portion Kr → the buried piping H → the other exposed portion Kr ′ → the input terminal 67 → the input switch 24 and the ground switch 30 → 13 is returned to form a closed circuit path. The signal current output from the first current adjustment output circuit 13 is set in advance to a small frequency in order to reduce the influence of the electrostatic capacitance described above.

このように導通検査回路20を構成すると、埋設配管路Hが導通状態である場合には埋設配管路Hの電気抵抗は小さく、且つ電流弁別回路40から埋設配管路Hに流入した信号電流の大きさは埋設配管路Hを流れる過程で殆ど小さくならないので、電流弁別回路40を流れる探査電流の大きさを監視するのみで、埋設配管路Hを流れる電流の大きさを判断することができ、その結果として導通検査回路20の構成を簡素化することができる。   When the continuity inspection circuit 20 is configured in this way, when the buried piping line H is in a conductive state, the electrical resistance of the buried piping line H is small and the magnitude of the signal current flowing into the buried piping line H from the current discriminating circuit 40 is large. Since the height does not become small in the process of flowing through the buried pipeline H, it is possible to determine the magnitude of the current flowing through the buried pipeline H only by monitoring the magnitude of the exploration current flowing through the current discrimination circuit 40. As a result, the configuration of the continuity test circuit 20 can be simplified.

本発明の一実施の形態に係わる埋設管探査装置の使用例を示した概略構成図である。It is the schematic block diagram which showed the usage example of the buried pipe | tube search apparatus concerning one embodiment of this invention. この埋設管探査装置の発信装置のブロック図を示す。The block diagram of the transmitter of this buried pipe exploration device is shown. 発信装置に設けられた導通検査回路の構成図を示す。The block diagram of the continuity test circuit provided in the transmitter is shown. 導通検査回路に繋がる電流弁別回路等を示したブロック図である。It is the block diagram which showed the current discrimination circuit etc. which are connected to a continuity test circuit. 発信装置に設けられた他の導通検査回路の構成図を示す。The block diagram of the other continuity test circuit provided in the transmitter is shown. 従来の埋設管探査装置の使用例を示した概略構成図である。It is the schematic block diagram which showed the usage example of the conventional buried pipe | tube search apparatus.

符号の説明Explanation of symbols

1 埋設管探査装置
10 発信装置(発信器)
13 第1電流調整出力回路(第1電流調整手段)
14 第2電流調整出力回路(第2電流調整手段)
20 導通検査回路(埋設配管路導通検査手段)
27 導通検査用電源(電源)
41 ランプ(告知手段)
43 ブザー(告知手段)
H 埋設配管路
K 供給管
Kr、Kr' 露出部
M 探査対象管
1 Buried pipe exploration device 10 Transmitting device (transmitter)
13 First current adjustment output circuit (first current adjustment means)
14 Second current adjustment output circuit (second current adjustment means)
20 Continuity inspection circuit (Built-in pipe line continuity inspection means)
27 Power supply for continuity test (power supply)
41 Lamp (notification means)
43 Buzzer (notification means)
H buried pipe K supply pipe Kr, Kr 'exposed part M exploration target pipe

Claims (5)

埋設配管路から分岐して延びる2本の供給管のそれぞれの露出部に発信器からの信号電流を大きさ調整可能に供給し、前記埋設配管路に繋がる検査対象管に流れる電流によって発生する磁界を検出することにより、前記検査対象管を探査する埋設管探査装置において、
前記発信器は、
前記2本の供給管の一方の露出部に接続される端子と接地端子との間に接続可能で、前記一方の露出部に信号電流を大きさ調整可能に供給する第1電流調整手段と、
前記2本の供給管の他方の露出部に接続される端子と接地端子との間に接続可能で、前記他方の露出部に信号電流を大きさ調整可能に供給する第2電流調整手段と、
前記2本の供給管の一方の露出部に接続される端子から信号電流を供給して前記埋設配管路を流れて前記2本の供給管の他方の露出部に接続される端子に戻る電流の大きさから該埋設配管路の導通状態を検査する埋設配管路導通検査手段とを備え、
前記埋設配管路導通検査手段は、前記2本の供給管の一方の露出部に接続される端子に前記第1電流調整手段を接続すると共に前記2本の供給管の他方の露出部に接続される端子に前記第2電流調整手段を接続する第1の状態と、前記2本の供給管の一方の露出部に接続される端子と前記2本の供給管の他方の露出部に接続される端子との間に通電検査用の電源を接続する第2の状態とを切り替えるスイッチを備えることを特徴とする埋設管探査装置。
A magnetic field generated by supplying a signal current from the transmitter to each exposed portion of the two supply pipes branched and extending from the buried piping path so that the magnitude of the signal current can be adjusted, and flowing through the inspection target pipe connected to the buried piping path. In the buried pipe exploration device for exploring the inspection target pipe by detecting
The transmitter is
A first current adjusting means connectable between a terminal connected to one exposed portion of the two supply pipes and a ground terminal, and supplying a signal current to the one exposed portion so as to be adjustable in magnitude;
A second current adjusting means connectable between a terminal connected to the other exposed portion of the two supply pipes and a ground terminal, and supplying a signal current to the other exposed portion so as to be adjustable in magnitude;
A signal current is supplied from a terminal connected to one exposed portion of the two supply pipes, flows through the buried piping path, and returns to a terminal connected to the other exposed portion of the two supply pipes. An embedded pipe line conduction inspection means for inspecting the conduction state of the buried pipe line from the size,
The buried pipeline continuity inspection means connects the first current adjusting means to a terminal connected to one exposed portion of the two supply pipes and is connected to the other exposed portion of the two supply pipes. A first state in which the second current adjusting means is connected to a terminal, a terminal connected to one exposed portion of the two supply pipes, and a second exposed portion of the two supply pipes. A buried pipe exploration device comprising a switch for switching between a second state in which a power supply for energization inspection is connected to a terminal.
前記埋設配管路導通検査手段は、前記一方の露出部に前記信号電流を供給する電源を備えることを特徴とする請求項1に記載の埋設管探査装置。 The buried pipe exploration device according to claim 1, wherein the buried pipe line continuity inspection means includes a power source that supplies the signal current to the one exposed portion . 前記埋設配管路通電検査手段によって前記一方の露出部に供給される信号電流は交流であることを特徴とする請求項1又は2に記載の埋設管探査装置。 3. The buried pipe exploration device according to claim 1, wherein the signal current supplied to the one exposed portion by the buried pipe line energization inspection means is an alternating current . 前記埋設配管路通電検査手段は、前記一方の露出部に供給する交流の信号電流を周波数調整可能に供給することを特徴とする請求項3に記載の埋設管探査装置。 4. The buried pipe exploration device according to claim 3, wherein the buried pipe line energization inspection means supplies an AC signal current supplied to the one exposed portion so that the frequency can be adjusted . 前記埋設配管路導通検査手段に、前記埋設配管路を流れる信号電流の大きさが所定値を超えると、前記埋設配管路が導通状態にあることを知らせる告知手段を設けることを特徴とする請求項1〜4のいずれかに記載の埋設管探査装置。 The embedded pipe line continuity inspection means is provided with notification means for notifying that the buried pipe line is in a conductive state when the magnitude of a signal current flowing through the buried pipe line exceeds a predetermined value. The buried pipe exploration device according to any one of 1 to 4 .
JP2004332153A 2004-11-16 2004-11-16 Underground pipe exploration equipment Expired - Fee Related JP4351985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004332153A JP4351985B2 (en) 2004-11-16 2004-11-16 Underground pipe exploration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004332153A JP4351985B2 (en) 2004-11-16 2004-11-16 Underground pipe exploration equipment

Publications (2)

Publication Number Publication Date
JP2006145249A JP2006145249A (en) 2006-06-08
JP4351985B2 true JP4351985B2 (en) 2009-10-28

Family

ID=36625130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004332153A Expired - Fee Related JP4351985B2 (en) 2004-11-16 2004-11-16 Underground pipe exploration equipment

Country Status (1)

Country Link
JP (1) JP4351985B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103336307B (en) * 2013-06-25 2016-08-24 杭州展悦科技有限公司 A kind of big electric current low frequency transmitter

Also Published As

Publication number Publication date
JP2006145249A (en) 2006-06-08

Similar Documents

Publication Publication Date Title
AU2019232858B2 (en) Mobile electric leakage detection device and method
EP0825456A2 (en) Detecting the condition of a concealed object
CA2941016C (en) Detection method and detection device of buried metal
CN101782621A (en) Method and device for judging fault point locations in cable protective layer fault detection
US6940289B2 (en) Method and apparatus for tracing a line
JP5192706B2 (en) Ground fault point search device and ground fault point search method using the same
CN110346679A (en) A kind of high-voltage cable joint metallic earthing failure Fast Fixed-point method
CN100510764C (en) Method and device for searching fault point of electric wire and cable
JP4351985B2 (en) Underground pipe exploration equipment
RU160147U1 (en) DEVICE FOR FINDING DAMAGES OF INSULATION OF UNDERGROUND PIPELINES AND EXTENDED ANODE EARTHING
JP3009144B1 (en) Electric power cable detecting device and method for determining dead line of electric power cable using the same
US20220075006A1 (en) Mobile electric leakage detection device and method
JP2002048875A (en) Burying position detection system and reception device for the same
JPH08145934A (en) Monitoring method and device for damage degree of clad steel pipe
JPH09101335A (en) Current route searching method for wire
RU2400779C1 (en) Method of searching for damages in underground pipe insulation
KR100996735B1 (en) Integrated Earth Leakage Detection System for Street Light Load Line
SU938214A1 (en) Device for locating damage of pipe-line insulation
JPH06160456A (en) Non-contact circuit route inspection device
JP2000091992A (en) Method and device for searching optical cable fault
JP2005024434A (en) Leak location survey system
SE436523B (en) Procedure and device for localizing faults, principally insulation faults in metal-sheathed or screened cable

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070209

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071022

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090727

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351985

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees