JP4351440B2 - Novel sulfonium salt compound, production method thereof and use thereof - Google Patents

Novel sulfonium salt compound, production method thereof and use thereof Download PDF

Info

Publication number
JP4351440B2
JP4351440B2 JP2002361804A JP2002361804A JP4351440B2 JP 4351440 B2 JP4351440 B2 JP 4351440B2 JP 2002361804 A JP2002361804 A JP 2002361804A JP 2002361804 A JP2002361804 A JP 2002361804A JP 4351440 B2 JP4351440 B2 JP 4351440B2
Authority
JP
Japan
Prior art keywords
naphthoylmethyltetramethylenesulfonium
formula
salt compound
salt
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002361804A
Other languages
Japanese (ja)
Other versions
JP2003246786A (en
Inventor
亮三 宮重
雄二 田中
利宏 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kasei Kogyo Co Ltd
Original Assignee
Toyo Kasei Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kasei Kogyo Co Ltd filed Critical Toyo Kasei Kogyo Co Ltd
Priority to JP2002361804A priority Critical patent/JP4351440B2/en
Publication of JP2003246786A publication Critical patent/JP2003246786A/en
Application granted granted Critical
Publication of JP4351440B2 publication Critical patent/JP4351440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 2-naphthoylmethyltetramethylenesulfonium salt which prevents the surrounding environment from being polluted or badly influenced by an anion-derived acidic substance generated by light radiation; and a method for manufacturing the same. <P>SOLUTION: The 2-naphthoylmethyltetramethylenesulfonium salt compound represented by formula (1) (wherein n is an integer of 1-5) and useful as a photoinduced acid generator is provided. The method for manufacturing the salt compound comprises subjecting 2-naphthoylmethyltetramethylenesulfonium bromide to salt exchange with a sulfonimide ammonium represented by the formula (2): (C<SB>n</SB>F<SB>2n+1</SB>SO<SB>2</SB>)<SB>2</SB>N<SP>-</SP>NH<SB>4</SB><SP>+</SP>. <P>COPYRIGHT: (C)2003,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、光酸発生剤として使用される可能性を有する新規なスルホニウム塩化合物に関し、光画像形成(フォトレジスト、印刷版等)、光硬化、光接着等の分野での使用に期待される新規なスルホニウム塩化合物に関する。
【0002】
【従来の技術】
光照射により酸を発生する化合物(以下、光酸発生剤という)として、2−ナフトイルメチルテトラメチレンスルホニウム塩タイプのものがあり、このタイプのアニオンとしては、Br-、CF3SO3 -、SbF6 -、BF4 -等の種々のアニオンが知られている(例えば、特許文献1〜6および非特許文献1参照)。
【0003】
このタイプの光酸発生剤は、光照射により分解してアニオン由来の酸性物質を発生し、この酸性物質が種々の感光材料(フォトポリマー材料)の反応に寄与する。この反応を促進させるために加熱される(120〜200℃程度)ことが一般的である。
【0004】
しかし、アニオンが上記のようなBr-、CF3SO3 -、SbF6 -、BF4 -であると、発生する酸性物質は反応性が非常に高すぎるため、加熱により揮発したこれらの酸性物質が、周辺環境を汚染したり悪影響を与えるという懸念がある。
【0005】
【特許文献1】
特開2000−292917号公報(第9欄の化10)
【特許文献2】
特開平9−243870号公報(第8欄25−26行目)
【特許文献3】
特開平11−80314号公報(第9頁)
【特許文献4】
特開平3−154059号公報(第8頁左上欄)
【特許文献5】
特許第3046574号公報(第27欄の化19)
【特許文献6】
特許第3177173号公報(第11頁の図8)
【非特許文献1】
「ジャパニーズ・ジャーナル・オブ・アプライド・フィジックス」(Jap.J.Appl.Phys.)、1990年、第29巻、No.11、p.2632−2637
【0006】
【発明が解決しようとする課題】
本発明は、上記の点を解決しようとするものであり、その目的は、光照射により発生するアニオン由来の酸性物質により、周辺環境が汚染されたり悪影響を被ることがない、光酸発生剤として有用な2−ナフトイルメチルテトラメチレンスルホニウム塩を提供すること、並びにその製造方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者は、上記課題を達成するために、光酸発生剤として設計するに当たり、2−ナフトイルメチルテトラメチレンスルホニウム塩タイプのアニオンについて種々検討し、アニオンをビス(パーフルオロアルキルスルホニル)イミドアニオン[(Cn2n+1SO22-]とすることにより、光照射により発生する酸性物質の反応性が適度に抑えられ、よって、周辺環境の汚染や悪影響を抑制できることを見出し、本発明を完成するに至った。アニオンがこのようなビス(パーフルオロアルキルスルホニル)イミドアニオンである2−ナフトイルメチルテトラメチレンスルホニウム塩化合物は、現在まで知られてない全く新規な化合物である。
【0008】
即ち、本発明は、式(1)
【0009】
【化5】

Figure 0004351440
【0010】
(式中、nは1〜5の整数を表す)
で表される2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(以下、2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)ともいう)である。
【0011】
また、本発明は、2−ナフトイルメチルテトラメチレンスルホニウムブロマイドを式(2)
【0012】
【化6】
Figure 0004351440
【0013】
(式中、nは1〜5の整数を表す)
で表されるスルホンイミドアンモニウム(以下、スルホンイミドアンモニウム(2)ともいう)と塩交換する、2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)の製造方法である。
【0014】
さらに、本発明は、2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)である光酸発生剤である。
【0015】
【発明の実施の形態】
以下、本発明を詳細に説明する。上記式(1)および式(2)におけるnは1〜5の整数であり、好ましくは1〜4の整数である。Cn2n+1部は、直鎖状であっても分岐鎖状であってもよく、具体的には、トリフルオロメチル、ペンタフルオロエチル、n−ヘプタフルオロプロピル、n−ノナフルオロブチル、n−ウンデカフルオロペンチル等が挙げられる。上記式(1)および式(2)には、2つのCn2n+1部があるが、これらは同一であっても異なっていてもよい。なお、Cn2n+1部に不斉炭素原子が存在する場合、本発明では、2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)には、ラセミ体、R体、S体のいずれもが包含される。
【0016】
2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)は、2−ナフトイルメチルテトラメチレンスルホニウムブロマイドをスルホンイミドアンモニウム(2)と塩交換することにより製造される。
【0017】
出発原料となる2−ナフトイルメチルテトラメチレンスルホニウムブロマイドとスルホンイミドアンモニウム(2)は共に公知化合物であり、市販のものが使用される。なお、スルホンイミドアンモニウム(2)は水溶液の形態で使用するのが簡便である。
【0018】
上記原料化合物の使用割合は、2−ナフトイルメチルテトラメチレンスルホニウムブロマイド1モルに対し、スルホンイミドアンモニウム(2)は、好ましくは1.0〜1.5モルの範囲、より好ましくは1.1モルである。
【0019】
塩交換反応は、溶媒の存在下、2−ナフトイルメチルテトラメチレンスルホニウムブロマイドにスルホンイミドアンモニウム(2)の水溶液を添加するか、スルホンイミドアンモニウム(2)の水溶液に2−ナフトイルメチルテトラメチレンスルホニウムブロマイドを添加するか、あるいはこれらを同時に添加することにより行われ得るが、本発明ではいずれであってもよい。
【0020】
塩交換反応で使用される溶媒としては、水と、ジクロロメタン、クロロホルム等のハロゲン系;メチルエチルケトン、メチルイソブチルケトン等のケトン系等の有機溶媒とが併用される。2−ナフトイルメチルテトラメチレンスルホニウムブロマイドの溶解性を考慮すると、有機溶媒としては、ジクロロメタン、クロロホルム等のハロゲン系溶媒が好適である。
【0021】
2−ナフトイルメチルテトラメチレンスルホニウムブロマイドと水とハロゲン系溶媒の使用割合は、重量比で、2−ナフトイルメチルテトラメチレンスルホニウムブロマイド:水:ハロゲン系溶媒が、好ましくは1:3〜4:10〜20の範囲、より好ましくは1:4:14である。なお、上記割合中には、スルホンイミドアンモニウム(2)の水溶液中の水も含まれる。
【0022】
塩交換における反応温度は、好ましくは20〜35℃の範囲内であり、より好ましくは生成物である2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)が析出しない30〜35℃である。
【0023】
塩交換における反応時間は、反応温度にもよるが、この反応は速やかに平衡状態に達するので、3時間程度で充分である。
【0024】
反応終了後の反応液には、未反応の2−ナフトイルメチルテトラメチレンスルホニウムブロマイドがある程度残っている。塩交換を完全に行なう場合には、分液した後の有機層に、スルホンイミドアンモニウム(2)および水を添加して、再び塩交換反応を行なう。この場合のスルホンイミドアンモニウム(2)の添加量は、好ましくは初回仕込量の0.1〜1.0倍量の範囲、より好ましくは0.1〜0.2倍量である。また、水の添加量は、重量で、好ましくは2−ナフトイルメチルテトラメチレンスルホニウムブロマイドの初回仕込み量の1〜4倍、より好ましくは2〜3倍である。塩交換を完全に行なうには、上記の繰り返し操作を少なくとも2回、好ましくは3回以上行う。
【0025】
反応終了後、生成物である2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)の単離は、分液後、有機層を水で洗浄し、有機溶媒を減圧留去し、得られた固形物をエタノールに溶解し、熱による溶解度差を利用して晶析し分離することにより行われる。精製は、エタノールで熱により再結晶することにより行われる。
【0026】
このようにして得られた新規な2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)は、光酸発生剤としての機能を有する。このことは、この化合物が2−ナフトイルメチルテトラメチレンスルホニウム塩タイプであるので、光照射によりアニオン由来の酸性物質を発生する(参照:「イメージング用有機材料」76頁、有機エレクトロニクス材料研究会編)こと、並びにアニオンがビス(パーフルオロアルキルスルホニル)イミドアニオン[(Cn2n+1SO22-]であるので、発生する酸性物質はビス(パーフルオロアルキルスルホニル)イミド[(Cn2n+1SO22NH]であり、これはプロトン供与体であること、から明らかである。
【0027】
上記化合物の照射に使用される光としては、436nm以下の波長を有する光であり、好ましくは、KrF(248nm)エキシマレーザー、ArF(193nm)エキシマレーザー、F2(157nm)エキシマレーザー等が例示される。
【0028】
本発明の2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)においては、光照射により発生するビス(パーフルオロアルキルスルホニル)イミドは、プロトン供与体としての反応性は有するものの、その反応性は、トリフルオロメタンスルホン酸等の反応性が非常に高い酸と比較して適度に抑えられているため、周辺環境を汚染したり悪影響を与えることも殆どない。従って、光酸発生剤として非常に有用なものとなり得る。
【0029】
本発明の2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)は、光酸発生剤として、光画像形成(フォトレジスト、印刷版等)、光硬化、光接着等の分野において、種々の感光材料(フォトポリマー材料)に適用できる。また、本発明の2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)は、ArF(193nm)光に対する吸収が少なく光透過性に優れていることから、フォトレジスト用として特に好適であると期待できる。
【0030】
【実施例】
以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるもではない。
【0031】
実施例1
反応容器(500mL四つ口フラスコ)に2−ナフトイルメチルテトラメチレンスルホニウムブロマイド15.0g(0.044mol)、ジクロロメタン270gおよびビス(ペンタフルオロエタンスルホン)イミドアンモニウム水溶液(濃度:6.52×10-4mol/g)78.0g(0.051mol)を仕込み、室温下3時間攪拌した。攪拌後、静置し分液して水層を除去した。得られた有機層を再度反応容器に仕込み、蒸留水20gとビス(ペンタフルオロエタンスルホン)イミドアンモニウム水溶液(濃度:6.52×10-4mol/g)15.0g(0.01mol)を加え3時間攪拌した。攪拌後、静置し分液して水層を除去した。この繰り返し操作を4回行なった。その後、分離した有機層を40gの蒸留水で3回洗浄し、次いで、減圧濃縮してジクロロメタンを除去した。得られた固形物27gにエタノール70gを加え加熱溶解した後、攪拌下、緩やかに冷却して晶析を行い、濾過にて結晶を単離した。乾燥後、24.1gの2−ナフトイルメチルテトラメチレンスルホニウムビス(ペンタフルオロエタンスルホニル)イミドを得た。収率85%であった。
【0032】
1H−NMR(500MHz,CD3OD) δppm
2.32−2.37(m,2H),2.40−2.46(m,2H),
3.296−3.303(m,2H),3.57−3.62(m,2H),
7.63−7.66(m,1H),7.69−7.72(m,1H),
7.97−8.09(m,4H),8.66(s,1H)
【0033】
IR(KBr錠剤法) νmax(cm-1
2970(s),1670(s),1626(m),1597(m),
1472(m),1339(s),1225(s),1169(s),
1140(s),1080(m),993(m),976(s),
822(m),754(m),673(m),658(m),
643(m),599(s),513(s),476(m)
【0034】
Figure 0004351440
【0035】
熱分析(DTA測定:5℃/minで昇温)
吸熱ピーク 118.6℃
吸熱ピーク 243.6℃(重量減少78%)
【0036】
モル吸光係数(溶媒:アセトニトリル 測定装置:島津UV−1600)
248nm:40000
193nm:0
【0037】
<光酸発生率の測定>
1.NTS−PFESIのみの光分解実験
実施例1で得られた2−ナフトイルメチルテトラメチレンスルホニウムビス(ペンタフルオロエタンスルホニル)イミド(Mw:637.52 以下、NTS−PFESIともいう)約12.0mgを秤量し(実測値11.66mg)、アセトニトリルを加えて25mlにメスアップした(A液:11.66mg/25ml)。このA液を4mlとり、アセトニトリルを加えて10mlにメスアップした(B液)。このB液を2mlとり、アセトニトリルを加えて10mlにメスアップした(C液)。このC液を4mlとり、アセトニトリルを加えて10mlにメスアップした(D液)。このD液を2mlとり、アセトニトリルを加えて10mlにメスアップした(E液)。これらのA〜E液について、それぞれ、底辺1cm×1cmのセルに3mlを入れて、吸光度(Abs 上限2下限0)を測定し、この吸光度のピークトップが0.8〜1.5の範囲内となるサンプルを選定したところ、D液の吸光度が1.063(254nm)であった(C液は2.791、E液は0.2)。このD液の時間毎の吸光度の変化を図1に、254nmにおける吸光度を表1に示す。
【0038】
【表1】
Figure 0004351440
【0039】
254nmにおける吸光度より、照射時間t(秒 横軸)における吸収エネルギーlo(1−10-A)(縦軸)のグラフを作成した。ここで、Aは照射時間t(秒)における吸光度、10-Aは透過率、loは光源の照射エネルギーである。次いで、このグラフを用いて、以下の式より、吸収エネルギーEAbs(mJ/cm2)を求めた。
【0040】
【数1】
Figure 0004351440
【0041】
次いで、この吸収エネルギーEAbsを、254nmの波長の光子1molのエネルギー(mJ/mol)で割って、mol/cm2に換算した。なお、ここで求めたlo(1−10-A)、EAbs(mJ/cm2)およびEAbs(mol/cm2)を表2に示す。
【0042】
2.NTS−PFESI+TBPBNaの光分解実験
酸発生量を同定する試薬である、以下の構造のテトラブロモフェノールブルー・ナトリウム塩(Mw:1007.58 以下、TBPBNaともいう)19.23mgを秤量し、アセトニトリルを加えて10mlにメスアップした。次いでこの溶液を2mlとり、アセトニトリルを加えて50mlにメスアップしてTBPBNa溶液を調製した(7.63×10-5mol/l)。
【0043】
【化7】
Figure 0004351440
【0044】
セル(底辺1cm×1cm)に、上記のNTS−PFESI溶液(D液)4mlを入れて、254nmの光を5分、10分、15分、20分照射した。照射後、セル中のNTS−PFESI溶液を3mlとり、これと、上記で調製したTBPBNa溶液4mlとを合わせ、アセトニトリルを加えて10mlにメスアップした。この溶液をセル(底辺1cm×1cm)に入れて、500〜700nmの範囲で時間毎の吸光度を変化を測定した。その結果を図2に示す。また、618nmにおける吸光度を表2に示す。618nmにおける吸光度より、照射時間t(秒 横軸)における吸光度の減少割合(1−At/A0)(縦軸)のグラフを作成した。ここで、Atは照射時間t(秒)における吸光度、A0は照射時間0(秒)における吸光度である。
【0045】
3.検量線の作成
TBPBNa溶液(アセトニトリル溶液 TBPBMNa実濃度4.96×10-4mol/L)とp−トルエンスルホン酸溶液(アセトニトリル溶液 濃度2×10-5〜1×10-7mol/Lの範囲 1水和物を使用)を使用して、618nmでの、p−トルエンスルホン酸濃度([Acid] 横軸)における照射時間t(秒)の吸光度の減少割合(1−At/A0)(縦軸)の検量線を予め作成した。ここでも、Atは照射時間t(秒)における吸光度、A0は照射時間0(秒)における吸光度である。
【0046】
4.酸発生率の算出
上記で求めたNTS−PFESI+TBPBNa溶液についての吸光度の減少割合(1−At/A0)から、この検量線を用いて[Acid]を求めた。この値は、NTS−PFESIから発生した酸[ビス(パーフルオロアルキルスルホニル)イミド]の濃度を、間接的な指標として、p−トルエンスルホン酸濃度に置き換えたものである。その値を表2に示す。
【0047】
【表2】
Figure 0004351440
【0048】
Abs(mol/cm2)を横軸に[Acid]を縦軸にグラフを作成し、初期の傾きを求めて1/1000倍すると、酸発生率が求められる。NTS−PFESIの酸発生率(Φ)は0.0026であった。
【0049】
【発明の効果】
以上の説明で明らかなように、本発明の新規な2−ナフトイルメチルテトラメチレンスルホニウム塩化合物(1)は、光酸発生剤としての機能を有し、かつ発生するビス(パーフルオロアルキルスルホニル)イミドは反応性が適度に抑えられているので、周辺環境を汚染したり悪影響を与えることも殆どない。従って、光酸発生剤として非常に有用なものとなり得、光画像形成(フォトレジスト、印刷版等)、光硬化、光接着等の分野での使用に期待できる。
【図面の簡単な説明】
【図1】NTS−PFESI溶液の時間毎の吸光度の変化を示すグラフである。
【図2】NTS−PFESI+TBPBNa溶液の時間毎の吸光度の変化を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel sulfonium salt compound having a possibility of being used as a photoacid generator, and is expected to be used in fields such as photoimage formation (photoresist, printing plate, etc.), photocuring, photoadhesion and the like. The present invention relates to a novel sulfonium salt compound.
[0002]
[Prior art]
As a compound that generates an acid by light irradiation (hereinafter referred to as a photoacid generator), there is a 2-naphthoylmethyltetramethylenesulfonium salt type, and as this type of anion, Br , CF 3 SO 3 , Various anions such as SbF 6 and BF 4 are known (see, for example, Patent Documents 1 to 6 and Non-Patent Document 1).
[0003]
This type of photoacid generator is decomposed by light irradiation to generate an anion-derived acidic substance, and this acidic substance contributes to reactions of various photosensitive materials (photopolymer materials). In order to promote this reaction, it is common to heat (about 120-200 degreeC).
[0004]
However, if the anion is Br , CF 3 SO 3 , SbF 6 , or BF 4 as described above, the generated acidic substances are too reactive, and these acidic substances volatilized by heating. However, there are concerns that it will pollute and adversely affect the surrounding environment.
[0005]
[Patent Document 1]
JP 2000-292917 A (Chemical column 10)
[Patent Document 2]
JP-A-9-243870 (column 8, lines 25-26)
[Patent Document 3]
JP 11-80314 A (page 9)
[Patent Document 4]
JP-A-3-154059 (the upper left column on page 8)
[Patent Document 5]
Japanese Patent No. 3046574 (Chem. 19 in column 27)
[Patent Document 6]
Japanese Patent No. 3177173 (FIG. 8 on page 11)
[Non-Patent Document 1]
“Japanese Journal of Applied Physics” (Jap. J. Appl. Phys.), 1990, Vol. 11, p. 2632-2737
[0006]
[Problems to be solved by the invention]
The present invention is intended to solve the above-mentioned points, and its purpose is as a photoacid generator that does not contaminate or adversely affect the surrounding environment by an anion-derived acidic substance generated by light irradiation. It is to provide a useful 2-naphthoylmethyltetramethylenesulfonium salt and to provide a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventor has studied various anions of 2-naphthoylmethyltetramethylenesulfonium salt type in designing as a photoacid generator, and the anion is a bis (perfluoroalkylsulfonyl) imide anion. It has been found that by setting [(C n F 2n + 1 SO 2 ) 2 N ], the reactivity of acidic substances generated by light irradiation can be moderately suppressed, and therefore, contamination and adverse effects of the surrounding environment can be suppressed. The present invention has been completed. A 2-naphthoylmethyltetramethylenesulfonium salt compound in which the anion is such a bis (perfluoroalkylsulfonyl) imide anion is a completely new compound that has not been known so far.
[0008]
That is, the present invention provides the formula (1)
[0009]
[Chemical formula 5]
Figure 0004351440
[0010]
(In the formula, n represents an integer of 1 to 5)
2-naphthoylmethyltetramethylenesulfonium salt compound (hereinafter also referred to as 2-naphthoylmethyltetramethylenesulfonium salt compound (1)).
[0011]
The present invention also provides 2-naphthoylmethyltetramethylenesulfonium bromide represented by the formula (2)
[0012]
[Chemical 6]
Figure 0004351440
[0013]
(In the formula, n represents an integer of 1 to 5)
Is a method for producing 2-naphthoylmethyltetramethylenesulfonium salt compound (1), which undergoes salt exchange with sulfonimide ammonium (hereinafter also referred to as sulfonimide ammonium (2)).
[0014]
Furthermore, the present invention is a photoacid generator that is a 2-naphthoylmethyltetramethylenesulfonium salt compound (1).
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail. N in the said Formula (1) and Formula (2) is an integer of 1-5, Preferably it is an integer of 1-4. The C n F 2n + 1 part may be linear or branched, and specifically includes trifluoromethyl, pentafluoroethyl, n-heptafluoropropyl, n-nonafluorobutyl, n-undecafluoropentyl etc. are mentioned. In the above formulas (1) and (2), there are two C n F 2n + 1 parts, which may be the same or different. In addition, when an asymmetric carbon atom is present in the C n F 2n + 1 part, in the present invention, the 2-naphthoylmethyltetramethylenesulfonium salt compound (1) includes any of a racemate, an R isomer, and an S isomer. Is included.
[0016]
The 2-naphthoylmethyltetramethylenesulfonium salt compound (1) is produced by salt exchange of 2-naphthoylmethyltetramethylenesulfonium bromide with sulfonimide ammonium (2).
[0017]
Both 2-naphthoylmethyltetramethylenesulfonium bromide and sulfonimide ammonium (2) as starting materials are known compounds, and commercially available ones are used. In addition, it is easy to use sulfonimide ammonium (2) in the form of aqueous solution.
[0018]
The proportion of the raw material compound used is preferably in the range of 1.0 to 1.5 mol, more preferably 1.1 mol of sulfonimide ammonium (2) with respect to 1 mol of 2-naphthoylmethyltetramethylenesulfonium bromide. It is.
[0019]
In the salt exchange reaction, an aqueous solution of sulfonimide ammonium (2) is added to 2-naphthoylmethyltetramethylenesulfonium bromide in the presence of a solvent, or 2-naphthoylmethyltetramethylenesulfonium is added to an aqueous solution of sulfonimide ammonium (2). Although it can be carried out by adding bromide or by adding these simultaneously, any may be used in the present invention.
[0020]
As a solvent used in the salt exchange reaction, water and a halogen-based organic solvent such as dichloromethane and chloroform; a ketone-based organic solvent such as methyl ethyl ketone and methyl isobutyl ketone are used in combination. Considering the solubility of 2-naphthoylmethyltetramethylenesulfonium bromide, the organic solvent is preferably a halogen solvent such as dichloromethane or chloroform.
[0021]
The ratio of 2-naphthoylmethyltetramethylenesulfonium bromide, water, and halogen-based solvent used is a weight ratio of 2-naphthoylmethyltetramethylenesulfonium bromide: water: halogen-based solvent, preferably 1: 3 to 4:10. A range of ˜20, more preferably 1: 4: 14. In addition, in the said ratio, the water in the aqueous solution of sulfonimide ammonium (2) is also contained.
[0022]
The reaction temperature in the salt exchange is preferably in the range of 20 to 35 ° C., more preferably 30 to 35 ° C. at which the product 2-naphthoylmethyltetramethylenesulfonium salt compound (1) does not precipitate.
[0023]
Although the reaction time in the salt exchange depends on the reaction temperature, since this reaction quickly reaches an equilibrium state, about 3 hours is sufficient.
[0024]
In the reaction solution after completion of the reaction, unreacted 2-naphthoylmethyltetramethylenesulfonium bromide remains to some extent. When the salt exchange is completely performed, sulfonimide ammonium (2) and water are added to the organic layer after the liquid separation, and the salt exchange reaction is performed again. In this case, the amount of sulfonimide ammonium (2) added is preferably in the range of 0.1 to 1.0 times the initial charge, and more preferably 0.1 to 0.2 times. The amount of water added is preferably 1 to 4 times, more preferably 2 to 3 times the initial charge of 2-naphthoylmethyltetramethylenesulfonium bromide, by weight. In order to complete the salt exchange, the above repeating operation is performed at least twice, preferably 3 times or more.
[0025]
After completion of the reaction, the product 2-naphthoylmethyltetramethylenesulfonium salt compound (1) is isolated. After separation, the organic layer is washed with water, the organic solvent is distilled off under reduced pressure, and the resulting solid is obtained. The product is dissolved in ethanol and crystallized and separated using the difference in solubility due to heat. Purification is performed by recrystallization from ethanol with heat.
[0026]
The novel 2-naphthoylmethyltetramethylenesulfonium salt compound (1) thus obtained has a function as a photoacid generator. This is because this compound is of the 2-naphthoylmethyltetramethylenesulfonium salt type, so that it generates an anion-derived acidic substance by light irradiation (see “Organic Materials for Imaging” on page 76, edited by Organic Electronics Materials Research Group). ), And the anion is a bis (perfluoroalkylsulfonyl) imide anion [(C n F 2n + 1 SO 2 ) 2 N ], the generated acidic substance is bis (perfluoroalkylsulfonyl) imide [(C n F 2n + 1 SO 2 ) 2 NH], which is evident from being a proton donor.
[0027]
The light used for the irradiation of the compound is light having a wavelength of 436 nm or less, and preferably KrF (248 nm) excimer laser, ArF (193 nm) excimer laser, F 2 (157 nm) excimer laser, etc. The
[0028]
In the 2-naphthoylmethyltetramethylenesulfonium salt compound (1) of the present invention, bis (perfluoroalkylsulfonyl) imide generated by light irradiation has reactivity as a proton donor, but the reactivity is Since it is moderately suppressed as compared with a highly reactive acid such as trifluoromethanesulfonic acid, the surrounding environment is hardly contaminated or adversely affected. Therefore, it can be very useful as a photoacid generator.
[0029]
The 2-naphthoylmethyltetramethylenesulfonium salt compound (1) of the present invention is used as a photoacid generator in various fields such as photoimage formation (photoresist, printing plate, etc.), photocuring, photoadhesion and the like. (Photopolymer material). Further, the 2-naphthoylmethyltetramethylenesulfonium salt compound (1) of the present invention is expected to be particularly suitable for a photoresist because it has little absorption with respect to ArF (193 nm) light and is excellent in light transmittance. .
[0030]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to these Examples.
[0031]
Example 1
In a reaction vessel (500 mL four-necked flask), 15.0 g (0.044 mol) of 2-naphthoylmethyltetramethylenesulfonium bromide, 270 g of dichloromethane and an aqueous solution of bis (pentafluoroethanesulfone) imidoammonium (concentration: 6.52 × 10 − 4 mol / g) 78.0 g (0.051 mol) was charged and stirred at room temperature for 3 hours. After stirring, the mixture was allowed to stand and liquid-separated to remove the aqueous layer. The obtained organic layer was again charged into the reaction vessel, and 20 g of distilled water and 15.0 g (0.01 mol) of a bis (pentafluoroethanesulfone) imidoammonium aqueous solution (concentration: 6.52 × 10 −4 mol / g) were added. Stir for 3 hours. After stirring, the mixture was allowed to stand and liquid-separated to remove the aqueous layer. This repeated operation was performed 4 times. Thereafter, the separated organic layer was washed with 40 g of distilled water three times, and then concentrated under reduced pressure to remove dichloromethane. 70 g of ethanol was added to 27 g of the obtained solid and dissolved by heating. After stirring, the mixture was slowly cooled and crystallized, and the crystals were isolated by filtration. After drying, 24.1 g of 2-naphthoylmethyltetramethylenesulfonium bis (pentafluoroethanesulfonyl) imide was obtained. The yield was 85%.
[0032]
1 H-NMR (500 MHz, CD 3 OD) δ ppm :
2.32-2.37 (m, 2H), 2.40-2.46 (m, 2H),
3.296-3.303 (m, 2H), 3.57-3.62 (m, 2H),
7.63-7.66 (m, 1H), 7.69-7.72 (m, 1H),
7.97-8.09 (m, 4H), 8.66 (s, 1H)
[0033]
IR (KBr tablet method) ν max (cm −1 )
2970 (s), 1670 (s), 1626 (m), 1597 (m),
1472 (m), 1339 (s), 1225 (s), 1169 (s),
1140 (s), 1080 (m), 993 (m), 976 (s),
822 (m), 754 (m), 673 (m), 658 (m),
643 (m), 599 (s), 513 (s), 476 (m)
[0034]
Figure 0004351440
[0035]
Thermal analysis (DTA measurement: temperature rise at 5 ° C / min)
Endothermic peak 118.6 ° C
Endothermic peak 243.6 ° C (weight loss 78%)
[0036]
Molar extinction coefficient (solvent: acetonitrile measuring device: Shimadzu UV-1600)
248 nm: 40000
193 nm: 0
[0037]
<Measurement of photoacid generation rate>
1. Photolysis experiment of NTS-PFESI alone About 12.0 mg of 2-naphthoylmethyltetramethylenesulfonium bis (pentafluoroethanesulfonyl) imide (Mw: 637.52 or less, also referred to as NTS-PFESI) obtained in Example 1 Weighed (actual measured value 11.66 mg) and added acetonitrile to make up to 25 ml (A solution: 11.66 mg / 25 ml). 4 ml of this A liquid was taken and acetonitrile was added to make up to 10 ml (B liquid). 2 ml of this B solution was taken and acetonitrile was added to make up to 10 ml (solution C). 4 ml of this C liquid was taken and acetonitrile was added to make up to 10 ml (D liquid). 2 ml of this D solution was taken and acetonitrile was added to make up to 10 ml (solution E). About each of these A to E solutions, 3 ml was put into a cell having a base of 1 cm × 1 cm, and the absorbance (Abs upper limit 2 lower limit 0) was measured, and the peak top of this absorbance was in the range of 0.8 to 1.5. As a result, the absorbance of liquid D was 1.063 (254 nm) (C liquid was 2.791 and E liquid was 0.2). FIG. 1 shows the change in absorbance of this solution D over time, and Table 1 shows the absorbance at 254 nm.
[0038]
[Table 1]
Figure 0004351440
[0039]
From the absorbance at 254 nm, a graph of absorption energy lo (1-10 −A ) (vertical axis) at irradiation time t (second horizontal axis) was created. Here, A is the absorbance at the irradiation time t (seconds), 10 −A is the transmittance, and lo is the irradiation energy of the light source. Next, using this graph, the absorption energy E Abs (mJ / cm 2 ) was determined from the following equation.
[0040]
[Expression 1]
Figure 0004351440
[0041]
Subsequently, this absorbed energy E Abs was divided by the energy (mJ / mol) of 1 mol of photons having a wavelength of 254 nm and converted into mol / cm 2 . The lo (1-10 −A ), E Abs (mJ / cm 2 ) and E Abs (mol / cm 2 ) determined here are shown in Table 2.
[0042]
2. Photolysis experiment of NTS-PFESI + TBPBNa 19.23 mg of tetrabromophenol blue sodium salt (Mw: 1007.58 or less, also referred to as TBPBNa) having the following structure, which is a reagent for identifying acid generation amount, was weighed, and acetonitrile was added. Up to 10 ml. Next, 2 ml of this solution was taken, and acetonitrile was added to make up to 50 ml to prepare a TBPBNa solution (7.63 × 10 −5 mol / l).
[0043]
[Chemical 7]
Figure 0004351440
[0044]
The cell (bottom 1 cm × 1 cm) was charged with 4 ml of the above NTS-PFESI solution (solution D) and irradiated with 254 nm light for 5 minutes, 10 minutes, 15 minutes, and 20 minutes. After irradiation, 3 ml of the NTS-PFESI solution in the cell was taken, and this was combined with 4 ml of the TBPBNa solution prepared above, and acetonitrile was added to make up to 10 ml. This solution was put into a cell (base 1 cm × 1 cm), and the change in absorbance per hour was measured in the range of 500 to 700 nm. The result is shown in FIG. Further, Table 2 shows the absorbance at 618 nm. From the absorbance at 618 nm, a graph of the rate of decrease in absorbance (1-A t / A 0 ) (vertical axis) at irradiation time t (second horizontal axis) was prepared. Here, the absorbance at A t is the irradiation time t (sec), A 0 is the absorbance at irradiation time 0 (sec).
[0045]
3. Preparation of calibration curve TBPBNa solution (acetonitrile solution TBPBMNa actual concentration 4.96 × 10 −4 mol / L) and p-toluenesulfonic acid solution (acetonitrile solution concentration 2 × 10 −5 to 1 × 10 −7 mol / L) Using monohydrate), the rate of decrease in absorbance (1-A t / A 0 ) at irradiation time t (seconds) at p-toluenesulfonic acid concentration ([Acid] horizontal axis) at 618 nm. A calibration curve (vertical axis) was prepared in advance. Again, absorbance at A t is the irradiation time t (sec), A 0 is the absorbance at irradiation time 0 (sec).
[0046]
4). Calculation of Acid Generation Rate [Acid] was determined using this calibration curve from the absorbance decrease rate (1-A t / A 0 ) for the NTS-PFESI + TBPBNa solution determined above. This value is obtained by replacing the concentration of acid [bis (perfluoroalkylsulfonyl) imide] generated from NTS-PFESI with p-toluenesulfonic acid concentration as an indirect indicator. The values are shown in Table 2.
[0047]
[Table 2]
Figure 0004351440
[0048]
A graph is drawn with E Abs (mol / cm 2 ) on the horizontal axis and [Acid] on the vertical axis. The acid generation rate (Φ) of NTS-PFESI was 0.0026.
[0049]
【The invention's effect】
As is apparent from the above description, the novel 2-naphthoylmethyltetramethylenesulfonium salt compound (1) of the present invention has a function as a photoacid generator and is generated bis (perfluoroalkylsulfonyl). Since the reactivity of imide is moderately suppressed, the surrounding environment is hardly contaminated or adversely affected. Therefore, it can be very useful as a photoacid generator, and can be expected to be used in fields such as photoimage formation (photoresist, printing plate, etc.), photocuring, and photoadhesion.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in absorbance of NTS-PFESI solution over time.
FIG. 2 is a graph showing changes in absorbance of NTS-PFESI + TBPBNa solution over time.

Claims (3)

式(1)
Figure 0004351440
(式中、nは1〜5の整数を表す)
で表される2−ナフトイルメチルテトラメチレンスルホニウム塩化合物。
Formula (1)
Figure 0004351440
(In the formula, n represents an integer of 1 to 5)
A 2-naphthoylmethyltetramethylenesulfonium salt compound represented by the formula:
2−ナフトイルメチルテトラメチレンスルホニウムブロマイドを式(2)
Figure 0004351440
(式中、nは1〜5の整数を表す)
で表されるスルホンイミドアンモニウムと塩交換することを特徴とする、式(1)
Figure 0004351440
(式中、nは1〜5の整数を表す)
で表される2−ナフトイルメチルテトラメチレンスルホニウム塩化合物の製造方法。
2-naphthoylmethyltetramethylenesulfonium bromide is represented by the formula (2)
Figure 0004351440
(In the formula, n represents an integer of 1 to 5)
Salt exchange with sulfonimide ammonium represented by formula (1)
Figure 0004351440
(In the formula, n represents an integer of 1 to 5)
The manufacturing method of 2-naphthoylmethyl tetramethylene sulfonium salt compound represented by these.
式(1)
Figure 0004351440
(式中、nは1〜5の整数を表す)
で表される2−ナフトイルメチルテトラメチレンスルホニウム塩化合物である光酸発生剤。
Formula (1)
Figure 0004351440
(In the formula, n represents an integer of 1 to 5)
The photo-acid generator which is 2-naphthoyl methyl tetramethylene sulfonium salt compound represented by these.
JP2002361804A 2001-12-18 2002-12-13 Novel sulfonium salt compound, production method thereof and use thereof Expired - Fee Related JP4351440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002361804A JP4351440B2 (en) 2001-12-18 2002-12-13 Novel sulfonium salt compound, production method thereof and use thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001384291 2001-12-18
JP2001-384291 2001-12-18
JP2002361804A JP4351440B2 (en) 2001-12-18 2002-12-13 Novel sulfonium salt compound, production method thereof and use thereof

Publications (2)

Publication Number Publication Date
JP2003246786A JP2003246786A (en) 2003-09-02
JP4351440B2 true JP4351440B2 (en) 2009-10-28

Family

ID=28676810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002361804A Expired - Fee Related JP4351440B2 (en) 2001-12-18 2002-12-13 Novel sulfonium salt compound, production method thereof and use thereof

Country Status (1)

Country Link
JP (1) JP4351440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995962B2 (en) 2020-11-11 2022-01-17 株式会社東芝 Magnetic wedge and rotary electric machine

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303852B2 (en) 2001-12-27 2007-12-04 Shin-Etsu Chemical Co., Ltd. Photoacid generating compounds, chemically amplified positive resist materials, and pattern forming method
JP4469692B2 (en) 2004-09-14 2010-05-26 富士フイルム株式会社 Photosensitive composition, compound used for photosensitive composition, and pattern formation method using the photosensitive composition
JP4452632B2 (en) 2005-01-24 2010-04-21 富士フイルム株式会社 Photosensitive composition, compound used for photosensitive composition, and pattern formation method using the photosensitive composition
JP4562537B2 (en) 2005-01-28 2010-10-13 富士フイルム株式会社 Photosensitive composition, compound used for photosensitive composition, and pattern formation method using the photosensitive composition
JP4724465B2 (en) 2005-05-23 2011-07-13 富士フイルム株式会社 Photosensitive composition and pattern forming method using the photosensitive composition
JP2007003619A (en) 2005-06-21 2007-01-11 Fujifilm Holdings Corp Photosensitive composition, pattern forming method using this photosensitive composition and compound used in this photosensitive composition
US8426101B2 (en) 2005-12-21 2013-04-23 Fujifilm Corporation Photosensitive composition, pattern-forming method using the photosensitve composition and compound in the photosensitive composition
JP4866605B2 (en) 2005-12-28 2012-02-01 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
US8404427B2 (en) 2005-12-28 2013-03-26 Fujifilm Corporation Photosensitive composition, and pattern-forming method and resist film using the photosensitive composition
JP4682057B2 (en) 2006-02-20 2011-05-11 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
JP4682064B2 (en) 2006-03-09 2011-05-11 富士フイルム株式会社 Photosensitive composition, pattern forming method using the composition, and compound used in the composition
US8182975B2 (en) 2007-03-28 2012-05-22 Fujifilm Corporation Positive resist composition and pattern forming method using the same
JP5449675B2 (en) 2007-09-21 2014-03-19 富士フイルム株式会社 Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition
JP4911469B2 (en) 2007-09-28 2012-04-04 富士フイルム株式会社 Resist composition and pattern forming method using the same
JP5802369B2 (en) 2010-07-29 2015-10-28 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition, and resist film and pattern forming method using the same
JP5764589B2 (en) 2012-10-31 2015-08-19 富士フイルム株式会社 Container for organic processing liquid for patterning chemically amplified resist film, pattern formation method using the same, and method for manufacturing electronic device
EP3731016A4 (en) 2017-12-22 2021-02-24 FUJIFILM Corporation Active light-sensitive or radiation-sensitive resin composition, resist film, pattern formation method, mask blank with resist film, method for manufacturing photomask, and method for manufacturing electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995962B2 (en) 2020-11-11 2022-01-17 株式会社東芝 Magnetic wedge and rotary electric machine

Also Published As

Publication number Publication date
JP2003246786A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP4351440B2 (en) Novel sulfonium salt compound, production method thereof and use thereof
JP5100115B2 (en) Sulfonium salt and acid generator
JPWO2006028285A1 (en) Intermediate chemical substance in pigment crystal production stage, pigment crystal production method using the same, pigment crystal
CN109776419B (en) Pyrazoline group-containing sulfonium salt and preparation method and application thereof
JP5116311B2 (en) Sulfonium salt
JPH07333834A (en) Chemical amplifying positive resist material
JPH0725846A (en) Alkylsulfonium salt
JP5116312B2 (en) Sulfonium salt
JP2002167340A (en) Production method of onium salt derivative and novel onium salt derivative
JP5747247B2 (en) Organic / fluorescent metal hybrid polymer and its ligand
JP5116310B2 (en) Sulfonium salt
Marshall et al. Effect of chain length on radical to carbanion cyclo-coupling of bromoaryl alkyl-linked oxazolines: 1, 3-Areneotropic migration of oxazolines
JP2010159253A (en) Compound and photoresist composition
JPH11228534A (en) New sulfonium salt compound having oxycarbonylmethyl group
JP2003246774A (en) New sulfonium salt compound, method for producing it, and use of it
JPH05255240A (en) Sulfonium salt, photolytic oxygen-generating agent, photo-cationic polymerization initiator and resist composition
JP2003327572A (en) New sulfonic acid derivative
JP2008189600A (en) Sulfonium salt
JP5084288B2 (en) Sulfonium salt
JP3196383B2 (en) Squarylium compounds
JP5084289B2 (en) Sulfonium salt
Camp Synthesis, crystal structure, spectral analysis, DFT studies and antimicrobial activity of ethyl 6-(4-(ethoxycarbonyl)-1H-1, 2, 3-triazol-1-yl) pyridine-3-carboxylate
JP2591042B2 (en) Naphthacene derivatives
PL238030B1 (en) New diaryliodonium salts, methods of their preparation and use, new intermediate compounds for preparing new diaryliodonium salts and use of new intermediate compounds
Nemes et al. Synthesis of enantiopure 2-iodomandelic acid and determination of its absolute configuration by VCD spectroscopy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees