JP4351144B2 - Silver alloy - Google Patents

Silver alloy Download PDF

Info

Publication number
JP4351144B2
JP4351144B2 JP2004355433A JP2004355433A JP4351144B2 JP 4351144 B2 JP4351144 B2 JP 4351144B2 JP 2004355433 A JP2004355433 A JP 2004355433A JP 2004355433 A JP2004355433 A JP 2004355433A JP 4351144 B2 JP4351144 B2 JP 4351144B2
Authority
JP
Japan
Prior art keywords
silver
reflectance
silver alloy
reflective layer
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004355433A
Other languages
Japanese (ja)
Other versions
JP2005126825A5 (en
JP2005126825A (en
Inventor
弘之 毛塚
浩 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Kikinzoku Kogyo KK
Original Assignee
Tanaka Kikinzoku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Kikinzoku Kogyo KK filed Critical Tanaka Kikinzoku Kogyo KK
Priority to JP2004355433A priority Critical patent/JP4351144B2/en
Publication of JP2005126825A publication Critical patent/JP2005126825A/en
Publication of JP2005126825A5 publication Critical patent/JP2005126825A5/ja
Application granted granted Critical
Publication of JP4351144B2 publication Critical patent/JP4351144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

本発明は、銀合金に関する。特に、長期の使用においても反射率の低下を抑制することができる反射膜の構成材料として好適な銀合金に関する。   The present invention relates to a silver alloy. In particular, the present invention relates to a silver alloy suitable as a constituent material of a reflective film that can suppress a decrease in reflectance even in long-term use.

CD−ROM、DVD−ROM等の光記録媒体は、通常、基板上に記録層、反射膜層、保護層(オーバーコート)とからなる。この反射層には古くはコスト面、反射率を考慮してアルミニウム合金が用いられてきたが、光記録媒体の主流が追記・書換型の媒体(CD−R/RW、DVD−R/RW/RAM)へ推移するに伴いより高反射率の材料の適用が求められている。これは、追記・書換型媒体の記録層の構成材料として有機色素材料が広く用いられるようになっており、有機色素材料では光ビームの減衰が大きくなるため、反射層の反射率を向上させることによりこの減衰を補足しようとすることによる。   An optical recording medium such as a CD-ROM or a DVD-ROM usually comprises a recording layer, a reflective film layer, and a protective layer (overcoat) on a substrate. In the past, aluminum alloys have been used for this reflective layer in consideration of cost and reflectance. However, the mainstream of optical recording media is a write-once / rewritable medium (CD-R / RW, DVD-R / RW / With the transition to (RAM), application of a material with higher reflectivity is demanded. This is because organic dye materials are widely used as the constituent material of the recording layer of write-once and rewritable media, and the organic dye material increases the attenuation of the light beam, thereby improving the reflectivity of the reflective layer. By trying to supplement this attenuation.

反射率の観点から、光記録媒体の反射層の材料として適用されているのが銀である。銀は反射率が高い上に、同じく高反射率を有する金よりも安価であることから好適な材料である。しかし、銀は耐酸化性、耐硫化性に乏しく、酸化、硫化により腐食し黒色に変色して反射率を低下させるという問題がある。とりわけ銀は、追記・書換型の光記録媒体の記録層で適用される有機色素材料に対しては耐食性が悪く長期間の使用により反射率の低下がみられるという問題がある。   From the viewpoint of reflectivity, silver is applied as a material for the reflective layer of the optical recording medium. Silver is a preferred material because it has high reflectivity and is less expensive than gold, which also has high reflectivity. However, silver is poor in oxidation resistance and sulfidation resistance, and there is a problem that it corrodes due to oxidation and sulfidation and turns black to reduce the reflectance. In particular, silver has a problem that the organic dye material applied in the recording layer of the write-once / rewritable optical recording medium has a poor corrosion resistance and a decrease in reflectance due to long-term use.

そして、光記録媒体の使用に伴う反射率低下の問題に対応すべく、従来から、反射率を確保しつつ耐食性を向上させた銀合金を反射層として適用した光記録媒体の開発が行われている。これらの多くは銀を主成分として、これに種々の添加元素を1種又は2種以上添加するものであり、例えば、銀に0.5〜10原子%のルテニウム及び0.1〜10原子%のアルミニウムを添加するもの、銀に0.5〜4.9原子%のパラジウムを添加したもの等が開示されている。そして、これらの銀合金は、耐食性が良好で使用環境下でも反射率を維持することができ、反射層に好適であるとしている(これらの先行技術の詳細については、特許文献1、2を参照)。   In order to cope with the problem of a decrease in reflectivity associated with the use of an optical recording medium, conventionally, an optical recording medium has been developed in which a silver alloy that has improved corrosion resistance while ensuring reflectivity is applied as a reflective layer. Yes. Most of these contain silver as a main component, and various additive elements are added to the silver. For example, 0.5 to 10 atomic% ruthenium and 0.1 to 10 atomic% are added to silver. In which 0.5 to 4.9 atomic% of palladium is added to silver, etc. are disclosed. These silver alloys have good corrosion resistance and can maintain the reflectance even in the use environment, and are suitable for the reflective layer (see Patent Documents 1 and 2 for details of these prior arts). ).

特開平11−134715号公報Japanese Patent Laid-Open No. 11-134715 特開2000−109943号公報JP 2000-109943 A

以上の銀合金については、耐食性について一応の改善はみられる。しかしながら、これらの銀合金であっても使用環境下で全く腐食しないという訳ではない。そして、反射率の低下についてもこれを完全に保証するものではなく、より高い次元で反射率を維持できる材料が求められる。   For the above silver alloys, there is a temporary improvement in corrosion resistance. However, even these silver alloys do not corrode at all under the use environment. Further, this does not completely guarantee the decrease in reflectivity, and a material that can maintain the reflectivity at a higher level is required.

また、光記録装置の分野では、現在のところ記録用光源としては赤色の半導体レーザー(波長650nm)が適用されているが、最近になって青色レーザー(波長405nm)の実用化の見通しが立ってきている。この青色レーザーを適用すると、現在の光記録装置の5〜6倍の記憶容量が確保できることから、次世代の光記録装置は青色レーザーを適用したものが主流になると考えられている。ここで、本発明者等によれば、反射層の反射率の変化は照射するレーザーの波長により異なることが確認されており、特に短波長のレーザー照射に対しては腐食の有無に関わらず反射率が低下し、腐食による反射率低下も長波長レーザー照射の場合よりも顕著になることが多いことが確認されている。従って、今後の記録用光源の推移に対応可能な記録媒体を製造する為には、短波長域のレーザー照射に対しても高反射率を有し、更に実用範囲の維持が可能な材料の開発が望まれる。   In the field of optical recording devices, a red semiconductor laser (wavelength 650 nm) is currently applied as a recording light source. Recently, there is a prospect of practical use of a blue laser (wavelength 405 nm). ing. When this blue laser is applied, a storage capacity of 5 to 6 times that of the current optical recording apparatus can be secured. Therefore, it is considered that the next-generation optical recording apparatus is mainly applied with a blue laser. Here, according to the present inventors, it has been confirmed that the change in the reflectance of the reflective layer varies depending on the wavelength of the laser to be irradiated, and in particular for short-wavelength laser irradiation, it is reflected regardless of the presence or absence of corrosion. It has been confirmed that the rate decreases and the decrease in reflectance due to corrosion is often more pronounced than in the case of long wavelength laser irradiation. Therefore, in order to produce a recording medium that can cope with the transition of the recording light source in the future, development of a material that has high reflectivity even for laser irradiation in the short wavelength region and can maintain the practical range. Is desired.

本発明は以上のような背景の下になされたものであり、光記録媒体の反射層を構成する銀合金であって、長期の使用によっても反射率を低下させること無く機能することのできる反射層用の材料を提供することを目的とする。また、短波長のレーザー光に対しても高い反射率を有する材料を提供する。   The present invention has been made under the background as described above, and is a silver alloy that constitutes a reflective layer of an optical recording medium, and can function without lowering the reflectance even after long-term use. The object is to provide a material for the layer. In addition, the present invention provides a material having a high reflectance even with a short wavelength laser beam.

かかる課題を解決すべく、本発明者等は従来技術と同様、銀を主体としつつ、従来技術とは異なる方向から好適な反射層用材料を見出すこととした。銀を主成分とするのは、上記のような銀の有する利点(高反射率、低コスト)を考慮したからである。そして、本発明者等が採用した従来と異なるアプローチとは、従来技術が添加元素の添加により耐食性のみを向上させていたことに対応するものである。即ち、使用過程における反射層の腐食(酸化)は、実際には回避することが不可能である。そこで、本発明者等は使用過程の酸化を敢えて許容しつつ、酸化しても反射率の低下が生じない銀合金であればそれも反射層用材料として好適であると考えた。そして、この酸化しても反射率の低下が生じない銀合金として、銀よりも優先的に酸化し且つ酸化しても反射率に影響を与えないインジウム及び/又は錫を添加した銀合金を見出し本発明に想到するに至った。   In order to solve this problem, the present inventors have found a suitable reflective layer material from a direction different from that of the prior art while using silver as a main component, as in the prior art. The reason why silver is a main component is that the advantages (high reflectance and low cost) of silver as described above are taken into consideration. The approach different from the prior art adopted by the present inventors corresponds to the fact that the prior art has improved only the corrosion resistance by adding an additive element. That is, corrosion (oxidation) of the reflective layer during the use process cannot be avoided in practice. Therefore, the present inventors dared to allow oxidation during the use process, and thought that a silver alloy that does not cause a decrease in reflectance even when oxidized is suitable as a material for the reflective layer. As a silver alloy that does not cause a decrease in reflectivity even when oxidized, a silver alloy added with indium and / or tin that is oxidized preferentially over silver and does not affect the reflectivity even when oxidized is found. The present invention has been conceived.

本発明は、添加元素としてインジウム及び錫を含み、残部が銀からなる反射膜用の銀合金であって、添加元素の合計濃度が0.1〜2.0重量%である銀合金である。   The present invention is a silver alloy for a reflective film that contains indium and tin as additive elements, and the balance is made of silver, and is a silver alloy having a total concentration of additive elements of 0.1 to 2.0% by weight.

本発明で添加元素として添加されるインジウム、錫の酸化物は、これまで透明電極材料として広く適用されていることからも分かるように透明である。本発明にかかる銀−インジウム/錫合金は、使用過程においてインジウム及び/又は錫が酸化するが酸化物は透明であり合金の反射率を損なうことはない。また、本発明に係る合金では、合金内部にはインジウム酸化物、錫酸化物が分散し、合金表面にはインジウム酸化物、錫酸化物からなる酸化皮膜が形成される。そして、この酸化皮膜が合金の更なる酸化の保護層として機能し母材となる銀の酸化を抑制する。本発明に係る合金により形成される反射層は、以上のような作用により反射率を維持することができる。   The oxides of indium and tin added as additive elements in the present invention are transparent as can be seen from the wide application as transparent electrode materials. The silver-indium / tin alloy according to the present invention oxidizes indium and / or tin in the course of use, but the oxide is transparent and does not impair the reflectivity of the alloy. In the alloy according to the present invention, indium oxide and tin oxide are dispersed inside the alloy, and an oxide film made of indium oxide and tin oxide is formed on the alloy surface. This oxide film functions as a protective layer for further oxidation of the alloy and suppresses the oxidation of silver as a base material. The reflective layer formed of the alloy according to the present invention can maintain the reflectivity by the action as described above.

ここで、本発明において添加元素となるインジウム、錫の含有量は、反射率の維持のみを考慮するならば、インジウム及び錫のいずれも0.1〜25重量%の濃度とするのが好ましい。0.1未満の添加量では、反射率維持の効果がなく、また、添加元素濃度が25%を超えると、使用環境、入射レーザ光の波長によっては反射率の低下が大きくなり実用上支障が生じることがあるからである。そして、特に好ましい濃度は0.1〜2.0重量%である。この範囲では、使用環境、レーザー光波長によらず反射率をより高い次元で維持することができるからである。尚、これらの濃度範囲は、すべての添加元素の濃度範囲を示し、インジウム、錫の双方を含有する場合には、各元素の濃度の合計がこれらの範囲内であることを示す。   Here, the content of indium and tin as additive elements in the present invention is preferably set to a concentration of 0.1 to 25% by weight of both indium and tin, considering only the maintenance of reflectance. If the addition amount is less than 0.1, there is no effect of maintaining the reflectivity. If the additive element concentration exceeds 25%, the reflectivity is greatly reduced depending on the use environment and the wavelength of the incident laser beam, which impedes practical use. This is because it may occur. A particularly preferred concentration is 0.1 to 2.0% by weight. This is because within this range, the reflectance can be maintained at a higher level regardless of the use environment and the wavelength of the laser beam. These concentration ranges indicate the concentration ranges of all the additive elements. When both indium and tin are contained, the total concentration of each element is within these ranges.

本発明に係る銀合金は、光記録媒体の反射層用の材料として好適であるが、反射層用の材料として具備しているとより好ましい特性として、熱伝導率が高いことが挙げられる。反射層の熱伝導率が低いと記録媒体の感度を低下させることがあるからである。そこで、反射率の維持と高熱伝導率の双方において好ましい特性を持たせる、本発明に係る銀合金はインジウム、錫の添加元素濃度を0.1〜0.5重量%とするのが更に好ましい。本発明者等によれば、0.5重量%を超える合金は熱伝導率が低く、合金の主成分たる銀の熱伝導率の数分の一の熱伝導率となるからである。   The silver alloy according to the present invention is suitable as a material for a reflective layer of an optical recording medium, but a more preferable characteristic when the silver alloy is provided as a material for a reflective layer is high thermal conductivity. This is because the sensitivity of the recording medium may be lowered if the thermal conductivity of the reflective layer is low. Therefore, it is more preferable that the silver alloy according to the present invention, which has preferable characteristics in both maintenance of reflectance and high thermal conductivity, has an additive element concentration of indium and tin of 0.1 to 0.5% by weight. According to the present inventors, an alloy exceeding 0.5% by weight has a low thermal conductivity, which is a fraction of the thermal conductivity of silver, which is the main component of the alloy.

以上説明した本発明に係る反射層材料としての銀合金は、溶解鋳造法により製造可能である。この溶解鋳造法による製造においては特段に困難な点はなく、各原料を秤量し、溶融混合して鋳造する一般的な方法により製造可能である。   The silver alloy as the reflective layer material according to the present invention described above can be manufactured by a melt casting method. There is no particular difficulty in the production by this melt casting method, and it can be produced by a general method in which each raw material is weighed, melted and mixed and cast.

ところで、実際の反射層の製造は、反射層用材料からなるターゲットを用いてスパッタリング法により薄膜形成することにより行なわれることが多い。そして、上記で説明したように、本発明に係る銀合金では含有するインジウム、錫が優先的に酸化し、この際生成する酸化物が保護膜として、その後の酸化、硫化を抑制できるとしている。そこで、本発明に係る銀合金を反射膜とする際には、スパッタリング法において、スパッタリング装置内へ導入するアルゴンガスに酸素を混合させ、反応性スパッタリングさせて反射層を酸化させつつ形成することにより反射層形成初期の段階から保護膜を形成させることができる。   By the way, the actual production of the reflective layer is often performed by forming a thin film by sputtering using a target made of a material for the reflective layer. As described above, in the silver alloy according to the present invention, indium and tin contained are preferentially oxidized, and the oxide generated at this time is used as a protective film, so that subsequent oxidation and sulfidation can be suppressed. Therefore, when the silver alloy according to the present invention is used as a reflective film, in the sputtering method, oxygen is mixed with argon gas introduced into the sputtering apparatus, and reactive sputtering is performed to form the reflective layer while oxidizing it. A protective film can be formed from the initial stage of forming the reflective layer.

一方、この反応性スパッタリングは、反射層の酸化の程度を制御するために酸素ガス導入に微妙な制御が必要となることから、反射層の製造効率を損なうおそれがある。そこで、発明者等は、本発明に係る合金について、予め添加元素であるインジウム、錫を酸化させておくことにより、微妙な制御を要する酸素ガス導入を行うことなく、通常のスパッタリング工程で反射層に保護膜を形成できると考えた。即ち、本発明者等は、銀を主成分とし、添加元素としてインジウム及び/又は錫を含む本発明に係る銀合金について、添加元素であるインジウム及び/又は錫の一部又は全部を内部酸化させることとした。この内部酸化した合金をターゲットとして薄膜を製造すると、薄膜製造時よりインジウム、錫の酸化物が均一分散した薄膜を形成することができることを見出した。   On the other hand, this reactive sputtering requires a delicate control for oxygen gas introduction in order to control the degree of oxidation of the reflective layer, which may impair the production efficiency of the reflective layer. Therefore, the inventors of the present invention have made the reflective layer in a normal sputtering process without introducing oxygen gas that requires delicate control by oxidizing indium and tin as additive elements in advance for the alloy according to the present invention. It was thought that a protective film could be formed. That is, the present inventors internally oxidize a part or all of indium and / or tin as additive elements in the silver alloy according to the present invention containing silver as a main component and containing indium and / or tin as additive elements. It was decided. It has been found that when a thin film is produced using the internally oxidized alloy as a target, a thin film in which indium and tin oxides are uniformly dispersed can be formed from the time of production of the thin film.

ここで、この内部酸化された銀合金の製造については、インジウム及び/又は錫を所定組成含有する銀合金を製造し、これを高圧酸素雰囲気中で加圧、加熱することにより合金中の一部又は全部のインジウム、錫を酸化させることで製造可能である。具体的な酸化条件としては、酸素圧0.1〜1MPaの雰囲気下で700〜800℃で60〜80時間の加圧・加熱処理を行なうのが好ましい。   Here, for the production of the internally oxidized silver alloy, a silver alloy containing indium and / or tin with a predetermined composition is produced, and this is pressurized and heated in a high-pressure oxygen atmosphere, and a part of the alloy is produced. Alternatively, it can be produced by oxidizing all indium and tin. As specific oxidation conditions, it is preferable to perform pressurization and heat treatment at 700 to 800 ° C. for 60 to 80 hours in an atmosphere having an oxygen pressure of 0.1 to 1 MPa.

以上説明した本発明に係る銀合金は、反射層として好ましい特性を有し、使用過程において反射率の低下が抑制されている。また、後述のように、短波長のレーザー光照射下においても、従来の反射層用材料よりも良好な反射率及びその維持を示す。そして、上記のように光記録媒体の反射層の製造においてはスパッタリング法が一般に適用されている。従って、本発明に係る銀合金からなるスパッタリングターゲットは好ましい特性を有する反射層を備える光記録媒体を製造することができる。   The silver alloy which concerns on this invention demonstrated above has a characteristic preferable as a reflection layer, and the fall of a reflectance is suppressed in the use process. Further, as described later, even under irradiation with a laser beam with a short wavelength, the reflectance and the maintenance thereof are better than those of the conventional reflective layer material. As described above, the sputtering method is generally applied in the production of the reflective layer of the optical recording medium. Therefore, the sputtering target made of the silver alloy according to the present invention can produce an optical recording medium provided with a reflective layer having desirable characteristics.

以上説明したように、本発明に係る銀合金は、従来の発想とは異なり、酸化しても反射率に悪影響を与えない酸化物を生成する元素を添加することにより、使用過程における反射率の低下が抑制するものである。本発明によれば、長期使用によっても反射率の低下の少ない反射層を製造することができ、これにより光記録媒体の寿命を長期化できる。また、本発明に係る銀合金は、短波長のレーザー光照射下においても、従来の反射層用材料よりも良好な反射率及びその維持を示す。従って、今後の主流となるであろう短波長レーザーを光源とする光記録装置用の記録媒体にも対応可能である。   As described above, the silver alloy according to the present invention differs from the conventional idea in that the reflectance in the process of use is improved by adding an element that generates an oxide that does not adversely affect the reflectance even when oxidized. The decrease is suppressed. According to the present invention, it is possible to manufacture a reflective layer with little decrease in reflectivity even after long-term use, thereby prolonging the life of the optical recording medium. Moreover, the silver alloy which concerns on this invention shows a favorable reflectance and its maintenance rather than the conventional reflective layer material also under the laser beam irradiation of a short wavelength. Accordingly, the present invention can also be applied to a recording medium for an optical recording apparatus using a short wavelength laser as a light source, which will become the mainstream in the future.

以下、本発明の好適な実施形態を比較例と共に説明する。   Hereinafter, preferred embodiments of the present invention will be described together with comparative examples.

実施例1:ここでは、銀合金としてAg−1.2重量%In−0.8重量%Sn組成のターゲットを製造して、これをもとにスパッタリング法にて薄膜を形成した。そして、この薄膜について種々の環境下での腐食試験(加速試験)を行い、腐食試験後の反射率の変化について検討した。 Example 1 Here, a target having an Ag-1.2 wt% In-0.8 wt% Sn composition was produced as a silver alloy, and a thin film was formed by sputtering based on this target. The thin film was subjected to a corrosion test (acceleration test) under various environments, and the change in reflectance after the corrosion test was examined.

銀合金の製造は、各金属を所定濃度になるように秤量し、高周波溶解炉中で溶融させて混合して合金とする。そして、これを鋳型に鋳込んで凝固させインゴットとし、これを鍛造、圧延、熱処理した後、成形してスパッタリングターゲットとした。   In the production of a silver alloy, each metal is weighed to a predetermined concentration, melted in a high frequency melting furnace, and mixed to obtain an alloy. This was cast into a mold and solidified to form an ingot, which was forged, rolled, and heat treated, and then molded into a sputtering target.

薄膜の製造は、基板(ホウ珪酸ガラス)及びターゲットをスパッタリング装置に設置し、装置内を5.0×10−3Paまで真空に引いた後、アルゴンガスを5.0×10−1Paまで導入した。スパッタリング条件は、直流1kWで1分間の成膜を行ない、膜厚を1000Åとした。尚、膜厚分布は±10%以内であった。 For the production of the thin film, the substrate (borosilicate glass) and the target are placed in a sputtering apparatus, the inside of the apparatus is evacuated to 5.0 × 10 −3 Pa, and then the argon gas is reduced to 5.0 × 10 −1 Pa. Introduced. As sputtering conditions, a film was formed for 1 minute at a direct current of 1 kW, and the film thickness was 1000 mm. The film thickness distribution was within ± 10%.

薄膜の腐食試験は、薄膜を下記の各環境中に暴露し、分光光度計にて波長を変化させつつ試験後の薄膜の反射率を測定することにより行い、成膜直後の銀の反射率を基準としてその変化を検討した。   The thin film corrosion test is performed by exposing the thin film to the following environments and measuring the reflectance of the thin film after the test while changing the wavelength with a spectrophotometer. The change was examined as a standard.

(1)大気中で250℃で2時間加熱
薄膜をホットプレート上に載置し、上記温度、時間にて加熱した。この試験環境は、薄膜の耐酸化性を検討するためのものである。
(2)温水中に30分浸漬
薄膜を60℃の純水中に浸漬した。この試験環境は、薄膜の耐湿性を検討するためのものである。
(3)アルカリ溶液中に浸漬
薄膜を3%水酸化ナトリウム溶液(温度30℃)に10分間浸漬した。この試験環境は、薄膜の耐アルカリ性を検討するためのものである。
(1) Heating in air | atmosphere at 250 degreeC for 2 hours The thin film was mounted on the hotplate, and it heated at the said temperature and time. This test environment is for examining the oxidation resistance of the thin film.
(2) Immersion in warm water for 30 minutes The thin film was immersed in pure water at 60 ° C. This test environment is for examining the moisture resistance of the thin film.
(3) Immersion in alkaline solution The thin film was immersed in a 3% sodium hydroxide solution (temperature 30 ° C.) for 10 minutes. This test environment is for examining the alkali resistance of the thin film.

比較例:本実施形態に係る銀合金に対する比較として、本発明と同様の目的で開発されている、Ag−1.0重量%Au−1.0重量%Cu、Ag−1.0重量%Pd−1.0重量%Cu、Ag−1.0重量%Nd−1.0重量%Cuの3種類の銀合金金からなるターゲットから薄膜を製造して、同様の腐食試験を行い、同じく反射率の変化を測定した。 Comparative Example : As a comparison with the silver alloy according to the present embodiment, Ag-1.0 wt% Au-1.0 wt% Cu, Ag-1.0 wt% Pd, developed for the same purpose as the present invention. A thin film was produced from a target composed of three types of silver alloy gold of −1.0 wt% Cu and Ag—1.0 wt% Nd—1.0 wt% Cu, and the same corrosion test was performed. The change of was measured.

この実施例の腐食試験の結果を表1〜表3に示す。これらの表で示す反射率は、成膜直後の銀の反射率を100とした相対値である。また、各測定値は、波長650nm、560nm、400nm(各々、赤色、黄色、青色レーザーの波長に相当する。)における反射率である。   The results of the corrosion test of this example are shown in Tables 1 to 3. The reflectances shown in these tables are relative values with the reflectance of silver immediately after film formation being 100. Each measured value is a reflectance at wavelengths of 650 nm, 560 nm, and 400 nm (corresponding to wavelengths of red, yellow, and blue lasers, respectively).

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

この結果から、全体的な傾向として、入射光波長が短くなると反射率の低下がみられる(成膜直後の腐食試験なしの薄膜についても同様である)。そして、本実施例に係る銀合金により製造される薄膜は、反射率の値をみるといずれの比較例よりも高い値を示す。特に、本実施例は、いずれの環境で腐食試験をしたものでも成膜直後の反射率を維持しているが、比較例の場合は、腐食試験の環境により反射率にバラツキがみられる。従って、本実施例に係る薄膜は、反射層として従来技術より好ましいことがわかる。   From this result, as an overall trend, the reflectance decreases as the incident light wavelength becomes shorter (the same applies to the thin film without the corrosion test immediately after film formation). And the thin film manufactured with the silver alloy which concerns on a present Example shows a higher value than any comparative example when the value of a reflectance is seen. In particular, in this example, the reflectance immediately after film formation is maintained in any environment subjected to the corrosion test, but in the case of the comparative example, the reflectance varies depending on the environment of the corrosion test. Therefore, it can be seen that the thin film according to this example is more preferable as the reflective layer than the prior art.

実施例2:この実施例では、銀合金の添加元素濃度と腐食試験後の反射率との関係について調査し、その上限値を検討した。ここで製造、使用した銀合金はAg−Sn合金であり、錫濃度を2〜50重量%まで変化させた銀合金について検討を行なった。尚、この実施例での銀合金の製造方法は、実施例1と同様であるが、腐食試験環境については、実施例1での試験環境に加えて、耐硫化性を検討するため、0.01%の硫化ナトリウム水溶液(温度25℃)に1時間浸漬する試験を行った。腐食試験後の反射率測定は実施例1と同様にして行った。その結果を表4〜表6に示す。 Example 2 In this example, the relationship between the additive element concentration of the silver alloy and the reflectance after the corrosion test was investigated, and the upper limit value was examined. Here, the silver alloy produced and used was an Ag—Sn alloy, and a silver alloy in which the tin concentration was changed to 2 to 50% by weight was examined. The method for producing the silver alloy in this example is the same as that in Example 1. However, the corrosion test environment is not limited to the test environment in Example 1, and is 0. The test was conducted by immersing in a 01% aqueous sodium sulfide solution (temperature 25 ° C.) for 1 hour. The reflectance measurement after the corrosion test was performed in the same manner as in Example 1. The results are shown in Tables 4-6.

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

以上の結果から、反射層としての合格基準を60(銀の反射率を100とする)と設定すると、本実施例の傾向から、25重量%以上の添加元素を添加すると、入射光波長によっては初期状態(成膜直後)の反射率が低く、また、腐食が僅かに生た場合に合格基準を下回る場合が多くなる。従って、添加元素の含有量は25重量%が上限値と推察される。そして、反射率をより高い次元で維持するためには(80以上の値を示すためには)、添加元素濃度は5.0重量%以下とするのがより好ましいこともわかる。   From the above results, when the acceptance criterion as a reflective layer is set to 60 (the reflectance of silver is set to 100), depending on the incident light wavelength, when an additive element of 25% by weight or more is added from the tendency of this example. The reflectivity in the initial state (immediately after film formation) is low, and when the corrosion slightly occurs, it often falls below the acceptance standard. Therefore, the content of the additive element is estimated to be 25% by weight. It can also be seen that the additive element concentration is more preferably 5.0% by weight or less in order to maintain the reflectivity at a higher dimension (in order to show a value of 80 or more).

実施例3:ここでは添加元素の下限値を検討すべく、インジウム及び錫を0.05〜0.5重量%含有するAg−In−Sn合金を製造し、これから薄膜を製造し、腐食試験による反射率の変化を測定した。合金の製造方法、腐食試験環境等は、実施例2と同様である。この結果を表7〜9に示す。 Example 3 Here, in order to examine the lower limit value of the additive element, an Ag—In—Sn alloy containing 0.05 to 0.5% by weight of indium and tin is manufactured, a thin film is manufactured therefrom, and a corrosion test is performed. The change in reflectivity was measured. The manufacturing method of the alloy, the corrosion test environment, and the like are the same as in Example 2. The results are shown in Tables 7-9.

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

Figure 0004351144
Figure 0004351144

この結果から、実施例3で検討した銀合金は、成膜直後の反射率は良好であるが、大気加熱による反射率の変化が大きく、添加元素濃度と反射率との間には相関関係がみられ、添加元素濃度が減少するに従い加熱後の反射率は減少傾向にある。そして、実施例2と同様、合格基準を60とした場合、添加元素濃度が0.1重量%未満(0.05%)の薄膜は、大気酸化後の反射率の維持ができなくなっているのがわかる。従って、添加元素濃度の下限値は0.1重量%とするのが適当と考えられる。   From this result, the silver alloy examined in Example 3 has good reflectivity immediately after film formation, but the change in reflectivity due to atmospheric heating is large, and there is a correlation between the additive element concentration and reflectivity. As shown, the reflectivity after heating tends to decrease as the additive element concentration decreases. As in Example 2, when the acceptance criterion is 60, the thin film having an additive element concentration of less than 0.1% by weight (0.05%) cannot maintain the reflectance after atmospheric oxidation. I understand. Therefore, it is considered appropriate that the lower limit value of the additive element concentration is 0.1% by weight.

実施例4:ここでは添加元素の濃度と熱伝導率との関係を検討すべく、インジウム及び錫を0.05〜2.0重量%含有するAg−In−Sn合金を製造し、これから薄膜を製造し、その熱伝導率を求めた。薄膜の形成は、実施例1、2と同様である。また、薄膜の熱伝導率は、これを直接測定することが困難であるため、まず、比抵抗を測定し、その値からウィーデマン−フランツの法則により熱伝導率を算出することにより求めた。この結果を表10に示す。表10には、実施例1の比較例として製造したAg−1.0重量%Au−1.0重量%Cu、Ag−1.0重量%Pd−1.0重量%Cu、Ag−1.0重量%Nd−1.0重量%Cuの3つの銀合金、及び、純銀薄膜の熱伝導率を合わせて示した。 Example 4 : Here, in order to examine the relationship between the concentration of the additive element and the thermal conductivity, an Ag-In-Sn alloy containing 0.05 to 2.0% by weight of indium and tin was manufactured. It was manufactured and its thermal conductivity was determined. The formation of the thin film is the same as in Examples 1 and 2. Moreover, since it is difficult to directly measure the thermal conductivity of the thin film, first, the specific resistance was measured, and the thermal conductivity was calculated from the value by the Wiedemann-Franz law. The results are shown in Table 10. Table 10 shows Ag-1.0 wt% Au-1.0 wt% Cu, Ag-1.0 wt% Pd-1.0 wt% Cu, Ag-1. The thermal conductivity of three silver alloys of 0 wt% Nd-1.0 wt% Cu and a pure silver thin film are shown together.

Figure 0004351144
Figure 0004351144

表10より、この実施例のAg−In−Sn合金薄膜は、添加元素濃度の上昇に伴い熱伝導率が低下するのがわかる。そして、熱伝導率が銀の50%以上であることを合格ラインと考えると、熱伝導率を考慮すると、添加元素の添加量は0.5重量%以下に抑えるのが適当であると考えられる。そして、実施例3の結果を合わせて考慮すると、反射率の維持と高熱伝導率の2つ条件に関し、好ましい添加元素濃度としては0.1〜0.5重量%であることが確認された。尚、比較例の銀合金薄膜は、いずれも銀の50%未満の熱伝導率であった。
From Table 10, it can be seen that the thermal conductivity of the Ag—In—Sn alloy thin film of this example decreases as the additive element concentration increases. And considering that the thermal conductivity is 50% or more of silver as an acceptable line, considering the thermal conductivity, it is considered appropriate to suppress the addition amount of the additive element to 0.5% by weight or less. . Then, considering the results of Example 3 together, it was confirmed that the preferable additive element concentration was 0.1 to 0.5% by weight with respect to the two conditions of maintaining the reflectance and high thermal conductivity. The silver alloy thin films of the comparative examples all had a thermal conductivity of less than 50% of silver.

Claims (2)

添加元素としてインジウム及び錫を含み、残部が銀からなる光記録媒体の反射膜用の銀合金であって、
前記添加元素の濃度は、0.1〜0.5重量%(但し、インジウムが0.1原子%で錫が0.1原子%となる場合を除く)である銀合金
A silver alloy for a reflective film of an optical recording medium containing indium and tin as additive elements, the balance being silver,
The concentration of the additive element is 0.1 to 0.5% by weight (except for the case where indium is 0.1 atomic% and tin is 0.1 atomic%) .
請求項1記載の銀合金からなるスパッタリングターゲット。 A sputtering target comprising the silver alloy according to claim 1 .
JP2004355433A 2004-12-08 2004-12-08 Silver alloy Expired - Lifetime JP4351144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004355433A JP4351144B2 (en) 2004-12-08 2004-12-08 Silver alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004355433A JP4351144B2 (en) 2004-12-08 2004-12-08 Silver alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002358040A Division JP2004192702A (en) 2002-12-10 2002-12-10 Silver alloy for reflection film of optical recording medium

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006177494A Division JP2006307349A (en) 2006-06-28 2006-06-28 Silver alloy for reflecting film

Publications (3)

Publication Number Publication Date
JP2005126825A JP2005126825A (en) 2005-05-19
JP2005126825A5 JP2005126825A5 (en) 2006-08-17
JP4351144B2 true JP4351144B2 (en) 2009-10-28

Family

ID=34651007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004355433A Expired - Lifetime JP4351144B2 (en) 2004-12-08 2004-12-08 Silver alloy

Country Status (1)

Country Link
JP (1) JP4351144B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116218B2 (en) * 2005-06-02 2013-01-09 株式会社アルバック Dispersion and method for producing dispersion
JP4724127B2 (en) * 2006-01-13 2011-07-13 三菱化学メディア株式会社 Optical recording medium
JP4793502B2 (en) * 2009-10-06 2011-10-12 三菱マテリアル株式会社 Silver alloy target for forming reflective electrode film of organic EL element and method for producing the same
JP2013105546A (en) * 2011-11-10 2013-05-30 Ulvac Japan Ltd Organic el display device, led device, solar cell and reflective film
CN115287494B (en) * 2022-08-22 2023-05-12 中山智隆新材料科技有限公司 Silver alloy target material and preparation method and application thereof

Also Published As

Publication number Publication date
JP2005126825A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JPWO2005056848A1 (en) Silver alloy for reflective film
JP2004192702A (en) Silver alloy for reflection film of optical recording medium
JP2000109943A (en) Sputtering target material for thin film formation, thin film formed by using it and optical recording medium
EP1734140A1 (en) Silver alloy excelling in performance of reflectance maintenance
JP4351216B2 (en) Silver alloy with excellent reflectance maintenance characteristics
JP4351144B2 (en) Silver alloy
JP4500945B2 (en) Silver alloy with excellent reflectance maintenance characteristics
JP3765540B2 (en) Silver alloy for reflective film of optical recording media
JP3915114B2 (en) Silver alloy sputtering target for reflection film formation of optical recording media
JP2006307349A (en) Silver alloy for reflecting film
JP4864538B2 (en) Translucent reflective film for optical recording medium and Ag alloy sputtering target for forming the translucent reflective film
JP3770156B2 (en) Silver alloy sputtering target for reflecting film formation of optical recording medium and reflecting film formed using this target
JP2006252746A (en) Silver alloy for reflection film
JP4186224B2 (en) Reflective film for optical recording medium and Ag alloy sputtering target for forming the reflective film
JP4069661B2 (en) Silver alloy sputtering target for reflection film formation of optical recording media
JP2003160860A (en) Silver alloy sputtering target for forming reflection coat on optical recording medium
JP4186221B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP2002129260A (en) Sputtering target material for thin film deposition and thin film and optical recording medium using the material
JP4186222B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP4186223B2 (en) Reflective film and translucent reflective film for optical recording medium, and Ag alloy sputtering target for forming these reflective films
JP2013037753A (en) Silver alloy sputtering target for forming reflection film of optical recording medium and reflection film of optical recording medium
JP2012014763A (en) Silver alloy sputtering target for forming reflection film in optical recording medium and reflection film therein
JP2010049726A (en) Ag alloy sputtering target for forming semitransparent reflection film of optical recording medium
JP2005203025A (en) Silver alloy sputtering target for forming reflection film in optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090723

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4351144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150731

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term