JP4350776B2 - Isolated operation detection system and isolated operation detection device for distributed power supply - Google Patents

Isolated operation detection system and isolated operation detection device for distributed power supply Download PDF

Info

Publication number
JP4350776B2
JP4350776B2 JP2007233089A JP2007233089A JP4350776B2 JP 4350776 B2 JP4350776 B2 JP 4350776B2 JP 2007233089 A JP2007233089 A JP 2007233089A JP 2007233089 A JP2007233089 A JP 2007233089A JP 4350776 B2 JP4350776 B2 JP 4350776B2
Authority
JP
Japan
Prior art keywords
phase
current
injection
group
beat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007233089A
Other languages
Japanese (ja)
Other versions
JP2009011142A (en
Inventor
文雄 山本
儀宏 羽田
荘治 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Original Assignee
Kansai Electric Power Co Inc
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Nissin Electric Co Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2007233089A priority Critical patent/JP4350776B2/en
Publication of JP2009011142A publication Critical patent/JP2009011142A/en
Application granted granted Critical
Publication of JP4350776B2 publication Critical patent/JP4350776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Description

この発明は、上位系統に変電所を介して配電線が接続された配電系統の配電線に、分散電源を有する複数の分散電源保有設備が接続された構成のシステムであって、各分散電源の単独運転を検出するように構成された単独運転検出システムに関する。更に、当該単独運転検出システムの一員となる後続の分散電源保有設備内の分散電源の単独運転を検出する単独運転検出装置に関する。   The present invention is a system having a configuration in which a plurality of distributed power holding facilities having a distributed power source are connected to a distribution line of a distribution system in which a distribution line is connected to a host system via a substation. The present invention relates to an isolated operation detection system configured to detect an isolated operation. Furthermore, the present invention relates to an isolated operation detection device that detects an isolated operation of a distributed power supply in a subsequent distributed power supply facility that is a member of the isolated operation detection system.

配電線で、例えば高圧と低圧間の混触事故を含む地絡事故が発生すると、変電所では、これを検出して変電所内の遮断器を開放する。   For example, when a ground fault including a contact accident between high voltage and low voltage occurs in the distribution line, the substation detects this and opens the circuit breaker in the substation.

この配電線に、分散電源を有する分散電源保有設備が接続されていると、上記遮断器の開放によって分散電源が単独運転になる。この単独運転が継続すると、分散電源から電力が供給され続けるために、上記混触事故を含む地絡事故が継続してしまう可能性がある。従って、分散電源の単独運転を速やかに検出する必要がある。   When a distributed power supply facility having a distributed power supply is connected to the distribution line, the distributed power supply becomes an independent operation by opening the circuit breaker. If this isolated operation is continued, electric power continues to be supplied from the distributed power supply, and thus there is a possibility that a ground fault including the above-mentioned accident in contact will continue. Therefore, it is necessary to quickly detect the isolated operation of the distributed power source.

特に、家庭用太陽光発電設備や燃料電池設備等の低圧連系で逆潮流有り(即ち、分散電源から系統側へ向かう有効電力の流れ有り)の分散電源が配電線に多数接続されていると、上記地絡事故が継続してしまう可能性が高くなる。   In particular, when a large number of distributed power supplies with reverse power flow (that is, there is a flow of active power from the distributed power supply to the system side) in low-voltage interconnections such as household solar power generation equipment and fuel cell equipment are connected to the distribution line There is a high possibility that the ground fault will continue.

そこで、分散電源の単独運転を防止するために、非特許文献1にも記載されているように、各分散電源保有設備には、自設備内の分散電源の単独運転検出機能を有する装置(即ち、単独運転検出装置)を設ける必要がある。非特許文献1には、単独運転検出機能として、様々な方式が記載されている。   Therefore, in order to prevent isolated operation of the distributed power supply, as described in Non-Patent Document 1, each distributed power supply facility has a device having a function of detecting the independent operation of the distributed power supply in the own facility (that is, It is necessary to provide an isolated operation detection device). Non-Patent Document 1 describes various methods as an isolated operation detection function.

なお、分散電源保有設備は、例えば、分散電源を有する発電設備、家庭、スーパーマーケット、工場、その他の設備である。   Note that the distributed power supply facility is, for example, a power generation facility having a distributed power source, a home, a supermarket, a factory, or other facilities.

単独運転検出装置の一例として、分散電源保有設備と配電線とを接続する引込線を通して配電線に、当該配電系統の基本波周波数とは異なる周波数である注入周波数の注入電流を注入する電流注入装置と、引込線における注入周波数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置とを備える単独運転検出装置が考えられる。   As an example of an isolated operation detection device, a current injection device that injects an injection current having an injection frequency that is different from the fundamental frequency of the distribution system into a distribution line through a lead-in line that connects the distributed power supply facility and the distribution line, and An isolated operation detection device comprising an isolated operation monitoring device that measures the voltage of the injection frequency in the lead-in line and detects from the increase in the voltage that the distributed power supply in the distributed power supply facility has become independent operation. It is done.

その場合、同一の配電線に接続された複数の分散電源保有設備の電流注入装置からそれぞれ注入する注入電流の間で同期を取る必要がある。   In that case, it is necessary to synchronize between injection currents injected from current injection devices of a plurality of distributed power supply facilities connected to the same distribution line.

同期を取れば、各注入電流が合成されるので、各注入電流が小さくても、複数の注入電流が集まって大きな注入電流となり、それによって、注入電流が発生させる注入周波数の電圧も大きくなり、当該電圧を用いての単独運転検出の感度、精度、信頼性等が高まる。   If synchronized, each injection current is synthesized, so even if each injection current is small, a plurality of injection currents gather to become a large injection current, thereby increasing the injection frequency voltage generated by the injection current, The sensitivity, accuracy, reliability, etc. of the isolated operation detection using the voltage are increased.

同期を取らないと、複数の注入電流がうまく合成されないだけでなく、複数の注入電流がそれぞれ干渉して打ち消すように働くので(例えば、位相が180度異なる注入電流同士は打ち消されて0になる)、単独運転を検出することが困難になる。   If the synchronization is not achieved, not only the plurality of injection currents are not synthesized well, but also the plurality of injection currents work to interfere and cancel each other (for example, injection currents that are 180 degrees out of phase cancel each other and become zero). ), It becomes difficult to detect isolated operation.

複数の注入電流の同期を取る技術の一つとして、特許文献1には、同期信号ラインを特別に設けてそれを用いる技術が記載されている。なお、特許文献1には、上記注入電流は外乱信号として記載されている。   As one technique for synchronizing a plurality of injection currents, Patent Document 1 describes a technique in which a synchronization signal line is specially provided and used. In Patent Document 1, the injection current is described as a disturbance signal.

しかし、同期信号ラインを用いる技術には、特許文献1にも記載されているように、(a)同期信号ラインの敷設が非常に困難である、(b)同期信号ラインの断線の危険性がある、という課題がある。   However, as described in Patent Document 1, in the technique using the synchronization signal line, (a) it is very difficult to install the synchronization signal line, and (b) there is a risk of disconnection of the synchronization signal line. There is a problem of being.

そこで、複数の注入電流の同期を取る技術の他のものとして、特許文献1には、単独運転検出装置以外の外部同期信号源からの外部同期信号を受信する外部同期信号受信手段を備えていて、当該外部同期信号を共通の同期信号として用いる技術が記載されている。外部同期信号は、例えば電波時計用標準電波信号、GPS信号等である。   Therefore, as another technique for synchronizing a plurality of injection currents, Patent Document 1 includes an external synchronization signal receiving means for receiving an external synchronization signal from an external synchronization signal source other than the isolated operation detection device. A technique for using the external synchronization signal as a common synchronization signal is described. The external synchronization signal is, for example, a standard radio signal for a radio clock or a GPS signal.

「分散型電源系統連系技術指針(電気技術指針分散型電源系統連系編)」、JEAG 9701−2001、社団法人日本電気協会 分散型電源系統連系専門部会、平成14年4月15日第3版第2刷発行、38−45頁“Distributed Power System Interconnection Technology Guidelines (Electrical Technology Guidelines Distributed Power System Interconnection)”, JEAG 9701-2001, Japan Electric Association Distributed Power System Interconnection Special Committee, April 15, 2002 Second edition, 3rd edition, pages 38-45 特開2006−262557号公報(段落0016、0017、0021、0029、図1)JP 2006-262557 A (paragraphs 0016, 0017, 0021, 0029, FIG. 1)

上記特許文献1に記載されている外部同期信号を用いる技術には、外部同期信号源が必要であるという課題がある。この外部同期信号源は、元々は単独運転検出装置とは関係のない信号源であり、そのような信号源を用いることは、単独運転検出の信頼性、装置の小型化・経済性を維持する観点から好ましいものではない。例えば、屋外や電波雑音の多い所で受信ができなかったり、送信が中止されたりする可能性がある。また、受信不良対策として受信アンテナを別置すると装置の小型化・経済性を損なう。   The technique using the external synchronization signal described in Patent Document 1 has a problem that an external synchronization signal source is required. This external synchronization signal source is originally a signal source that has nothing to do with the isolated operation detection device, and the use of such a signal source maintains the reliability of isolated operation detection and the miniaturization and economy of the device. It is not preferable from the viewpoint. For example, there is a possibility that reception cannot be performed outdoors or where there is a lot of radio noise, or transmission may be interrupted. In addition, if a receiving antenna is provided separately as a countermeasure against poor reception, the size and economy of the device are impaired.

そこでこの発明は、上記のような同期信号ラインや外部同期信号源を用いることなく、複数の分散電源保有設備から配電線に注入する注入電流を同期させることができるようにした単独運転検出システムを提供することを一つの目的としている。   Accordingly, the present invention provides an isolated operation detection system that can synchronize injection currents injected into a distribution line from a plurality of distributed power supply facilities without using a synchronization signal line or an external synchronization signal source as described above. One purpose is to provide.

また、上記単独運転検出システムの一員となる後続の分散電源保有設備内の分散電源の単独運転を検出する単独運転検出装置であって、上記のような同期信号ラインや外部同期信号源を用いることなく、電流注入装置から配電線に注入する注入電流を、同一の群に属する分散電源保有設備の電流注入装置が注入する同一周波数の注入電流に同期させることができるようにした単独運転検出装置を提供することを他の目的としている。   Also, an isolated operation detection device for detecting isolated operation of a distributed power supply in a subsequent distributed power supply facility that becomes a member of the isolated operation detection system, using a synchronization signal line or an external synchronization signal source as described above An independent operation detection device that can synchronize the injection current injected from the current injection device into the distribution line with the injection current of the same frequency injected by the current injection device of the distributed power supply equipment belonging to the same group. The other purpose is to provide.

この発明に係る単独運転検出システムは、上位系統に変電所を介して配電線が接続された配電系統の配電線に、分散電源を有する複数の分散電源保有設備が接続されており、かつ各分散電源保有設備は、当該分散電源保有設備と前記配電線とを接続する引込線を通して前記配電線に、当該配電系統の基本波周波数とは異なる周波数である注入周波数の注入電流を注入する電流注入装置と、前記引込線における注入周波数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置とを備えている構成の単独運転検出システムにおいて、(a)前記複数の分散電源保有設備を第1群と第2群との2群に分類し、(b)うなりを生じさせる二つの注入周波数からそれぞれ成る2組の注入周波数であって、各組を成す二つの注入周波数間の周波数差は両組で互いに同じであり、かつ両組を構成する四つの注入周波数はそれぞれ異なる第1組および第2組の注入周波数を用いて、(c)第1群に属する各分散電源保有設備の電流注入装置は第1組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流を注入し、同分散電源保有設備の単独運転監視装置は第2組の注入周波数の内の少なくとも一方の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されており、(d)第2群に属する各分散電源保有設備の電流注入装置は第2組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流を注入し、同分散電源保有設備の単独運転監視装置は第1組の注入周波数の内の少なくとも一方の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されており、(e)かつ両群の各分散電源保有設備は、自設備が属する方の群を自群、自設備が属さない方の群を他群と呼ぶと、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる同期制御装置をそれぞれ備えている、ことを特徴としている。   In the isolated operation detection system according to the present invention, a plurality of distributed power holding facilities having a distributed power source are connected to a distribution line of a distribution system in which a distribution line is connected to a host system via a substation, and each distributed A power supply facility is a current injection device that injects an injection current having an injection frequency that is different from the fundamental frequency of the distribution system into the distribution line through a lead-in line that connects the distributed power supply facility and the distribution line. A single operation monitoring device that measures the voltage of the injection frequency in the lead-in line and detects from the increase in the voltage that the distributed power source in the distributed power source holding facility is in a single operation. In the operation detection system, (a) the plurality of distributed power source holding facilities are classified into two groups of a first group and a second group, and (b) each of two injection frequencies that generate beats. The frequency difference between the two injection frequencies of each set is the same as each other, and the four injection frequencies constituting both sets are different from each other in the first set and the second set. Using the injection frequency, (c) the current injection device of each distributed power supply facility belonging to the first group is set with the first set of injection frequencies and injects an injection current including the current set of the injection frequency, The isolated operation monitoring device of the power supply facility is configured to detect at least one injection frequency of the second set of injection frequencies, measure the voltage of the injection frequency, and detect the isolated operation. ) The current injection device of each distributed power supply facility belonging to the second group is set with a second set of injection frequencies and injects an injection current including the current set of the injection frequency, and the single operation monitoring device of the distributed power supply facility Is the first set of injection frequencies At least one of the injection frequencies is set and the voltage of the injection frequency is measured to detect the islanding operation. If the group to which the current equipment belongs is called the other group, and the group to which the own equipment does not belong is called the other group, the phase of each current of the current set constituting the current injected by the current injection device of the own equipment In addition to maintaining the same phase relationship common within the same group with respect to the phase of the own equipment beat that is generated, the current injection of the equipment installed by the current injection device of the distributed power supply equipment belonging to the other group Each of which is provided with a synchronization control device that synchronizes with another group of beats, which is a beat of the voltage generated by the whole.

この単独運転検出システムは、要約して言えば、自群内の同一周波数の注入電流をそれぞれ同期させることに、自設備の注入電流が生じさせるうなりと、他群の注入電流が生じさせるうなりとを同期させることを利用するものである。即ち、同期制御装置は、(ア)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、(イ)当該自設備うなりを、他群に属する分散電源保有設備の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる。   In summary, this islanding operation detection system synchronizes the injection currents of the same frequency within its own group, and generates the injection current of its own equipment and the generation of the injection current of the other group. Is used to synchronize. In other words, the synchronous control device (a) sets the phase of each current of the current set constituting the injection current injected by the current injection device of its own equipment relative to the phase of its own equipment beat, which is the beat that the injection current generates. In addition to maintaining a constant phase relationship common within the same group, (a) the beat of the voltage generated by the total of the injected current injected by the current injection device of the distributed power supply equipment belonging to the other group. Synchronize with other groups.

上記(ア)および(イ)の結果、自群内の同一周波数の注入電流は、それぞれ同期する。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。   As a result of (a) and (b) above, the injected currents of the same frequency within the group are synchronized. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

前記同期制御装置は、(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、両位相の変化量間の比率を両電流の前記設定された周波数間の比率と同じ比率に保ったまま変化させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えているものでも良い。   The synchronous control device (a) is a voltage included in the voltage in the lead-in line, and measures the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to another group, and based on the voltage The other group beat phase calculating means for calculating the other group beat phase, and (b) the phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment is the phase of the own equipment beat. Current phase setting means for setting the phase of each current of the current set so as to have a common fixed phase relationship within the same group, and (c) the phase of the own equipment beat and the other group beat Find the phase difference from the phase, and set the phase of each current in the current set that constitutes the injection current injected by the current injection device of the own equipment so that the phase difference becomes a common constant value within the same group. The ratio between the amount of phase change Varied while maintaining the same ratio as the ratio between the constant frequency, the self equipment beat may be one and a beat synchronization means for synchronizing to the other group beat.

前記同期制御装置は、(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、当該位相差に応じて、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の周波数を、両周波数間の比率を前記設定された周波数間の比率に保ったまま増減させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えているものでも良い。   The synchronous control device (a) is a voltage included in the voltage in the lead-in line, and measures the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to another group, and based on the voltage The other group beat phase calculating means for calculating the other group beat phase, and (b) the phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment is the phase of the own equipment beat. Current phase setting means for setting the phase of each current of the current set so as to have a common fixed phase relationship within the same group, and (c) the phase of the own equipment beat and the other group beat The phase difference from the phase is calculated, and the current set of the current set constituting the injection current injected by the current injection device of the own equipment is determined according to the phase difference so that the phase difference becomes a constant value common in the same group. The frequency of each current is the ratio between the two frequencies The increased or decreased while maintaining the ratio between the set frequency, the may be one and a beat synchronization means for synchronizing the self equipment beat to the other group beat.

(1)前記同期制御装置は、(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、(b)時刻tを表す信号を発生するクロック手段と、(c)下記のうなり位相差に応じたものであって、当該うなり位相差を同一群内で共通した一定値にする位相一致時刻Te(t)((t)は時間的に変動する物理量であることを示す。以下同様)を発生する位相一致時刻発生手段と、(d)同一群内で共通の固定された位相である一致位相θe を設定する一致位相設定手段と、(e)自設備の組を成す前記設定された二つの注入周波数を角周波数で表してωa 、ωb とすると、前記時刻t、位相一致時刻Te(t)および一致位相θe を用いて、数1またはそれと数学的に等価の式で表される二つの位相θa(t)、θb(t)を発生する位相発生手段と、(f)前記二つの位相θa(t)、θb(t)間の位相差を求めて前記自設備うなりの位相を算出する自設備うなり位相算出手段と、(g)前記自設備うなりの位相と前記他群うなりの位相との位相差であるうなり位相差を算出するうなり位相差算出手段とを備えており、(2)前記電流注入装置は、(a)前記二つの位相θa(t)、θb(t)を用いて、当該位相θa(t)、θb(t)をそれぞれ有する二つの正弦波交流信号を含む注入信号を発生する注入信号発生手段と、(b)前記注入信号を用いて前記注入電流を形成する注入電流形成手段とを備えている、という構成を採用しても良い。 (1) The synchronous control device (a) is a voltage included in the voltage in the lead-in line, and measures the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to another group, and the voltage The other group beat phase calculating means for calculating the other group beat phase based on the above, (b) a clock means for generating a signal representing the time t, and (c) the following beat phase difference. The phase coincidence time for generating the phase coincidence time T e (t) ((t) indicates a physical quantity that varies with time, and so on) that makes the beat phase difference common to the same group. generating means, and matching the phase setting means for setting a match phase theta e is a common fixed phase in (d) the same group, the two injection frequencies are the set form a set of self-equipment (e) Expressed as angular frequency ω a , ω b , the time t , A phase that generates two phases θ a (t) and θ b (t) expressed by Equation 1 or a mathematically equivalent expression using the phase matching time T e (t) and the matching phase θ e. Generating means; (f) self equipment beat phase calculating means for calculating a phase difference between the two phases θ a (t), θ b (t) and calculating the self equipment beat phase; A beat phase difference calculating means for calculating a beat phase difference that is a phase difference between the beat phase of the own equipment and the other group beat phase; (2) the current injection device includes: (a) the two Injection signal generating means for generating an injection signal including two sinusoidal AC signals each having the phases θ a (t) and θ b (t) using the phases θ a (t) and θ b (t); (B) injection current forming means for forming the injection current using the injection signal. It may be adopted.

[数1]
θa(t)=ωa(t−Te(t))+θe
θb(t)=ωb(t−Te(t))+θe
[Equation 1]
θ a (t) = ω a (t−T e (t)) + θ e
θ b (t) = ω b (t−T e (t)) + θ e

この発明に係る単独運転検出装置は、前記分散電源の単独運転検出システムを備えている前記配電系統の配電線に接続されて、前記第1群および第2群の分散電源保有設備の内の一方の群の一員となる後続の分散電源保有設備内の分散電源の単独運転を検出する装置であって、(a)前記第1組および第2組の内の一方の組の注入周波数が設定されて当該周波数の電流組を含む注入電流を、前記後続の分散電源保有設備と前記配電線とを接続する引込線を通して前記配電線に注入する電流注入装置と、(b)前記後続の分散電源保有設備用の前記引込線における電圧であって、前記第1組および第2組の内の他方の組の注入周波数を構成している少なくとも一方の注入周波数が設定されて当該周波数の電圧を計測して、当該電圧の増大から、前記後続の分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置と、(c)前記後続の分散電源保有設備を自設備と呼び、当該自設備が一員となる方の分散電源保有設備の群を自群、当該自設備が一員とならない方の分散電源保有設備の群を他群と呼ぶと、自設備用の前記電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる同期制御装置とを備えていることを特徴としている。   An isolated operation detection device according to the present invention is connected to a distribution line of the distribution system including the distributed operation isolated system, and one of the first group and the second group of distributed power holding facilities. (A) one of the first set and the second set is set with the injection frequency of the first set and the second set. A current injection device for injecting an injection current including a current set of the frequency into the distribution line through a lead-in line connecting the subsequent distributed power source holding facility and the distribution line; and (b) the subsequent distributed power source holding facility. Is a voltage in the lead-in wire for, and at least one injection frequency constituting the injection frequency of the other set of the first set and the second set is set and the voltage of the frequency is measured, From the increase in the voltage, An isolated operation monitoring device that detects that the distributed power supply in the subsequent distributed power supply facility is in an independent operation, and (c) the subsequent distributed power supply facility is called the own facility, and the own facility becomes a member. If the group of the distributed power source holding equipment is called the own group, and the group of the distributed power source holding equipment that is not the member of the own equipment is called the other group, the current injection device for the own equipment injects the injected current. The phase of each current in the current set is maintained in a constant phase relationship common within the same group with respect to the phase of the own equipment beat, which is the beat generated by the injected current, and the own equipment beat belongs to another group. And a synchronous control device that synchronizes with other group beats, which are voltage beats generated by the total of the injected currents injected by the current injection device of the distributed power supply facility.

この単独運転検出装置において、前記電流注入装置に前記第1組の注入周波数が設定され、前記単独運転監視装置に前記第2組の注入周波数を構成している少なくとも一方の注入周波数が設定されている場合は、前記後続の分散電源保有設備は第1群の分散電源保有設備の一員となる。反対に、前記電流注入装置に前記第2組の注入周波数が設定され、前記単独運転監視装置に前記第1組の注入周波数を構成している少なくとも一方の注入周波数が設定されている場合は、前記後続の分散電源保有設備は第2群の分散電源保有設備の一員となる。   In the isolated operation detection device, the first set of injection frequencies is set in the current injection device, and at least one injection frequency constituting the second set of injection frequencies is set in the isolated operation monitoring device. If so, the subsequent distributed power supply facility becomes a member of the first group of distributed power supply facilities. Conversely, when the second set of injection frequencies is set in the current injection device and at least one injection frequency constituting the first set of injection frequencies is set in the isolated operation monitoring device, The subsequent distributed power supply facility becomes a member of the second group of distributed power supply facilities.

この発明に係る単独運転検出装置を構成する同期制御装置には、前記単独運転検出システムの各分散電源保有設備が備えている同期制御装置の前記構成と実質的に同じ構成を採用しても良い。   The synchronous control device that constitutes the isolated operation detection device according to the present invention may employ substantially the same configuration as the configuration of the synchronous control device included in each of the distributed power supply facilities of the isolated operation detection system. .

この発明に係る単独運転検出システムによれば、自設備の注入電流が生じさせるうなりと、他群の注入電流が生じさせるうなりとを同期させることを利用して、同一の群に属する複数の分散電源保有設備から配電線に注入する同一周波数の複数の注入電流をそれぞれ同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。   According to the isolated operation detection system of the present invention, a plurality of dispersions belonging to the same group are utilized by synchronizing the beat generated by the injection current of the own equipment and the beat generated by the injection current of the other group. A plurality of injected currents having the same frequency injected from the power supply facility to the distribution line can be synchronized. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

請求項4に記載の発明によれば、次の更なる効果を奏する。即ち、電流位相設定手段は、自設備うなりの位相が0度になるときの上記電流組の各電流の位相を0度に設定するものであり、0度に設定する場合は0度以外に設定する場合と違って、特別な設定手段を設けなくて済むので構成を簡素化することができる。   According to invention of Claim 4, there exists the following further effect. In other words, the current phase setting means sets the phase of each current of the current set to 0 degrees when the phase of the beat of the equipment becomes 0 degrees, and when setting to 0 degrees, it is set to other than 0 degrees. Unlike the case, the configuration can be simplified because it is not necessary to provide a special setting means.

請求項6に記載の発明によれば、次の更なる効果を奏する。即ち、一致位相設定手段は、自設備うなりの位相が0度になるときの上記一致位相を0度に設定するものであり、0度に設定する場合は0度以外に設定する場合と違って、特別な設定手段を設けなくて済むので構成を簡素化することができる。   According to invention of Claim 6, there exists the following further effect. That is, the coincidence phase setting means sets the coincidence phase when the phase of the beat of its own equipment becomes 0 degrees, and when it is set to 0 degrees, it is different from the case where it is set to other than 0 degrees. Since no special setting means is required, the configuration can be simplified.

請求項7に記載の発明によれば、次の更なる効果を奏する。即ち、配電系統に本来は存在しない(存在しても極めて僅かな)、基本波周波数の非整数倍の周波数を用いるので、注入電流による電圧を計測することが容易になる。即ち、SN比が良くなる。その結果、各電流注入装置の小容量化を図ることができる。   According to invention of Claim 7, there exists the following further effect. That is, since a frequency that is not originally present in the distribution system (very small even if it exists) is a non-integer multiple of the fundamental frequency, it is easy to measure the voltage due to the injected current. That is, the SN ratio is improved. As a result, the capacity of each current injection device can be reduced.

請求項8に記載の発明によれば、次の更なる効果を奏する。即ち、複数の分散電源保有設備を上記のように第1群、第2群に属させることによって、注入電流に含まれる同一周波数かつ同一位相の電流が、3相配電線の三つの線間において電流注入装置を通して循環電流として流れるのを防止することができる。仮に注入電流に含まれる電流がこのような循環電流として流れると、当該電流による電圧が線間に発生しなくなり、単独運転検出が困難になるけれども、これを防止することができる。   According to invention of Claim 8, there exists the following further effect. That is, by causing a plurality of distributed power supply facilities to belong to the first group and the second group as described above, currents of the same frequency and the same phase included in the injected current are passed between the three lines of the three-phase distribution line. It is possible to prevent a circulating current from flowing through the injection device. If a current included in the injected current flows as such a circulating current, a voltage due to the current is not generated between the lines and it becomes difficult to detect an isolated operation, but this can be prevented.

この発明に係る単独運転検出装置によれば、自設備用の電流注入装置が注入する注入電流が生じさせるうなりと、他群の注入電流が生じさせるうなりとを同期させることを利用して、自設備用の電流注入装置から配電線に注入する注入電流を、同一の群に属する分散電源保有設備の電流注入装置が注入する同一周波数の注入電流に同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。   According to the islanding operation detection device of the present invention, by utilizing the synchronization between the beat generated by the current injection device for own equipment and the beat generated by the injection current of the other group, The injection current injected into the distribution line from the facility current injection device can be synchronized with the injection current of the same frequency injected by the current injection device of the distributed power supply facility belonging to the same group. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

(1)単独運転検出システム全体について
図1は、この発明に係る分散電源の単独運転検出システムを備える配電系統の一例を示す単線接続図である。
(1) Whole isolated operation detection system FIG. 1 is a single line connection diagram showing an example of a power distribution system including a distributed power supply isolated operation detection system according to the present invention.

この配電系統は、上位系統2に変電所4を介して3相の配電線10が接続された構成をしている。変電所4は、変圧器6と、その2次側と配電線10とを接続する遮断器8とを備えている。配電線10の電圧は、例えば6.6kVであるが、これに限られるものではない。   This distribution system has a configuration in which a three-phase distribution line 10 is connected to a host system 2 via a substation 4. The substation 4 includes a transformer 6 and a circuit breaker 8 that connects the secondary side of the transformer 6 and the distribution line 10. Although the voltage of the distribution line 10 is 6.6 kV, for example, it is not restricted to this.

配電線10には、負荷12が接続されている。この負荷12は、多数の負荷をまとめて図示したものである。   A load 12 is connected to the distribution line 10. The load 12 shows a large number of loads collectively.

配電線10には、この例では変圧器14およびその2次側に接続された引込線16を介して、分散電源を有する複数の分散電源保有設備20が接続されている。より具体例を挙げると、逆潮流有りの契約をしている低圧連系の分散電源保有設備20が多数高い密度で接続されている。各変圧器14は、例えば、6600V/210Vの柱上変圧器である。一つの変圧器14に複数の分散電源保有設備20が接続されていても良い。   In this example, a plurality of distributed power source holding facilities 20 having distributed power sources are connected to the distribution line 10 via a transformer 14 and a lead-in wire 16 connected to the secondary side thereof. To give a more specific example, a large number of low-voltage interconnected distributed power supply facilities 20 that have contracts with reverse power flow are connected at a high density. Each transformer 14 is a 6600V / 210V pole transformer, for example. A plurality of distributed power supply facilities 20 may be connected to one transformer 14.

各分散電源保有設備20の構成の一例を図2に示す。分散電源保有設備20は、太陽電池、燃料電池等の直流電源から成る分散電源26と、それからの直流電力を交流電力に変換するインバータ(逆変換装置)および系統連系用保護装置を含むパワーコンディショナ24と、それと引込線16との間に設けられたスイッチ22と、引込線16を通して配電線10に、当該配電系統の基本波周波数とは異なる周波数である注入周波数の注入電流を注入する電流注入装置40と、引込線16における注入周波数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源26が単独運転になったことを検出する単独運転監視装置30と、うなりの同期制御を行う同期制御装置50とを備えている。各装置30、40、50の詳細は後述する。   An example of the configuration of each distributed power supply facility 20 is shown in FIG. The distributed power supply facility 20 is a power conditioner including a distributed power source 26 composed of a direct current power source such as a solar cell or a fuel cell, an inverter (inverse conversion device) for converting the direct current power into alternating current power, and a system interconnection protection device. A current injection device for injecting an injection current having an injection frequency that is different from the fundamental frequency of the distribution system into the distribution line 10 through the service line 16 and the switch 22 provided between the power supply line 16 and the lead wire 16. 40 and an independent operation monitoring device 30 that measures the voltage of the injection frequency in the lead-in line 16 and detects from the increase in the voltage that the distributed power source 26 in the distributed power source possessing facility has become an independent operation. And a synchronization control device 50 that performs synchronization control. Details of each device 30, 40, 50 will be described later.

引込線16と、単独運転監視装置30および同期制御装置50との間に、必要に応じて、計器用変圧器を設けても良い。   An instrument transformer may be provided between the lead-in line 16 and the isolated operation monitoring device 30 and the synchronous control device 50 as necessary.

この単独運転検出システムでは、複数の分散電源保有設備20を第1群と第2群との2群に分類する。但し、第1群を構成する複数の分散電源保有設備20と、第2群を構成する複数の分散電源保有設備20とは、図1では図示の都合上、互いに各群ごとに集まっているように図示しているが、そのように集まらずに混在していても良い。   In this isolated operation detection system, the plurality of distributed power supply facilities 20 are classified into two groups, a first group and a second group. However, the plurality of distributed power holding facilities 20 constituting the first group and the plurality of distributed power holding facilities 20 constituting the second group seem to be gathered together for each group for convenience of illustration in FIG. However, they may be mixed instead of gathering.

第1群および第2群を構成する分散電源保有設備20の数は、それぞれ、少なくとも2台ずつ以上あれば良い。単独運転検出システムを構築した後に、第1群および/または第2群を構成する分散電源保有設備20の数を変更(増加または減少)しても良い。   The number of the distributed power source holding facilities 20 constituting the first group and the second group may be at least two each. After constructing the islanding detection system, the number of distributed power source holding facilities 20 constituting the first group and / or the second group may be changed (increased or decreased).

そしてこの単独運転検出システムは、数2、表1にも示すように、うなりを生じさせる二つの注入周波数からそれぞれ成る2組の注入周波数であって、各組を成す二つの注入周波数間の周波数差Δfは両組で互いに同じであり、かつ両組を構成する四つの注入周波数f11、f12、f21、f22はそれぞれ異なる第1組および第2組の注入周波数を用いる。 In addition, as shown in Formula 2 and Table 1, this isolated operation detection system has two injection frequencies each consisting of two injection frequencies that cause beat, and the frequency between the two injection frequencies forming each group. The difference Δf is the same in both sets, and the four injection frequencies f 11 , f 12 , f 21 , and f 22 constituting both sets use different first and second sets of injection frequencies.

この四つの周波数f11、f12、f21、f22は、いずれも、配電系統の基本波周波数とは異なる周波数にする。当該基本波周波数と区別(分離)を容易にするためである。各組を成す周波数は、うなりを生じさせる程度に互いに近い周波数にする。周波数差Δfは、うなりの周波数でもある。 These four frequencies f 11 , f 12 , f 21 , and f 22 are all set to frequencies different from the fundamental frequency of the distribution system. This is to facilitate discrimination (separation) from the fundamental frequency. The frequencies forming each set are set to frequencies close to each other to the extent that a beat is generated. The frequency difference Δf is also the beat frequency.

なお、この明細書および図面では、符号に添字11を有する物理量(周波数等)と添字12を有する物理量とが第1組を示し、添字21を有する物理量と添字22を有する物理量とが第2組を示している。   In this specification and drawings, a physical quantity (such as frequency) having a subscript 11 in the reference numeral and a physical quantity having a subscript 12 indicate a first set, and a physical quantity having a subscript 21 and a physical quantity having a subscript 22 are a second set. Is shown.

[数2]
|f11−f12|=|f21−f22|=Δf
11≠f12≠f21≠f22
[Equation 2]
| F 11 −f 12 | = | f 21 −f 22 | = Δf
f 11 ≠ f 12 ≠ f 21 ≠ f 22

Figure 0004350776
Figure 0004350776

第1群に属する各分散電源保有設備20の電流注入装置40は、上記第1組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流Iinj を注入し、同分散電源保有設備20の単独運転監視装置30は、上記第2組の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されている。 The current injection device 40 of each distributed power supply facility 20 belonging to the first group injects an injection current I inj including the current set of the injection frequency set with the first set of injection frequencies, The 20 independent operation monitoring devices 30 are configured to detect the isolated operation by setting the second set of injection frequencies and measuring the voltage of the injection frequency.

第2群に属する各分散電源保有設備20の電流注入装置40は、上記第2組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流Iinj を注入し、同分散電源保有設備20の単独運転監視装置30は、上記第1組の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されている。 The current injection device 40 of each distributed power supply facility 20 belonging to the second group injects an injection current I inj including the current set of the injection frequency set with the second set of injection frequencies, The 20 single operation monitoring devices 30 are configured to detect the single operation by setting the first set of injection frequencies and measuring the voltage of the injection frequency.

なお、この実施形態では、単独運転検出の確実性をより高めるために、各単独運転監視装置30は、それぞれの組を成す二つの注入周波数が設定されて両注入周波数の電圧を計測して単独運転を検出するように構成されているが、いずれか一方の注入周波数が設定されて当該注入周波数の電圧を計測して単独運転を検出するように構成されていても良い。   In this embodiment, in order to further improve the reliability of the isolated operation detection, each isolated operation monitoring device 30 sets two injection frequencies constituting each set, measures the voltages of both injection frequencies, and independently Although it is configured to detect the operation, it may be configured to detect any single operation by setting one of the injection frequencies and measuring the voltage of the injection frequency.

上記四つの周波数f11、f12、f21、f22を、それらと一定の関係(即ち、ω=2πfの関係)にある四つの角周波数ω11、ω12、ω21、ω22で表しても良いし、配電系統の基本波に対する四つの次数で表しても良い。 The four frequencies f 11 , f 12 , f 21 , and f 22 are represented by four angular frequencies ω 11 , ω 12 , ω 21 , and ω 22 that are in a fixed relationship (that is, a relationship of ω = 2πf). Alternatively, it may be expressed by four orders with respect to the fundamental wave of the distribution system.

上記第1組および第2組の注入周波数を構成する各注入周波数は、いずれも、配電系統の基本波周波数の1倍よりも大きい非整数倍(即ち帯小数倍)の周波数にするのが好ましい。そのようにすると、配電系統に本来は存在しない(存在しても極めて僅かな)、基本波周波数の非整数倍の周波数を用いることになるので、注入電流による電圧を計測することが容易になる。即ち、SN比が良くなる。その結果、各電流注入装置40の小容量化を図ることができる。   Each of the injection frequencies constituting the first set and the second set of injection frequencies should be a non-integer multiple (that is, a fractional multiple) greater than one time the fundamental frequency of the distribution system. preferable. In such a case, since a frequency that is not originally present in the distribution system (very small even if it exists) and uses a non-integer multiple of the fundamental frequency is used, it is easy to measure the voltage due to the injected current. . That is, the SN ratio is improved. As a result, the capacity of each current injection device 40 can be reduced.

例えば、上記四つの周波数f11、f12、f21、f22は、それぞれ、132Hz(2.2次)、144Hz(2.4次)、156Hz(2.6次)、168Hz(2.8次)である。括弧内は、配電系統の基本波(例えば60Hz=1次)に対する次数で表したものである。以下における実施形態では、全て、ここに例示した周波数を用いている。但しこれに限られるものではない。 For example, the four frequencies f 11 , f 12 , f 21 and f 22 are 132 Hz (2.2 order), 144 Hz (2.4 order), 156 Hz (2.6 order), 168 Hz (2.8), respectively. Next). The values in parentheses are expressed as orders with respect to the fundamental wave of the distribution system (for example, 60 Hz = 1st order). In the following embodiments, the frequencies exemplified here are all used. However, it is not limited to this.

(2)うなりの利用について
注入電流の周波数および計測電圧の周波数を表1に示したように分ける理由は次のとおりである。
(2) About use of beat The reason why the frequency of the injection current and the frequency of the measurement voltage are divided as shown in Table 1 is as follows.

(A)仮に、全ての分散電源保有設備20の電流注入装置40および単独運転監視装置30が同じ一つの注入周波数を用いるとすると、一つの分散電源保有設備20において、単独運転監視装置30が計測する注入周波数の電圧Vm は、殆どが、自設備20が注入する注入電流I1 による電圧V1 となり、他の分散電源保有設備20が注入する注入電流I2 による電圧V2 を監視することはできない。なぜなら、配電線10の系統のインピーダンスをZs 、変圧器14のインピーダンスをZt とすると、上記電圧V1 、V2 は次式で表される。Σは合計を表す。そして一般的にZt ≫Zs であるために、V1 ≫V2 となり、互いに同じ周波数である電圧V2 は、遥かに大きい電圧V1 にかき消されて監視することができなくなるからである。 (A) If the current injection device 40 and the single operation monitoring device 30 of all the distributed power supply facilities 20 use the same single injection frequency, the single operation monitoring device 30 measures in one distributed power supply facility 20. voltage V m of the injection frequency is that most monitors the injection current I 2 voltage V 2 by the injection current I 1 according to voltages V 1 becomes the own equipment 20 is injected, the other distributed power owned equipment 20 is injected I can't. This is because if the impedance of the distribution line 10 is Z s and the impedance of the transformer 14 is Z t , the voltages V 1 and V 2 are expressed by the following equations. Σ represents the total. In general, since Z t >> Z s , V 1 >> V 2 , and the voltages V 2 having the same frequency are erased by the much larger voltage V 1 and cannot be monitored. .

[数3]
1 =(Zs +Zt )×I1
2 =Zs ×ΣI2
[Equation 3]
V 1 = (Z s + Z t ) × I 1
V 2 = Z s × ΣI 2

従って、全ての分散電源保有設備20が一つの注入周波数を用いる場合は、他の分散電源保有設備20が注入する注入電流による電圧を監視すること、ひいては当該電圧の位相を計測することはできないので、複数の注入電流の同期を取ることはできない。   Therefore, when all of the distributed power supply facilities 20 use one injection frequency, it is impossible to monitor the voltage due to the injection current injected by the other distributed power supply facilities 20 and thus measure the phase of the voltage. The multiple injection currents cannot be synchronized.

(B)また仮に、第1群の分散電源保有設備20は一つの(第1の)注入周波数f1 を用い、第2群の分散電源保有設備20は他の一つの(第2の)注入周波数f2 (≠f1 )を用いるとすると、一方の群内の分散電源保有設備20は、周波数が異なるので、他方の群内の分散電源保有設備20が注入する注入電流による電圧を監視することはできるけれども、当該他群の注入電流による電圧と自設備20の注入電流とは周波数が異なるので、他群の注入電流による電圧に自設備20の注入電流を同期させることはできない。 (B) Also, suppose that the first group of distributed power supply facilities 20 uses one (first) injection frequency f 1 , and the second group of distributed power supply facilities 20 uses the other (second) injection. If the frequency f 2 (≠ f 1 ) is used, the distributed power supply facility 20 in one group has a different frequency, and therefore the voltage due to the injection current injected by the distributed power supply facility 20 in the other group is monitored. However, since the frequency of the voltage due to the injection current of the other group and the injection current of the own facility 20 are different, the injection current of the own facility 20 cannot be synchronized with the voltage due to the injection current of the other group.

即ち、他群の注入電流による電圧を基準にして、自群内の複数の注入電流をそれぞれ同期させることができない。これは、例えば他群の注入電流による電圧のピーク値の時刻を基準にして自群内の複数の注入電流をそれぞれ同期させようとしても、当該ピーク値の時刻は多数あって一つの時刻に定まらないので、自群内の複数の注入電流はそれぞれバラバラに注入されることになるからである。   That is, it is impossible to synchronize the plurality of injected currents in the own group with reference to the voltage due to the injected current of the other group. For example, even if an attempt is made to synchronize a plurality of injected currents in the own group with reference to the time of the peak value of the voltage due to the injected current of the other group, there are many times of the peak value and the time is determined as one time. This is because the plurality of injected currents in the own group are injected separately.

(C)これに対して、表1に示したようにすると、一方の群内の分散電源保有設備20は、周波数が異なるので、他方の群内の分散電源保有設備20が注入する注入電流による電圧を監視することができる。しかも、上記数2に示したように、一方の群内の分散電源保有設備20からの注入電流が生じさせるうなりと、他方の群内の分散電源保有設備20からの注入電流が生じさせるうなりとは、互いに同じ周波数Δfであるので、両うなり同士で同期を取ることが可能である。本発明に係る分散電源の単独運転検出システムは、これを利用するものである。これを以下に更に説明する。   (C) On the other hand, as shown in Table 1, since the distributed power supply facility 20 in one group has a different frequency, it depends on the injected current injected by the distributed power supply facility 20 in the other group. The voltage can be monitored. In addition, as shown in the above equation 2, a beat that causes an injection current from the distributed power source holding facility 20 in one group and a beat that causes an injection current from the distributed power source holding facility 20 in the other group. Are the same frequency Δf, so that both beats can be synchronized. The distributed power supply isolated operation detection system according to the present invention utilizes this. This will be further described below.

なお、この明細書においては、自設備(自分の設備)20が属する方の群を自群、自設備20が属さない方の群を他群と呼ぶ。また、自設備20が注入する注入電流が生じさせるうなりを自設備うなり、他群に属する分散電源保有設備20が注入する注入電流の総体が生じさせる電圧または電流のうなりを他群うなりと呼ぶ。   In this specification, the group to which the own equipment (own equipment) 20 belongs is called the own group, and the group to which the own equipment 20 does not belong is called the other group. Further, the beat that the injection current injected by the own equipment 20 generates is called the other equipment, and the beat of the voltage or current generated by the total of the injection current injected by the distributed power source possessing equipment 20 belonging to the other group is called the other group beat.

図3に、第1組の各電流I11a 、I12a の波形およびそれらの合成電流IC1a(=I11a +I12a )の波形の一例を示す。合成電流IC1aには、包絡線で示すうなりBT1aが生じる。 FIG. 3 shows an example of waveforms of the first set of currents I 11a and I 12a and their combined current IC 1a (= I 11a + I 12a ). In the combined current IC 1a , a beat BT 1a indicated by an envelope is generated.

図4に、第1組の各電流I11b 、I12b の波形およびそれらの合成電流IC1b(=I11b +I12b )の波形の他の例を示す。この電流I11b と図3に示す電流I11a とは、周波数は同じであるが位相が180度異なる。電流I12b と電流I12a との関係も同様である。これは、最も位相差が大きい場合の例を示すものである。 FIG. 4 shows another example of the waveforms of the first set of currents I 11b and I 12b and their combined current IC 1b (= I 11b + I 12b ). The current I 11b and the current I 11a shown in FIG. 3 have the same frequency but a phase difference of 180 degrees. The relationship between the current I 12b and the current I 12a is the same. This shows an example when the phase difference is the largest.

合成電流IC1bには、包絡線で示すうなりBT1bが生じる。このうなりBT1bと図3に示すうなりBT1aとは互いに同期しているけれども、注意して見れば分かるように、この合成電流IC1bと図3に示す合成電流IC1aとは位相が180度異なる。これは、上記電流I11a 、I12a の組と、電流I11b 、I12b の組(これらを成分電流と呼ぶことがある)との間の上記位相差に起因している。このような位相が180度異なる二つの合成電流IC1a、IC1bを互いに合成(加算)すると、その合成電流は0になって消滅してしまう。 In the combined current IC 1b , a beat BT 1b indicated by an envelope is generated. Although the beat BT 1b and the beat BT 1a shown in FIG. 3 are synchronized with each other, as can be seen from a careful observation, the synthesized current IC 1b and the synthesized current IC 1a shown in FIG. Different. This is due to the phase difference between the set of currents I 11a and I 12a and the set of currents I 11b and I 12b (these may be referred to as component currents). When two combined currents IC 1a and IC 1b having such a phase difference of 180 degrees are combined (added) to each other, the combined current becomes 0 and disappears.

上記例から分かるように、成分電流の位相差が180度のように極端でないとしても、二つのうなりが互いに同期していても、その同じ周波数の成分電流同士間に位相差がある場合があり、その場合は、各電流を合成しても同じ周波数の成分電流同士は単純加算されないことになる。   As can be seen from the above example, even if the phase difference between component currents is not as extreme as 180 degrees, there may be a phase difference between component currents of the same frequency even if the two beats are synchronized with each other. In this case, even if the currents are combined, the component currents having the same frequency are not simply added.

つまり、自群内の複数の分散電源保有設備20から注入する同じ周波数の複数の電流が、位相差が実質的に0度で同期して単純加算されるためには、次の2条件を満たす必要がある。   That is, the following two conditions are satisfied in order for a plurality of currents of the same frequency injected from a plurality of distributed power holding facilities 20 in the group to be simply added synchronously with a phase difference of substantially 0 degrees. There is a need.

条件1:自設備うなりと他群うなりとが同期していること。例えば、自設備うなりの位相と他群うなりの位相との位相差が0度であること。
条件2:自設備20が注入する注入電流を構成する電流組の各電流の位相が、自設備うなりに対して同一群内で共通した一定の位相関係にあること。例えば、自設備うなりの腹のときの時刻(即ち、自設備うなりの位相が0度のとき)に、上記電流組の各電流の位相が同一群内で共通した一定の位相(例えば0度)にあること。この同一群内で共通した一定の位相とは、後で説明する一致位相θe のことである。
Condition 1: The own equipment beat and other group beats are synchronized. For example, the phase difference between the own equipment beat phase and the other group beat phase is 0 degree.
Condition 2: The phase of each current of the current set constituting the injection current injected by the own equipment 20 is in a fixed phase relationship common to the own equipment beat within the same group. For example, a constant phase (for example, 0 degree) in which the phases of the currents in the current group are common within the same group at the time when the equipment is belly (that is, when the phase of the own equipment is 0 degrees). Be in The constant phase common in the same group is a coincidence phase θ e described later.

同一群内というのは、換言すれば、即ちある(任意の)分散電源保有設備20から見て表現すれば、自群内のことである。   In other words, in the same group, that is, from the viewpoint of a certain (arbitrary) distributed power supply facility 20, it is in the own group.

図2に示した同期制御装置50は、上記二つの条件を満たす制御を行うものである。即ち、同期制御装置50は、自設備20の電流注入装置40が注入する注入電流Iinj を構成する電流組の各電流の位相を、当該注入電流が生じさせる自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備20の電流注入装置40が注入する注入電流Iinj の総体が生じさせる電圧のうなりである他群うなりに同期させる制御を行う。 The synchronous control device 50 shown in FIG. 2 performs control that satisfies the above two conditions. That is, the synchronous control device 50 makes the phase of each current of the current set constituting the injection current I inj injected by the current injection device 40 of the own facility 20 the same as the phase of the own facility beat that causes the injection current. This is a voltage beat generated by the total of the injection current I inj injected by the current injection device 40 of the distributed power supply facility 20 belonging to the other group while maintaining the common phase relationship common within the group and the own equipment beat. Control to synchronize with other group beats.

この同期制御装置50による制御の原理の詳細および同期制御装置50の構成の例は後で詳述する。   Details of the principle of control by the synchronization control device 50 and an example of the configuration of the synchronization control device 50 will be described in detail later.

図5は、自設備うなりBT1 が他群うなりBT2 に同期していない場合の一例を示す。両うなり間には位相差dθがある。それだけ自設備うなりBT1 が遅れている。 FIG. 5 shows an example in which the own equipment beat BT 1 is not synchronized with another group beat BT 2 . There is a phase difference dθ between the two beats. That's why the own equipment beat BT 1 is delayed.

図6は、同期制御装置50によって、自設備うなりBT1 を他群うなりBT2 に同期させた場合の一例を示す。時刻t3 で両うなりが一致して同期し、それ以降は同期状態を保っている。同期制御装置50は、このようなうなりの同期制御(前記条件1を満たす制御)を行うことができる。更にこの同期制御装置50によれば、この同期状態において、前記条件2を満たすことができる。 FIG. 6 shows an example in which the synchronization control device 50 synchronizes the own equipment beat BT 1 with another group beat BT 2 . At time t 3 , both beats coincide and synchronize, and thereafter the synchronization state is maintained. The synchronization control device 50 can perform such beat synchronization control (control satisfying the condition 1). Furthermore, according to the synchronization control device 50, the condition 2 can be satisfied in this synchronization state.

従って、本発明に係る単独運転検出システムによれば、自設備20の注入電流Iinj が生じさせるうなりと、他群の注入電流Iinj が生じさせるうなりとを同期させることを利用して、同一の群に属する複数の分散電源保有設備20から配電線10に注入する同一周波数の複数の注入電流を、位相差が実質的に0度でそれぞれ同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。 Therefore, according to the isolated operation detection system according to the present invention, the same is achieved by synchronizing the beat generated by the injected current I inj of the own facility 20 and the beat generated by the injected current I inj of the other group. It is possible to synchronize a plurality of injected currents of the same frequency injected into the distribution line 10 from a plurality of distributed power source possessing facilities 20 belonging to the group with a phase difference of substantially 0 degrees. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

しかも、上記のように複数の注入電流を同期させることによって、個々の分散電源保有設備20の電流注入装置40から注入する注入電流が小さくても、それらの電流が加算されるので、同一群全体として見れば、それから大きな注入電流を引込線16ひいては配電線10に注入することができる。その結果、各分散電源保有設備20を構成する電流注入装置40の容量が小さくて済む。しかも、大きな注入電流によって、配電線10に注入周波数の大きな電圧を発生させることが可能になるので、各単独運転監視装置30による単独運転検出の精度を高めることができる。この効果は、同一群に属する分散電源保有設備20の数が多くなるほど高まる。即ち、分散電源保有設備20が配電線10に高密度連系されている場合に、より大きな効果を発揮する。   In addition, by synchronizing a plurality of injection currents as described above, even if the injection current injected from the current injection device 40 of each distributed power supply facility 20 is small, those currents are added, so the same group as a whole As a result, a large injection current can then be injected into the lead-in wire 16 and thus into the distribution line 10. As a result, the capacity of the current injection device 40 constituting each distributed power supply facility 20 can be reduced. And since it becomes possible to generate the voltage with a large injection frequency in the distribution line 10 with a big injection current, the precision of the independent operation detection by each independent operation monitoring apparatus 30 can be raised. This effect increases as the number of the distributed power supply facilities 20 belonging to the same group increases. That is, when the distributed power supply facility 20 is connected to the distribution line 10 with high density, a greater effect is exhibited.

(3)同期制御装置50による制御の原理の詳細説明
図11〜図13に、同期制御装置50の構成の例をそれぞれ示す。それの説明に先立って、同期制御装置50による制御の原理を詳細に説明する。以下の説明では、第1組の周波数の電流等を例にしているが、第2組の周波数の電流等についても同じである。
(3) Detailed Description of Principle of Control by Synchronization Control Device 50 FIGS. 11 to 13 show examples of the configuration of the synchronization control device 50, respectively. Prior to the description, the principle of control by the synchronization control device 50 will be described in detail. In the following description, the current of the first set of frequencies is taken as an example, but the same applies to the current of the second set of frequencies.

なお、これ以降の説明においては、時間的に変化する(即ち時間tによって変化する)物理量であることを表す必要がある場合に、それを表す(t)を各符号に付けることにする。但し、図面中の符号においては、図示を簡略化するために、当該(t)や、ベクトル量であることを表す符号を省略している。   In the following description, when it is necessary to represent a physical quantity that changes with time (that is, changes with time t), (t) that represents it is attached to each code. However, in the reference numerals in the drawings, in order to simplify the illustration, (t) and the reference numerals indicating the vector quantities are omitted.

(3−1)二つの電流位相θ11(t)、θ12(t)の位相一致時刻Te と一致位相θe による表現
まず、第1組の電流I11(t)、I12(t)の位相θ11(t)、θ12(t)とΔθinj(t)(=θ12(t)−θ11(t)。これを自設備うなりの位相と呼ぶ)の関係について考察する。
(3-1) Expression of Two Current Phases θ 11 (t) and θ 12 (t) by Phase Match Time Te and Match Phase θ e First, the first set of currents I 11 (t) and I 12 (t ) Phase θ 11 (t), θ 12 (t) and Δθ inj (t) (= θ 12 (t) −θ 11 (t), which is referred to as a self- grown phase).

第1組の電流I11(t)、I12(t)をベクトル量で表すと次式となる。ここでω11、ω12は、前記設定された周波数f11、f12を角周波数ω11(=2πf11)、ω12(=2πf12)で表したものであって、これらは時間的には変化しない固定値である。 The first set of currents I 11 (t) and I 12 (t) are expressed as vector quantities as follows: Here, ω 11 and ω 12 represent the set frequencies f 11 and f 12 as angular frequencies ω 11 (= 2πf 11 ) and ω 12 (= 2πf 12 ), respectively. Is a fixed value that does not change.

Figure 0004350776
Figure 0004350776

Figure 0004350776
Figure 0004350776

初期位相は、φ1 、φ2 を用いるのが一般的であるが(数4、数5の左から3番目の式)、ここでは位相θ11(t)、θ12(t)の自設備うなり位相Δθinj(t)に対する関係を明らかにするため、電流I11(t)、I12(t)(共にベクトル量。以下同様)の初期位相φ1 、φ2 を共通の時刻(時刻遅れまたは進み)Te と共通の位相θe を使用して、表現し直した(数4、数5の一番右の式)。Te 、θe とφ1 、φ2 との関係は次式となる。 In general, φ 1 and φ 2 are used as the initial phase (the third equations from the left in Equations 4 and 5). Here, the own equipment of the phases θ 11 (t) and θ 12 (t) is used. In order to clarify the relationship to the beat phase Δθ inj (t), the initial phases φ 1 and φ 2 of the currents I 11 (t) and I 12 (t) (both vector quantities; the same applies hereinafter) are set to a common time (time delay). or advance) using T e and common phase theta e, re expressed (number 4, the rightmost formula 5). The relationship between T e and θ e and φ 1 and φ 2 is as follows.

[数6]
e =(φ2 −φ1 )/(ω11−ω12
[Equation 6]
T e = (φ 2 −φ 1 ) / (ω 11 −ω 12 )

[数7]
θe =(ω11・φ2 −ω12・φ1 )/(ω11−ω12
[Equation 7]
θ e = (ω 11・ φ 2 −ω 12・ φ 1 ) / (ω 11 −ω 12 )

上記時刻Te 、位相θe を使用して、自設備うなりの位相Δθinj(t)は以下のように表現される。まず、両電流I11(t)、I12(t)の商を取ると次式となる。 Using the time T e and the phase θ e , the phase Δθ inj (t) of the own equipment beat is expressed as follows. First, when taking the quotient of both currents I 11 (t) and I 12 (t), the following equation is obtained.

Figure 0004350776
Figure 0004350776

従って、上記商の偏角が電流I11(t)とI12(t)との位相差、即ち自設備うなりの位相Δθinj(t)であるから、それは次式となる。また、位相θe は0となり消える。 Therefore, since the deviation angle of the quotient is the phase difference between the currents I 11 (t) and I 12 (t), that is, the phase Δθ inj (t) of the own equipment, it is given by the following equation. Further, the phase θ e becomes 0 and disappears.

[数9]
Δθinj(t)=θ12(t)−θ11(t)=(ω12−ω11)(t−Te
[Equation 9]
Δθ inj (t) = θ 12 (t) −θ 11 (t) = (ω 12 −ω 11 ) (t−T e )

数9から、時刻Te 、位相θe の意味は以下のとおりである。
e :Δθinj(t)の位相が0度となる時刻(即ち、電流I11(t)とI12(t)の位相が一致する時刻。従ってこれを、位相一致時刻と呼ぶ)。
θe :Δθinj(t)が0度となる時刻(位相一致時刻)Te での電流I11(t)、I12(t)の位相(即ち、電流I11(t)とI12(t)の位相が一致するときの位相。従ってこれを、一致位相と呼ぶ)。
From Equation 9, the meaning of time T e and phase θ e is as follows.
T e : Time when the phase of Δθ inj (t) becomes 0 degree (that is, the time when the phases of the currents I 11 (t) and I 12 (t) match. Therefore, this is called the phase matching time).
θ e: Δθ inj (t) is 0 ° to become time current I 11 at (phase matching time) T e (t), I 12 the (t) phase (i.e., current I 11 (t) and I 12 ( The phase when the phases of t) coincide, so this is called the coincidence phase).

位相一致時刻Te 、一致位相θe を用いて電流I11(t)、I12(t)を、その合成によるうなりBT1 について考察すると、実は先に示した図3と図4とは、位相一致時刻Te が共通であるのに対して、図3は一致位相θe が0度、図4は一致位相θe が180度の場合をシミュレーションした例である。両図について先に説明したとおり、位相一致時刻Te が共通(互いに一致)していても、一致位相θe が異なると、同じ周波数の電流同士は同期せず単純加算されない。一致位相θe が180度異なれば、加算すると消滅する。 When the current I 11 (t) and I 12 (t) are considered with respect to the beat BT 1 obtained by combining the currents I 11 (t) and I 12 (t) using the phase coincidence time Te and the coincidence phase θ e , FIG. 3 shows an example in which the coincidence phase θ e is 0 degree and FIG. 4 is a simulation example in which the coincidence phase θ e is 180 degrees, while the phase coincidence time Te is common. As described above in both figures, even if the phase matching time Te is common (matches each other), if the matching phase θ e is different, currents of the same frequency are not synchronized and are not simply added. If the coincidence phase θ e is different by 180 degrees, it disappears when added.

(3−2)自群内の複数の分散電源保有設備20において一致位相θe を共通にしておく理由
自群内の同じ周波数の電流同士の同期について、うなりそのものではなく、第1組の上記各電流の位相θ11(t)、θ12(t)と自設備うなりの位相Δθinj(t)との関係で以下にまとめる。これは、本発明は、うなりだけではなく、そこから更に考察して、うなりを生成する二つの信号(電流や電圧)の位相に着目したものだからである。
(3-2) Reason for making the coincidence phase θ e common among the plurality of distributed power supply facilities 20 in the own group The synchronization of currents of the same frequency in the own group is not the beat itself but the first set of the above The relationship between the phase θ 11 (t), θ 12 (t) of each current and the phase Δθ inj (t) of the own equipment is summarized below. This is because the present invention focuses not only on beats but also on the phase of two signals (current and voltage) that generate beats, considering further from there.

上記位相θ11(t)、θ12(t)は、数4、数5、数9から、位相一致時刻Te と一致位相θe 、または、自設備うなりの位相Δθinj(t)と一致位相θe を用いて、次式で表すことができる。 The phase θ 11 (t), θ 12 (t) is matched number 4, number 5, the number 9, the phase matching time T e match phase theta e, or the own equipment beat phase Δθ inj (t) Using the phase θ e , it can be expressed as:

[数10]
θ11(t)=ω11(t−Te )+θe ={ω11/(ω12−ω11)}・Δθinj(t)+θe
[Equation 10]
θ 11 (t) = ω 11 (t−T e ) + θ e = {ω 11 / (ω 12 −ω 11 )} · Δθ inj (t) + θ e

[数11]
θ12(t)=ω12(t−Te )+θe ={ω12/(ω12−ω11)}・Δθinj(t)+θe
[Equation 11]
θ 12 (t) = ω 12 (t−T e ) + θ e = {ω 12 / (ω 12 −ω 11 )} · Δθ inj (t) + θ e

数10、数11によれば、位相θ11(t)、θ12(t)は、自設備うなりの位相Δθinj(t)との関係において、電流I11(t)、I12(t)の一致位相θe によって分類(グループ分け)できることが分かる。そして、グループが同じ(即ち一致位相θe が同じ)場合にのみ、第1組内の同じ周波数の電流同士は同期(単純加算)されることが分かる。 According to Equations 10 and 11, the phases θ 11 (t) and θ 12 (t) are related to the currents I 11 (t) and I 12 (t) in relation to the phase Δθ inj (t) of the own equipment. it can be seen that classification by matching the phase theta e of (grouping). Then, the group only if the same (i.e. matched phase theta e are the same), current between the same frequencies of the first set within it can be seen that are synchronized (simple addition).

このことを、シミュレーションを行った図で示す。なお、図7〜図10、図15B、図16B、図17Bの位相を示す図において、位相が360度の点と0度の点とを縦軸に平行に結ぶ縦線が記載されているが、これはシミュレーションソフトの都合によるものであり、位相は360°=0°であるから、当該縦線は無いものと考えるのがより正確である。   This is shown in the simulated figures. 7 to 10, FIG. 15B, FIG. 16B, and FIG. 17B, the vertical lines connecting the 360 degree phase point and the 0 degree point parallel to the vertical axis are shown. This is due to the convenience of simulation software, and since the phase is 360 ° = 0 °, it is more accurate to consider that the vertical line is not present.

図7に、一致位相θe が0度の場合の各電流の位相θ11a(t)、θ12a(t)とその位相差(即ち自設備うなりの位相)Δθinja(t)の一例を示し、図8に、一致位相θe が180度の場合の各電流の位相θ11b(t)、θ12b(t)とその位相差(即ち自設備うなりの位相)Δθinjb(t)の一例を示す。但し両図では、位相一致時刻Te は互いに共通(同じ)としている。 FIG. 7 shows an example of the phases θ 11a (t) and θ 12a (t) of the respective currents when the coincidence phase θ e is 0 degree and the phase difference (that is, the phase of the beat of the own equipment) Δθ inja (t). FIG. 8 shows an example of the phases θ 11b (t) and θ 12b (t) of each current when the coincidence phase θ e is 180 degrees and its phase difference (that is, the phase of the beat of its own equipment) Δθ injb (t). Show. However, in both figures, the phase matching time Te is common (same) to each other.

図7、図8に示すように、位相一致時刻Te が同じであれば、一致位相θe が違っても、自設備うなりの位相Δθinj(t)は両図で互いに一致している。即ち同期している。 As shown in FIG. 7, FIG. 8, if the phase matching time T e is the same, even if different match phase theta e, self facility beat phase Δθ inj (t) are matched with each other in both figures. That is, they are synchronized.

しかし、図9に示すように、両電流の周波数は互いに同じであるけれども、うなりの位相Δθinj(t)との関係で、一致位相θe が0度の電流の位相θ11a(t)と、一致位相θe が180度の電流の位相θ11b(t)とは互いに一致しない。図示しないけれども、位相θ12a(t)とθ12b(t)とも互いに一致しない。即ち、同じ周波数の電流同士であるけれども同期しない。 However, as shown in FIG. 9, although the frequencies of both currents are the same, the phase θ 11a (t) of the current whose coincidence phase θ e is 0 degrees is related to the beat phase Δθ inj (t). The coincidence phase θ e does not coincide with the phase θ 11b (t) of the current of 180 degrees. Although not shown, the phases θ 12a (t) and θ 12b (t) do not match each other. That is, the currents of the same frequency are not synchronized.

これに対して、一致位相θe を自群内で全て共通に(例えば0度に)しておくと、図10に示すように、上記位相θ11a(t)とθ11b(t)とは互いに一致する。図示しないけれども、位相θ12a(t)とθ12b(t)とも互いに一致する。即ち、同じ周波数の電流同士は、位相が0度で同期する。 On the other hand, if the coincidence phase θ e is all common within the own group (for example, at 0 degree), the phases θ 11a (t) and θ 11b (t) are as shown in FIG. Match each other. Although not shown, the phases θ 12a (t) and θ 12b (t) also coincide with each other. That is, currents having the same frequency are synchronized with each other in phase.

以上は、同一群内の2台の分散電源保有設備20について説明したが、それ以上の台数の場合も同様である。即ち、同一群内の複数の分散電源保有設備20において一致位相θe を共通にしておくことが重要である。このことは第1群についても言えるし、第2群についても言える。但し、第1群と第2群とで一致位相θe が共通である必要はない。あくまでも同一群内で共通であれば良い。 Although the above has described the two distributed power supply facilities 20 in the same group, the same applies to the case of more than that. In other words, it is important to make the coincidence phase θ e common in a plurality of distributed power supply facilities 20 in the same group. This can be said for the first group as well as for the second group. However, the coincidence phase θ e does not have to be common between the first group and the second group. What is necessary is just to be common within the same group.

また、数9から分かるように、位相一致時刻Te を制御することによって、自設備うなりの位相Δθinj(t)を制御することができる。従って、自設備うなりの位相Δθinj(t)を他群うなりの位相Δθm(t)(これの求め方は後述する)に一致させて、自設備うなりと他群うなりとを同期させることができる。 Moreover, as can be seen from Equation 9, by controlling the phase matching time T e, it is possible to control the self equipment beat phase Δθ inj (t). Therefore, the own equipment beat and the other group beat can be synchronized by matching the own equipment beat phase Δθ inj (t) with the other group beat phase Δθ m (t) (how to obtain this will be described later). it can.

従って、(a)上記のように同一群内で一致位相θe を共通にしておくことを保ちつつ、(b)各分散電源保有設備20において位相一致時刻Te を制御して自設備うなりを他群うなりに同期させることによって、同じ周波数の複数の注入電流を、位相が0度でそれぞれ同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。 Therefore, while maintaining that you commonly matching phase theta e in the same group as (a) above, the self equipment beat by controlling the phase matching time T e in (b) each distributed power held equipment 20 By synchronizing with other group beats, multiple injection currents of the same frequency can be synchronized with a phase of 0 degrees. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

この発明は、このような思想に基づくものである。   The present invention is based on such a concept.

(3−3)うなり同期の過程で注入電流の位相を変化させる場合の説明
自設備うなりの位相Δθinj(t)を、他群うなりの位相Δθm(t)に合わせに行くためには、組を成す電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、それぞれの前記設定された角周波数ω11、ω12(これらは前述したように時間的に変化するものではなく、設定された固定値である)による一定増加の状態から、一時的に(過渡的に)変化させる必要がある。この変化させる過程での電流I11(t)、I12(t)を考察するために、前記数4、数5をそれぞれ次のように変更する。
(3-3) the phase [Delta] [theta] inj (t) Description of the own equipment beat case of changing the phase of the injected current at the beat synchronization process, to go to target a different group beat phase [Delta] [theta] m (t) is The phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t) forming the set are respectively set to the set angular frequencies ω 11 and ω 12 (which are as described above). It is necessary to change temporarily (transiently) from a state of constant increase due to a fixed value that is not changed with time. In order to consider the currents I 11 (t) and I 12 (t) in the changing process, the equations (4) and (5) are changed as follows.

Figure 0004350776
Figure 0004350776

Figure 0004350776
Figure 0004350776

但し、位相φ1(t)、φ2(t)は次式で表される。 However, the phases φ 1 (t) and φ 2 (t) are expressed by the following equations.

[数14]
φ1(t)=dθ11(t)+φ1
φ2(t)=dθ12(t)+φ2
[Formula 14]
φ 1 (t) = dθ 11 (t) + φ 1
φ 2 (t) = dθ 12 (t) + φ 2

上記位相φ1(t)の導出は以下による(位相φ2(t)についても同様)。 The phase φ 1 (t) is derived as follows (the same applies to the phase φ 2 (t)).

位相θ11(t)は、それを変化させる量をdθ11(t)とすると、次式で表すことができる。次式の第2行と第3行との関係から、数14の第1行に示したφ1(t)が導出される。 The phase θ 11 (t) can be expressed by the following equation, where dθ 11 (t) is the amount of change. From the relationship between the second row and the third row in the following equation, φ 1 (t) shown in the first row of Equation 14 is derived.

[数15]
θ11(t)={ω11・t+dθ11(t)}+φ1
=ω11・t+{dθ11(t)+φ1
=ω11・t+φ1(t)
[Equation 15]
θ 11 (t) = {ω 11 · t + dθ 11 (t)} + φ 1
= Ω 11 · t + {dθ 11 (t) + φ 1 }
= Ω 11・ t + φ 1 (t)

また、位相φ1 、φ2 が上記のように時間的に変化する位相φ1(t)、φ2(t)となったことから、前記位相一致時刻Te 、一致位相θe もここでは同様に時間的に変化するものとして、Te(t)、θe(t)で表す。そうしたのが、前記数12、数13の一番右の式である。 Further, since the phases φ 1 and φ 2 become the phases φ 1 (t) and φ 2 (t) that change with time as described above, the phase matching time T e and the matching phase θ e are also expressed here. Similarly, it is represented by T e (t) and θ e (t) as changing with time. That is the rightmost expression of the above equations (12) and (13).

その結果、前記数6は次の数16に、数7は次の数17に、数8は次の数18に、数9は次の数19に、数10は次の数20に、数11は次の数21に、それぞれ変更される。   As a result, the number 6 becomes the next number 16, the number 7 becomes the next number 17, the number 8 becomes the next number 18, the number 9 becomes the next number 19, the number 10 becomes the next number 20, the number 11 is changed to the following Expression 21, respectively.

[数16]
e ={φ2(t)−φ1(t)}/(ω11−ω12
={φ2 −φ1 +dθ12(t)−dθ11(t)}/(ω11−ω12
[Equation 16]
T e = {φ 2 (t) −φ 1 (t)} / (ω 11 −ω 12 )
= {Φ 2 −φ 1 + dθ 12 (t) −dθ 11 (t)} / (ω 11 −ω 12 )

[数17]
θe(t)={ω11・φ2(t)−ω12・φ1(t)}/(ω11−ω12
={ω11・φ2 −ω12・φ1 +ω11・dθ12(t)−ω12・dθ11(t)}/(ω11−ω12
[Equation 17]
θ e (t) = {ω 11 · φ 2 (t) −ω 12 · φ 1 (t)} / (ω 11 −ω 12 )
= {Ω 11 · φ 2 −ω 12 · φ 1 + ω 11 · dθ 12 (t) −ω 12 · dθ 11 (t)} / (ω 11 −ω 12 )

Figure 0004350776
Figure 0004350776

[数19]
Δθinj(t)=θ12(t)−θ11(t)=(ω12−ω11)(t−Te(t))
[Equation 19]
Δθ inj (t) = θ 12 (t) −θ 11 (t) = (ω 12 −ω 11 ) (t−T e (t))

[数20]
θ11(t)=ω11(t−Te(t))+θe(t)={ω11/(ω12−ω11)}・Δθinj(t)+θe(t)
[Equation 20]
θ 11 (t) = ω 11 (t−T e (t)) + θ e (t) = {ω 11 / (ω 12 −ω 11 )} · Δθ inj (t) + θ e (t)

[数21]
θ12(t)=ω12(t−Te(t))+θe(t)={ω12/(ω12−ω11)}・Δθinj(t)+θe(t)
[Equation 21]
θ 12 (t) = ω 12 (t−T e (t)) + θ e (t) = {ω 12 / (ω 12 −ω 11 )} · Δθ inj (t) + θ e (t)

(3−4)一致位相θe(t)を固定値に保つことと、位相θ11(t)、θ12(t)の変化量との関係
上記数17から、一致位相θe(t)が固定値(時間的に変化しない)ことの条件を求める。微小な時間Δtが経ったときの一致位相θe(t)の変化量は、数17の第2行目の時間的変動項を用いて、次式で表される。
(3-4) Relationship between keeping the coincidence phase θ e (t) at a fixed value and the amount of change in the phases θ 11 (t) and θ 12 (t) From the above equation 17, the coincidence phase θ e (t) Is a fixed value (does not change over time). The amount of change in the coincidence phase θ e (t) when the minute time Δt has passed is expressed by the following equation using the time variation term in the second row of Equation 17.

[数22]
θe(t+Δt)−θe(t)
={ω11・dθ12(t+Δt)−ω12・dθ11(t+Δt)}/(ω11−ω12)−{ω11・dθ12(t)−ω12・dθ11(t)}/(ω11−ω12
={(ω11(dθ12(t+Δt)−dθ12(t))−ω12(dθ11(t+Δt)−dθ11(t))}/(ω11−ω12
[Equation 22]
θ e (t + Δt) −θ e (t)
= {Ω 11 · dθ 12 (t + Δt) −ω 12 · dθ 11 (t + Δt)} / (ω 11 −ω 12 ) − {ω 11 · dθ 12 (t) −ω 12 · dθ 11 (t)} / ( ω 11 −ω 12 )
= {(Ω 11 (dθ 12 (t + Δt) −dθ 12 (t)) − ω 12 (dθ 11 (t + Δt) −dθ 11 (t))} / (ω 11 −ω 12 )

上記数22から、一致位相θe(t)が固定値である(変化しない)ための十分条件は次式で表される(次式が成立すれば良い)。 From the above Equation 22, the sufficient condition for the coincidence phase θ e (t) to be a fixed value (does not change) is expressed by the following equation (the following equation should be satisfied).

[数23]
{ω11(dθ12(t+Δt)−dθ12(t)}−ω12{dθ11(t+Δt)−dθ11(t)}=0
[Equation 23]
11 (dθ 12 (t + Δt) −dθ 12 (t)} − ω 12 {dθ 11 (t + Δt) −dθ 11 (t)} = 0

即ち次式であることが分かる。   That is, it turns out that it is following Formula.

[数24]
{dθ11(t+Δt)−dθ11(t)}/{dθ12(t+Δt)−dθ12(t)}=ω11/ω12
[Equation 24]
{Dθ 11 (t + Δt) −dθ 11 (t)} / {dθ 12 (t + Δt) −dθ 12 (t)} = ω 11 / ω 12

ここで、{dθ11(t+Δt)−dθ11(t)}、{dθ12(t+Δt)−dθ12(t)}(これを(ア)とする)は、電流I11(t)、I12(t)の元々設定された角周波数による位相変化量ω11・Δt、ω12・Δt(これを(イ)とする)から、制御のために変化させた部分についての位相変化量である。 Here, {dθ 11 (t + Δt) −dθ 11 (t)}, {dθ 12 (t + Δt) −dθ 12 (t)} (which is referred to as (A)) are currents I 11 (t), I 12 This is the phase change amount for the portion changed for control from the phase change amounts ω 11 · Δt and ω 12 · Δt (this is referred to as (A)) due to the originally set angular frequency of (t).

従って、上記(ア)、(イ)の位相変化量を互いに加えた、電流I11(t)、I12(t)の時刻tから時刻(t+Δt)までの合計の(全体の)位相変化量をΔθ11、Δθ12とすると、次式となる。 Accordingly, the total (total) phase change amount from the time t to the time (t + Δt) of the currents I 11 (t) and I 12 (t) obtained by adding the phase change amounts (a) and (b) to each other. Are Δθ 11 and Δθ 12 , the following equations are obtained.

[数25]
Δθ11=ω11・Δt+{dθ11(t+Δt)−dθ11(t)}
[Equation 25]
Δθ 11 = ω 11 · Δt + {dθ 11 (t + Δt) −dθ 11 (t)}

[数26]
Δθ12=ω12・Δt+{dθ11(t+Δt)−dθ11(t)}
[Equation 26]
Δθ 12 = ω 12 · Δt + {dθ 11 (t + Δt) −dθ 11 (t)}

数24〜数26から、一致位相θe(t)が固定値である(変化しない)十分条件は次式となる。 From Equations 24 to 26, the sufficient condition that the coincidence phase θ e (t) is a fixed value (does not change) is as follows.

[数27]
Δθ11/Δθ12=ω11/ω12
[Equation 27]
Δθ 11 / Δθ 12 = ω 11 / ω 12

以上から、電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、その位相の変化量Δθ11、Δθ12間の比率を前記設定された角周波数ω11、ω12間の比率と同じ比率に保ったまま変化させることが、前記一致位相θe(t)が固定値θe (時間的に変化しないので(t)を付けていない)となるための十分条件であることが分かる。・・・結論A From the above, the phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t) and the ratio between the phase variations Δθ 11 and Δθ 12 are set to the set angular frequency. The coincidence phase θ e (t) is changed to a fixed value θ e (not attached with (t) because it does not change with time) while maintaining the same ratio as the ratio between ω 11 and ω 12. It can be seen that this is a sufficient condition. ... Conclusion A

逆に、一致位相θe が固定値であれば、電流I11(t)、I12(t)の位相変化量間の比は、前記設定された角周波数ω11、ω12間の比率になることを次に示す。 Conversely, if the coincidence phase θ e is a fixed value, the ratio between the phase changes of the currents I 11 (t) and I 12 (t) is the ratio between the set angular frequencies ω 11 and ω 12. This is shown below.

それらの時刻tから時刻(t+Δt)までの位相変化量をΔθ11、Δθ12とする。上記数20、数21と一致位相θe が固定値であることから、次式が得られる。 The phase change amounts from time t to time (t + Δt) are denoted by Δθ 11 and Δθ 12 . Since the coincidence phase θ e and the equations 20 and 21 are fixed values, the following equation is obtained.

[数28]
θ11(t)=ω11・(t−Te(t))+θe
[Equation 28]
θ 11 (t) = ω 11 · (t−T e (t)) + θ e

[数29]
θ12(t)=ω12・(t−Te(t))+θe
[Equation 29]
θ 12 (t) = ω 12 · (t−T e (t)) + θ e

[数30]
θ11(t+Δt)=ω11・{(t+Δt)−Te(t+Δt)}+θe
[Equation 30]
θ 11 (t + Δt) = ω 11 · {(t + Δt) −T e (t + Δt)} + θ e

[数31]
θ12(t+Δt)=ω12・{(t+Δt)−Te(t+Δt)}+θe
[Equation 31]
θ 12 (t + Δt) = ω 12 · {(t + Δt) −T e (t + Δt)} + θ e

上記数28〜数31から次式が得られる。   From the above equations 28 to 31, the following equation is obtained.

[数32]
Δθ11=θ11(t+Δt)−θ11(t)
=ω11{Δt−(Te(t+Δt)−Te(t)}
[Formula 32]
Δθ 11 = θ 11 (t + Δt) −θ 11 (t)
= Ω 11 {Δt− (T e (t + Δt) −T e (t)}

[数33]
Δθ12=θ12(t+Δt)−θ12(t)
=ω12{Δt−(Te(t+Δt)−Te(t)}
[Equation 33]
Δθ 12 = θ 12 (t + Δt) −θ 12 (t)
= Ω 12 {Δt− (T e (t + Δt) −T e (t)}

その結果、次式の関係を維持した位相θ11(t)、θ12(t)の増減制御となる。 As a result, increase / decrease control of the phases θ 11 (t) and θ 12 (t) is maintained while maintaining the relationship of the following equation.

[数34]
Δθ11/Δθ12=ω11/ω12
[Formula 34]
Δθ 11 / Δθ 12 = ω 11 / ω 12

以上から、一致位相θe(t)が固定値の位相θe であるとし、位相一致時刻Te(t)のみの制御とすることが、電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、その位相の変化量Δθ11、Δθ12間の比率を前記設定された角周波数ω11、ω12間の比率と同じ比率に保ったまま変化させることの十分条件となる。・・・結論B From the above, assuming that the coincidence phase θ e (t) is a fixed phase θ e and controlling only the phase coincidence time Te (t), the currents I 11 (t) and I 12 (t) The phases θ 11 (t) and θ 12 (t) are changed while maintaining the ratio between the phase variations Δθ 11 and Δθ 12 at the same ratio as the ratio between the set angular frequencies ω 11 and ω 12. It is a sufficient condition to make it happen. ... Conclusion B

上記結論Aおよび結論B(即ち数27および数34)から、一致位相θe を固定値とし、位相一致時刻Te(t)のみの制御をすること(これを位相一致時刻制御方式と呼ぶ)と、電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、その位相の変化量Δθ11、Δθ12間の比率を前記設定された角周波数ω11、ω12間の比率と同じ比率に保ったまま変化させること(これを位相変化量制御方式と呼ぶ)とは、等価(必要十分条件)であると言うことができる。請求項5に記載の発明は、上記位相一致時刻制御方式の観点から記載したものである。請求項12に記載の発明も同様である。請求項2に記載の発明は、上記位相変化量制御方式の観点から記載したものである。請求項10に記載の発明も同様である。 From the above conclusion A and conclusion B (ie, equations 27 and 34), the coincidence phase θ e is set as a fixed value, and only the phase coincidence time T e (t) is controlled (this is called a phase coincidence time control method). And the phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t), and the ratio between the phase variations Δθ 11 and Δθ 12 is set to the set angular frequency ω. It can be said that changing while maintaining the same ratio as the ratio between 11 and ω 12 (this is called a phase change amount control method) is equivalent (necessary and sufficient condition). The invention described in claim 5 is described from the viewpoint of the phase matching time control method. The invention according to claim 12 is also the same. The invention described in claim 2 is described from the viewpoint of the phase change amount control system. The invention according to claim 10 is also the same.

なお、数32、数33では時刻tと時刻(t+Δt)との間の位相変化量を示したが、Δtを限りなく0として、位相変化量を時間tによる微分形式で表しても良い。その場合は次式となる。   Although the phase change amount between the time t and the time (t + Δt) is shown in the equations 32 and 33, the phase change amount may be expressed in a differential form according to the time t, with Δt being set to 0 as much as possible. In that case, the following equation is obtained.

[数35]
dθ11(t)/dt=ω11・{1−dTe(t)/dt}
[Equation 35]
dθ 11 (t) / dt = ω 11 · {1-dT e (t) / dt}

[数36]
dθ12(t)/dt=ω12・{1−dTe(t)/dt}
[Equation 36]
dθ 12 (t) / dt = ω 12 · {1-dT e (t) / dt}

良く知られているように、位相[rad]の時間微分は角周波数[rad/s]であるので、数35、数36の左辺を角周波数ω11(t)、ω12(t)と置き換え、両式の比を取ると次式が得られる。 As is well known, since the time derivative of the phase [rad] is the angular frequency [rad / s], the left side of the equations 35 and 36 is replaced with the angular frequencies ω 11 (t) and ω 12 (t). Taking the ratio of both equations, the following equation is obtained.

[数37]
ω11(t)/ω12(t)=ω11/ω12
[Equation 37]
ω 11 (t) / ω 12 (t) = ω 11 / ω 12

即ち、位相変化量の代わりに、角周波数ω11(t)、ω12(t)に着目すると、一致位相θe を固定値とし、位相一致時刻Te(t)のみの制御をすること(位相一致時刻制御方式)と、数37に示すように、電流I11(t)、I12(t)の角周波数ω11(t)、ω12(t)を、両者間の比率を元の前記設定された角周波数ω11、ω12間の比率に保ったまま増減制御すること(これを周波数制御方式と呼ぶ)とも、等価であると言うことができる。請求項3に記載の発明は、この周波数制御方式の観点から記載したものである。請求項11に記載の発明も同様である。なお、前述したように、周波数を角周波数で表しても良いし、次数で表しても良い。それぞれ等価である。 That is, focusing on the angular frequencies ω 11 (t) and ω 12 (t) instead of the phase change amount, the coincidence phase θ e is set as a fixed value, and only the phase coincidence time T e (t) is controlled ( Phase matching time control method) and the angular frequencies ω 11 (t) and ω 12 (t) of the currents I 11 (t) and I 12 (t) It can also be said that it is equivalent to performing increase / decrease control while keeping the ratio between the set angular frequencies ω 11 and ω 12 (this is called a frequency control method). The invention described in claim 3 is described from the viewpoint of this frequency control system. The invention according to claim 11 is also the same. As described above, the frequency may be expressed by an angular frequency or an order. Each is equivalent.

図15、図16に、第1組の各電流I11(t)、I12(t)の周波数f11(t)、f12(t)を、周波数比率を保ったまま増加させた場合の一例を示す。図15Aは、増加前の各電流I11(t)、I12(t)およびうなりBT1(t)の波形を示し、図15Bは、各電流の位相θ11(t)、θ12(t)およびうなりの位相Δθinj(t)の位相を示す。図16Aは、増加後の各電流I11(t)、I12(t)およびうなりBT1(t)の波形を示し、図16Bは、各電流の位相θ11(t)、θ12(t)およびうなりの位相Δθinj(t)の位相を示す。 FIGS. 15 and 16 show the case where the frequencies f 11 (t) and f 12 (t) of the first currents I 11 (t) and I 12 (t) are increased while maintaining the frequency ratio. An example is shown. FIG. 15A shows waveforms of currents I 11 (t), I 12 (t) and beat BT 1 (t) before increase, and FIG. 15B shows the phases θ 11 (t) and θ 12 (t ) And the phase of the beat phase Δθ inj (t). FIG. 16A shows the waveform of each current I 11 (t), I 12 (t) and beat BT 1 (t) after the increase, and FIG. 16B shows the phase θ 11 (t), θ 12 (t ) And the phase of the beat phase Δθ inj (t).

図15B、図16B中に点P3 、P4 でそれぞれ示すように、うなりの位相Δθinj(t)が0度の時点で、両位相θ11(t)、θ12(t)が互いに0度で一致していることは、周波数変化の前後で変わらない。即ち、前述した一致位相θe が0度で一定であることが保たれている。 As shown by points P 3 and P 4 in FIGS. 15B and 16B, when the beat phase Δθ inj (t) is 0 degrees, both phases θ 11 (t) and θ 12 (t) are 0 with respect to each other. The degree of coincidence does not change before and after the frequency change. That is, the coincidence phase θ e described above is kept constant at 0 degree.

比較例として、図17に、第1組の各電流I11(t)、I12(t)の周波数f11(t)、f12(t)を、周波数比率を保たないで(即ち、上記周波数制御方式の条件を守らないで)増加させた場合の一例を示す。増加前は、図15と同じであるのでそれを参照するものとする。図17Aは、増加後の各電流I11(t)、I12(t)およびうなりBT1(t)の波形を示し、図17Bは、各電流の位相θ11(t)、θ12(t)およびうなりの位相Δθinj(t)の位相を示す。 As a comparative example, FIG. 17 shows the frequencies f 11 (t) and f 12 (t) of the first set of currents I 11 (t) and I 12 (t) without maintaining the frequency ratio (ie, An example in the case of increasing (without observing the condition of the frequency control method) will be shown. Before the increase, since it is the same as FIG. 15, it will be referred to. FIG. 17A shows the waveforms of each current I 11 (t), I 12 (t) and beat BT 1 (t) after the increase, and FIG. 17B shows the phases θ 11 (t) and θ 12 (t ) And the phase of the beat phase Δθ inj (t).

図17B中に点P5 で示すように、周波数の増加後は、うなりの位相Δθinj(t)が0度の時点で、両位相θ11(t)、θ12(t)は互いに180度で一致することに変化している。即ち、前述した一致位相θe は、0度から180度に変化してしまっている。これは上記周波数制御方式の条件を守らなかったからである。 As indicated by a point P 5 in FIG. 17B, after the frequency is increased, when the beat phase Δθ inj (t) is 0 degree, both phases θ 11 (t) and θ 12 (t) are 180 degrees with respect to each other. Has changed to match. That is, the aforementioned coincidence phase θ e has changed from 0 degrees to 180 degrees. This is because the condition of the frequency control method was not observed.

以上から分かるように、位相一致時刻制御方式、位相変化量制御方式および周波数制御方式のいずれを用いても、その方式によって、自設備うなりを他群うなりに同期させることによって、前述したように、同じ周波数の複数の注入電流を、位相が実質的に0度でそれぞれ同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。   As can be seen from the above, by using any of the phase coincidence time control method, the phase change amount control method and the frequency control method, by synchronizing the own equipment beat with the other group beat by the method, as described above, Multiple injection currents of the same frequency can be synchronized with each other at a phase of substantially 0 degrees. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

なお、上記三つの制御方式(即ち、位相一致時刻制御方式、位相変化量制御方式および周波数制御方式)の内のどれか一つの制御方式を同一群内の全ての同期制御装置50において統一して採用しても良いし、複数の制御方式を混在させても良い。統一して採用すれば、同期制御装置50の設計、製作が容易になる等の利点がある。混在させても良いのは、先に詳述したように、上記三つの制御方式は互いに実質的に等価だからである。自群内の同期制御装置50の制御方式と他群内の同期制御装置50の制御方式との関係においても、上記と同様に、制御方式を統一しても良いし、混在させても良い。   It should be noted that any one of the three control methods (that is, the phase matching time control method, the phase change amount control method, and the frequency control method) is unified in all the synchronous control devices 50 in the same group. You may employ | adopt and may mix a some control system. If they are adopted uniformly, there are advantages such as easy design and manufacture of the synchronous control device 50. The reason why they may be mixed is that the three control methods are substantially equivalent to each other as described in detail above. Also in the relationship between the control method of the synchronous control device 50 in the own group and the control method of the synchronous control device 50 in the other group, the control method may be unified or mixed as described above.

(4)同期制御装置50の構成
次に、上記(3)で説明した原理に基づく制御を行う同期制御装置50の構成の例を説明する。
(4) Configuration of Synchronous Control Device 50 Next, an example of the configuration of the synchronous control device 50 that performs control based on the principle described in (3) above will be described.

図11は、同期制御装置の構成の一例を示すブロック図である。この同期制御装置50は、他群うなり位相算出器(これは他群うなり位相算出手段に相当する)58と、電流位相設定器(これは電流位相設定手段に相当する)70と、うなり同期器(これはうなり同期手段に相当する)88とを備えている。   FIG. 11 is a block diagram illustrating an example of the configuration of the synchronization control device. The synchronization control device 50 includes another group beat phase calculator (which corresponds to another group beat phase calculating means) 58, a current phase setter (which corresponds to current phase setting means) 70, and a beat synchronizer. (This corresponds to beat synchronization means) 88.

他群うなり位相算出器58は、前記引込線16における電圧Vs(t)に含まれている電圧であって、他群に属する分散電源保有設備20の電流注入装置40の注入周波数(以下ではこれを角周波数で表す)ω21(t)、ω22(t)の電圧V21(t)、V22(t)を計測して、当該電圧に基づいて前記他群うなりの位相Δθm(t)を算出するものである。 The other group beat phase calculator 58 is a voltage included in the voltage V s (t) in the lead-in line 16 and is an injection frequency (hereinafter referred to as “injection frequency”) of the distributed power supply facility 20 belonging to the other group. are expressed as angular frequency) ω 21 (t), the voltage V 21 of the ω 22 (t) (t) , by measuring V 22 a (t), of the other group beat based on the voltage phase [Delta] [theta] m (t ) Is calculated.

より具体的にはこの例では、他群うなり位相算出器58は、上記電圧V21(t)、V22(t)の位相θ21(t)、θ22(t)をそれぞれ算出する位相算出器52、54と、両位相θ21(t)、θ22(t)の減算を行って他群うなりの位相Δθm(t)を求める減算器56とを備えている。 More specifically in this example, the other groups beat phase calculator 58, the phase calculation to calculate the voltage V 21 (t), the phase theta 21 of V 22 (t) (t), theta 22 a (t), respectively And subtracters 56 for subtracting both phases θ 21 (t) and θ 22 (t) to obtain another group beat phase Δθ m (t).

電流位相設定器70は、自設備の電流注入装置40が注入する注入電流を構成する電流組の各電流I11(t)、I12(t)の位相θ11(t)、θ12(t)が、前記自設備うなりの位相Δθinj(t)に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流I11(t)、I12(t)の位相θ11(t)、θ12(t)をそれぞれ設定するものである。例えば、自設備うなりの位相Δθinj(t)が0度になるときの各電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、共通の一致位相θe (例えば0度)に設定するものである。 The current phase setter 70 has phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t) of the current set constituting the injection current injected by the current injection device 40 of the own equipment. ) Of each current I 11 (t), I 12 (t) of the current group so that the phase Δθ inj (t) of the own equipment is in a constant phase relation common within the same group. The phases θ 11 (t) and θ 12 (t) are respectively set. For example, the phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t) when the phase Δθ inj (t) of the own equipment becomes 0 degrees are in common agreement. The phase θ e (for example, 0 degree) is set.

より具体的にはこの例では、電流位相設定器70は、前記設定された周波数(以下ではこれを角周波数で表す)ω11、ω12に基づいて、位相関数ω11・t、ω12・tをそれぞれ発生させる位相関数発生器60、62と、前記固定値の一致位相θe を設定する一致位相設定器(これは一致位相設定手段に相当する)64と、この一致位相θe を位相関数ω11・t、ω12・tにそれぞれ加算して次式で表される位相θ110(t)、θ120(t)をそれぞれ出力する加算器66、68とを備えている。 More specifically, in this example, the current phase setter 70 is based on the set frequencies (hereinafter referred to as angular frequencies) ω 11 and ω 12 , and the phase functions ω 11 · t, ω 12 · the phase function generator 60, 62, respectively to generate t, the fixed value of the matching matches a phase setter for setting the phase theta e (which corresponds to matching the phase setting means) 64, a phase of the matching phase theta e Adders 66 and 68 that respectively add phases ω 11 · t and ω 12 · t and output phases θ 110 (t) and θ 120 (t) represented by the following equations, respectively.

[数38]
θ110(t)=ω11・t+θe
[Equation 38]
θ 110 (t) = ω 11 · t + θ e

[数39]
θ120(t)=ω12・t+θe
[Equation 39]
θ 120 (t) = ω 12 · t + θ e

うなり同期器88は、前記自設備うなりの位相Δθinj(t)と前記他群うなりの位相Δθm(t)との位相差であるうなり位相差dθ(t)を次式に従って求めて、当該うなり位相差dθ(t)が同一群内で共通した一定値(例えば0度)になるように、前記位相一致時刻制御方式に基づいて、即ち固定値の一致位相θe を用いて位相一致時刻Te(t)のみを制御して、前記数28、数29に基づいて位相θ11(t)、θ12(t)を制御して、自設備うなりの位相Δθinj(t)を制御するものである。 The beat synchronizer 88 obtains a beat phase difference dθ (t), which is a phase difference between the own equipment beat phase Δθ inj (t) and the other group beat phase Δθ m (t), according to the following equation: The phase coincidence time based on the phase coincidence time control method, that is, using the coincidence phase θ e of a fixed value so that the beat phase difference dθ (t) becomes a constant value (for example, 0 degree) common in the same group. by controlling T e only (t), the number 28, number 29 to the phase theta 11 based (t), and controls the θ 12 (t), and controls the own equipment beat phase Δθ inj (t) Is.

[数40]
dθ(t)=Δθinj(t)−Δθm(t)
[Equation 40]
dθ (t) = Δθ inj (t) −Δθ m (t)

より具体的にはこの例では、うなり同期器88は、上記数40の演算を行う減算器(これはうなり位相算出手段に相当する)72と、うなり同期制御のための増減率制御関数rを発生させる増減率制御関数発生器74と、この増減率制御関数rを積分して前記位相一致時刻Te(t)を出力する積分器76と、この位相一致時刻Te(t)に前記角周波数ω11、ω12をそれぞれ掛ける掛算器78、80と、両掛算器78、80からの信号を前記位相θ110(t)、θ120(t)から減算して、前記数28、数29で示す位相θ11(t)、θ12(t)をそれぞれ算出する減算器82、84と、両位相θ11(t)、θ12(t)の差を求めて次式で示す自設備うなりの位相Δθinj(t)を出力する減算器(これは自設備うなり算出手段に相当する)86とを備えている。 More specifically, in this example, the beat synchronizer 88 includes a subtractor (which corresponds to the beat phase calculation means) 72 that performs the calculation of the above formula 40, and an increase / decrease rate control function r for beat synchronization control. a change ratio control function generator 74 which generates the angle of integrator 76 to output the phase matching time T e by integrating the change rate control function r (t), the phase matching time T e (t) Multipliers 78 and 80 for multiplying the frequencies ω 11 and ω 12 respectively, and signals from both multipliers 78 and 80 are subtracted from the phases θ 110 (t) and θ 120 (t) to obtain the equations 28 and 29. And subtracters 82 and 84 for calculating the phases θ 11 (t) and θ 12 (t), respectively, and the difference between the two phases θ 11 (t) and θ 12 (t) is calculated by the following equation. Subtractor 86 (which corresponds to own equipment beat calculation means) 86 that outputs the phase Δθ inj (t) of And.

[数41]
Δθinj(t)=θ12(t)−θ11(t)=(ω12−ω11)(t−Te(t))
[Equation 41]
Δθ inj (t) = θ 12 (t) −θ 11 (t) = (ω 12 −ω 11 ) (t−T e (t))

この数41は、前記数9中の位相一致時刻Te を、一般化して時間的に変動する量として表したものである。即ち、数41は、うなり同期動作中に位相一致時刻Te(t)が変化する過渡状態をも含めて一般化した式であり、数9は、うなり同期後に位相一致時刻Te(t)が一定値に落ち着いた定常状態を示したものである。数10、数11も定常状態を示したものである。 Equation 41 represents the phase matching time Te in Equation 9 as a generalized amount that varies with time. That is, Equation 41 is a generalized expression including a transient state in which the phase matching time Te (t) changes during beat synchronization operation, and Equation 9 is the phase matching time Te (t) after beat synchronization. Shows a steady state where the value is settled to a constant value. Equations 10 and 11 also show steady states.

減算器82、84から出力される位相θ11(t)、θ12(t)は、電流注入装置40にも供給される。これについては後で図20を参照して説明する。 The phases θ 11 (t) and θ 12 (t) output from the subtracters 82 and 84 are also supplied to the current injection device 40. This will be described later with reference to FIG.

電流位相設定器70は、より具体的にはその一致位相設定器64は、例えば、自設備うなりの位相Δθinj(t)が0度になるときの一致位相θe を0度に設定するものである。但し、当該一致位相θe は、必ずしも0度でなくても良く、上記(3)の原理説明の項でも説明したように、同一群内で共通した一定値であれば良い。 Current phase setter 70, and more specifically to the matching phase setter 64, for example, those matching phase theta e when the host equipment beat phase Δθ inj (t) becomes 0 ° is set to 0 degrees It is. However, the coincidence phase θ e does not necessarily have to be 0 degrees, and may be a constant value that is common within the same group as described in the section of the principle explanation of (3) above.

一致位相θe を0度に設定する場合は、上記一致位相設定器64、加算器66、68を設けなくて済む。即ち、一致位相θe を0度以外に設定する場合と違って、一致位相設定手段としては、特別な機器を設けてなくて済むので、同期制御装置50の構成の簡素化を図ることができる。図12、図13に示す例においても同様である。但し、一致位相θe を0度に設定する場合に、一致位相設定器64、加算器66、68を設けていなくても、概念的には、一致位相θe を0度に設定する一致位相設定手段は有る、と言うことができる。 When the coincidence phase θ e is set to 0 degree, the coincidence phase setting unit 64 and the adders 66 and 68 need not be provided. That is, unlike the case where the coincidence phase θ e is set to a value other than 0 degrees, the coincidence phase setting means does not have to be provided with a special device, so that the configuration of the synchronization control device 50 can be simplified. . The same applies to the examples shown in FIGS. However, when the coincidence phase θ e is set to 0 degrees, the coincidence phase for conceptually setting the coincidence phase θ e to 0 degrees without providing the coincidence phase setting unit 64 and the adders 66 and 68. It can be said that there are setting means.

このうなり同期器88は、この例では、上記うなり位相差dθが0度になるように制御するものである。但し、うなり位相差dθは必ずしも0度でなくても良く、同一群内で共通した一定値であれば良い。その場合でも、自設備うなりの位相Δθinj(t)と他群うなりの位相Δθm(t)とは同期しているからである。図12、図13に示す例の同期制御装置50においても同様である。 In this example, the beat synchronizer 88 controls the beat phase difference dθ to be 0 degree. However, the beat phase difference dθ does not necessarily have to be 0 degrees, and may be a constant value common to the same group. Even in this case, the self equipment beat phase [Delta] [theta] inj (t) and the other group beat phase [Delta] [theta] m (t) is because in sync. The same applies to the synchronous control device 50 shown in FIGS. 12 and 13.

このうなり同期器88における制御方式は、上記(3)の原理説明の項でも説明したように、上記うなり位相差dθ(t)が同一群内で共通した一定値(例えば0度)になるように、自設備の電流注入装置40が注入する注入電流Iinj を構成する電流組の各電流I11(t)、I12(t)の位相θ11(t)、θ12(t)を、両位相の変化量間の比率Δθ11/Δθ12を両電流の前記設定された周波数間の比率ω11/ω12と同じ比率に保ったまま変化させて、前記自設備うなりを前記他群うなりに同期させる制御方式(即ち位相変化量制御方式)と等価である。 The control method in the beat synchronizer 88 is such that the beat phase difference dθ (t) becomes a common constant value (for example, 0 degree) within the same group, as described in the section of the principle explanation of the above (3). In addition, the phases θ 11 (t) and θ 12 (t) of the currents I 11 (t) and I 12 (t) of the current set constituting the injection current I inj injected by the current injection device 40 of the own equipment are By changing the ratio Δθ 11 / Δθ 12 between the amount of change in both phases while maintaining the ratio ω 11 / ω 12 between the set frequencies of both currents at the same ratio, the beat of the own equipment is changed to the other group. This is equivalent to a control method (that is, a phase change amount control method) that synchronizes with the signal.

また、上記うなり位相差dθ(t)が同一群内で共通した一定値になるように、当該位相差dθ(t)に応じて、自設備の電流注入装置40が注入する注入電流Iinj を構成する電流組の各電流I11(t)、I12(t)の周波数ω11(t)、ω12(t)を、両周波数間の比率ω11(t)/ω12(t)を前記設定された周波数間の比率ω11/ω12に保ったまま増減させて、前記自設備うなりを前記他群うなりに同期させる制御方式(即ち上記周波数制御方式)と等価である。 Further, the injection current I inj injected by the current injection device 40 of the own equipment is set according to the phase difference dθ (t) so that the beat phase difference dθ (t) becomes a common constant value in the same group. The frequencies ω 11 (t) and ω 12 (t) of the currents I 11 (t) and I 12 (t) of the constituting current set are expressed as the ratio ω 11 (t) / ω 12 (t) between the two frequencies. This is equivalent to a control method in which the own equipment beat is synchronized with the other group beats (that is, the frequency control method described above) while maintaining the ratio ω 11 / ω 12 between the set frequencies.

なお、周波数の増減制御時には、上記周波数ω11(t)、ω12(t)が設定周波数ω11、ω12からずれるが、そのずれは僅かであるので、組を成す周波数間の位相差検出に与える影響は無視することができる。 In the frequency increase / decrease control, the frequencies ω 11 (t) and ω 12 (t) are deviated from the set frequencies ω 11 and ω 12 , but since the deviation is slight, phase difference detection between the frequencies forming the set is performed. The impact on the can be ignored.

上記うなり位相差dθ(t)の取り得る範囲は次式で表される。   The possible range of the beat phase difference dθ (t) is expressed by the following equation.

[数42]
−180°(即ち−π)<dθ(t)≦180°(即ちπ)
[Formula 42]
−180 ° (ie −π) <dθ (t) ≦ 180 ° (ie π)

図14に示すように、他群うなりの位相Δθm(t)を基準に考えると、うなり位相差dθ(t)が正(0〜180度)の場合は周波数ω11(t)、ω12(t)を減少させて、自設備うなりの位相Δθinj(t)を遅らせ、負(0〜−180度)の場合は周波数ω11(t)、ω12(t)を増加させて自設備うなりの位相Δθinj(t)を進める。なお、ちょうど−180度の場合は、正か負かどちらを考えても良い。 As shown in FIG. 14, when the phase Δθ m (t) of the other group is considered as a reference, when the beat phase difference dθ (t) is positive (0 to 180 degrees), the frequencies ω 11 (t) and ω 12 (T) is decreased to delay the phase Δθ inj (t) of the own equipment, and in the case of negative (0 to −180 degrees), the frequencies ω 11 (t) and ω 12 (t) are increased to increase the own equipment Advance the beat phase Δθ inj (t). In the case of just −180 degrees, either positive or negative may be considered.

これをもう少し詳しく説明すると、他群うなりの位相Δθm(t)も自設備うなりの位相Δθinj(t)も、一致制御(同期制御)完了後は、うなりの周期Lの間に360度変化する。両位相を単位円で考えると、うなりの周期L(=1/Δf)の間に一周する。 To explain this in more detail, the phase Δθ m (t) of the other group and the phase Δθ inj (t) of the own equipment change 360 degrees during the period L of the beat after completion of the coincidence control (synchronous control). To do. Considering both phases as a unit circle, the circuit makes one round during the beat period L (= 1 / Δf).

両周波数ω11(t)、ω12(t)を上記のように比率を保ったまま増加させると、自設備うなりの位相Δθinj(t)はうなりの周期Lに対して360度より大きくなる。逆に減少させると、360度より小さくなる。従って、自設備うなりの位相Δθinj(t)の時間進みを、他群うなりの位相Δθm(t)の時間進みに対して進める、または遅らせることができるので、自設備うなりの位相Δθinj(t)を他群うなりの位相Δθm(t)の位相に一致させることができる。即ち同期させることができる。 When both frequencies ω 11 (t) and ω 12 (t) are increased while maintaining the ratio as described above, the phase Δθ inj (t) of the own equipment becomes larger than 360 degrees with respect to the period L of the beat. . Conversely, if it is decreased, it becomes smaller than 360 degrees. Accordingly, the time advance of the own equipment beat phase Δθ inj (t) can be advanced or delayed with respect to the time advance of the other group beat phase Δθ m (t), so the own equipment beat phase Δθ inj ( t) can be matched with the phase of the other group's beat phase Δθ m (t). That is, it can be synchronized.

一致制御(同期制御)完了後は、自設備うなりの位相Δθinj(t)も他群うなりの位相Δθm(t)も、上記のようにうなりの周期Lで決まる一定の時間進みとなる。 After the coincidence control (synchronous control) is completed, the phase Δθ inj (t) of the own equipment and the phase Δθ m (t) of the other group are advanced by a certain time determined by the beat period L as described above.

上記は、第1群の分散電源保有設備20から見て説明したものであるが、第2群の分散電源保有設備20から見ると第1群の分散電源保有設備20は他群であるので、第2群の分散電源保有設備20においても上記と同様の制御が行われる。それによって、自設備うなりの位相Δθinj(t)と他群うなりの位相Δθm(t)とは互いに近づいて一致して同期するように制御される。 The above is described with reference to the first group of distributed power supply facilities 20, but when viewed from the second group of distributed power supply facilities 20, the first group of distributed power supply facilities 20 is another group. The same control as described above is performed in the second group of distributed power supply facilities 20. Accordingly, the phase Δθ inj (t) of the own equipment and the phase Δθ m (t) of the other group are controlled so as to approach each other and match and synchronize.

上記増減率制御関数rは、例えば、次式で表すことができる。即ち、rはdθ(t)の関数であり、正確に表現すれば、r(dθ(t))である。kは係数である。   The increase / decrease rate control function r can be expressed by the following equation, for example. That is, r is a function of dθ (t), and if expressed accurately, r (dθ (t)). k is a coefficient.

[数43]
r=k・dθ(t)
[Equation 43]
r = k · dθ (t)

上記係数kは、定数でも良いし、dθ(t)に応じて変化するものでも良い。前者にすれば、増減率制御関数rはうなり位相差dθ(t)に比例して直線的に変化する。後者にすれば、増減率制御関数rはうなり位相差dθ(t)に応じて非線形に変化する。係数kをどのように設定するかは、必要とする制御の応答特性等に応じて決めれば良い。増減率制御関数rが取り得る値の範囲に、上限値および下限値を設けても良い。   The coefficient k may be a constant or may vary according to dθ (t). In the former case, the increase / decrease rate control function r changes linearly in proportion to the beat phase difference dθ (t). In the latter case, the increase / decrease rate control function r changes nonlinearly according to the beat phase difference dθ (t). How to set the coefficient k may be determined according to the response characteristics of the required control. An upper limit value and a lower limit value may be provided in a range of values that the increase / decrease rate control function r can take.

積分器76は、上記増減率制御関数rを積分して前記位相一致時刻Te(t)を出力するものであるので、うなり位相差dθ(t)が0になって増減率制御関数発生器74から供給される増減率制御関数rが0になっても、その直前の位相一致時刻Te(t)の値を保って出力し続ける。従って、自設備うなりの位相Δθinj(t)と他群うなりの位相Δθm(t)とが同期した後も、その同期状態を保持することができる。図6中の時刻t3 以降がその状態である。 The integrator 76, since and outputs the by integrating the change rate control function r phase matching time T e (t), the change ratio control function generator beat phase difference d [theta] (t) becomes 0 Even when the increase / decrease rate control function r supplied from 74 becomes 0, the value of the phase coincidence time Te (t) immediately before that is kept and output. Therefore, even after the own equipment beat phase Δθ inj (t) and another group beat phase Δθ m (t) are synchronized, the synchronized state can be maintained. Time t 3 later in FIG. 6 is in the state.

同期制御装置50のより具体例を図12に示す。図11に示した同期制御装置50と同一または相当する部分には同一符号を付し、以下においては図11との相違点を主体に説明する。   A more specific example of the synchronization control device 50 is shown in FIG. Parts that are the same as or equivalent to those in the synchronization control device 50 shown in FIG. 11 are given the same reference numerals, and the differences from FIG. 11 will be mainly described below.

この同期制御装置50は、上記と同様の他群うなり位相算出器58、一致位相設定器64、減算器72および減算器86の他に、位相一致時刻発生器(これは位相一致時刻発生手段に相当する)100および位相発生器(これは位相発生手段に相当する)114を備えている。   In addition to the other group beat phase calculator 58, the coincidence phase setter 64, the subtractor 72, and the subtractor 86, the synchronization control device 50 includes a phase coincidence time generator (this is a phase coincidence time generating means). 100) and a phase generator 114 (which corresponds to phase generating means).

他群うなり位相算出器58は、この例では、フィルタ90、離散フーリエ変換器92、94および演算回路96を備えている。   The other group beat phase calculator 58 includes a filter 90, discrete Fourier transformers 92 and 94, and an arithmetic circuit 96 in this example.

フィルタ90は、引込線16における電圧Vs から、配電系統の基本波成分を除去するものである。このようなフィルタ90を設けておくのが好ましく、そのようにすると、SN比を高めて、離散フーリエ変換器92、94による第2組の注入周波数の電圧V21(t)、V22(t)の抽出を精度良く行うことができる。 The filter 90 removes the fundamental wave component of the distribution system from the voltage V s in the lead-in line 16. It is preferable to provide such a filter 90. In such a case, the S / N ratio is increased and the voltages V 21 (t) and V 22 (t 22 ) of the second set of injection frequencies by the discrete Fourier transformers 92 and 94 are increased. ) Can be accurately extracted.

離散フーリエ変換器92、94は、フィルタ90からの電圧を受けて、それをそれぞれ離散フーリエ変換して、上記電圧V21(t)、V22(t)(共にベクトル量)をそれぞれ抽出して出力するものである。これによって、上記電圧V21(t)、V22(t)を計測することができる。この両電圧V21(t)、V22(t)は、他群の分散電源保有設備20(より具体的にはその電流注入装置40)から注入される注入電流に含まれる同一周波数の電流がそれぞれ同期すると、前述した理由から、大きな電圧となる。 The discrete Fourier transformers 92 and 94 receive the voltage from the filter 90, perform discrete Fourier transform on the voltages, respectively, and extract the voltages V 21 (t) and V 22 (t) (both vector quantities), respectively. Output. Thereby, the voltages V 21 (t) and V 22 (t) can be measured. The voltages V 21 (t) and V 22 (t) are obtained by the same frequency current included in the injected current injected from the other group of distributed power supply facilities 20 (more specifically, the current injection device 40). When they are synchronized, a large voltage is generated for the reason described above.

演算回路96は、前記自設備うなりの位相Δθinj(t)を表す場合に商を取ったのと同様に(数18、数19参照)、上記電圧V21(t)、V22(t)を受けてそれらの商を取り、かつその商の偏角argを取り出して、次式で表される他群うなりの位相Δθm(t)を算出するものである。 The arithmetic circuit 96 is the same as the quotient when the phase Δθ inj (t) of its own equipment is expressed (see Equations 18 and 19), and the voltages V 21 (t) and V 22 (t). The quotient is taken and the argument arg of the quotient is taken out to calculate the phase Δθ m (t) of the other group beat expressed by the following equation.

Figure 0004350776
Figure 0004350776

上記フィルタ90を設ける場合は、演算回路96と減算器72との間に、フィルタ90による位相のずれを補償する位相補償器を設けておいても良い。   When the filter 90 is provided, a phase compensator for compensating for a phase shift caused by the filter 90 may be provided between the arithmetic circuit 96 and the subtractor 72.

位相一致時刻発生器100は、上記増減率制御関数発生器74と積分器76とを合わせたものに相当する。増減率制御関数発生器74として、ここでは、定数kを設定する増幅器98を備えている。   The phase coincidence time generator 100 corresponds to a combination of the increase / decrease rate control function generator 74 and the integrator 76. As the increase / decrease rate control function generator 74, here, an amplifier 98 for setting a constant k is provided.

クロック装置(これはクロック手段に相当する)102は、時刻tを表す信号を発生するものである。   A clock device (which corresponds to clock means) 102 generates a signal representing time t.

位相発生器114について説明するに当たり、上記数28、数29を展開しておくと、それぞれ次式となる。   In the description of the phase generator 114, when the above equations 28 and 29 are expanded, the following equations are obtained.

[数45]
θ11(t)=ω11・(t−Te(t))+θe
=ω11・t−ω11・Te(t)+θe
[Equation 45]
θ 11 (t) = ω 11 · (t−T e (t)) + θ e
= Ω 11・ t−ω 11・ T e (t) + θ e

[数46]
θ12(t)=ω12・(t−Te(t))+θe
=ω12・t−ω12・Te(t)+θe
[Equation 46]
θ 12 (t) = ω 12 · (t−T e (t)) + θ e
= Ω 12 · t-ω 12 · T e (t) + θ e

位相発生器114は、上記時刻t、位相一致時刻Te(t)および一致位相θe を用いて、上記数45、数46の第2行目で表される上記位相θ11(t)、θ12(t)を発生させるものである。加算器66、68、減算器82、84は、上記と同様である。 The phase generator 114 uses the time t, the phase coincidence time T e (t), and the coincidence phase θ e to express the phase θ 11 (t), represented by the second row of the equation 45 and the equation 46, θ 12 (t) is generated. The adders 66 and 68 and the subtracters 82 and 84 are the same as described above.

上記第1組の周波数f11、f12は、この例では、増幅器104、106、108、110の増幅率として設定されている。 The first set of frequencies f 11 and f 12 are set as amplification factors of the amplifiers 104, 106, 108 and 110 in this example.

増幅器104、105および増幅器106、107は、前記位相関数発生器60、62の一部をそれぞれ構成しており、それぞれ次式の演算を行う。   The amplifiers 104 and 105 and the amplifiers 106 and 107 constitute a part of the phase function generators 60 and 62, respectively, and perform the following calculations.

[数47]
2πf11・t=ω11・t
2πf12・t=ω12・t
[Equation 47]
2πf 11 · t = ω 11 · t
2πf 12 · t = ω 12 · t

増幅器108、109および増幅器110、111は、前記掛算器78、80にそれぞれ相当しており、それぞれ次式の演算を行う。   The amplifiers 108 and 109 and the amplifiers 110 and 111 correspond to the multipliers 78 and 80, respectively, and perform the following calculations.

[数48]
2πf11・Te(t)=ω11・Te(t)
2πf12・Te(t)=ω12・Te(t)
[Formula 48]
2πf 11 · T e (t) = ω 11 · T e (t)
2πf 12 · T e (t) = ω 12 · T e (t)

従って、減算器82、84からは、上記数45、数46で示される位相θ11(t)、θ12(t)が出力される。即ち、図11の場合と同様の位相θ11(t)、θ12(t)が出力される。即ち、この同期制御装置50と図11に示す同期制御装置50とは、機能的に等価である。 Accordingly, the subtracters 82 and 84 output the phases θ 11 (t) and θ 12 (t) represented by the above equations 45 and 46, respectively. That is, the same phases θ 11 (t) and θ 12 (t) as in the case of FIG. 11 are output. In other words, the synchronization control device 50 and the synchronization control device 50 shown in FIG. 11 are functionally equivalent.

上記位相発生器114の代わりに、図13に示す同期制御装置50を構成する位相発生器(これは位相発生手段に相当する)118を用いても良い。この位相発生器118は、上記増幅器108〜111、減算器82、84の代わりに、t−Te(t)の演算を行う減算器116を設けたものである。 Instead of the phase generator 114, a phase generator 118 (which corresponds to phase generation means) that constitutes the synchronization control device 50 shown in FIG. 13 may be used. This phase generator 118 is provided with a subtractor 116 for calculating t−T e (t) in place of the amplifiers 108 to 111 and the subtractors 82 and 84.

この位相発生器118は、上記数45、数46のそれぞれ第1行目の演算を行うものである。従って、加算器66、68からは、上記数45、数46に示される位相θ11(t)、θ12(t)が出力される。即ち、この図13に示すこの同期制御装置50と、図11および図12に示す同期制御装置50とは、それぞれ機能的に等価である。 The phase generator 118 performs the calculation on the first row of each of the above formulas 45 and 46. Therefore, the adders 66 and 68 output the phases θ 11 (t) and θ 12 (t) shown in the above equations 45 and 46, respectively. That is, the synchronization control device 50 shown in FIG. 13 and the synchronization control device 50 shown in FIGS. 11 and 12 are functionally equivalent to each other.

位相一致時刻発生器100が発生する位相一致時刻Te(t)、一致位相設定器64で設定する一致位相θe については前述のとおりである。 The phase matching time T e (t) generated by the phase matching time generator 100 and the matching phase θ e set by the matching phase setting unit 64 are as described above.

この図13から分かるように、位相一致時刻発生器100は、それから発生する上記位相一致時刻Te(t)によって、各同期制御装置50内における装置時間を早めたり遅らせたりするものであると言うこともできる。 As can be seen from FIG. 13, the phase coincidence time generator 100 is said to advance or delay the device time in each synchronization control device 50 according to the phase coincidence time Te (t) generated therefrom. You can also

第1群に属する単独運転監視装置30、電流注入装置40および同期制御装置50と、第2群に属するそれらとは、それぞれ同様の構成をしている。但し、注入電流の周波数の組および測定電圧の周波数の組は前述したように異なる(例えば表1参照)。   The isolated operation monitoring device 30, the current injection device 40, and the synchronous control device 50 belonging to the first group and those belonging to the second group have the same configuration. However, the frequency group of the injection current and the frequency group of the measurement voltage are different as described above (for example, see Table 1).

上記数45、数46等は、第1群に属する分散電源保有設備20の注入周波数について記載したものであるが、第2群に属する分散電源保有設備20においても、周波数が違う以外は、上記と同様の制御が行われる。   The above formulas 45, 46, etc. describe the injection frequency of the distributed power source possessing equipment 20 belonging to the first group, but the above also applies to the distributed power source possessing equipment 20 belonging to the second group except that the frequency is different. The same control is performed.

上記数45、数46を、両群に共通の式で表すと次式となる。これは、前記数1と同じものである。   The above formulas 45 and 46 are expressed by the following formulas common to both groups. This is the same as Equation 1 above.

[数49]
θa(t)=ωa(t−Te(t))+θe
θb(t)=ωb(t−Te(t))+θe
[Equation 49]
θ a (t) = ω a (t−T e (t)) + θ e
θ b (t) = ω b (t−T e (t)) + θ e

上記数49中の位相θa(t)、θb(t)、角周波数ωa 、ωb を、第1群に属する分散電源保有設備20の電流注入装置40および同期制御装置50においてはθ11(t)、θ12(t)、ω11、ω12と読み替えれば良く、第2群に属する分散電源保有設備20の電流注入装置40および同期制御装置50においてはθ21(t)、θ22(t)、ω21、ω22と読み替えれば良い。読み替えた後の制御については上述のとおりである。図20に示す電流注入装置40においても同様である。 The phases θ a (t), θ b (t), and angular frequencies ω a , ω b in the above equation 49 are set to θ in the current injection device 40 and the synchronous control device 50 of the distributed power supply facility 20 belonging to the first group. 11 (t), θ 12 (t), ω 11 , ω 12 may be read. In the current injection device 40 and the synchronous control device 50 of the distributed power supply facility 20 belonging to the second group, θ 21 (t), It may be read as θ 22 (t), ω 21 , ω 22 . The control after the replacement is as described above. The same applies to the current injection device 40 shown in FIG.

なお、上記(3)の原理説明の項において上記三つの制御方式について述べたのと同様の理由から、上記図11〜図13に示した同期制御装置50の三つの構成例の内のどれか一つの構成を同一群内において統一して採用しても良いし、複数の構成を混在させても良い。統一して採用すれば、同期制御装置50の設計、製作が容易になる等の利点がある。混在させても良いのは、上述したように、上記三つの構成例は、互いに実質的に等価の制御方式に基づいているからである。自群内の同期制御装置50の構成と他群内の同期制御装置50の構成との関係においても、上記と同様に、構成を統一しても良いし、混在させても良い。   One of the three configuration examples of the synchronous control device 50 shown in FIGS. 11 to 13 is used for the same reason as described in the above three control methods in the section of the principle explanation of (3). One configuration may be unified and adopted in the same group, or a plurality of configurations may be mixed. If they are adopted uniformly, there are advantages such as easy design and manufacture of the synchronous control device 50. The reason why they may be mixed is that, as described above, the above three configuration examples are based on substantially equivalent control methods. In the relationship between the configuration of the synchronization control device 50 in the own group and the configuration of the synchronization control device 50 in the other group, the configuration may be unified or mixed as described above.

(5)電流注入装置40の構成
上記電流注入装置40の構成の一例を図20に示す。
(5) Configuration of Current Injection Device 40 An example of the configuration of the current injection device 40 is shown in FIG.

この電流注入装置40は、第1群に属する分散電源保有設備20内のものであって、上記同期制御装置50から供給される二つの位相θ11(t)、θ12(t)を用いて、当該位相θ11(t)、θ12(t)をそれぞれ有する二つの正弦波交流信号S11(t)、S12(t)を発生する注入信号発生器42、44と、両正弦波交流信号S11(t)、S12(t)を互いに加算して注入信号Sinj(t)(=S11(t)+S12(t))を作る加算器46と、この加算器46からの注入信号Sinj(t)を用いて前記注入電流Iinj を形成する注入電流形成器(これは注入電流形成手段に相当する)48とを備えている。従って、注入電流Iinj には、前記組を成す二つの電流I11(t)、I12(t)が含まれることになる。この例では、注入信号発生器42、44および加算器46で、注入信号発生手段を構成している。 This current injection device 40 is in the distributed power supply facility 20 belonging to the first group, and uses the two phases θ 11 (t) and θ 12 (t) supplied from the synchronous control device 50. Injection signal generators 42 and 44 for generating two sine wave AC signals S 11 (t) and S 12 (t) having the phases θ 11 (t) and θ 12 (t), respectively, and both sine wave ACs An adder 46 that adds the signals S 11 (t) and S 12 (t) to each other to produce an injection signal S inj (t) (= S 11 (t) + S 12 (t)); An injection current generator (which corresponds to injection current forming means) 48 for forming the injection current I inj using the injection signal S inj (t) is provided. Therefore, the injection current I inj includes the two currents I 11 (t) and I 12 (t) forming the above set. In this example, the injection signal generators 42 and 44 and the adder 46 constitute injection signal generation means.

上記正弦波交流信号S11(t)、S12(t)を数式で示すと次式のとおりである。S11p 、S12p は、それぞれ振幅のピーク値である。 The sine wave AC signals S 11 (t) and S 12 (t) are expressed by the following equations. S 11p and S 12p are amplitude peak values, respectively.

[数50]
11(t)=S11p・sinθ11(t)
12(t)=S12p・sinθ12(t)
[Equation 50]
S 11 (t) = S 11p · sin θ 11 (t)
S 12 (t) = S 12p · sin θ 12 (t)

上記電流I11(t)、I12(t)を数式で表すと次のとおりである。I11p 、I12p は、それぞれ振幅のピーク値であり、これを所望のものにすれば良い。このピーク値I11p 、I12p は、両者を互いに実質的に等しくするのが実際的であるが、必ずしも実質的に等しくしなくても良い。この発明は、先の(3)の制御原理でも説明したように、注入周波数の電流によるうなりの位相が重要であり、うなりが生じさえすれば、振幅はさほど重要ではないからである。 The above currents I 11 (t) and I 12 (t) are expressed by mathematical formulas as follows. I 11p and I 12p are peak values of amplitude, respectively, and these may be set as desired. It is practical that the peak values I 11p and I 12p are substantially equal to each other, but they need not be substantially equal. In the present invention, as described in the control principle (3) above, the phase of the beat due to the current at the injection frequency is important, and if the beat occurs, the amplitude is not so important.

[数51]
11(t)=I11p・sinθ11(t)
12(t)=I12p・sinθ12(t)
[Formula 51]
I 11 (t) = I 11p · sin θ 11 (t)
I 12 (t) = I 12p · sin θ 12 (t)

注入電流形成器48は、例えば、加算器46からの注入信号を増幅する増幅器である。あるいは、加算器46からの注入信号Sinj(t)を、変調回路の信号波として使用するインバータ(例えばPWMインバータ)である。 The injection current former 48 is, for example, an amplifier that amplifies the injection signal from the adder 46. Or it is an inverter (for example, PWM inverter) which uses the injection signal S inj (t) from the adder 46 as a signal wave of the modulation circuit.

注入信号発生手段は、上記二つの正弦波交流信号S11(t)、S12(t)を含む注入信号を発生するものでも良い。例えば、両正弦波交流信号S11(t)、S12(t)に更に他の信号Sx(t)を加えた注入信号、例えば方形波状の注入信号Sinj(t)を発生するものでも良い。計測時に、当該他の信号Sx(t)はフィルタ等において除去して、正弦波交流信号S11(t)、S12(t)が作る注入電流による電圧を抽出することができるからである。 The injection signal generating means may generate an injection signal including the two sine wave AC signals S 11 (t) and S 12 (t). For example, an injection signal obtained by adding another signal S x (t) to both sine wave AC signals S 11 (t) and S 12 (t), for example, a square wave injection signal S inj (t) may be generated. good. This is because the other signal S x (t) can be removed by a filter or the like at the time of measurement, and the voltage due to the injection current generated by the sine wave AC signals S 11 (t) and S 12 (t) can be extracted. .

第2群に属する分散電源保有設備20内の電流注入装置40も、例えば、図20に示す装置と同様の構成をしている。   The current injection device 40 in the distributed power supply facility 20 belonging to the second group also has the same configuration as the device shown in FIG. 20, for example.

(6)うなり位相差dθ(t)等のシミュレーション結果
上記図12に示した同期制御装置50を用いて、自設備うなりの位相Δθinj(t)を他群うなりの位相Δθm(t)に同期させる制御のシミュレーションを行った結果を説明する。
(6) Simulation Results of Beat Phase Difference dθ (t), etc. Using the synchronization control device 50 shown in FIG. 12 above, the own equipment beat phase Δθ inj (t) is changed to another group beat phase Δθ m (t). The result of the simulation of the synchronized control will be described.

シミュレーションでは、第1群に属する2台の電流注入装置40および同期制御装置50と、第2群に属する2台の電流注入装置40および同期制御装置50とを用いた。前記表1に示す周波数の組み合わせは、f11=132Hz、f12=144Hz、f21=156Hz、f22=168Hzとした。また、配電線10を模擬したラインに、乱数発生器からバックグラウンドノイズを注入した。これは配電系統の実態に近づけるためである。 In the simulation, two current injection devices 40 and a synchronization control device 50 belonging to the first group and two current injection devices 40 and a synchronization control device 50 belonging to the second group were used. The frequency combinations shown in Table 1 were f 11 = 132 Hz, f 12 = 144 Hz, f 21 = 156 Hz, and f 22 = 168 Hz. Further, background noise was injected from a random number generator into a line simulating the distribution line 10. This is to bring it closer to the actual situation of the power distribution system.

上記うなり位相差dθ(t)の変化を図18に示し、第1群の同一周波数(具体的にはf11)の二つの注入電流間の位相差Dθ1(t)の変化を図19に示す。 The change of the beat phase difference dθ (t) is shown in FIG. 18, and the change of the phase difference Dθ 1 (t) between two injected currents of the same frequency (specifically f 11 ) in the first group is shown in FIG. Show.

図19に示すように、シミュレーション開始時(これは、電流注入装置40および同期制御装置50の電源投入時に相当する)は、位相差Dθ1(t)は180度ずれているものとした。即ち、位相差を最大とした。 As shown in FIG. 19, the phase difference Dθ 1 (t) is assumed to be shifted by 180 degrees when the simulation is started (this corresponds to when the current injection device 40 and the synchronous control device 50 are turned on). That is, the phase difference was maximized.

図18に示すように、シミュレーション開始後しばらくは、第2群(他群)の注入電流が生じさせる電圧に比べてバックグラウンドノイズが大きいので、うなり位相差dθ(t)は安定せず、最大で±180度まで振れているが、0.5秒付近以降からうなり位相差dθ(t)は急速に小さくなり、約3.5秒で0度になった。即ち、自設備うなりが他群うなりに同期した。これは、シミュレーション開始後少し時間が経過すると、第2群の注入電流が生じさせる電圧の位相が前述した同期制御装置50による制御によって徐々に揃って、他群うなりの位相Δθm(t)が徐々に明確になり、それと共にうなり位相差dθ(t)も徐々に明確になり、そして第1群(自群)においても前述した同期制御装置50による制御によってうなり位相差dθ(t)が0度になるように制御された結果である。 As shown in FIG. 18, for a while after the start of the simulation, the background noise is larger than the voltage generated by the injection current of the second group (the other group), so the beat phase difference dθ (t) is not stable and the maximum However, the beat phase difference dθ (t) rapidly decreased from around 0.5 seconds and became 0 degrees in about 3.5 seconds. That is, the own equipment beat was synchronized with other groups. This is because, after a lapse of time after the start of the simulation, the phase of the voltage generated by the injection current of the second group is gradually aligned by the control by the synchronous control device 50 described above, and the phase Δθ m (t) of the other group beats. The beat phase difference dθ (t) gradually becomes clear, and the beat phase difference dθ (t) becomes 0 in the first group (own group) by the control by the synchronous control device 50 described above. This is a result controlled to a degree.

うなり位相差dθ(t)の上記のような減衰と共に、図19に示すように、第1群の同一周波数の二つの注入電流間の位相差Dθ1(t)も徐々に小さくなり、うなり位相差dθ(t)が0度になって両うなりが同期した約3.5秒の時点で、位相差Dθ1(t)も0度になっている。第1群の他の(周波数f12の)同一周波数の二つの注入電流間の位相差Dθ2(t)も、図示を省略するけれども、上記位相差Dθ1(t)と同様に、約3.5秒の時点で0度になった。 Along with the above attenuation of the beat phase difference dθ (t), as shown in FIG. 19, the phase difference Dθ 1 (t) between the two injected currents of the same frequency in the first group also gradually decreases, and the beat position At about 3.5 seconds when the phase difference dθ (t) is 0 degrees and the two beats are synchronized, the phase difference Dθ 1 (t) is also 0 degrees. The phase difference Dθ 2 (t) between two other injected currents having the same frequency (of the frequency f 12 ) in the first group is also about 3 as in the case of the phase difference Dθ 1 (t), although not shown. 0 degree at 5 seconds.

即ち、本発明に従って両うなりを同期させることによって、自群の同一周波数の二つの注入電流を、位相差が0度で同期させることができることを確認できた。   That is, by synchronizing both beats according to the present invention, it was confirmed that two injection currents of the same frequency of the own group can be synchronized with a phase difference of 0 degree.

(7)単独運転監視装置30の構成
上記単独運転監視装置30の構成の一例を図21に示す。
(7) Configuration of Isolated Operation Monitoring Device 30 An example of the configuration of the isolated operation monitoring device 30 is shown in FIG.

この単独運転監視装置30は、離散フーリエ変換器32、33と、絶対値演算器34、35と、判定器36、37と、AND回路38と、継続時間判定器39とを備えている。   The isolated operation monitoring device 30 includes discrete Fourier transformers 32 and 33, absolute value calculators 34 and 35, determiners 36 and 37, an AND circuit 38, and a duration determiner 39.

離散フーリエ変換器32、33は、それぞれ、図12に示した離散フーリエ変換器92、94と同じ機能を有している。従って、この離散フーリエ変換器32、33を省略して、図12に示した離散フーリエ変換器92、94を前記他群うなり位相算出器58とこの単独運転監視装置30とに共用しても良い。即ち、絶対値演算器34、35に、図12に示した離散フーリエ変換器92、94から出力される前記注入周波数の電圧V21(t)、V22(t)をそれぞれ供給しても良い。そのようにすると、構成の簡素化を図ることができる。従ってより実際的である。 The discrete Fourier transformers 32 and 33 have the same functions as the discrete Fourier transformers 92 and 94 shown in FIG. Accordingly, the discrete Fourier transformers 32 and 33 may be omitted, and the discrete Fourier transformers 92 and 94 shown in FIG. 12 may be shared by the other group beat phase calculator 58 and the isolated operation monitoring apparatus 30. . In other words, the injection frequency voltages V 21 (t) and V 22 (t) output from the discrete Fourier transformers 92 and 94 shown in FIG. 12 may be supplied to the absolute value calculators 34 and 35, respectively. . In such a case, the configuration can be simplified. It is therefore more practical.

絶対値演算器34、35は、それぞれ、上記電圧V21(t)、V22(t)の絶対値|V21(t)|、|V22(t)|を算出して出力するものである。 The absolute value calculators 34 and 35 calculate and output absolute values | V 21 (t) | and | V 22 (t) | of the voltages V 21 (t) and V 22 (t), respectively. is there.

判定器36、37は、それぞれ、上記絶対値|V21(t)|、|V22(t)|を所定の判定値J1 、J2 と比較して、絶対値|V21(t)|、|V22(t)|が判定値J1 、J2 以上になれば、検出信号S1 、S2 をそれぞれ出力するものである。この判定値J1 、J2 は、例えば、単独運転が発生していない状態、即ち連系運転時(換言すれば系統健全時)の絶対値|V21(t)|、|V22(t)|の2倍程度にそれぞれ設定しておけば良い。 The determiners 36 and 37 compare the absolute values | V 21 (t) | and | V 22 (t) | with predetermined determination values J 1 and J 2 , respectively, to obtain an absolute value | V 21 (t). When |, | V 22 (t) | becomes equal to or greater than the determination values J 1 , J 2 , the detection signals S 1 , S 2 are output, respectively. The determination values J 1 and J 2 are, for example, absolute values | V 21 (t) |, | V 22 (t in a state where no single operation has occurred, that is, in a connected operation (in other words, when the system is healthy). ) | Is set to about twice each.

両判定値J1 、J2 は、互いに同じ値にしても良いし、判定周波数等に応じて互いに異ならせても良い。 Both determination values J 1 and J 2 may be the same value or different from each other according to the determination frequency or the like.

AND回路38は、両検出信号S1 、S2 の論理積を取り、両信号S1 、S2 が共に出力されているときに検出信号S3 を出力する。 The AND circuit 38 takes the logical product of both detection signals S 1 and S 2 and outputs the detection signal S 3 when both signals S 1 and S 2 are output.

上記検出信号S3 を単独運転検出信号としてこの単独運転監視装置30からそのまま出力するよりも、この例のように、継続時間判定器39によって、検出信号S3 が所定の継続確認時間T0 継続していることを判定して継続したときに単独運転検出信号S4 を出力するようにするのが好ましい。そのようにすると、単独運転以外の何らかの原因による電圧Vs 等の瞬時の変動による誤検出を防止することができる。この継続確認時間T0 は、それを長くすると、その分、単独運転検出が遅くなるので、例えば0.05秒程度にすれば良い。この例ではこの単独運転検出信号S4 の出力によって、単独運転監視装置30は、最終的に、それが設けられている分散電源保有設備20内の分散電源26が単独運転になったことを検出したことになる。 Rather than outputting the detection signal S 3 as an isolated operation detection signal as it is from the isolated operation monitoring device 30, the detection signal S 3 is continued for a predetermined duration confirmation time T 0 by the duration determination unit 39 as in this example. preferably, so as to output the isolated operation detecting signal S 4 when continuing to determine that they are. By doing so, it is possible to prevent erroneous detection due to instantaneous fluctuations of the voltage V s or the like due to some cause other than the single operation. The continuation confirmation time T 0 may be set to, for example, about 0.05 seconds because the isolated operation detection is delayed as the duration confirmation time T 0 is lengthened. In this example, by the output of the isolated operation detection signal S 4 , the isolated operation monitoring device 30 finally detects that the distributed power supply 26 in the distributed power supply facility 20 in which the isolated operation monitoring device 30 is provided has been operated independently. It will be done.

単独運転監視装置30による単独運転検出後に分散電源26の解列を行うには、例えば、図2に示す例のように、上記単独運転検出信号S4 によってスイッチ22を開放しても良いし、上記単独運転検出信号S4 によってパワーコンディショナ24内のインバータにゲートブロックをかけて当該インバータを停止しても良いし、両者を併用しても良い。低圧連系逆潮流有りの分散電源は、出力部にインバータを使用している(この方式しか電気設備技術基準で認められていない)ので、このインバータに対するゲートブロックを使用することができる。ゲートブロックは瞬時に行われるので、ゲートブロックを使用する場合は、単独運転監視装置30による単独運転検出後の解列時間は無視することができる。 To do disconnecting the islanding detection after dispersing power source 26 by the independent operation monitoring device 30, for example, as in the example shown in FIG. 2, it may be opened switch 22 by the independent operation detecting signal S 4, it the inverter gated block to the inverter of the power conditioner 24 by the independent operation detecting signal S 4 may be stopped, it may be used in combination of both. Since the distributed power supply with low-voltage interconnection reverse power flow uses an inverter at the output section (only this method is permitted by the electric equipment technical standards), a gate block for this inverter can be used. Since the gate block is performed instantaneously, when the gate block is used, the disconnection time after the isolated operation detection by the isolated operation monitoring device 30 can be ignored.

なお、この例の単独運転監視装置30のように、一組の注入周波数の両方の注入周波数の電圧を計測して検出信号S1 、S2 のAND条件で検出信号S3 、単独運転検出信号S4 を出力するようにすると、単独運転検出を慎重に行って誤検出をより確実に防止することができるので好ましいけれども、いずれか一方の注入周波数の電圧のみを計測して単独運転検出を行うようにしても良い。 In addition, like the isolated operation monitoring device 30 of this example, the voltage of both injection frequencies of a set of injection frequencies is measured, and the detection signal S 3 and the isolated operation detection signal are detected under the AND condition of the detection signals S 1 and S 2. When outputs a S 4, although preferably it is possible to more reliably prevent carefully performed by erroneously detected islanding detection, performs independent operation detecting by measuring only the voltage of one of the injection frequency You may do it.

図1に示した配電系統を模したシミュレーションモデルを用いて、単独運転検出のシミュレーションを行った結果の一例を図22に示す。   FIG. 22 shows an example of the result of performing a simulation of isolated operation detection using the simulation model simulating the power distribution system shown in FIG.

このシミュレーションでは、6.6kVの上位系統2側に短絡容量が100MVAの系統電源があるものとし、6.6kV、10MVAをベースとして、変電所変圧器6のインピーダンス(正確にはパーセントインピーダンス。以下同様)はj8%、配電線10のインピーダンスは3×(6%+j8%)とし、負荷12の容量は実効容量が1MW、無効容量が0.5MVarとした。また、単独運転監視装置30によって単独運転検出後も単独運転状態を継続させるために、配電線10に1MWの大型分散電源を接続しているものとした。そして、第1群に属する分散電源保有設備20を1台、3相配電線10のA相B相間接続とし、第2群に属する分散電源保有設備20を1台、C相A相間接続とした。両分散電源保有設備20で使用した周波数は、前記例のとおりである。なお、このシミュレーションでは、配電線10にバックグラウンドノイズは注入していない。   In this simulation, it is assumed that there is a system power supply with a short-circuit capacity of 100 MVA on the upper system 2 side of 6.6 kV, and the impedance of the substation transformer 6 based on 6.6 kV and 10 MVA. ) Is j8%, the impedance of the distribution line 10 is 3 × (6% + j8%), and the load 12 has an effective capacity of 1 MW and a reactive capacity of 0.5 MVar. In addition, in order to continue the isolated operation state after the isolated operation is detected by the isolated operation monitoring device 30, a 1 MW large distributed power source is connected to the distribution line 10. Then, one distributed power source possessing facility 20 belonging to the first group was connected to the A phase B phase of the three-phase distribution line 10, and one distributed power source possessing facility 20 belonging to the second group was connected to the C phase A phase. The frequencies used in the both distributed power source holding facilities 20 are as in the above example. In this simulation, no background noise is injected into the distribution line 10.

計測開始から3秒後の時刻t0 で変電所遮断器8を開放して単独運転を発生させた。上記電圧V21(t)の絶対値|V21(t)|は時刻t2 =3.035秒で判定値J1 以上になり、上記電圧V22(t)の絶対値|V22(t)|は時刻t1 =3.025秒で判定値J2 以上になり、上記単独運転監視装置30は両者のAND条件で判定するから、遅い方の時刻t2 =3.035秒で単独運転を検出した。最終的な単独運転検出は、即ち上記単独運転検出信号S4 の出力は、0.05秒に設定している上記継続確認時間T0 の経過後に行われた。 At time t 0 3 seconds after the start of measurement, the substation circuit breaker 8 was opened, and an independent operation was generated. The absolute value | V 21 (t) | of the voltage V 21 (t) becomes equal to or greater than the judgment value J 1 at time t 2 = 3.035 seconds, and the absolute value | V 22 (t) of the voltage V 22 (t) ) | Becomes equal to or greater than the judgment value J 2 at time t 1 = 3.025 seconds, and the islanding operation monitoring device 30 makes a judgment based on the AND condition of both, so that the islanding operation is performed at the later time t 2 = 3.035 seconds. Was detected. The final isolated operation detection, that is, the output of the isolated operation detection signal S 4 was performed after the continuation confirmation time T 0 set to 0.05 seconds had elapsed.

単独運転発生から最終的な単独運転検出までの時間T1 は次式で表されるので、0.1秒以内の高速検出を行うことができたことが分かる。 Since the time T 1 from the occurrence of the isolated operation to the final detected independent operation is expressed by the following equation, it can be seen that high-speed detection within 0.1 seconds could be performed.

[数52]
1 =(t2 −t0 )+T0
=(3.035−3.000)+0.05
=0.085 [秒]
[Formula 52]
T 1 = (t 2 −t 0 ) + T 0
= (3.035-3.000) +0.05
= 0.085 [seconds]

(8)3相配電線の場合
3相配電線に複数の分散電源保有設備20を接続する場合の一例を図23に示し、その等価回路を図24に示す。
(8) In the case of a three-phase distribution line An example in the case of connecting a plurality of distributed power supply facilities 20 to a three-phase distribution line is shown in FIG. 23, and the equivalent circuit is shown in FIG.

前記配電線10は3相配電線であり、前記各分散電源保有設備20は当該3相配電線10の三つの線間の内の一つの線間にそれぞれ接続されている。   The distribution line 10 is a three-phase distribution line, and each of the distributed power supply facilities 20 is connected between one of the three lines of the three-phase distribution line 10.

このような場合は、以下に述べる理由から、3相配電線10の第1の線間に接続されている分散電源保有設備20および第2の線間に接続されている分散電源保有設備20を前記第1群に属させ、第3の線間に接続されている分散電源保有設備20を前記第2群に属させるのが好ましい。   In such a case, for the reasons described below, the distributed power source holding equipment 20 connected between the first lines of the three-phase distribution line 10 and the distributed power source holding equipment 20 connected between the second lines are described above. It is preferable that the distributed power supply facility 20 belonging to the first group and connected between the third lines belong to the second group.

第1の線間、第2の線間、第3の線間は、それぞれ、例えば、A相B相間、B相C相間、C相A相間であるが(図23はこの場合の例を示す)、この組み合わせに限られるものではない。   The first line, the second line, and the third line are, for example, between the A phase and the B phase, between the B phase and the C phase, and between the C phase and the A phase (FIG. 23 shows an example in this case). ), Not limited to this combination.

仮に、同一の群に属する複数の分散電源保有設備20を三つの線間全てに接続したとすると、各分散電源保有設備20の電流注入装置40から注入する注入電流に含まれている、同じ周波数でそれぞれ同期している電流は、負荷12を通らずに各電流注入装置40を通ってABC相間を循環する循環電流Iccとなるので、当該電流によっては線間に注入周波数の電圧が発生しなくなる。これでは単独運転検出が困難になる。 If a plurality of distributed power supply facilities 20 belonging to the same group are connected to all three lines, the same frequency included in the injection current injected from the current injection device 40 of each distributed power supply facility 20 The currents synchronized with each other become the circulating current I cc that circulates between the ABC phases through the current injection devices 40 without passing through the load 12, so that an injection frequency voltage is generated between the lines depending on the current. Disappear. This makes it difficult to detect an isolated operation.

これに対して、複数の分散電源保有設備20を上記のように第1群、第2群に分けて属させることによって、注入電流に含まれる同一周波数かつ同一位相の電流を三つの線間全てに注入することは起こらないので、当該電流が3相配電線の三つの線間において電流注入装置40を通して循環電流として流れるのを防止することができる。従って単独運転検出が困難になるという上記不都合が発生するのを防止することができる。   On the other hand, by dividing the plurality of distributed power source holding facilities 20 into the first group and the second group as described above, the currents of the same frequency and the same phase included in the injected current are all between the three lines. Therefore, the current can be prevented from flowing as a circulating current through the current injection device 40 between the three lines of the three-phase distribution line. Therefore, it is possible to prevent the above-described inconvenience that it becomes difficult to detect an isolated operation.

なお、複数の分散電源保有設備20を上記のように分けて属させることによって、各単独運転監視装置30は、自設備が接続されている線間とは異なる線間に他群の分散電源保有設備20によって注入された注入電流による電圧を計測することになるが、それでも支障はない。これは、例えばA相B相間に電流I11を注入すると、図24に示すように、A相B相間の負荷12には(2/3)・I11の電流が流れ、B相C相間、C相A相間には、それぞれ、(1/3)・I11の電流が流れ、各負荷12のインピーダンスをZL とすると、B相C相間、C相A相間にも、A相B相間の1/2の電圧が発生するので、それを計測することができるからである。 In addition, by dividing the plurality of distributed power source holding facilities 20 as described above, each isolated operation monitoring device 30 has another group of distributed power sources between lines different from the line to which the own facilities are connected. Although the voltage due to the injection current injected by the facility 20 is measured, there is no problem. For example, when a current I 11 is injected between the A phase and the B phase, as shown in FIG. 24, a current of (2/3) · I 11 flows through the load 12 between the A phase and the B phase. A current of (1/3) · I 11 flows between the C phase and the A phase. When the impedance of each load 12 is Z L , between the B phase and the C phase, between the C phase and the A phase, between the A phase and the B phase. This is because a half voltage is generated and can be measured.

(9)単独運転検出装置
なお、各分散電源保有設備20内の上記単独運転監視装置30、電流注入装置40および同期制御装置50に着目すれば、これらの装置30、40および50は、当該設備20内の分散電源26の単独運転を検出する単独運転検出装置を構成している、と言うことができる。換言すれば、各分散電源保有設備20は、上記単独運転監視装置30、電流注入装置40および同期制御装置50を有する単独運転検出装置をそれぞれ備えている、と言うことができる。
(9) Independent operation detection device If attention is paid to the isolated operation monitoring device 30, the current injection device 40, and the synchronous control device 50 in each distributed power supply facility 20, these devices 30, 40, and 50 It can be said that it constitutes an isolated operation detection device that detects the isolated operation of the distributed power supply 26 in the system 20. In other words, it can be said that each distributed power supply facility 20 includes an isolated operation detection device having the isolated operation monitoring device 30, the current injection device 40, and the synchronous control device 50, respectively.

(10)後続の分散電源保有設備用の単独運転検出装置
前述したように、上記単独運転検出システムを構築した後に、上記第1群および/または第2群を構成する分散電源保有設備20の数を変更(以下では増加に着目)しても良い。所要の分散電源保有設備20を、修理等のために別の(例えば新しい)分散電源保有設備と交換しても良い。
(10) Single operation detection device for subsequent distributed power supply facility As described above, after constructing the single operation detection system, the number of distributed power supply facilities 20 constituting the first group and / or the second group. May be changed (in the following, focusing on the increase). The required distributed power supply facility 20 may be replaced with another (for example, new) distributed power supply facility for repair or the like.

このような増加、交換等のために、上記単独運転検出システムを備えている上記配電系統の配電線10に接続されて、上記第1群および第2群の分散電源保有設備の内の一方の群の一員となる分散電源保有設備を後続の分散電源保有設備と呼ぶことにすると、当該後続の分散電源保有設備は、例えば、上記分散電源保有設備20と実質的に同じ構成のものにすれば良い。   For such an increase, replacement, etc., one of the first group and the second group of distributed power supply facilities connected to the distribution line 10 of the distribution system having the islanding detection system. If a distributed power supply facility that is a member of a group is called a subsequent distributed power supply facility, the subsequent distributed power supply facility is, for example, substantially the same configuration as the distributed power supply facility 20. good.

あるいは、そのようにせずに、単独運転検出装置に着目して、後続の分散電源保有設備内の分散電源の単独運転を検出する単独運転検出装置を、上記分散電源保有設備20用の単独運転検出装置(上記(9)項参照)と実質的に同じ構成にしても良い。要は、後続の分散電源保有設備用(より具体的には、その分散電源の単独運転検出用。以下同様)に、上記分散電源保有設備20用の単独運転検出装置と実質的に同じ構成の単独運転検出装置を設けておけば良い。   Alternatively, the single operation detection device for detecting the single operation of the distributed power supply in the subsequent distributed power supply facility is used as the single operation detection for the distributed power supply facility 20 without focusing on the single operation detection device. You may make it the substantially same structure as an apparatus (refer said (9) term). The point is that it has substantially the same configuration as the isolated operation detection device for the distributed power supply facility 20 for the subsequent distributed power supply facility (more specifically, for the detection of the isolated operation of the distributed power supply, the same applies hereinafter). A single operation detection device may be provided.

即ち、(a)上記第1組および第2組の内の一方の組の注入周波数が設定されて当該周波数の電流組を含む注入電流を、上記後続の分散電源保有設備と上記配電線10とを接続する引込線16を通して配電線10に注入する電流注入装置と、(b)上記後続の分散電源保有設備用の引込線16における電圧であって、上記第1組および第2組の内の他方の組の注入周波数を構成している少なくとも一方の注入周波数が設定されて当該周波数の電圧を計測して、当該電圧の増大から、上記後続の分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置と、(c)上記後続の分散電源保有設備を自設備と呼び、当該自設備が一員となる方の分散電源保有設備20の群を自群、当該自設備が一員とならない方の分散電源保有設備20の群を他群と呼ぶと、自設備用の上記電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備20の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる同期制御装置とを備えている単独運転検出装置を設けておけば良い。   That is, (a) an injection frequency of one of the first set and the second set is set, and an injection current including a current set of the frequency is sent to the subsequent distributed power supply facility and the distribution line 10 A current injection device that injects into the distribution line 10 through the lead-in line 16 connecting the power supply line, and (b) a voltage at the lead-in line 16 for the subsequent distributed power source holding facility, the other of the first set and the second set At least one injection frequency constituting the set injection frequency is set and the voltage of the frequency is measured, and from the increase of the voltage, the distributed power source in the subsequent distributed power source holding facility has become a single operation (C) The subsequent distributed power source possession facility is called the own facility, and the group of the distributed power source possession facilities 20 of which the own facility is a member is the own group, Distributed power supply for non-members When the group of the installed facilities 20 is called another group, the phase of each current of the current set constituting the injection current injected by the current injection device for the own facility is the beat of the own facility that is the beat that the injection current generates. While maintaining the same fixed phase relationship within the same group with respect to the phase, the beat of the voltage generated by the whole of the injected current injected by the current injection device of the distributed power supply facility 20 belonging to the other group. It is only necessary to provide an isolated operation detection device including a synchronous control device that synchronizes with other group beats.

上記(a)に示した電流注入装置、(b)に示した単独運転監視装置および(c)に示した同期制御装置は、より具体例を挙げれば、上記電流注入装置40、単独運転監視装置30および同期制御装置50とそれぞれ実質的に同じ構成をしており、かつそれらとそれぞれ実質的に同じ働きをする。従って、この電流注入装置、単独運転監視装置および同期制御については、上記電流注入装置40、単独運転監視装置30および同期制御装置50についての上記説明を参照するものとし、ここでは重複説明を省略する。   More specifically, the current injection device shown in (a), the isolated operation monitoring device shown in (b), and the synchronous control device shown in (c) are the current injection device 40 and the isolated operation monitoring device. 30 and the synchronization control device 50 have substantially the same configuration, and each of them has substantially the same function. Therefore, for the current injection device, the isolated operation monitoring device, and the synchronous control, the above description of the current injection device 40, the isolated operation monitoring device 30 and the synchronous control device 50 is referred to, and redundant description is omitted here. .

ちなみに、上記(c)に示した同期制御装置は、上記同期制御装置50の場合と同様に、上記三つの制御方式(即ち、位相一致時刻制御方式、位相変化量制御方式および周波数制御方式)の内のいずれを採用しても良い。また、上記同期制御装置50について図11〜図13を参照して説明した三つの構成例のいずれを採用しても良い。   Incidentally, the synchronous control device shown in the above (c) is similar to the synchronous control device 50 in the three control methods (that is, the phase matching time control method, the phase change amount control method and the frequency control method). Any of these may be adopted. Further, any of the three configuration examples described with reference to FIGS. 11 to 13 for the synchronization control device 50 may be adopted.

後続の分散電源保有設備用の上記電流注入装置に上記第1組の注入周波数f11およびf12が設定され、上記単独運転監視装置に上記第2組の注入周波数f21およびf22が設定されている場合は、当該後続の分散電源保有設備は第1群の分散電源保有設備の一員となる。反対に、後続の分散電源保有設備用の上記電流注入装置に上記第2組の注入周波数f21およびf22が設定され、上記単独運転監視装置に上記第1組の注入周波数f11およびf12が設定されている場合は、当該後続の分散電源保有設備は第2群の分散電源保有設備の一員となる。 The first set of injection frequency f 11 and f 12 in the current injection device for subsequent distributed power held equipment is set, the second set of injection frequency f 21 and f 22 are set to the independent operation monitoring device If so, the subsequent distributed power supply facility becomes a member of the first group of distributed power supply facilities. In contrast, the second set of injection frequencies f 21 and f 22 are set in the current injection device for the subsequent distributed power supply facility, and the first set of injection frequencies f 11 and f 12 are set in the isolated operation monitoring device. Is set, the succeeding distributed power supply facility becomes a member of the second group of distributed power supply facilities.

換言すれば、後続の分散電源保有設備を上記第1群の分散電源保有設備の一員にしたければ、後続の分散電源保有設備用の上記電流注入装置に上記第1組の注入周波数f11およびf12を設定し、上記単独運転監視装置に上記第2組の注入周波数f21およびf22を設定しておけば良い。反対に、後続の分散電源保有設備を上記第2群の分散電源保有設備の一員にしたければ、後続の分散電源保有設備用の上記電流注入装置に上記第2組の注入周波数f21およびf22を設定し、上記単独運転監視装置に上記第1組の注入周波数f11およびf12を設定しておけば良い。 In other words, if the subsequent distributed power supply facility is to be a member of the first group of distributed power supply facilities, the current injection device for the subsequent distributed power supply facility is connected to the first set of injection frequencies f 11 and f 11. 12 and the second set of injection frequencies f 21 and f 22 may be set in the isolated operation monitoring device. On the other hand, if the subsequent distributed power supply facility is to be a member of the second group of distributed power supply facilities, the second set of injection frequencies f 21 and f 22 are added to the current injection device for the subsequent distributed power supply facility. And the first set of injection frequencies f 11 and f 12 may be set in the isolated operation monitoring device.

なお、上記単独運転監視装置30について前述したのと同様に、後続の分散電源保有設備用の単独運転監視装置も、組を成す二つの注入周波数の内のいずれか一方の注入周波数(例えば第1組を例に挙げれば、f11とf12の内の一方)が設定されて当該注入周波数の電圧を計測して単独運転を検出するように構成されていても良い。 In the same manner as described above for the islanding operation monitoring device 30, the islanding operation monitoring device for the subsequent distributed power supply facility also has an injection frequency (for example, the first one) of the two injection frequencies forming the set. Taking a set as an example, may be configured to detect the isolated operation f one of the 11 and f 12) is set to measure the voltage of the injection frequency.

このような単独運転検出装置によれば、上記単独運転検出システムについて先に詳述したのと同様の理由によって、自設備用の電流注入装置が注入する注入電流が生じさせるうなりと、他群の注入電流が生じさせるうなりとを同期させることを利用して、自設備用の電流注入装置から配電線10に注入する注入電流を、同一の群に属する分散電源保有設備の電流注入装置が注入する同一周波数の注入電流に同期させることができる。従って、従来のような同期信号ラインや外部同期信号源を用いなくて済む。   According to such an isolated operation detection device, for the same reason as described in detail above for the isolated operation detection system, the beat generated by the current injection device for its own equipment is generated, Utilizing the synchronization with the beat generated by the injected current, the injected current injected from the current injection device for the own equipment into the distribution line 10 is injected by the current injection device of the distributed power supply equipment belonging to the same group. It can be synchronized with an injection current of the same frequency. Therefore, there is no need to use a conventional synchronization signal line or an external synchronization signal source.

なお、上記(c)に示した、後続の単独運転検出装置を構成する同期制御装置の制御方式や構成は、先に単独運転検出システムの上記同期制御装置50の上記三つの制御方式(即ち、位相一致時刻制御方式、位相変化量制御方式および周波数制御方式)や三つの構成例(図11〜図13参照)について説明したのと同様の理由から、同一群に属することになる上記同期制御装置50の制御方式や構成と合わせて同一群内で統一されるようにしても良いし、異なるものとして複数の制御方式や構成が混在するようにしても良い。合わせれば、同期制御装置の設計、製作が容易になる等の利点がある。異なるものにしても良いのは、先に詳述したように、上記三つの制御方式は互いに実質的に等価であり、また上記三つの構成例は互いに実質的に等価の制御方式に基づいているからである。   The control method and configuration of the synchronous control device that constitutes the subsequent isolated operation detection device shown in (c) above are the three control methods (that is, the synchronous control device 50 of the isolated operation detection system) (that is, The synchronous control device belonging to the same group for the same reason as described for the phase matching time control method, the phase change amount control method and the frequency control method) and the three configuration examples (see FIGS. 11 to 13). It may be unified within the same group together with 50 control methods and configurations, or a plurality of control methods and configurations may be mixed as different ones. Together, there are advantages such as easy design and manufacture of the synchronous control device. As described in detail above, the three control methods are substantially equivalent to each other, and the three configuration examples are based on control methods substantially equivalent to each other. Because.

また、上述したように先の単独運転検出システムの上記同期制御装置50が備えている電流位相設定手段が、自設備うなりの位相が0度になるときの電流組の各電流の位相を0度に設定するものであり、うなり同期手段が、自設備うなりの位相と他群うなりの位相との位相差を0度にするものであるときは、それと同様に、後続の単独運転検出装置を構成する同期制御装置が備えている電流位相設定手段は、自設備うなりの位相が0度になるときの電流組の各電流の位相を0度に設定するものになり、うなり同期手段は、自設備うなりの位相と他群うなりの位相との位相差を0度にするものになる。後続装置用の同期制御装置も、上記(c)に示したように、同一群内で共通した一定の位相関係に保つと共に、自設備うなりを他群うなりに同期させるものだからである。   Further, as described above, the current phase setting means provided in the synchronous control device 50 of the previous isolated operation detection system sets the phase of each current in the current set to 0 degrees when the phase of the beat of the equipment is 0 degrees. When the beat synchronization means sets the phase difference between the own equipment beat phase and the other group beat phase to 0 degree, similarly, it constitutes the subsequent isolated operation detection device. The current phase setting means provided in the synchronization control device that sets the phase of each current of the current set to 0 degrees when the phase of the own equipment beat is 0 degrees. The phase difference between the beat phase and the other group beat phase is set to 0 degree. This is because, as shown in the above (c), the synchronization control device for the succeeding device maintains a constant phase relationship common within the same group and synchronizes the own equipment beat with the other group beat.

上記の場合は、後続装置用の電流位相設定手段は、自設備うなりの位相が0度になるときの電流組の各電流の位相を0度に設定するものであり、0度に設定する場合は0度以外に設定する場合と違って、特別な設定手段を設けなくて済むので、後続装置用の同期制御装置の構成を簡素化することができる。   In the above case, the current phase setting means for the succeeding device sets the phase of each current in the current set when the phase of the own equipment beats to 0 degrees, and sets it to 0 degrees. Unlike the case where the angle is set to other than 0 degrees, it is not necessary to provide a special setting means, so that the configuration of the synchronous control device for the succeeding device can be simplified.

同様に、先の単独運転検出システムの上記同期制御装置50が備えている位相一致時刻発生手段が、うなり位相差を0度にする位相一致時刻Te(t)を発生するものであり、一致位相設定手段が、自設備うなりの位相が0度になるときの一致位相θe を0度に設定するものであるときは、それと同様に、後続の単独運転検出装置を構成する同期制御装置が備えている位相一致時刻発生手段は、うなり位相差を0度にする位相一致時刻Te(t)を発生するものになり、一致位相設定手段は、自設備うなりの位相が0度になるときの一致位相θe を0度に設定するものになる。後続装置用の同期制御装置も、上記(c)に示したように、同一群内で共通した一定の位相関係に保つと共に、自設備うなりを他群うなりに同期させるものだからである。 Similarly, the phase coincidence time generation means provided in the synchronous control device 50 of the previous isolated operation detection system generates the phase coincidence time Te (t) that makes the beat phase difference 0 degree, and coincides with it. When the phase setting means sets the coincidence phase θ e when the phase of the beat of its own equipment becomes 0 degrees, similarly, the synchronous control apparatus constituting the subsequent isolated operation detecting apparatus is The phase coincidence time generating means provided is for generating a phase coincidence time Te (t) that makes the beat phase difference 0 degrees, and the coincidence phase setting means is used when the phase of the own equipment beat becomes 0 degrees. comprising a matching phase theta e in shall be set to 0 degrees. This is because, as shown in the above (c), the synchronization control device for the succeeding device maintains a constant phase relationship common within the same group and synchronizes the own equipment beat with the other group beat.

上記の場合は、後続装置用の一致位相設定手段は、自設備うなりの位相が0度になるときの一致位相を0度に設定するものであり、0度に設定する場合は0度以外に設定する場合と違って、特別な設定手段を設けなくて済むので、後続装置用の同期制御装置の構成を簡素化することができる。   In the above case, the coincidence phase setting means for the subsequent device sets the coincidence phase when the own equipment beat phase becomes 0 degrees, and when setting to 0 degrees, other than 0 degrees. Unlike the case of setting, it is not necessary to provide special setting means, so that the configuration of the synchronous control device for the subsequent device can be simplified.

この発明に係る分散電源の単独運転検出システムを備える配電系統の一例を示す単線接続図である。It is a single line connection figure which shows an example of a power distribution system provided with the independent operation detection system of the distributed power source which concerns on this invention. 各分散電源保有設備の構成の一例を示す図である。It is a figure which shows an example of a structure of each distributed power supply equipment. 第1組の各電流の波形(A)、およびそれらの合成電流の波形(B)の一例を示す図である。It is a figure which shows an example of the waveform (A) of each electric current of a 1st group, and the waveform (B) of those synthetic currents. 第1組の各電流の波形(A)、およびそれらの合成電流の波形(B)の他の例を示す図である。It is a figure which shows the other example of the waveform (A) of each electric current of a 1st group, and the waveform (B) of those synthetic currents. 自設備うなりが他群うなりに同期していない場合の一例を示す図である。It is a figure which shows an example when the own equipment beat is not synchronizing with the other group beat. 自設備うなりを他群うなりに同期させた場合の一例を示す図である。It is a figure which shows an example at the time of synchronizing own equipment beat with another group beat. 一致位相が0度の場合の第1組の各電流の位相とその位相差(自設備うなりの位相)の一例を示す図である。It is a figure which shows an example of the phase of each 1st set electric current in case a coincidence phase is 0 degree | times, and its phase difference (phase of own equipment beat). 一致位相が180度の場合の第1組の各電流の位相とその位相差(自設備うなりの位相)の一例を示す図である。It is a figure which shows an example of the phase of each 1st set electric current in case a coincidence phase is 180 degree | times, and its phase difference (phase of own equipment beat). 一致位相が互いに異なる場合の同一周波数の二つの電流の位相と自設備うなりの位相との関係の一例を示す図である。It is a figure which shows an example of the relationship between the phase of two electric currents of the same frequency when a coincidence phase differs from each other, and the phase of a self-arrangement. 一致位相が互いに一致している場合の同一周波数の二つの電流の位相と自設備うなりの位相との関係の一例を示す図である。It is a figure which shows an example of the relationship between the phase of two electric currents of the same frequency when a coincidence phase is mutually in agreement, and the phase of the own equipment beat. 同期制御装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a synchronous control apparatus. 同期制御装置の構成の他の例を示すブロック図である。It is a block diagram which shows the other example of a structure of a synchronous control apparatus. 同期制御装置の構成の更に他の例を示すブロック図である。It is a block diagram which shows the further another example of a structure of a synchronous control apparatus. 自設備うなりの位相と他群うなりの位相との関係を単位円で示す図である。It is a figure which shows the relationship between the phase of an own equipment beat, and the phase of another group beat by a unit circle. 第1組の各電流の周波数を、周波数比率を保ったまま増加させた場合の、増加前の各電流およびうなりの波形(A)、ならびに各電流およびうなりの位相(B)の一例を示す図である。The figure which shows an example of each current and beat waveform (A) before increase, and each current and beat phase (B) when the frequency of each current of the first set is increased while maintaining the frequency ratio It is. 第1組の各電流の周波数を、周波数比率を保ったまま増加させた場合の、増加後の各電流およびうなりの波形(A)、ならびに各電流およびうなりの位相(B)の一例を示す図である。The figure which shows an example of each current and beat waveform (A) after an increase, and each current and beat phase (B) at the time of increasing the frequency of each 1st set current, maintaining a frequency ratio It is. 第1組の各電流の周波数を、周波数比率を保たないで増加させた場合の、増加後の各電流およびうなりの波形(A)、ならびに各電流およびうなりの位相(B)の一例を示す図である。An example of each increased current and beat waveform (A) and each current and beat phase (B) when the frequency of each current of the first set is increased without maintaining the frequency ratio is shown. FIG. うなり位相差の変化をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the change of the beat phase difference. 自群の同一周波数の二つの注入電流間の位相差の変化をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the change of the phase difference between the two injection currents of the same frequency of the own group. 電流注入装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of a current injection apparatus. 単独運転監視装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of an isolated operation monitoring apparatus. 単独運転発生時の第2組の注入周波数の電圧の変化をシミュレーションした結果の一例を示す図である。It is a figure which shows an example of the result of having simulated the change of the voltage of the 2nd set of injection frequency at the time of single operation generation | occurrence | production. 3相配電線に複数の分散電源保有設備を接続する場合の一例を示す図である。It is a figure which shows an example in the case of connecting a some distributed power supply equipment to a three-phase distribution line. 図23の等価回路図である。FIG. 24 is an equivalent circuit diagram of FIG. 23.

符号の説明Explanation of symbols

2 上位系統
4 変電所
10 配電線
16 引込線
20 分散電源保有設備
26 分散電源
30 単独運転監視装置
40 電流注入装置
42 注入信号発生器
48 注入電流形成器
50 同期制御装置
58 他群うなり位相算出器
64 一致位相設定器
70 電流位相設定器
72 減算器(うなり位相算出手段)
86 減算器(自設備うなり算出手段)
88 うなり同期器
100 位相一致時刻発生器
102 クロック装置
114、118 位相発生器
Δθinj(t) 自設備うなりの位相
Δθm(t) 他群うなりの位相
dθ(t) うなり位相差
θe 一致位相
e(t) 位相一致時刻
inj 注入電流
11、f12、f21、f22 注入周波数
2 Host system 4 Substation 10 Distribution line 16 Service line 20 Distributed power supply facility 26 Distributed power supply 30 Stand-alone monitoring device 40 Current injection device 42 Injection signal generator 48 Injection current generator 50 Synchronous control device 58 Other group beat phase calculator 64 Match phase setter 70 Current phase setter 72 Subtractor (beat phase calculation means)
86 Subtractor (own equipment beat calculation means)
88 Beat synchronizer 100 Phase matching time generator 102 Clock device 114, 118 Phase generator Δθ inj (t) Own beat phase Δθ m (t) Other group beat phase dθ (t) Beat phase difference θ e coincidence phase T e (t) Phase matching time I inj injection current f 11 , f 12 , f 21 , f 22 injection frequency

Claims (12)

上位系統に変電所を介して配電線が接続された配電系統の配電線に、分散電源を有する複数の分散電源保有設備が接続されており、かつ各分散電源保有設備は、当該分散電源保有設備と前記配電線とを接続する引込線を通して前記配電線に、当該配電系統の基本波周波数とは異なる周波数である注入周波数の注入電流を注入する電流注入装置と、前記引込線における注入周波数の電圧を計測して、当該電圧の増大から、当該分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置とを備えている構成の単独運転検出システムにおいて、
(a)前記複数の分散電源保有設備を第1群と第2群との2群に分類し、
(b)うなりを生じさせる二つの注入周波数からそれぞれ成る2組の注入周波数であって、各組を成す二つの注入周波数間の周波数差は両組で互いに同じであり、かつ両組を構成する四つの注入周波数はそれぞれ異なる第1組および第2組の注入周波数を用いて、
(c)第1群に属する各分散電源保有設備の電流注入装置は第1組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流を注入し、同分散電源保有設備の単独運転監視装置は第2組の注入周波数の内の少なくとも一方の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されており、
(d)第2群に属する各分散電源保有設備の電流注入装置は第2組の注入周波数が設定されて当該注入周波数の電流組を含む注入電流を注入し、同分散電源保有設備の単独運転監視装置は第1組の注入周波数の内の少なくとも一方の注入周波数が設定されて当該注入周波数の電圧を計測して前記単独運転を検出するよう構成されており、
(e)かつ両群の各分散電源保有設備は、自設備が属する方の群を自群、自設備が属さない方の群を他群と呼ぶと、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる同期制御装置をそれぞれ備えている、ことを特徴とする分散電源の単独運転検出システム。
A plurality of distributed power source holding facilities with distributed power sources are connected to the distribution lines of the distribution system whose distribution lines are connected to the upper system via a substation. A current injection device for injecting an injection current having an injection frequency that is different from the fundamental frequency of the distribution system into the distribution line through a lead-in line connecting the power distribution line and the distribution line, and measuring a voltage at the injection frequency in the lead-in line In the isolated operation detection system of the configuration comprising an isolated operation monitoring device that detects that the distributed power supply in the distributed power supply facility has become isolated operation from the increase in the voltage,
(A) classifying the plurality of distributed power supply facilities into two groups, a first group and a second group;
(B) Two sets of injection frequencies each consisting of two injection frequencies that generate beats, and the frequency difference between the two injection frequencies forming each set is the same in both sets and constitutes both sets The four injection frequencies use different first and second sets of injection frequencies,
(C) The current injection device of each distributed power supply facility belonging to the first group has a first set of injection frequencies set, injects an injection current including the current set of the injection frequency, and operates the distributed power supply facilities independently The monitoring device is configured to detect at least one injection frequency of the second set of injection frequencies and measure the voltage of the injection frequency to detect the islanding operation.
(D) The current injection device of each distributed power supply facility belonging to the second group has a second set of injection frequencies set, injects an injection current including the current set of the injection frequency, and operates the distributed power supply facilities independently The monitoring device is configured to detect at least one injection frequency of the first set of injection frequencies and measure the voltage of the injection frequency to detect the single operation.
(E) And each distributed power supply facility of both groups, when the group to which the own equipment belongs is called the own group and the group to which the own equipment does not belong is called the other group, the injection injected by the current injection device of the own equipment While maintaining the phase of each current of the current set constituting the current in a constant phase relationship common within the same group with respect to the phase of the own equipment beating that the injected current generates, the own equipment beat is A distributed power source characterized by comprising a synchronous control device that synchronizes with another group beat, which is a voltage beat generated by a total of injection currents injected by a current injection device of a distributed power supply facility belonging to another group Isolated operation detection system.
前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、
(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、両位相の変化量間の比率を両電流の前記設定された周波数間の比率と同じ比率に保ったまま変化させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えている請求項1記載の分散電源の単独運転検出システム。
The synchronization control device includes:
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) The phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment has a constant phase relationship common to the own equipment beat phase in the same group. Current phase setting means for setting the phase of each current of the current set;
(C) A phase difference between the phase of the beat of the own equipment and the phase of the beat of the other group is obtained, and the current injection device of the own equipment injects such that the phase difference becomes a constant value common in the same group. The phase of each current of the current set constituting the injected current is changed while maintaining the ratio between the change amounts of both phases at the same ratio as the ratio between the set frequencies of both currents, The isolated operation detection system for a distributed power supply according to claim 1, further comprising beat synchronization means for synchronizing with the other group beats.
前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、
(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、当該位相差に応じて、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の周波数を、両周波数間の比率を前記設定された周波数間の比率に保ったまま増減させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えている請求項1記載の分散電源の単独運転検出システム。
The synchronization control device includes:
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) The phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment has a constant phase relationship common to the own equipment beat phase in the same group. Current phase setting means for setting the phase of each current of the current set;
(C) Obtaining a phase difference between the phase of the own equipment beat and the phase of the other group beat, and depending on the phase difference so that the phase difference becomes a constant value common in the same group. The frequency of each current of the current set constituting the injection current injected by the current injection device is increased / decreased while maintaining the ratio between the two frequencies to the ratio between the set frequencies, and the own equipment beat is The isolated operation detection system for a distributed power supply according to claim 1, further comprising a beat synchronization means for synchronizing with a group beat.
前記電流位相設定手段は、前記自設備うなりの位相が0度になるときの前記電流組の各電流の位相を0度に設定するものであり、
前記うなり同期手段は、前記自設備うなりの位相と前記他群うなりの位相との位相差を0度にするものである請求項2または3記載の分散電源の単独運転検出システム。
The current phase setting means sets the phase of each current of the current set to 0 degree when the phase of the beat of the equipment is 0 degree,
4. The isolated operation detection system for a distributed power supply according to claim 2, wherein the beat synchronization unit sets a phase difference between the phase of the own equipment beat and the other group beat phase to 0 degrees. 5.
(1)前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)時刻tを表す信号を発生するクロック手段と、
(c)下記のうなり位相差に応じたものであって、当該うなり位相差を同一群内で共通した一定値にする位相一致時刻Te(t)((t)は時間的に変動する物理量であることを示す。以下同様)を発生する位相一致時刻発生手段と、
(d)同一群内で共通の固定された位相である一致位相θe を設定する一致位相設定手段と、
(e)自設備の組を成す前記設定された二つの注入周波数を角周波数で表してωa 、ωb とすると、前記時刻t、位相一致時刻Te(t)および一致位相θe を用いて、次式またはそれと数学的に等価の式で表される二つの位相θa(t)、θb(t)を発生する位相発生手段と、
θa(t)=ωa(t−Te(t))+θe
θb(t)=ωb(t−Te(t))+θe
(f)前記二つの位相θa(t)、θb(t)間の位相差を求めて前記自設備うなりの位相を算出する自設備うなり位相算出手段と、
(g)前記自設備うなりの位相と前記他群うなりの位相との位相差であるうなり位相差を算出するうなり位相差算出手段とを備えており、
(2)前記電流注入装置は、
(a)前記二つの位相θa(t)、θb(t)を用いて、当該位相θa(t)、θb(t)をそれぞれ有する二つの正弦波交流信号を含む注入信号を発生する注入信号発生手段と、
(b)前記注入信号を用いて前記注入電流を形成する注入電流形成手段とを備えている請求項1記載の分散電源の単独運転検出システム。
(1) The synchronous control device
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) clock means for generating a signal representing time t;
(C) The phase matching time T e (t) ((t) is a physical quantity that varies with time, which corresponds to the following beat phase difference and makes the beat phase difference a constant value common within the same group. Phase matching time generating means for generating the same),
(D) coincidence phase setting means for setting coincidence phase θ e which is a common fixed phase in the same group;
(E) When the set two injection frequencies forming the set of own equipment are expressed as angular frequencies and ω a and ω b , the time t, the phase coincidence time Te (t) and the coincidence phase θ e are used. Phase generating means for generating two phases θ a (t) and θ b (t) represented by the following equation or a mathematically equivalent equation thereof:
θ a (t) = ω a (t−T e (t)) + θ e ,
θ b (t) = ω b (t−T e (t)) + θ e
(F) Self-equipment beat phase calculation means for calculating a phase difference between the two phases θ a (t) and θ b (t) and calculating a phase of the own equipment beat;
(G) a beat phase difference calculating means for calculating a beat phase difference which is a phase difference between the phase of the own equipment beat and the other group beat phase;
(2) The current injection device includes:
(A) Using the two phases θ a (t) and θ b (t), an injection signal including two sinusoidal AC signals each having the phases θ a (t) and θ b (t) is generated. Injection signal generating means for
(B) The isolated operation detection system for a distributed power source according to claim 1, further comprising: an injection current forming unit configured to form the injection current using the injection signal.
前記位相一致時刻発生手段は、前記うなり位相差を0度にする前記位相一致時刻Te(t)を発生するものであり、
前記一致位相設定手段は、前記自設備うなりの位相が0度になるときの前記一致位相θe を0度に設定するものである請求項5記載の分散電源の単独運転検出システム。
The phase matching time generating means, the beat phase difference are those wherein generating a phase matching time T e (t) to 0 °,
The matching phase setting means, wherein the isolated operation detecting system of the distributed power supply according to claim 5, wherein the matching phase theta e when the host equipment beat phase becomes 0 ° is to set to 0 degrees.
前記第1組および第2組の注入周波数を構成する各注入周波数は、いずれも、前記配電系統の基本波周波数の1倍よりも大きい非整数倍の周波数である請求項1ないし6のいずれかに記載の分散電源の単独運転検出システム。   7. Each of the injection frequencies constituting the first set and the second set of injection frequencies is a non-integer multiple frequency that is greater than one time the fundamental frequency of the power distribution system. An isolated operation detection system for a distributed power source as described in 1. 前記配電線は3相配電線であり、
前記各分散電源保有設備は当該3相配電線の三つの線間の内の一つの線間にそれぞれ接続されており、
かつ当該3相配電線の第1の線間に接続されている分散電源保有設備および第2の線間に接続されている分散電源保有設備を前記第1群に属させ、第3の線間に接続されている分散電源保有設備を前記第2群に属させている請求項1ないし7のいずれかに記載の分散電源の単独運転検出システム。
The distribution line is a three-phase distribution line,
Each of the distributed power holding facilities is connected between one of the three lines of the three-phase distribution line,
And the distributed power supply equipment connected between the first lines of the three-phase distribution lines and the distributed power supply equipment connected between the second lines belong to the first group, and between the third lines The system for detecting an isolated operation of a distributed power supply according to any one of claims 1 to 7, wherein a connected distributed power supply facility belongs to the second group.
請求項1ないし8のいずれかに記載の分散電源の単独運転検出システムを備えている前記配電系統の配電線に接続されて、前記第1群および第2群の分散電源保有設備の内の一方の群の一員となる後続の分散電源保有設備内の分散電源の単独運転を検出する装置であって、
(a)前記第1組および第2組の内の一方の組の注入周波数が設定されて当該周波数の電流組を含む注入電流を、前記後続の分散電源保有設備と前記配電線とを接続する引込線を通して前記配電線に注入する電流注入装置と、
(b)前記後続の分散電源保有設備用の前記引込線における電圧であって、前記第1組および第2組の内の他方の組の注入周波数を構成している少なくとも一方の注入周波数が設定されて当該周波数の電圧を計測して、当該電圧の増大から、前記後続の分散電源保有設備内の分散電源が単独運転になったことを検出する単独運転監視装置と、
(c)前記後続の分散電源保有設備を自設備と呼び、当該自設備が一員となる方の分散電源保有設備の群を自群、当該自設備が一員とならない方の分散電源保有設備の群を他群と呼ぶと、自設備用の前記電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、当該注入電流が生じさせるうなりである自設備うなりの位相に対して同一群内で共通した一定の位相関係に保つと共に、当該自設備うなりを、他群に属する分散電源保有設備の電流注入装置が注入する注入電流の総体が生じさせる電圧のうなりである他群うなりに同期させる同期制御装置とを備えていることを特徴とする分散電源の単独運転検出装置。
9. One of the first group and the second group of distributed power supply facilities connected to a distribution line of the distribution system comprising the distributed power supply single operation detection system according to any one of claims 1 to 8. A device for detecting a single operation of a distributed power supply in a subsequent distributed power supply facility that becomes a member of
(A) An injection frequency of one of the first set and the second set is set, and an injection current including a current set of the frequency is connected to the subsequent distributed power supply facility and the distribution line A current injection device for injecting into the distribution line through a lead-in wire;
(B) A voltage in the lead-in line for the subsequent distributed power supply facility, wherein at least one injection frequency constituting the injection frequency of the other of the first set and the second set is set. A single operation monitoring device for measuring the voltage of the frequency and detecting from the increase of the voltage that the distributed power source in the subsequent distributed power source holding facility has become a single operation,
(C) The subsequent distributed power supply facility is called a self facility, the group of the distributed power supply facilities that the self facility is a member of, and the group of the distributed power supply facilities that the self facility is not a member of Is called the other group, the phase of each current of the current set constituting the injection current injected by the current injection device for the own equipment is the same as the phase of the own equipment beat that is the beat generated by the injection current. While maintaining a constant phase relationship common within the group, the other group beating is the voltage generated by the total of the injected current injected by the current injection device of the distributed power supply facility belonging to the other group. An isolated operation detection device for a distributed power source, comprising: a synchronization control device for synchronization.
前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、
(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相を、両位相の変化量間の比率を両電流の前記設定された周波数間の比率と同じ比率に保ったまま変化させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えている請求項9記載の分散電源の単独運転検出装置。
The synchronization control device includes:
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) The phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment has a constant phase relationship common to the own equipment beat phase in the same group. Current phase setting means for setting the phase of each current of the current set;
(C) A phase difference between the phase of the beat of the own equipment and the phase of the beat of the other group is obtained, and the current injection device of the own equipment injects such that the phase difference becomes a constant value common in the same group. The phase of each current of the current set constituting the injected current is changed while maintaining the ratio between the change amounts of both phases at the same ratio as the ratio between the set frequencies of both currents, The isolated operation detection device for a distributed power supply according to claim 9, further comprising beat synchronization means for synchronizing with the other group beat.
前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の位相が、前記自設備うなりの位相に対して同一群内で共通した一定の位相関係になるように、当該電流組の各電流の位相をそれぞれ設定する電流位相設定手段と、
(c)前記自設備うなりの位相と前記他群うなりの位相との位相差を求めて、当該位相差が同一群内で共通した一定値になるように、当該位相差に応じて、自設備の電流注入装置が注入する注入電流を構成する電流組の各電流の周波数を、両周波数間の比率を前記設定された周波数間の比率に保ったまま増減させて、前記自設備うなりを前記他群うなりに同期させるうなり同期手段とを備えている請求項9記載の分散電源の単独運転検出装置。
The synchronization control device includes:
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) The phase of each current of the current set constituting the injection current injected by the current injection device of the own equipment has a constant phase relationship common to the own equipment beat phase in the same group. Current phase setting means for setting the phase of each current of the current set;
(C) Obtaining a phase difference between the phase of the own equipment beat and the phase of the other group beat, and depending on the phase difference so that the phase difference becomes a constant value common in the same group. The frequency of each current of the current set constituting the injection current injected by the current injection device is increased / decreased while maintaining the ratio between the two frequencies to the ratio between the set frequencies, and the own equipment beat is 10. The isolated operation detection device for a distributed power supply according to claim 9, further comprising a beat synchronization means for synchronizing with a group beat.
(1)前記同期制御装置は、
(a)前記引込線における電圧に含まれている電圧であって、他群に属する分散電源保有設備の電流注入装置の注入周波数の電圧を計測して、当該電圧に基づいて前記他群うなりの位相を算出する他群うなり位相算出手段と、
(b)時刻tを表す信号を発生するクロック手段と、
(c)下記のうなり位相差に応じたものであって、当該うなり位相差を同一群内で共通した一定値にする位相一致時刻Te(t)((t)は時間的に変動する物理量であることを示す。以下同様)を発生する位相一致時刻発生手段と、
(d)同一群内で共通の固定された位相である一致位相θe を設定する一致位相設定手段と、
(e)自設備の組を成す前記設定された二つの注入周波数を角周波数で表してωa 、ωb とすると、前記時刻t、位相一致時刻Te(t)および一致位相θe を用いて、次式またはそれと数学的に等価の式で表される二つの位相θa(t)、θb(t)を発生する位相発生手段と、
θa(t)=ωa(t−Te(t))+θe
θb(t)=ωb(t−Te(t))+θe
(f)前記二つの位相θa(t)、θb(t)間の位相差を求めて前記自設備うなりの位相を算出する自設備うなり位相算出手段と、
(g)前記自設備うなりの位相と前記他群うなりの位相との位相差であるうなり位相差を算出するうなり位相差算出手段とを備えており、
(2)前記電流注入装置は、
(a)前記二つの位相θa(t)、θb(t)を用いて、当該位相θa(t)、θb(t)をそれぞれ有する二つの正弦波交流信号を含む注入信号を発生する注入信号発生手段と、
(b)前記注入信号を用いて前記注入電流を形成する注入電流形成手段とを備えている請求項9記載の分散電源の単独運転検出装置。
(1) The synchronous control device
(A) A voltage included in the voltage in the lead-in line, the voltage of the injection frequency of the current injection device of the distributed power supply facility belonging to the other group is measured, and the phase of the other group beats based on the voltage Other group beat phase calculating means for calculating
(B) clock means for generating a signal representing time t;
(C) The phase matching time T e (t) ((t) is a physical quantity that varies with time, which corresponds to the following beat phase difference and makes the beat phase difference a constant value common within the same group. Phase matching time generating means for generating the same),
(D) coincidence phase setting means for setting coincidence phase θ e which is a common fixed phase in the same group;
(E) When the set two injection frequencies forming the set of own equipment are expressed as angular frequencies and ω a and ω b , the time t, the phase coincidence time Te (t) and the coincidence phase θ e are used. Phase generating means for generating two phases θ a (t) and θ b (t) represented by the following equation or a mathematically equivalent equation thereof:
θ a (t) = ω a (t−T e (t)) + θ e ,
θ b (t) = ω b (t−T e (t)) + θ e
(F) Self-equipment beat phase calculation means for calculating a phase difference between the two phases θ a (t) and θ b (t) and calculating a phase of the own equipment beat;
(G) a beat phase difference calculating means for calculating a beat phase difference which is a phase difference between the phase of the own equipment beat and the other group beat phase;
(2) The current injection device includes:
(A) Using the two phases θ a (t) and θ b (t), an injection signal including two sinusoidal AC signals each having the phases θ a (t) and θ b (t) is generated. Injection signal generating means for
10. The isolated operation detection apparatus for a distributed power supply according to claim 9, further comprising: (b) injection current forming means for forming the injection current using the injection signal.
JP2007233089A 2007-05-28 2007-09-07 Isolated operation detection system and isolated operation detection device for distributed power supply Active JP4350776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007233089A JP4350776B2 (en) 2007-05-28 2007-09-07 Isolated operation detection system and isolated operation detection device for distributed power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007139931 2007-05-28
JP2007233089A JP4350776B2 (en) 2007-05-28 2007-09-07 Isolated operation detection system and isolated operation detection device for distributed power supply

Publications (2)

Publication Number Publication Date
JP2009011142A JP2009011142A (en) 2009-01-15
JP4350776B2 true JP4350776B2 (en) 2009-10-21

Family

ID=40325634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007233089A Active JP4350776B2 (en) 2007-05-28 2007-09-07 Isolated operation detection system and isolated operation detection device for distributed power supply

Country Status (1)

Country Link
JP (1) JP4350776B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969534A (en) * 2014-05-23 2014-08-06 国家电网公司 Islanding testing method for wind generating set

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5352373B2 (en) * 2009-08-04 2013-11-27 関西電力株式会社 Injection current synchronizer
JP4859975B2 (en) 2009-12-24 2012-01-25 藤倉ゴム工業株式会社 Prepreg winding method and apparatus
JP5465051B2 (en) * 2010-03-15 2014-04-09 株式会社 沖情報システムズ Isolated operation judgment device
KR101700328B1 (en) * 2015-05-07 2017-01-26 연세대학교 산학협력단 Inverter Based Stand Alone Microgrid System Using Time Synchronization and Method for operating control the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103969534A (en) * 2014-05-23 2014-08-06 国家电网公司 Islanding testing method for wind generating set
CN103969534B (en) * 2014-05-23 2016-01-20 国家电网公司 A kind of Wind turbines isolated island method of testing

Also Published As

Publication number Publication date
JP2009011142A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
Jia et al. Influence of inverter-interfaced renewable energy generators on directional relay and an improved scheme
Zhang et al. A fault detection method of microgrids with grid-connected inverter interfaced distributed generators based on the PQ control strategy
Karimi et al. A new centralized adaptive underfrequency load shedding controller for microgrids based on a distribution state estimator
Best et al. Synchronous islanded operation of a diesel generator
JP4350776B2 (en) Isolated operation detection system and isolated operation detection device for distributed power supply
WO2018122391A1 (en) Precise real-time advanced grid monitoring
Ma et al. Location method for interline and grounded faults of double-circuit transmission lines based on distributed parameters
Ding et al. Applications of PMUs in power distribution networks with distributed generation
JP2010166759A (en) Distributed power supply interconnection system and system interconnection protective device
Apostolopoulos et al. Unsynchronized measurements based fault location algorithm for active distribution systems without requiring source impedances
Mitsugi et al. Control hardware-in-the-loop simulation on fast frequency response of battery energy storage system equipped with advanced frequency detection algorithm
Wang et al. A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant
Jodaei et al. Fault Detection and Location in Power Systems with Large-Scale Photovoltaic Power Plant by Adaptive Distance Relays
Ortega et al. Hardware-in-the-loop validation of the frequency divider formula
Bahmanyar et al. Nonsy load flow: Smart grid load flow using non-synchronized measurements
Pouryekta et al. A hybrid islanding detection method for distribution systems
Sun et al. Synchronization stability analysis of PLL-based grid-connected VSC system by voltage space vectors
Patekar et al. Event-Triggered Hybrid Anti-Islanding Protection Scheme Based on Q-Axis Disturbance Injection
Sena et al. An Approach to Detect Islanding in Photovoltaic Based Distributed Generation Systems using Sequence Components of Voltage
Adhikari et al. Source-Agnostic Time-Domain Directional Relay
Mullane et al. Modifying the inertial response of power-converter based wind turbine generators
JP5352373B2 (en) Injection current synchronizer
Doheny et al. Impact of Loss of Generation on Bus Voltage Frequency and RoCoF
Jacobsen et al. Synchronous islanding control in the presence of hydro-electric generation
Zang et al. A current differential protection scheme based on Q-axis component for distribution networks

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090714

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090722

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4350776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250