JP4350024B2 - 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム - Google Patents

記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム Download PDF

Info

Publication number
JP4350024B2
JP4350024B2 JP2004322363A JP2004322363A JP4350024B2 JP 4350024 B2 JP4350024 B2 JP 4350024B2 JP 2004322363 A JP2004322363 A JP 2004322363A JP 2004322363 A JP2004322363 A JP 2004322363A JP 4350024 B2 JP4350024 B2 JP 4350024B2
Authority
JP
Japan
Prior art keywords
recording
deviation
mark
state transition
recording power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004322363A
Other languages
English (en)
Other versions
JP2005158245A (ja
Inventor
晴旬 宮下
健 中嶋
衛 東海林
泰守 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2004322363A priority Critical patent/JP4350024B2/ja
Publication of JP2005158245A publication Critical patent/JP2005158245A/ja
Application granted granted Critical
Publication of JP4350024B2 publication Critical patent/JP4350024B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Head (AREA)

Description

本発明は、記録パワー(例えば、書き込みパワー、消去パワーまたはボトムパワー)を調整する記録再生装置、記録再生方法、プログラムおよび記録パワー調整装置に関し、特に、再生方式の1つであるPRML方式に基づいて記録パワーを調整する記録再生装置、記録再生方法、プログラムおよび記録パワー調整装置に関する。
書き換え可能な光ディスクとして、層変化型光ディスク(CD−RW、DVD−RAM、DVD−RW、Blu−ray Disc等)が知られている。層変化型光ディスクのオーバーライト記録には、マルチパルスのレーザ光が使用されている。レーザ光のレーザパワーは、例えば、書き込みパワーPw、消去パワーPeおよびボトムパワーPbを有する。
図24は、書き込みパワーPw、消去パワーPeおよびボトムパワーPbを有するマルチパルスを示す。
書き込みパワーPwは、記録膜の状態を結晶状態からアモルファス状態に変化し、マークを形成する。消去パワーPeは、記録膜の状態をアモルファス状態から結晶状態に変化し、古いマークを消去(オーバーライト)する。ボトムパワーPbは、マルチパルス記録においては、マルチパルスの底部のパワーに相当し、記録時にレーザ光照射による熱拡散を防止する。
従来、記録媒体にデジタル情報を記録する記録再生方法及び記録再生装置において、書き込みパワーPw、消去パワーPeおよびボトムパワーPbを様々に変えてテスト信号を記録媒体に記録し、記録されたテスト信号を再生した。そして、その信号の記録状態の良否を判定する所定の信号評価指標を検出して、所定の信号評価指標が最良となる状態、または所望の状態となるようにレーザ光のパワーを制御、決定した。所定の信号評価指標は、例えば、ジッタ、アシンメトリ、エラーレート(BER)、変調度である(例えば、特許文献1)。
一方、PRML期待値誤差に基づく信号評価指標を参照することによって、レーザ光のパワーを制御、決定する方法が提案されている。例えば、記録媒体から原デジタル情報を再生する場合において、再生性能の向上を期待できる信号処理方式としてPartial Response Maximum Likelihood(PRML)信号処理技術がある。PRML方式は、PRという波形等化方式と、MLという最尤復号方式の組み合わせからなる。
従来、2値化パルスと再生クロックのジッタとに基づいて、記録再生伝送路の特性を評価した。しかし、PRML方式に基づいて再生伝送路特性の評価及び最適化を行うことが困難であった。ジッタは、PRML方式の性能(BER)と相関がないからである。
例えば、特許文献2は、PRML方式のBERと相関のある期待値誤差をジッタの替わりに指標として用いる技術を開示する。その指標は、フォーカスオフセット、チルト等の再生系ストレスによるエラー発生の確率を示す指標として用いられ、ベストフォーカス探査等にも用いられている。すなわち、再生状態の良否を決定するパラメータの最適化に用いられている。
特許第3259642号公報(図1) 特開2003−141823号公報(第79項、式(14)及び、第173項、図14)
しかし、アシンメトリを指標として最適記録パワーを決定する方法及び装置は、アシンメトリの検出精度が不十分で最適パワーを正しく求めることができない場合がある。PRML方式を用い、ジッタを指標として最適記録パワーを決定する方法及び装置は、ジッタ最小の記録パワーとBER最小の記録パワーとが必ずしも一致するとは限らないため、最適パワーを正しく求めることができない場合がある。PRML方式を用い、BERを指標として最適記録パワーを決定する方法及び装置は、指標の検出精度が不十分であり、最適パワーを正しく求めることができない場合がある。指標の検出精度が不十分であることは、BERを測定するために多量の記録領域が必要であること、ディスク上の汚れ、ゴミ等による記録状態とは異なった要因でBER劣化が発生すること、PRML方式のエラー訂正能力が高いために記録パワーに対するBERの変化(感度)が少ないことなどに起因する。
すなわち、上記のように記録パワーのパラメータをジッタ、アシンメトリまたはBERが最適となるように設定する従来の方法(例えば、特許文献1)では、PRML方式を採用したシステムにおいて、エラーの発生する確率が最小とはならない場合があった。また、記録パワーを決定するための指標の検出精度が不十分で精度よく記録パワーを決定することができない場合があった。このため、記録パワーの設定誤差等により、クロスパワー(ディスク上の記録済み領域に異なった条件でオーバーライトする状態)による性能劣化が発生し、同じ規格の光ディスクドライブ装置、光ディスク媒体の互換を安定にとることが困難な場合があった。
本発明は、上記課題に鑑みてなされたものであり、記録条件のずれによる再生波形劣化の検出感度を高め、しかも多量の試し書き領域を必要としない、記録再生装置、記録再生方法、プログラムおよび記録パワー調整装置を提供することを目的とする。さらにクロスパワーによる性能劣化を抑え、同じ規格の光ディスクドライブ装置、記録媒体の互換を安定にとることができる記録再生装置、記録再生方法、プログラムおよび記録パワー調整装置を提供することを目的とする。
本発明の記録パワー制御方法は、時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、チャネル周期Tの整数倍の長さを有する記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御する方法であって、前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm(mはn以下の整数)通り検出する工程と、前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、該|Pa−Pb|―Pstdを算出する際には、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、を含むものであり、そのことにより上記目的が達成される。
本発明は、前記記録パワー制御方法において、前記マーク長ずれを算出する工程は、前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整してもよい。
本発明は、前記記録パワー制御方法において、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行ってもよい。
本発明は、前記記録パワー制御方法において、前記記録パワーパラメータは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含んでもよい。
本発明の記録方法は、時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御し、制御された記録パワーにて記録を行う記録方法であって、前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する工程と、前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、該|Pa−Pb|―Pstdを算出する際には、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、前記調整された記録パワーパラメータに基づいて、記録を行う工程と、を含むものであり、そのことにより上記目的が達成される。
本発明は、前記記録方法において、前記マーク長ずれを算出する工程は、前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整してもよい。
本発明は、前記記録方法において、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行ってもよい。
本発明は、前記記録方法において、前記記録パワーパラメータは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含んでいてもよい。
本発明の記録パワー制御装置は、時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御する装置であって、前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する手段と、前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、該|Pa−Pb|―Pstdを算出する際には、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する手段と、前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する手段と、前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する手段と、を備えたものであり、そのことにより上記目的が達成される。
本発明は、前記記録パワー制御装置において、前記マーク長ずれを算出する手段は、前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、前記記録パワーパラメータを調整する手段は、前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整してもよい。
本発明は、前記記録パワー制御装置において、前記記録パワーパラメータを調整する手段は、前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行ってもよい。
本発明は、前記記録パワー制御装置において、前記記録パワーパラメータは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含んでいてもよい。
本発明に係る記録装置は、時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御し、制御された記録パワーにて記録を行う記録装置であって、前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する手段と、前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、該|Pa−Pb|―Pstdを算出する際には、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する手段と、前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する手段と、前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する手段と、前記調整された記録パワーパラメータに基づいて、記録を行う手段と、を備えたものであり、そのことにより上記目的が達成される。
本発明は、前記記録装置において、前記マーク長ずれを算出する手段は、前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、前記記録パワーパラメータを調整する手段は、前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整してもよい。
本発明は、前記記録装置において、前記記録パワーパラメータを調整する手段は、前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行ってもよい。
本発明は、前記記録装置において、前記記録パワーパラメータは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含んでいてもよい。
本発明の記録パワー制御プログラムは、時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御するプログラムであって、前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する工程と、前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、該|Pa−Pb|―Pstdを算出する際には、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、を含み、そのことにより上記目的が達成される。
本発明は、前記記録パワー制御プログラムにおいて、前記マーク長ずれを算出する工程は、前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整してもよい。
本発明は、前記記録パワー制御プログラムにおいて、前記記録パワーパラメータを調整する工程は、前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行ってもよい。
本発明は、前記記録パワー制御プログラムにおいて、前記記録パワーパラメータは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含んでいてもよい。
本発明の記録再生装置、記録再生方法、プログラムおよび記録パワー調整装置によれば、再生信号処理に最尤復号法(PRML)を用いた処理系において、復号性能と相関のある再生信号評価指標を用いて、記録時の記録パワーの最適化を行うことで記録状態を最適化でき、再生時のエラーを最小とすることができる。しかも、この再生信号評価指標は従来の記録パワー制御に用いてきたジッタ、アシンメトリ、BER等の再生信号評価指標と比較して、記録パワーの変化に対する再生波形の変化を多値的に検出できるため、記録パワーの制御を精度良く行うことができる。そのため、クロスパワーによる性能劣化を抑えることが可能で、同じ規格の光ディスクドライブ装置、光ディスク媒体の互換を安定にとることができる。
以下、図面を参照して本発明の実施の形態を説明する。
1.指標Mについて
はじめに、本発明で参照される再生信号評価指標(指標M)を説明する。例として、最小極性反転間隔が2の記録符号(例えば、1,7Run Length Limited符号)を用い、記録時および再生時の信号の周波数特性がPR(1,2,2,1)等化となるように信号の波形が整形される場合における再生信号評価指標Mを説明する。
試し記録後、記録されたトラックから再生されたデジタル信号(“1”または“0”の2値化信号)の系列において、現時刻の記録符号をbとし、1時刻前の記録符号をbk−1とし、2時刻前の記録符号をbk−2とし、3時刻前の記録符号をbk−3とする。PR(1,2,2,1)等化の理想的な出力値Levelは(式1)で表される。
(式1)
Level=bk−3+2bk−2+2bk−1+b
ここで、kは時刻を表す整数であり、vは0〜6までの整数である。
時刻kにおける状態をS(bk−2,bk−1,b)とすると、(表1)の状態遷移表が得られる。
Figure 0004350024
簡単のために、時刻kにおける状態S(0,0,0)をS0、状態S(0,0,1)をS1、状態S(0,1,1)をS2、状態S(1,1,1)をS3、状態S(1,1,0)をS4、状態S(1,0,0)をS5とすると、図1に示す状態遷移図Aが得られる。
図1は、最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を表す状態遷移図Aである。
図2は、状態遷移図Aを時間軸に沿って展開することによって得ることができたトレリス図である。
以下、図1と図2とを参照して、最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移を説明する。
時刻kにおける状態S0と時刻k−4の状態S0k−4に注目する。図2は、状態S0と状態S0k−4との間でとりうる2つの状態遷移列を示す。1つのとりうる状態遷移列をパスAとすると、パスAは状態S2k−4、S4k−3、S5k−2、S0k−1、S0を遷移する。もう1つの状態遷移列をパスBとすると、パスBは状態S2k−4、S3k−3、S4k−2、S5k−1、S0を遷移する。時刻k−6から時刻kまでの最尤復号結果を(Ck−6, Ck−5, Ck−4, Ck−3, Ck−2, Ck−1, C)とすると、(Ck−6, Ck−5, Ck−4, Ck−3, Ck−2, Ck−1, C)=(0,1,1,x,0,0,0)となる復号結果(xは0または1の値)が得られた場合には、パスAまたはパスBの状態遷移列が最も確からしいと推定されたこととなる。パスAおよびパスBの両方とも、時刻k−4における状態が状態S2k−4であることの確からしさは同じであるから、時刻k−3から時刻kまでの、再生信号yk−3から再生信号yまでの値と、パスAおよびパスBそれぞれの期待値との差を2乗した値の累積値を求めることよって、パスAとパスBのどちらかの状態遷移列が確からしいことが分かる。
時刻k−3から時刻kまでの再生信号yk−3からyまでの値とパスAの期待値との差を2乗した値の累積値をPaとするとPaは(式2)で表される。
(式2)
Pa=(yk−3−4)+(yk−2−3)+(yk−1−1)+(y−0)

時刻k−3から時刻kまでの再生信号yk−3からyまでの値とパスBの期待値との差を2乗した値の累積値をPbとするとPbは(式3)で表される。
(式3)
Pb=(yk−3−5)+(yk−2−5)+(yk−1−3)+(y−1)

以下、最尤復号結果の信頼性を示すPaとPbとの差Pa−Pbの意味を説明する。最尤復号部は、Pa<<PbであればパスAを自信を持って選択し、Pa>>PbであればパスBを自信を持って選択したといえる。またPa=PbであればパスA、パスBのいずれを選択してもおかしくなく、復号結果が正しいかどうかは5分5分であるといえる。このようにして所定の時間あるいは所定の回数、復号結果からPa−Pbを求めるとPa−Pbの分布が得られる。
図3は、Pa−Pbの分布を示す。
図3(a)は再生信号にノイズが重畳された場合のPa−Pbの分布を示す。分布は2つのピークを有し、1つはPa=0となるときに頻度が極大となり、もう1つはPb=0となるときに頻度が極大となる。Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとあらわすことにする。Pa−Pbの絶対値を計算し、|Pa−Pb|−Pstdを求める。
図3(b)は|Pa−Pb|−Pstdの分布を示す。図3(b)に示す分布の標準偏差σと平均値Paveを求める。図3(b)に示す分布が正規分布であるとし、例えばσとPaveとに基づいて復号結果の信頼性|Pa−Pb|の値が−Pstd以下となるときを誤りが発生した状態とすると、誤り確率P(σ,Pave)は(式4)のように表される。

(式4)
P(σ,Pave)=erfc((Pstd+Pave)/σ)

Pa−Pbの分布から計算した平均値Paveと標準偏差σとから最尤復号結果を示す2値化信号の誤り率を予想することができる。つまり平均値Paveと標準偏差σとを再生信号品質の指標とすることができる。
なお、上記の例では|Pa−Pb|の分布が正規分布となることを仮定したが、分布が正規分布でない場合には、|Pa−Pb|−Pstdの値が所定の基準値以下になる回数をカウントし、そのカウント数を信号品質の指標とすることも可能である。
最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則の場合、状態が遷移するときに2つの状態遷移列をとり得るような組み合わせは、時刻k−4から時刻kの範囲では8パターンあり、時刻k−5から時刻kの範囲では8パターンあり、時刻k−6から時刻kの範囲では8パターン存在する。さらに検出する範囲を拡大すると、2つの状態遷移列をとり得るような組み合わせは、信頼性Pa−Pbパターン存在する。
多くのパターンの中で、記録パラメータ(書き込みパワー、消去パワー等)の変化に対して鈍感なパターンが多く存在する。例えば、長マークのスペース若しくはマーク部の変化に係るパスである。こうしたパターンを除外し、記録パラメータに対して敏感に反応するパターンのみを選択することによって、記録パラメータ変化(記録パワー変化)に対する再生波形の変化を精度良く検出することができる。(表2)にその記録パラメータに対して感度のいいパターンを示す。
Figure 0004350024
すなわち、(表2)のパターン群はマークからスペース若しくはスペースからマークの遷移波形に係るものであり、例えば、記録先頭パルスのパワー(書き込みパワー)、クーリングパルスのパワー(ボトムパワー)または書き込みパワー/消去パワー比の変動に対して、敏感に反応する部分を集めたものである。
ここで重要なのは、信頼性Pa−Pbを再生信号品質の指標とすることにより、すべてのパターンを検出しなくても、誤る可能性(誤り率)が大のパターンのみを検出すれば、その検出結果を誤り率と相関のある指標とすることができる。ここで、誤る可能性が大のパターンとは、信頼性Pa−Pbの値が小となるパターンであり、Pa−Pb=±10となる8パターンである。この8パターンとPa−Pbとについてまとめると上記(表2)のようになる。
さらに|Pa−Pb|−Pstdを算出し、その分布から標準偏差σ10と平均値Pave10を求める。図3(b)を参照して説明したように正規分布であると仮定するとそれぞれ誤りを起こす確率P10は(式5)となる。
(式5)
10(σ10,Pave10)=erfc((10+Pave10)/σ10

上記8パターンは、1ビットシフトエラーを起こすパターンであり、他のパターンは、2ビット以上のシフトエラーを起こすパターンである。PRML処理後のエラーパターンを分析すると、ほとんどが、1ビットシフトエラーであるため、(式6)を求めることで再生信号の誤り率が推定できる。このように、標準偏差σ10および平均値Pave10を再生信号の品質を示す指標として用いることができる。例えば、上記の指標をPRML誤差指標Mとして、
(式6)
M=σ10/(2・dmin )[%]

と定義することができる。但し、dmin は、ユークリッド距離の最小値の2乗であり、最小極性反転間隔が2の変調符号とPR(1,2,2,1)ML方式の組み合わせでは、10となる。すなわち、dmin =10=Pstdである。また、(式5)における平均値Pave10は、0と仮定し、(式6)の指標の計算には、考慮しなこととする。(式5)と(式6)との関係より、指標MによってPRML処理後の誤り率を予想することができる。
このように、PRMLアルゴリズムにおける数ある状態遷移パターンのうち、再生波形のエッジ付近に係わる状態遷移パターン(ユークリッド距離が最小パターン)のみのメトリック期待値誤差を用いて記録された状態を検出することにより、記録先頭パルスのパワー(書き込みパワー)、クーリングパルスのパワー(ボトムパワー)または書き込みパワー/消去パワー比の変動に対して、指標Mを精度良く検出することができる。
2.実施の形態1
2−1.実施の形態1の記録再生装置
図4は、本発明の実施の形態1の記録再生装置100を示す。記録再生装置100は、再生部101と、記録制御装置102と、記録部103とを備える。記録再生装置100には、記録媒体1が搭載される。記録媒体1は、光学的に情報の記録再生を行うための記録媒体であり、例えば光ディスクである。
再生部101は、光ヘッド部2と、プリアンプ3と、AGC4と、波形等化器5と、A/D変換器6と、PLL回路7とを備える。再生部101は、記録媒体1から再生された情報を示すアナログ信号からデジタル信号を生成する。
記録制御装置102は、整形部8と、最尤復号部9と、信頼性計算部10と、記録媒体コントローラ11とを備える。記録制御装置102は例えば半導体チップとして製造される。
整形部8は例えばデジタルフィルタであり、再生部101が生成したデジタル信号を受け取ってデジタル信号が所定の等化特性を有するようにデジタル信号の波形を整形する。
最尤復号部9は例えばビタビ復号回路であり、整形部8から出力された波形が整形されたデジタル信号を最尤復号し、最尤復号の結果を示す2値化信号を生成する。
信頼性計算部10は例えば差分メトリック検出回路であり、整形部8から出力された波形が整形された少なくとも1つのデジタル信号と最尤復号部9から出力された少なくとも1つの2値化信号とに基づいて最尤復号の結果の信頼性を計算する。
記録媒体コントローラ11は、信頼性計算部10が計算した信頼性に基づいて、記録媒体1に情報を記録するための記録パワーを調整する。例えば、調整される記録パワーは、書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む。記録媒体コントローラ11は、例えば、最尤復号の結果の信頼性が高くなるように記録信号の形状を調整する。記録媒体コントローラ11は、例えば、光ディスクコントローラである。
記録部103は、記録信号生成手段12と、記録パワー制御手段13と、レーザ駆動回路14と、光ヘッド部2とを備える。記録部103は、記録パワーの調整結果に基づいて記録媒体1に情報を記録する。
本発明の実施の形態では、光ヘッド部2は、再生部101および記録部103に共有され、記録ヘッドおよび再生ヘッドの両方の機能を有する。なお記録ヘッドと再生ヘッドとが別々に設けられてもよい。
以下、図4を参照して、本発明の実施の形態1の記録再生装置100の動作を詳細に説明する。
光学ヘッド部2は記録媒体1から読み出した情報を示すアナログ再生信号を生成する。アナログ再生信号は、プリアンプ3によって増幅されてACカップリングされたのち、AGC4に入力される。AGC4では後段の波形等化器5の出力が一定振幅となるようゲインが調整される。AGC4から出力されたアナログ再生信号は波形等化器5によって波形整形される。波形整形されたアナログ再生信号はA/D変換器6に出力される。A/D変換器6はPLL回路7から出力された再生クロックに同期してアナログ再生信号をサンプリングする。PLL回路7はA/D変換器6でサンプリングされたデジタル再生信号から再生クロックを抽出する。
A/D変換器6のサンプリングにより生成されたデジタル再生信号は整形部8に入力される。整形部8は、記録時および再生時のデジタル再生信号の周波数特性が最尤復号部9の想定する特性(本実施の形態ではPR(1,2,2,1)等化特性)となるように、少なくとも1つのデジタル再生信号の周波数特性を調整する(すなわちデジタル再生信号の波形を整形する)。
最尤復号部9は、整形部8から出力された波形整形された少なくとも1つのデジタル再生信号を最尤復号し、少なくとも1つの2値化信号を生成する。少なくとも1つの2値化信号は、最尤復号の結果を示す。
信頼性計算部10は、整形部8から出力された波形整形された少なくとも1つのデジタル再生信号と、少なくとも1つの2値化信号とを受け取る。信頼性計算部10は、2値化信号から状態遷移を判別し、判別結果とブランチメトリックから復号結果の信頼性を示す指標Mを求める。
記録媒体コントローラ11は、記録パワー学習処理手順をコントロールする。試し記録する際の記録パワーパラメータの設定、記録動作のコントロール、再生動作のコントロール、記録パワーごとに指標Mを求め、指標Mが最適となる記録パワーを判定する。なお、記録パワー学習処理手順の詳細は、後述される。
記録パワー制御手段13は、記録媒体コントローラ11からの記録パワーパラメータと、記録信号生成手段12から出力される記録テストパターンとに基づいて、レーザ発光波形を作成する。レーザ駆動回路14は、レーザ発光パターンにしたがって、光学ヘッド部2のレーザを駆動する。
記録再生装置100を用いることによって、再生時にエラーが最小となる最適な書き込みパワー、消去パワー、ボトムパワーを設定することが可能となる。
2−2.実施の形態1の記録再生方法
図5は、本発明の実施の形態1の記録パワー学習処理手順を示す。記録再生装置100が記録パワー学習処理手順を実行することによって、記録パワーが調整される。記録パワー学習処理手順は、ステップ1〜ステップ3を包含する。
以下、図5を参照して、記録パワー学習処理手順をステップごとに説明する。
記録パワー学習が開始されると、まず、ステップ1では、最適書き込みパワーPwoを求める動作が実行される。ステップ1は、ステップ1−1、ステップ1−2およびステップ1−3を包含する。
ステップ1−1:光ヘッド部2が記録媒体1上の所定の学習エリアに移動するように制御される。消去パワー/書き込みパワー比(Pe/Pw)、ボトムパワーを固定し、書き込みパワーを順次変化させてテスト用記録信号を書き込む動作を行う。この時、消去パワー/書き込みパワー比、ボトムパワーは、規格等で規定されている記録媒体に予め記載されている推奨値を初期値として用いてもよい。書き込みパワーは、記録媒体1に予め記載されている推奨値のパワーを中心に前後パワーを変化させてもよい。
また、記録再生装置100が、記録媒体ごとに保持している推奨値を初期値としてもよい。例えば、記録媒体1に予め記載されている推奨値が、Pw=9.0[mW]、Pe/Pw=0.40、Pb=0.3[mW]とすると、Pe=0.40×Pw[mW]、Pb=0.3[mW]を固定にして、Pwを8.0〜10.0[mW]まで、0.2[mW]ずつ変化させて、同じテスト用記録信号を各書き込みパワーについて繰り返し記録する。
試し記録が終了すると、処理はステップ1−2に進む。
ステップ1−2:光ヘッド部2は、記録したテスト用記録信号を再生し、信頼性計算部10は、書き込みパワーごとに記録状態判定指標値を算出する。上述した項目(1.指標Mについて)で既に述べたように、本発明は、記録状態判定指標値として、再生波形のエッジ付近に相当する状態遷移からのみ抽出したPRML方式のメトリック期待値誤差(以下、指標Mとする)を用いることに特徴がある。指標Mの特徴は、再生信号処理にPRML方式を採用した伝送路では、指標Mがエラーレートと相関がある点、パワー変化による波形の非対称性(アシンメトリ)に対して感度よく検出できる点が挙げられる。
信頼性計算部10が書き込みパワーごとに記録状態判定指標値を算出した後、処理はステップ1−3に進む。
ステップ1−3:信頼性計算部10は、最適とされる指標Mが得られる書き込みパワーを最適書き込みパワーPwoとして決定する。信頼性計算部10は、最適とされる指標Mとして、例えば、最小値を選択し、選択された指標Mに対応する書き込みパワーを最適書き込みパワーPwoとして決定する。
図6は、書き込みパワーごとに指標Mをプロットし、最適書き込みパワーPwoを求めた例を示す。
図7は、テストパターンと、そのパターンを再生した場合の波形を示す。再生波形上の白丸は、A/D変換器6でサンプリングした場合のサンプリングポイントを示す。本発明は、テスト用記録信号にも特徴がある。従来、記録パワー学習に用いるテストパターンとして、ある周期の単一パターンが用いられている。例えば、6T(Tは、チャネル周期)の繰り返しパターンである。単一パターンは、記録マーク長ごとの記録パルスの幅や位相ズレの影響を受けにくいが、記録パワー変化に対する波形の変化を検出する点では、精度が出ない場合がある。本発明では、記録変調則において、最小マーク長と最長マーク長とを組み合わせ、尚且つ、記録部(マーク)と未記録部(スペース)の発生確率が同じであるテストパターンを用いる。例えば、記録変調符号として、(1,7)Run Length Limited符号を用いた場合、最小マーク長は2Tで、最長マーク長8Tであるため、8Tm2Ts8Tm8Ts2Tm8Tsの繰り返しパターンを用いる。Tmはマーク側のチャネル周期長を意味し、Tsはスペース側のチャネル周期長を意味する。
このように、ステップ1では、最適とされる指標Mが得られる書き込みパワーを最適書き込みパワーPwoとして決定する。
続いて、ステップ2では、最適消去パワーPeoを求める動作が実行される。ステップ2は、ステップ2−1、ステップ2−2およびステップ2−3を包含する。
ステップ2−1:記録媒体コントローラ11は、書き込みパワーをステップ1を実行することによって決定した最適書き込みパワーPwoに設定する。さらに、記録媒体コントローラ11は、ボトムパワーを固定し、消去パワーを順次変化させてテスト用記録信号を書き込む動作(試し記録)を行う。
例えば、Pwo=Pw=9.4[mW]、Pb=0.3[mW]を固定にして、Pe=Pw×0.4=3.76[mW]を中心に、3.4〜4.1[mW]まで、0.1[mW]ずつ変化させて、同じテスト用記録信号を各書き込みパワーについて繰り返し記録する。この記録は、下地記録した状態のトラックにオーバーライトして記録して行うことができる。または、ステップ1で用いたトラックと同じトラックに記録することができる。
テスト用記録信号の書き込み(試し記録)が終了すると、処理はステップ2−2に進む。
ステップ2−2:光ヘッド部2は、記録したテスト用記録信号を再生し、信頼性計算部10は、消去パワーごとに記録状態判定指標値(指標M)を算出する。
記録状態判定指標としてステップ1と同様に指標Mを用い、テスト用記録信号に8Tm2Ts8Tm8Ts2Tm8Tsの繰り返しパターンを用いる。
信頼性計算部10が消去パワーごとにごとに記録状態判定指標値を算出した後、処理はステップ2−3に進む。
ステップ2−3:信頼性計算部10は、最適とされる指標Mが得られる消去パワーを最適消去パワーPeoとして決定する。信頼性計算部10は、最適とされる指標Mとして、例えば、最小値を選択し、選択された指標Mに対応する消去パワーを最適消去パワーPeoとして決定する。
図8は、消去パワーごとに指標Mをプロットし、最適消去パワーPeoを求めた例を示す。
続いて、ステップ3では、最適ボトムパワーPboを求める動作が実行される。ステップ3は、ステップ3−1、ステップ3−2およびステップ3−3を包含する。
ステップ3−1:記録媒体コントローラ11は、書き込みパワーをステップ1を実行することによって決定した最適書き込みパワーPwoに設定する。記録媒体コントローラ11は、消去パワーをステップ2を実行することによって決定した最適消去パワーPeoに設定する。さらに、記録媒体コントローラ11は、ボトムパワーを順次変化させてテスト用記録信号を書き込む動作(試し記録)を行う。
例えば、Pwo=Pw=9.4[mW]、Peo=Pe=3.9[mW]を固定にして、Pbを0.2〜0.4[mW]まで、0.05[mW]ずつ変化させて、同じテスト用記録信号を各書き込みパワーについて繰り返し記録する。この記録は、下地記録した状態のトラックにオーバーライトして記録して行うことができる。または、ステップ1、ステップ2で用いたトラックと同じトラックに記録することができる。
テスト用記録信号の書き込み(試し記録)が終了すると、処理はステップ3−2に進む。
ステップ3−2:光ヘッド部2は、記録したテスト用記録信号を再生し、信頼性計算部10は、ボトムパワーごとに記録状態判定指標値(指標M)を算出する。 記録状態判定指標として、ステップ1、ステップ2と同様に指標Mを用い、テスト用記録信号に8Tm2Ts8Tm8Ts2Tm8Tsの繰り返しパターンを用いる。
信頼性計算部10がボトムパワーごとにごとに記録状態判定指標値を算出した後、処理はステップ3−3に進む。
ステップ3−3:信頼性計算部10は、最適とされる指標Mが得られるボトムパワーを最適ボトムパワーPboとして決定する。信頼性計算部10は、最適とされる指標Mとして、例えば、最小値を選択し、選択された指標Mに対応するボトムパワーを最適ボトムパワーPboとして決定する。
図9は、ボトムパワーごとに指標Mをプロットし、最適ボトムパワーPboを求めた例を示す。
以上、ステップ1〜ステップ3を実行することによって、最適な書き込みパワー、消去パワー、ボトムパワーを設定するための学習は終了し、再生時にエラーが最小となる記録が可能となる。なお、ボトムパワーのパワー変化が、再生時のリーダビリティにほとんど影響しない場合は、ステップ3の学習を省略して、ボトムパワーに適切な固定値を設定してもよい。
以上のように、本発明の実施の形態1においては、PRMLアルゴリズムにおける、数ある状態遷移パターンのうち、再生波形のエッジ付近に係わる状態遷移パターン(ユークリッド距離が最小パターン)のみのメトリック期待値誤差(指標M)を用いて記録状態を検出することにより、記録先頭パルスのパワー(書き込みパワー)や、クーリングパルスのパワー(ボトムパワー)若しくは書き込みパワー/消去パワー比の変動に対して変化して記録された波形を、精度良く検出することができる。また、記録マーク長ごとの記録パルスの幅や位相ズレの影響を受けにくい点、記録パワー変化に対する波形の変化を感度良く検出する点等を考慮して、テストパターンとして8Tm2Ts8Tm8Ts2Tm8Tsの繰り返しパターンを用いることで、さらに検出感度を高めることが容易に行える。
3.実施の形態2
3−1.実施の形態2の記録再生装置
図10は、本発明の実施の形態2の記録再生装置200を示す。記録再生装置200は、図4を参照して説明した本発明の実施の形態1の記録再生装置100に含まれる記録制御装置102に替えて、記録制御装置202を備える。したがって、図10において、図4に示される記録再生装置100と同一の構成要素には同一の参照符号を付し、その説明を省略する。
記録制御装置202は、整形部8と、最尤復号部9と、信頼性計算部10と、記録媒体コントローラ11と変調度検出回路15とを備える。記録制御装置202は例えば半導体チップとして製造される。
変調度検出回路15は、光学ヘッド部2から読み出された再生信号の振幅に基づいて変調度特性を計算し、記録媒体コントローラ11に出力する。
記録媒体コントローラ11は、信頼性および変調度特性のうちの少なくとも一方に基づいて、記録媒体1に情報を記録するための記録パワーを1つの記録パワーに調整する。
以上のように、記録再生装置200は、再生時にエラーが最小となる最適な書き込みパワー、消去パワー、ボトムパワーを設定する。
3−2.実施の形態2の記録再生方法
以下、図5を参照して、本発明の実施の形態2の記録パワー学習処理手順を示す。記録再生装置200が記録パワー学習処理手順を実行することによって、記録パワーが調整される。
本発明の実施の形態2において、実施の形態1と同じ処理手順は、説明を省略する。実施の形態1と同様に、本実施の形態2の記録パワー学習処理手順は、ステップ1〜ステップ3を含む。但し、最適書き込みパワーPwoを求める過程(ステップ1)において、記録状態判定指標値として、変調度を用いる点が実施の形態1と異なる。変調度により最適書き込みパワーPwoを求める手順の詳細は、後述される。
ステップ1では、試し記録する際の記録パワーパラメータの設定、記録動作のコントロール、再生動作のコントロール、記録パワーごとに変調度が求められる。信頼性計算部10は、求められた変調度に基づいて、最適書き込みパワーPwoを決定する。
同様に、ステップ2,ステップ3では、試し記録する際の記録パワーパラメータの設定、記録動作のコントロール、再生動作のコントロール、記録パワーごとの指標Mが求められる。信頼性計算部10は、指標Mに基づいて最適消去パワーPeo、最適ボトムパワーPboを決定する。
以下、変調度に基づいて最適書き込みパワーPwoを決定する手順を説明する。
変調度は、再生信号の振幅の大小を示す指標である。(式7)に基づいて変調度MODが定義される。
(式7)
MOD=(Itop−Ibtm)/(Itop−Ith)

図11は、ItopとIbtmとIthとの関係を説明するための図である。
以下、図11を参照して、(式7)に含まれるItop、IbtmおよびIthを説明する。
Itopは、再生信号の反射レベルのうち最も大きいレベルを示し、Ibtmは、再生信号の反射レベルのうち最も小さいレベルを示し、Ithは、レーザ消光レベル部分のレベルを示す。本実施の形態では、変調度を求めるために、8Tの繰り返し信号を用いているが、これに限定されない。
図12は、変調度MODと書き込みパワーPwとの関係を示す。
変調度MODは、書き込みパワーPwに応じて変化する。書き込みパワーPwが低いときには、再生信号の振幅が小さいので変調度MODは小さくなる。書き込みパワーPwが大きくなるに従って、再生信号の振幅が大きくなるので変調度MODは大きくなる。書き込みパワーPwがある程度大きくなると変調度MODは飽和してくる。
書き込みパワーPwが比較的低い部分の変調度曲線(飽和していない部分の数サンプルを用いて)を参照して、変調度曲線の接線を求め、X軸点のとの交点Pthを求める(図12参照)。また、Pthから最適書き込みパワーPwoを求める係数ρは、予めディスク上に記載されているか、または、記録再生装置が、ディスクごとに保持されている。この係数ρを用いて、最適書き込みパワーPwoを次式で求めることができる。
(式8)
Pwo=ρ×Pth

このように、ステップ1では、変調度特性から最適書き込みパワーPwoが決定される。
ステップ2、ステップ3において、最適消去パワーPeoおよびボトムパワーPboの決定動作は、実施の形態1と同様なので省略する。なお、ボトムパワーのパワー変化が、再生時のリーダビリティにほとんど影響しない場合は、ステップ3を省略して、ボトムパワーに適切な固定値を設定してもよい。
なお、実施の形態2において、変調度を用いてPwoを決定するときに、(式8)を参照したが、(式8)を参照することに限定されない。例えば、所定の変調度が検出されるパワーをPwoとしてもよい。また、変調度が飽和したパワーをPwoとしてもよい。
なお、実施の形態2において、テスト信号には、8Tm8Tsの繰り返しパターンが含まれる形態を説明したが、これに限定されない。テスト信号には、再生信号の上限振幅と下限振幅が測定できるパターンが含まれていればよい。
4.実施の形態3
4−1.実施の形態3の記録再生装置
図13は、本発明の実施の形態3の記録再生装置300を示す。記録再生装置300は、図4を参照して説明した本発明の実施の形態1の記録再生装置100に含まれる記録制御装置102に替えて、記録制御装置302を備え、さらに、記録再生装置100に含まれる記録部103に替えて、記録部303を備える。したがって、図13において、図4に示される記録再生装置100と同一の構成要素には同一の参照符号を付し、その説明を省略する。
記録制御装置302は、整形部8と、最尤復号部9と、信頼性計算部10と、制御部304(パターン検出回路17と、エッジシフト検出回路18と、情報記録媒体コントローラ11)とを備える。記録制御装置302は例えば半導体チップとして製造される。
信頼性計算部10は例えば差分メトリック検出回路であり、整形部8から出力された波形が整形されたデジタル信号と最尤復号部9から出力された2値化信号とに基づいて最尤復号の結果の信頼性を計算する。本発明の一つの実施形態では、信頼性計算部10は、記録媒体1に形成された記録マークの始終端部に対応するデジタル信号および2値化信号に基づいて、最尤復号結果の信頼性を計算する。
調整部304は、信頼性計算部10が計算した信頼性に基づいて、情報記録媒体1に情報を記録するための記録信号の所定部分の形状を調整する(例えば記録信号のエッジの位置を調整する)。調整部304は、最尤復号の結果の信頼性が高くなるように記録信号の形状を調整する。記録媒体コントローラ11は例えば光ディスクコントローラである。
記録部303は、パターン発生回路14と、記録補償回路15と、レーザ駆動回路16と、光ヘッド部2とを備える。記録部103は、記録パワーの調整結果に基づいて記録媒体1に情報を記録する。本実施の形態では、光ヘッド部2は、再生部101および記録部303に共有され、記録ヘッドおよび再生ヘッドの両方の機能を有する。なお記録ヘッドと再生ヘッドとが別々に設けられてもよい。
記録再生装置300の動作を以下により詳細に説明する。なお、記録再生装置100と同じ構成要素の動作の説明は、省略する。
パターン検出回路17は、2値化信号に基いて、上記8パターン(Patttern−1〜Pattern−8)を記録マークの始終端エッジのパターンごとに割り当てるためのパルス信号を生成してエッジシフト検出回路18に出力する。
エッジシフト検出回路18は、信頼性Pabsをパターンごとに累積加算し、記録補償パラメータの最適値からのずれ(後述ではエッジシフトと言う)を求める。
記録媒体コントローラ11は、パターンごとのエッジシフト量から変更が必要と判断された記録パラメータ(記録信号の波形)を変更する。
パターン発生回路14は、記録補償学習用パターンを出力する。
記録補償回路15は記録媒体コントローラ11からの記録パラメータをもとに、記録補償学習パターンに従ってレーザ発光波形パターンを生成する。生成されたレーザ発光波形パターンにしたがって、レーザ駆動回路16は光学ヘッド部2のレーザ発光動作を制御する。
図14は、パターン検出回路17とエッジシフト検出回路18とを示す。
以下、図14を参照して、エッジシフト検出回路18の動作を詳細に説明する。
エッジシフト検出回路18には、パターン検出回路17でのパターン検出結果と、信頼性計算部10で算出された信頼性Pabsとが入力される。パターン検出回路17での遅延を考慮して、入力される信頼性Pabsデータをフィリップフロップ(FF)によって遅延させる。パターン検出出力および検出出力点に対応する信頼性Pabsデータが加算器に入力され、同時にパターン検出結果がセレクタに入力される。セレクタは検出パターンにしたがってこれまでの累積加算結果を選択して加算器に入力する。加算器は累積加算結果と新しく入力された信頼性Pabsデータを加算し出力する。検出パターンに対応した特定のレジスタは、イネーブル信号を受け取ると、加算結果を格納する。
図15は、エッジシフト検出回路の動作を示すタイミングチャートである。例えばアドレス単位で情報が管理されている情報記録媒体に情報を記録する場合、加算区間ゲート信号(図15(b)参照)とレジスタイネーブル信号(図15(c)参照)の使用が想定される。図15(a)はアドレスユニットを示している。
アドレス単位ごとに、ユーザ領域にテスト記録を行い、エッジシフト量を求める場合、加算区間を定める制御が必要となる。加算区間ゲート信号がエッジシフト検出回路18に入力されると、加算区間ゲート信号は、2段のフリップフロップを通過し、フリップフロップFF29〜FF0に入力される(図14参照)。加算区間ゲート信号のLow区間でフリップフロップをリセットし、High区間で加算結果を格納する。また、レジスタイネーブル信号は、加算区間ゲート信号から生成され、レジスタイネーブル信号は、加算区間ゲート信号の終端で加算結果をレジスタREG29〜REG0に格納するためのイネーブル信号である。アドレス単位ごとにエッジシフト量を示すデータがレジスタREG29〜REG0に格納される。
エッジシフト検出回路18は、このような回路構成を備えることで、1つの加算器をもちいて記録パラメータの最適化に必要なすべてのエッジシフト量をもとめることができる。
図14を参照して説明した回路例では、テスト記録に用いられる記録パターン(例えばランダムパターン)のうちの、パラメータの最適化に必要な所定長のマークとスペースとの組み合わせによって発生頻度が異なってしまう。検出された30のエッジシフト量(R23T、R33T、・・・、R45L、R55L)は各パターンの発生頻度に依存する。また、PLL回路7(図13参照)では、DC成分(再生信号に含まれる低周波数成分)を用いてスライサーのしきい値を自動的に検出し、再生信号とクロック信号とを同期させている。従って、フィードバック制御がPLL回路7でのクロック生成に影響しないように、テスト記録パターンにはDC成分が少ないことが望まれる。また、最適化に要する時間と精度とを考えると、できるだけ少ない記録領域で高い精度の検出結果が望まれる。したがって記録パターン中にパラメータの最適化に必要なマークとスペースとの組み合わせが同一頻度で発生し、なおかつ符号に含まれるDC成分(DSV)が0となり、かつ最適化に必要な組み合わせの単位長あたりの発生頻度が高くなるような記録パターンが必要となる。
図16は、学習用記録パターンの一例を示す。2Mは2Tマークを意味し、2Sは2Tスペースを意味する。2T〜5Tマークと2T〜5Tスペースとの組み合わせである30とおりのパターンが、108ビットの記録パターンに1回づつ発生する。また108ビットの記録パターンを含むシンボル‘0’とシンボル‘1’の数は同数の54であり、記録パターンのDSVは0となっている。この記録パターンを図13のエッジシフト検出回路12に適用すると、各パターンを同一回数検出することができ、より正確なシフト量検出結果が得られる。なお、本実施の形態では、5T以上の幅のマークあるいはスペースについては、同一の記録パラメータで記録できることを想定している。
図17は、エッジシフト検出回路18a(エッジシフト検出回路18の改変例)を示す。
エッジシフト検出回路18aは、テスト記録に用いられる記録パターンとして、ランダムパターン(最適化に必要な組み合わせパターンによって発生頻度が異なるパターン)を用いる。エッジシフト検出回路18aでは、パターン検出回路17によって、特定パターン(30パターン)のエッジを検出し、パターンそれぞれに対応するエッジシフト量とパターン検出回数とを個々に積算する。エッジシフト量の加算結果をパターン検出回数で割ることにより、特定パターン毎に平均エッジシフト量を算出する。これにより、特定パターン毎の発生確率が異なるテスト記録パターンを用いても、どのパターンに対応する記録マークの始終端位置を変更すべきか判断することができる。
上述のように、調整部304が備えるエッジシフト検出回路18(図13参照)は、記録マーク長とスペース長との組み合わせ毎に、最尤復号結果の信頼性の積算値または平均値のうちの一方を計算し、それら計算した積算値または平均値に基づいて記録信号の形状を調整する。
上記実施の形態では、最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を用いて最尤復号部が最尤復号を行う場合について説明したが、本発明はこれに限定されない。例えば、最小極性反転間隔が3である記録符号と等化方式PR(C0,C1,C1,C0)とから定まる状態遷移則を用いた場合や、最小極性反転間隔が2または3である記録符号と等化方式PR(C0,C1,C0)とから定まる状態遷移則を用いた場合や、最小極性反転間隔が2または3である記録符号と等化方式PR(C0,C1,C2,C1,C0)とから定まる状態遷移則を用いた場合においても適用できる。C0、C1、C2は任意の正の数である。
4−2.実施の形態3の記録再生方法
本発明の実施の形態では、上記8パターンの検出を、後述する記録パターンごと(マーク長と直前のスペース長の組み合わせと、マーク長と直後のスペース長の組み合わせのパターンごと)に行い、記録信号の形状、特にエッジの始終端部分に着目し、記録信号のエッジの位置を最適化する記録パラメータを決定する。
全てのパターンの最尤復号結果の信頼性|Pa−Pb|のうち、|Pa−Pb|の値が最小となるパターンのみに着目するということは、記録マークのエッジ部分のみに着目することを意味する。上記でも述べたが、Pa−Pbの値が小となるパターンは、エラーの発生確率が大きいパターンである。すなわち、最尤復号結果の信頼性が高くなるように、記録マークのエッジの位置を部分的に最適化すれば、全体の最適化につながることを意味する。その方法について以下説明する。
図18は、8パターン(Pattern−1〜Pattern−8)のサンプル値を示す。横軸は時間(1目盛りは1チャネルクロック周期(Tclk)を表す)、縦軸は信号レベル(0〜6)を示し、点線、実線はそれぞれパスA、パスBを示す。各サンプル値は、(表1)で説明した最尤復号における入力の期待値Levelの0〜6に相当する。
記録部分(アモルファス領域)は、反射光が減るため信号レベルとしてはコンパレータ閾値より下側の波形として再生される。一方、未記録部分(非アモルファス領域)は、コンパレータ閾値より上側の波形として再生される。また、図5で示した8パターンは、すべて記録部(マーク)と未記録部(スペース)の境界部分(マークの始端エッジおよび終端エッジ)である再生波形に相当する。よって、8パターンのうち、Pattern−1(図18(a)参照)、Pattern−2(図18(b)参照)、Pattern−3(図18(c)参照)、Pattern−4(図18(d)参照)は、マークの始端エッジ部分に相当し、Pattern−5(図18(e)参照)、Pattern−6(図18(f)参照)、Pattern−7(図18(g)参照)、Pattern−8(図18(h)参照)は、マークの終端エッジ部分に相当する。
Patern−1に着目して、マークの始端エッジのシフトズレ検出方法を説明する。
図19は、Pattern−1における再生波形と記録マークのズレとの相関を示す。実線△印は入力信号であり、点線で示すパスAが正解の状態遷移パスとする。入力信号は記録マークB1に基づいて生成されている。記録マークA1は理想的な始端エッジを有しているとする。
図19(a)は、記録マークの始端エッジ位置が理想的な始端エッジ位置と比較して後ろにずれている場合を示す。入力信号のサンプル値(yk−3、yk−2、yk−1、y)を(4.2 、3.2 、1.2 、0.2)とし、(式2)および(式3)からパスAと入力信号との距離Paと、パスBと入力信号との距離Pbとは、(式9)および(式10)の様に求まる。
(式9)
Pa=(4.2−4)+(3.2−3)+(1.2−1)+(0.2−0)=0.16

(式10)
Pb=(4.2−5)+(3.2−5)+(1.2−3)+(0.2−1)=7.76

始端エッジのズレ量とズレ方向は、上述した|Pa−Pb|−Pstdを算出することで求めることができる。
(式11)
E1=|Pa−Pb|−Pstd=|0.16−7.76|−10=−2.4

(式11)から求まるE1の絶対値が、ズレ量であり、その符号がズレ方向である。すなわち、図19(a)の場合、E1=−2.4と検出できるため、2.4だけ始端エッジ位置が基準より後ろにずれていると判断できる。
同様に、図19(b)は、記録マークB1の始端エッジ位置が理想的な始端エッジ位置と比較して、前にずれている場合である。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(3.8 、2.8 、0.8 、−0.2)とし、E2(=|Pa−Pb|−Pstd)を算出すると、E2=2.4と算出することができる。よって、図19(b)の場合、2.4だけ始端エッジ位置が基準より前にずれていると判断できる。
図20は、Pattern−1における再生波形と記録マークのズレとの相関を示す。図20では、パスBが正解の状態遷移パスとする。
図20(a)は、記録マークの始端エッジが理想的な始端エッジと比較して後ろにずれている場合を示す。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(5.2 、5.2 、3.2 、1.2)とし、E3(=|Pa−Pb|−Pstd)を算出すると、E3=2.4と算出することができる。よって、図20(a)の場合、2.4だけ始端エッジ位置が基準より後ろにずれていると判断できる。
図20(b)は、記録マークの始端エッジ位置が理想的な始端エッジ位置と比較して、前にずれている場合を示す。入力信号のサンプル値(yk−3 、yk−2 、yk−1 、y)を(4.8 、4.8 、2.8 、0.8)とし、E4(=|Pa−Pb|−Pstd)を算出すると、E4=−2.4と算出することができる。よって、図20(b)の場合、2.4だけ始端エッジ位置が基準より前にずれていると判断できる。
パスAが正解の場合(図19参照)と、パスBが正解の場合(図20参照)では、記録マークの始端エッジのズレ方向を示す符号の表現が反対である。これは、正解パスおよびもう一つの候補パスそれぞれの期待値系列と、入力信号の系列との関係に依存する。図19(b)、図20(a)を参照して説明したように、入力信号の系列が、正解ではないパスの期待値系列との誤差を大きく持つ場合は、(式11)で算出される値は正の符号を持つ値となる。言い換えれば、入力信号の系列と、正解ではないパスの期待値系列との差が大となるほど、最尤復号では、エラーが発生しにくい状況であることを示す。この場合、(式11)では正符号の値として算出される。この特徴を考慮して、記録マークの始端エッジ位置のズレ方向を検出すればよい。
Pattern−1において、パスAが正解の場合は、Pattern−1は、2Tスペースと4Tマーク以上の長さのマークとの組み合わせの始端エッジの検出時に用いられるパターンであり、パスBが正解の場合は、Pattern−1は、3Tスペースと3Tマーク以上の長さのマークとの組み合わせの始端エッジの検出時に用いられるパターンである。
以上のような方法を用いて、各記録マークの始終端パターンごとの積算値または平均値を求め、エッジ位置のずれ量が0に近づくように記録パラメータを設定すれば、最尤復号方法に最適な記録制御が可能となる。
また、ここで重要なのでは、ディスク上に形成されたマークの始端または終端位置が、基準位置よりも後ろにずれているのか、基準位置よりも手前にずれているのかを判断することである。その判断のために、どのパターンのエッジがずれているのか検出する必要がある。パターンごとに、ずれ量を検出する。
図19、図20を参照して説明したように、記録マークパターンの始端エッジのズレ方向を示す符号の表現が反対であるので、例えば、マークが基準より短い場合は、マイナス符号、マークが基準位置より長い場合は、プラス符号とするようにする。この法則に従って、各マーク長の始端及び終端ごとに、上記エラー値を解析すれば、対照マーク長の始端終端の長短が検出でき、修正方向がわかる。また、その検出された値の絶対値から修正量も予測できる。
ここで、記録パラメータの最適化について説明する。記録符号の最小極性反転間隔をm(本実施の形態では、m=2)とする。記録媒体上に形成されるマークの始端位置は、そのマーク直前のスペースの幅とそのマーク自身の幅に依存する。例えば、直前のスペース幅がmTから(m+b)Tである場合は、マークの始端位置は直前のスペース幅に依存する。直前のスペース幅が(m+b)Tより大きい場合は、マークの始端位置は直前のスペース幅に依存しない。自身のマーク幅がmTから(m+a)Tである場合は、マークの始端位置は自身のマーク幅に依存する。自身のマーク幅が(m+a)Tより大きい場合は、マークの始端位置は自身のマーク幅に依存しない。
また記録媒体上に形成されるマークの終端位置は、マーク自身の幅と直後のスペースの幅に依存する。例えば、自身のマーク幅がmTから(m+a)Tである場合は、マークの終端位置は自身のマーク幅に依存する。自身のマーク幅が(m+a)Tより大きい場合は、マークの終端位置は自身のマーク幅に依存しない。また、後続のスペース幅がmTから(m+b)Tである場合は、マークの終端位置は後続のスペース幅に依存する。後続のスペース幅が(m+b)Tより大きい場合は、マークの終端位置は後続のスペース幅に依存しない。ただしa、bは0以上の整数であり、記録符号の最大極性反転はm+a、m+bよりも大きいとする。
上記のようなマークの始端位置および終端位置の依存性を考えると、始端パラメータTsfpの最適化は、幅が(m+b)T以下のスペースが隣接しているマークについて行う必要がある。また、終端パラメータTelpの最適化は、幅が(m+a)T以下のマークについて行う必要がある。
図21は、最適化が必要とされる記録パラメータの一覧を示す。簡単のためにm=3、a=b=3とすると、32とおりの記録パターンに対応するパラメータの最適化が必要となる。例えば2Ts2Tmは、2Tマークの直前に2Tスペースが存在するパターンであることを意味する。
図22は、最適化が必要とされる記録パラメータを特定8パターンのうちの何れのパターンで検出するかを示す。すなわち、各記録パターン(すなわちエッジパターン)を、上記8パターン(Pattern−1〜Pattern−8)のうちどのパターンで検出を行うかが示される。
例えば、2Ts3Tm(図21参照)は、P3Aのパターンで、記録マークの始終端パターンに対応する信号のずれ量の検出を行うことを意味する。P3Aは、Pattern−3で、パスAが正解の状態遷移パスであるパターンを意味する。
また、3Ts3Tm(図21参照)は、P1Bまたは、P4Aのパターンでずれ量の検出を行うことを意味する。P1Bは、Pattern−1で、パスBが正解の状態遷移パスであるパターンを意味し、P4Aは、Pattern−4で、パスAが正解の状態遷移パスであるパターンを意味する。
以上のことから、最尤復号に最適な記録パラメータを制御する方法とは、記録マークの始終端パターン(図22参照)のそれぞれに対応する信号のずれ量が、すべて0に近づくように、記録パラメータを変化させることである。
2Ts2Tm(2Tマーク立ち上がりで、直前に2Tスペースがあるパターン)と、2Tm2Ts(2Tマーク立ち下がりで、直後に2Tスペースがあるパターン)は、上記8パターン(Pattern−1〜Pattern−8)では、検出不可であるため、他の方法でエッジシフト量を最適化する必要がある(図22参照)。しかし、2Ts2Tmと2Tm2Tsを含むパターンは、信頼性Pa−Pbの値が比較的大きいパターンであるため、上記8パターンには含まれていない。言い換えれば、2Ts2Tmと2Tm2Tsのエッジ部分は厳密に最適化しなくても、最尤復号においては、エラーが発生する可能性が低いと言える。そのため、ディスクごとに最適化するのではなく、適切な初期値を用いてもよい。2Ts2Tmと2Tm2Tsを最適化する場合は、再生信号の位相誤差の積算値が最小となるように最適化してもよい。
上記の説明は、パワー調整の説明というよりも、記録パルス(ライトストラテジ)調整に関する説明であった。本発明は、従来、記録パルス調整で用いていた、検出値(エッジシフト値)を用いて、パワー調整を行うことに特徴がある。上記で説明したエッジシフト値を用いれば、記録媒体上に記録された記録マークの長さを測定することができるので、マーク長が所定の長さになるように記録パワーを調整すればよい。対象とする記録パワーのパラメータは、書き込みパワー、消去パワー、ボトムパワーいずれでもよい。
例として、書き込みパワーパラメータを調整する方法を説明する。消去パワーとボトムパワーとを書き込みパワーと一定の比率関係を保ちながら、書き込みパワーを変化させて試し記録する。記録パターンは、5T単一パターンとする。検出されるのは、5Ts5Tmと5Tm5Tsのエッジシフト値である(図21参照)。
図23は、パワー変化に対する5Tm5Tsのエッジシフト値(▲印)と、5Ts5Tmのエッジシフト値(●印)と、5Ts5Tm及び5Tm5Tsのエッジシフト値から5Tのマーク長を測定した値の絶対値(■印)を示す。
5Tのマーク長は、5Ts5Tmのエッジシフト値と5Tm5Tsのエッジシフト値の加算で求める。加算値がおおよそ0になるように記録パワーを調整すればよい。
なお、上記加算値、マーク長の目標値は、ディスクの特性によって変えてもよい。さらに、記録パターンは、単一パターン、特定パターン、ランダムパターンでもよい。
単一マーク以外の記録パターンを用いる場合は、記録マーク長ごとに、マークの幅を検出して、全マーク長の平均または、全マーク長の加算がディスクごとのターゲットマーク長になるようにパワー調整すればよい。
記録パワーの調整は、環境変化(温度湿度)やディスク面内の特性変化や所定時間、所定の動作ごとに行い得る。その場合、記録動作を一度中断して、直前まで記録していた領域を再生し、記録されたマーク長ごとのマーク幅を検出する。マーク長が短いと判断された場合は、マーク幅に応じて記録パワーを上げ、マーク長が長いと判断された場合は、マーク幅に応じて記録パワーを下げてもよい。全マーク長をその判断材料としてもよい。比較的感度の高い短マークの幅だけでパワーのアップダウンの判断をしてもよい。
なお、図21、図22を参照して5Tマーク長までを説明したが、5T以上のマーク長もマーク長ごとにエッジシフト値を測定できる。
以上、図1〜図23を参照して、本発明の実施の形態1〜3を説明した。
本発明の記録再生装置100、200、300の各構成要素は、ハードウェアにより実現されてもよいし、ソフトウェアにより実現されてもよい。例えば、整形部8、最尤復号部9、信頼性計算部10、記録媒体コントローラ11のうちの少なくとも一つが実行する動作が、コンピュータにより実行可能なプログラムにより実現されてもよい。
本発明の実施の形態1〜3において、記録部103、記録部303は、複数の記録パワーで1つのテスト情報を記録媒体1に記録する形態を説明したが、記録部103、記録部303は、複数の記録パワーで複数のテスト情報を記録媒体1に記録しえる。さらに、記録部103、記録部303は、単一の記録パワーで1つのテスト情報を記録媒体1に記録しえる。さらに、記録部103、記録部303は、単一の記録パワーで複数のテスト情報を記録媒体1に記録しえる。
さらに、例えば、実施の形態1〜3において、指標Mは、|Pa−Pb|−Pstdの分散を求め、(式6)で定義されたが、これに限定されない。例えば、Pa−Pb、または|Pa−Pb|−Pstdの所定回数の積算値を指標としてもよい。
なお、実施の形態1〜3において、図2を参照して説明した記録パルスを前提としたが、これに限定されない。例えば、クーリングパルス(ボトムパワーレベル)を必要としない記録媒体への記録パワー制御にも適用できる。その場合、書き込みパワーと、消去パワーのみを制御する。
さらに、実施の形態1〜3において、テスト信号は、上記に限定されない。テストパターンとして、マークとスペースの発生確率が同じであり、比較的長いマーク/スペースと比較的短いマーク/スペースの組み合わせであってもよい。例えば、8Tm3Ts8Tm8Ts3Tm8Tsの繰り返しパターン、7Tm2Ts7Tm7Ts2Tm7Tsの繰り返しパターンである。
さらに、実施の形態1〜3において、記録変調則とPRML方式とは、上記に限定されない。各種記録変調則と、各種特性のPRML方式の組み合わせであってもよい。例えば、(1,7)Run Length Limited符号とPR(1,2,1)ML方式または、PR(1,2,2,2,1)ML方式等との組み合わせでもよい。CDやDVDで採用されている8−16変調符号と上記PRML方式の組み合わせでもよい。
さらに、実施の形態1〜3において、Pwo、Peo、Pboを探索するパワー範囲は上記に限定されない。例えば、各パワー探索範囲は、推奨値を中心に±x%(例えば、x=10)とし、この範囲においても図18に示されたように最適点が検出できない場合は、上限または下限値に設定してもよい。
さらに、実施の形態1〜3において、Pwoを探索時に、Pe/Pw比を固定してパラメータを変化させたが、これに限定されない。例えば、Pe、Pbを適切な固定に設定して、Pwを変化させて、Pwoを求めても良い。
以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
本発明にかかる光ディスクの記録再生装置は、再生信号処理に最尤復号法を用いた処理系において、復号性能と相関のある再生信号評価指標を用いて、記録時の記録パワーの最適化を行うことで記録状態を最適化でき、再生時のエラーを最小とすることができる。また、本方式は従来の記録パワー制御に用いてきたジッタ、アシンメトリ、BER等の再生信号品質指標と比較して、記録パワーの変化に対する再生波形の変化を精度良く検出できるため、記録のパワー制御を精度良く行うことができる。このように、記録パワーを精度良く決定できることから、クロスパワーによる性能劣化を最小限に抑えることができ、同じ規格の光ディスクドライブ装置、光ディスク媒体の互換を安定にとるのに有用である。
従来、最適な記録パラメータを精度良く決定、設定する為に、従来のジッタ、アシンメトリ、BER等の再生信号評価指標では、適切なパラメータを精度良く求めることができなかった。
本発明において、最尤復号アルゴリズムの数ある状態遷移パターンのうち、再生波形のエッジ付近に係わる状態遷移パターン(ユークリッド距離が最小パターン)のみのメトリック期待値誤差(指標M)を用いて記録状態を検出することにより、記録先頭パルスの書込パワーや、クーリングパルスのボトムパワー、又は書込/消去パワー比の変動を容易に精度良く検出し、その結果を用いて記録時の記録パワーの制御を行い記録状態を最適化する。また、記録のパワー制御をさらに精度良く行うために、試し記録時に用いるテスト信号は、記録パワーの変化に対する再生波形の変化を精度良く検出できる特殊パターンを用いる。
最小極性反転間隔が2である記録符号と等化方式PR(1,2,2,1)とから定まる状態遷移則を表す状態遷移図Aである。 状態遷移図Aを時間軸に沿って展開することによって得ることができたトレリス図である。 Pa−Pbの分布を示す図である。 本発明の実施の形態1の記録再生装置100の構成を示す図である。 本発明の実施の形態1の記録パワー学習処理手順を示すフローチャートである。 書き込みパワーごとに指標Mをプロットし、最適書き込みパワーPwoを求めた例を示す図である。 テストパターンと、そのパターンを再生した場合の波形を示す図である。 消去パワーごとに指標Mをプロットし、最適消去パワーPeoを求めた例を示す図である。 ボトムパワーごとに指標Mをプロットし、最適ボトムパワーPboを求めた例を示す図である。 本発明の実施の形態2の記録再生装置200の構成を示す図である。 ItopとIbtmとIthとの関係を説明するための図である。 変調度MODと書き込みパワーPwとの関係を示す図である。 本発明の実施の形態3の記録再生装置300の構成を示す図である。 パターン検出回路17とエッジシフト検出回路18とを示す図である。 エッジシフト検出回路の動作を示すタイミングチャートである。 学習用記録パターンの一例を示す図である。 エッジシフト検出回路18a(エッジシフト検出回路18の改変例)を示す図である。 8パターン(Pattern−1〜Pattern−8)のサンプル値を示す図である。 Pattern−1における再生波形と記録マークのズレとの相関を示す図である。 Pattern−1における再生波形と記録マークのズレとの相関を示す図である。 最適化が必要とされる記録パラメータの一覧を示す図である。 最適化が必要とされる記録パラメータを特定8パターンのうちの何れのパターンで検出するかを示す図である。 パワー変化に対する5Ts5Tm、5Tm5Tsのエッジシフト値と、5Ts5Tmのエッジシフト値と5Tm5Tsのエッジシフト値から5Tのマーク長を測定した値の絶対値を示す図である。 書き込みパワーPw、消去パワーPeおよびボトムパワーPbを有するマルチパルスを示す図である。
符号の説明
1 記録媒体
2 光ヘッド部
3 プリアンプ
4 AGC
5 波形等化器
6 A/D変換器
7 PLL回路
8 整形部
9 最尤復号部
10 信頼性計算部
11 記録媒体コントローラ
12 記録信号生成手段
13 記録パワー制御手段
14 レーザ駆動回路
100 記録再生装置
101 再生部
102 記録制御装置
103 記録部

Claims (20)

  1. 時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、チャネル周期Tの整数倍の長さを有する記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御する方法であって、
    前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm(mはn以下の整数)通り検出する工程と、
    前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、
    該|Pa−Pb|―Pstdを算出する際には、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、
    前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、
    前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、
    を含む記録パワー制御方法。
  2. 前記マーク長ずれを算出する工程では、
    前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、
    前記記録パワーパラメータを調整する工程では、
    前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整する、
    請求項1に記載の記録パワー制御方法。
  3. 前記記録パワーパラメータを調整する工程では、
    前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、
    前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行う、
    請求項1又は2に記載の記録パワー制御方法。
  4. 前記記録パワーパラメータは、
    書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む、請求項1から3のいずれかに記載の記録パワー制御方法。
  5. 時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御し、制御された記録パワーにて記録を行う記録方法であって、
    前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する工程と、
    前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、
    該|Pa−Pb|―Pstdを算出する際には、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、
    前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、
    前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、
    前記調整された記録パワーパラメータに基づいて、記録を行う工程と、を含む記録方法。
  6. 前記マーク長ずれを算出する工程は、
    前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、
    前記記録パワーパラメータを調整する工程は、
    前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整する、
    請求項5に記載の記録方法。
  7. 前記記録パワーパラメータを調整する工程は、
    前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、
    前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行う、
    請求項5又は6に記載の記録方法。
  8. 前記記録パワーパラメータは、
    書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む、請求項5から7のいずれかに記載の記録方法。
  9. 時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御する装置であって、
    前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する手段と、
    前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、
    該|Pa−Pb|―Pstdを算出する際には、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する手段と、
    前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する手段と、
    前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する手段と、
    を備える記録パワー制御装置。
  10. 前記マーク長ずれを算出する手段は、
    前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、
    前記記録パワーパラメータを調整する手段は、
    前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整する、
    請求項9に記載の記録パワー制御装置。
  11. 前記記録パワーパラメータを調整する手段は、
    前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、
    前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行う、
    請求項9又は10に記載の記録パワー制御装置。
  12. 前記記録パワーパラメータは、
    書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む、請求項9から11のいずれかに記載の記録パワー制御装置。
  13. 時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御し、制御された記録パワーにて記録を行う記録装置であって、
    前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する手段と、
    前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、
    該|Pa−Pb|―Pstdを算出する際には、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する手段と、
    前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する手段と、
    前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する手段と、
    前記調整された記録パワーパラメータに基づいて、記録を行う手段と、を備える記録装置。
  14. 前記マーク長ずれを算出する手段は、
    前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、
    前記記録パワーパラメータを調整する手段は、
    前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整する、
    請求項13に記載の記録装置。
  15. 前記記録パワーパラメータを調整する手段は、
    前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、
    前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行う、
    請求項13又は14に記載の記録装置。
  16. 前記記録パワーパラメータは、
    書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む、請求項13から15のいずれかに記載の記録装置。
  17. 時刻k−j(kは3以上の整数、jは2以上の整数)における第1状態Sk−jから時刻kにおける第2状態Skへと遷移するn(nは2以上の整数)通りの状態遷移列のうちから最も確からしい状態遷移列を選択する最尤復号方式によって再生信号の復号を行い、所定の記録媒体に記録されている記録マークの記録ずれを検出し、前記記録ずれに基づいて記録パワーを制御するプログラムであって、
    前記時刻k−jから時刻kまでの所定の期間jにおける前記n通りの状態遷移列を規定する前記第1状態Sk−jと前記第2状態Skとの所定の組み合わせのうち、前記記録マークのエッジ部分に相当する組み合わせをm通り検出する工程と、
    前記検出されたm通りの状態遷移列のうち、1つのとりうる確からしい第1の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを表す指標をPaとし、もう1つのとりうる確からしい第2の状態遷移列の前記所定の期間jにおける状態遷移の確からしさを示す指標をPbとし、Pa=0となるときのPa−Pbの値を−Pstd、Pb=0となるときのPa−Pbの値をPstdとするとき、|Pa−Pb|―Pstdを算出し、
    該|Pa−Pb|―Pstdを算出する際には、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの始端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの始端部におけるずれ量とずれ方向である始端ずれを算出し、
    前記記録マークのエッジ部分に相当するm通りの状態遷移列のうち、前記記録マークの終端部に相当する状態遷移列に対して、|Pa−Pb|―Pstdを算出して、前記記録マークの終端部におけるずれ量とずれ方向である終端ずれを算出する工程と、
    前記始端ずれと前記終端ずれとから前記記録マークのマーク長のずれであるマーク長ずれを算出する工程と、
    前記マーク長ずれ結果に基づいて、記録パワーパラメータを調整する工程と、
    を含む記録パワー制御プログラム。
  18. 前記マーク長ずれを算出する工程は、
    前記始端ずれと前記終端ずれとを加算して前記マーク長ずれを算出し、
    前記記録パワーパラメータを調整する工程は、
    前記マーク長ずれ結果が所定値となるよう記録パワーパラメータを調整する、
    請求項17に記載の記録パワー制御プログラム。
  19. 前記記録パワーパラメータを調整する工程は、
    前記マーク長ずれ結果が小さいと検出された場合、記録パワーを上昇させるよう、前記記録パワーパラメータの調整を行い、
    前記マーク長ずれ結果が大きいと検出された場合、記録パワーを下降させるよう、前記記録パワーパラメータの調整を行う、
    請求項17又は18に記載の記録パワー制御プログラム。
  20. 前記記録パワーパラメータは、
    書き込みパワー、消去パワー、ボトムパワーのうちの少なくとも1つを含む、請求項17から19のいずれかに記載の記録パワー制御プログラム。
JP2004322363A 2003-11-06 2004-11-05 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム Active JP4350024B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004322363A JP4350024B2 (ja) 2003-11-06 2004-11-05 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003376855 2003-11-06
JP2004322363A JP4350024B2 (ja) 2003-11-06 2004-11-05 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム

Publications (2)

Publication Number Publication Date
JP2005158245A JP2005158245A (ja) 2005-06-16
JP4350024B2 true JP4350024B2 (ja) 2009-10-21

Family

ID=34741442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004322363A Active JP4350024B2 (ja) 2003-11-06 2004-11-05 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム

Country Status (1)

Country Link
JP (1) JP4350024B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101807419A (zh) 2005-07-15 2010-08-18 松下电器产业株式会社 记录条件调整装置及方法以及记录再生装置
JP5003284B2 (ja) * 2007-05-24 2012-08-15 日本電気株式会社 信号品質測定装置及び情報再生装置

Also Published As

Publication number Publication date
JP2005158245A (ja) 2005-06-16

Similar Documents

Publication Publication Date Title
US7907487B2 (en) Recording/reproduction apparatus, recording/reproduction method, program, and recording power adjustment apparatus
JP4633831B2 (ja) 記録制御方法
US7095696B2 (en) Recording/reproducing device
JP5054521B2 (ja) 記録再生装置、記録条件調整装置および記録再生方法
JP2004335079A (ja) 記録制御装置、記録再生装置および記録制御方法
US7965600B2 (en) Data recording evaluation method and optical disk recording and reproduction device
JP4395455B2 (ja) 光情報記録装置および方法および信号処理回路
JP2006302332A (ja) 記録再生装置
JP4395450B2 (ja) 光情報記録装置および信号処理回路
KR20070065632A (ko) 기록 조건 최적화 방법 및 장치 및 광 기록 매체
JP4350024B2 (ja) 記録パワー制御方法、記録方法、記録パワー制御装置、記録装置、及びパワー制御プログラム
JP4244039B2 (ja) 光情報記録装置および方法および信号処理回路並びに光情報再生装置および方法および信号処理回路
CN101084540A (zh) 对存储介质上的光学效应的分析
JP2007280492A (ja) 記録再生装置、記録再生方法、記録再生プログラム、記録信号調整装置、記録信号調整方法及び記録信号調整プログラム
JP4575908B2 (ja) 光情報記録方法
JP4911224B2 (ja) 光学的情報記録媒体への信号記録条件調整方法、情報記録再生装置
JP2007004932A (ja) 光情報記録装置および方法および信号処理回路
JPWO2009119632A1 (ja) 記録ストラテジ調整方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4350024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

S131 Request for trust registration of transfer of right

Free format text: JAPANESE INTERMEDIATE CODE: R313133

SZ02 Written request for trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z02

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250