JP4348543B2 - Catalyst degradation detector - Google Patents

Catalyst degradation detector Download PDF

Info

Publication number
JP4348543B2
JP4348543B2 JP2004243818A JP2004243818A JP4348543B2 JP 4348543 B2 JP4348543 B2 JP 4348543B2 JP 2004243818 A JP2004243818 A JP 2004243818A JP 2004243818 A JP2004243818 A JP 2004243818A JP 4348543 B2 JP4348543 B2 JP 4348543B2
Authority
JP
Japan
Prior art keywords
oxygen
catalyst
exhaust purification
purification catalyst
upstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004243818A
Other languages
Japanese (ja)
Other versions
JP2006063807A (en
Inventor
昭 白神
稔 佐藤
昭 出水
圭一 榎木
秀昭 片柴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004243818A priority Critical patent/JP4348543B2/en
Publication of JP2006063807A publication Critical patent/JP2006063807A/en
Application granted granted Critical
Publication of JP4348543B2 publication Critical patent/JP4348543B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気浄化触媒の劣化を検出する触媒劣化検出装置に関するものである。   The present invention relates to a catalyst deterioration detection device that detects deterioration of an exhaust purification catalyst of an internal combustion engine.

従来技術1.
従来のこの種の触媒劣化検出装置では、三元触媒(排気浄化触媒)の劣化をOストレージ機能が低下したことを意味するとし、三元触媒に吸着保持(あるいは放出)される酸素の絶対量が三元触媒の劣化度を正確に表しているとしている。そこで、三元触媒に吸着保持される酸素の絶対量は、内燃機関より下流側で排気浄化触媒より下流の排気通路内に配置された空燃比センサにより検出された空燃比の理論空燃比に対する偏差と、触媒流通ガス量との積から算出する。酸素吸着量を算出する式は、α・(ΔA/F)・Ga・Δtである。ここで、αは酸素の含有割合、ΔA/Fは空燃比センサにより検出された空燃比の理論空燃比に対する偏差、Gaは触媒流通ガス量、Δtは酸素の吸着(あるいは放出)作用が行われている時間である。
Prior art
In this type of conventional catalyst deterioration detection device, it is assumed that the deterioration of the three-way catalyst (exhaust gas purification catalyst) means that the O 2 storage function has decreased, and the absolute amount of oxygen that is adsorbed and held (or released) by the three-way catalyst The amount accurately represents the degree of deterioration of the three-way catalyst. Therefore, the absolute amount of oxygen adsorbed and held by the three-way catalyst is the deviation of the air-fuel ratio detected by the air-fuel ratio sensor disposed in the exhaust passage downstream of the internal combustion engine and downstream of the exhaust purification catalyst from the stoichiometric air-fuel ratio. And the product of the catalyst circulation gas amount. The equation for calculating the oxygen adsorption amount is α · (ΔA / F) · Ga · Δt. Where α is the oxygen content ratio, ΔA / F is the deviation of the air-fuel ratio detected by the air-fuel ratio sensor from the stoichiometric air-fuel ratio, Ga is the amount of gas flowing through the catalyst, and Δt is the oxygen adsorption (or release) action. Is the time.

ここで、排気浄化触媒より下流の排気通路内に配置された空燃比センサとして、ジルコニアを用いた酸素センサが使用された場合、内燃機関の排気側での酸素濃度を測定し、内燃機関での燃焼モデルをもとにその酸素濃度を示す時の内燃機関での燃焼前の空燃比を推定する。そしてその空燃比のガスにおいて、理論空燃比分の酸素は内燃機関と排気浄化触媒とで全て反応し、残りが排気浄化触媒に吸着保持される量であると取り扱っている(例えば特許文献1参照)。   Here, when an oxygen sensor using zirconia is used as the air-fuel ratio sensor disposed in the exhaust passage downstream of the exhaust purification catalyst, the oxygen concentration on the exhaust side of the internal combustion engine is measured, Based on the combustion model, the air-fuel ratio before combustion in the internal combustion engine when the oxygen concentration is shown is estimated. Then, in the air-fuel ratio gas, oxygen corresponding to the stoichiometric air-fuel ratio reacts entirely with the internal combustion engine and the exhaust purification catalyst, and the remainder is treated as an amount adsorbed and held by the exhaust purification catalyst (see, for example, Patent Document 1). ).

従来技術2.
また、酸素吸着能力によって最大酸素吸着量の範囲内で酸素を吸着放出することが可能であるが、吸着している酸素を瞬時に全て放出したり、吸着し得る能力の一杯までに瞬時に酸素を吸着することができるわけではない。瞬時に吸着したり放出したりできる酸素量にも限界があり、この瞬時吸着可能酸素量または瞬時放出可能酸素量を利用して劣化検出する方法も開示されている。瞬間的に空燃比変動を生じさせて例えばリーンスパイクのような制御を行い、排気浄化触媒が劣化していない時はリーンな酸素が排気浄化触媒に吸着されるが、劣化している場合は吸着されない酸素が生じ、触媒下流側の空燃比センサによって検出される。このようにすることで劣化検出が可能であり、また瞬時に吸着、放出される酸素量に基づく劣化検出なので、劣化検出のための空燃比制御は短期間でよく、排気エミッションの悪化やドライバビリティの悪化を誘発しないとしている(例えば特許文献2参照)。
Prior art 2.
In addition, it is possible to adsorb and release oxygen within the range of the maximum oxygen adsorption amount due to the oxygen adsorption capacity. However, all the adsorbed oxygen can be released instantly, or the oxygen can be absorbed instantly to the full capacity. Can not be adsorbed. There is a limit to the amount of oxygen that can be adsorbed and released instantaneously, and a method of detecting deterioration using this instantaneously adsorbable oxygen amount or instantaneously releasable oxygen amount is also disclosed. For example, when the exhaust purification catalyst is not deteriorated, lean oxygen is adsorbed to the exhaust purification catalyst. Oxygen that is not produced is generated and detected by an air-fuel ratio sensor downstream of the catalyst. In this way, it is possible to detect deterioration, and because deterioration detection is based on the amount of oxygen that is instantaneously adsorbed and released, air-fuel ratio control for detecting deterioration can be done in a short period of time, and exhaust emission deterioration and drivability It is said that the deterioration of the above is not induced (see, for example, Patent Document 2).

従来技術3.
また、燃焼モデルを用いないで、直接空燃比センサの出力電圧を使用する方法として、触媒劣化検出において、排気浄化触媒の下流側に配置された空燃比センサの出力(電圧)が、リーンからリッチへ変化した直後(電圧V1)からリッチからリーンに変化する直前まで(電圧V2)の変化勾配(ΔV=V1−V2)を用いて触媒劣化度合いを判定している(例えば特許文献3参照)。
Prior art 3.
In addition, as a method of directly using the output voltage of the air-fuel ratio sensor without using the combustion model, the output (voltage) of the air-fuel ratio sensor disposed downstream of the exhaust purification catalyst is rich from lean to the catalyst deterioration detection. The degree of catalyst deterioration is determined using a change gradient (ΔV = V 1 −V 2) from immediately after changing to (voltage V 1) to immediately before changing from rich to lean (voltage V 2) (see, for example, Patent Document 3).

特開平5−133264号公報(第26段落〜第32段落、図1および図6)JP-A-5-133264 (26th to 32nd paragraphs, FIGS. 1 and 6) 特開2002−4930号公報(第201段落〜第211段落、図24)Japanese Patent Laying-Open No. 2002-4930 (paragraphs 201 to 211, FIG. 24) 特開2002−4930号公報(第158段落〜第159段落、図20および図21)JP 2002-4930 A (paragraphs 158 to 159, FIGS. 20 and 21)

触媒劣化は酸素吸着能の劣化であるとして酸素吸着量の絶対値を算出することで触媒劣化を検出する場合、多くの場合は酸素吸着能の低下は触媒貴金属の劣化と酸素吸着物質の劣化を両方とも含んだ結果であるが、必ずしもそうでない場合がある。例えば熱履歴において触媒貴金属類と酸素吸着物質類の耐熱性が異なる場合などで、触媒貴金属類は劣化しているが酸素吸着物質類は劣化していない場合などである。あるいは物理的な剥離や脱落によっても部分的な劣化を生じる。それらの場合、酸素吸着量が低下していなくても、触媒貴金属類の劣化のために排気浄化率は低下するが、触媒劣化としては検出できないという問題がある。   When the catalyst deterioration is detected by calculating the absolute value of the oxygen adsorption amount, assuming that the catalyst deterioration is a deterioration of the oxygen adsorption capacity.In many cases, the decrease in the oxygen adsorption capacity is caused by the deterioration of the catalyst noble metal and the oxygen adsorption material. Both results are included, but not always. For example, when the heat resistance of the catalyst noble metal and the oxygen adsorbing substance are different in the thermal history, the catalyst noble metal is deteriorated but the oxygen adsorbing substance is not deteriorated. Alternatively, partial degradation also occurs due to physical peeling or dropping. In these cases, even if the oxygen adsorption amount is not reduced, the exhaust purification rate is reduced due to deterioration of the catalyst noble metals, but there is a problem that it cannot be detected as catalyst deterioration.

また、従来技術1では、酸素吸着量を算出するときに、空燃比センサの値から推定した空燃比の理論空燃比に対する偏差を用いて排気浄化触媒中に吸着される酸素濃度を計算しているが、空燃比センサの計測値から空燃比を推定するためには、内燃機関の燃焼モデルを介して複雑な計算を行なう必要があり、燃焼状態や排気浄化触媒の劣化状態によって計算誤差を生じる問題がある。   Further, in the prior art 1, when calculating the oxygen adsorption amount, the oxygen concentration adsorbed in the exhaust purification catalyst is calculated using the deviation of the air-fuel ratio estimated from the value of the air-fuel ratio sensor with respect to the theoretical air-fuel ratio. However, in order to estimate the air-fuel ratio from the measured value of the air-fuel ratio sensor, it is necessary to perform a complicated calculation via the combustion model of the internal combustion engine, which causes a calculation error depending on the combustion state and the deterioration state of the exhaust purification catalyst. There is.

また、従来技術2のように、瞬時酸素吸着量や瞬時酸素放出量の測定から排気浄化触媒の劣化を判断する場合については、以下の問題がある。すなわち、触媒貴金属だけが劣化(物理的な剥離や脱落による劣化も含む。以下、特に断らないが同様である。)した場合でも、酸素吸着物質が健全で酸素を素早く吸着した場合には、触媒劣化を検出できないという問題がある。   Further, as in the prior art 2, there is the following problem when judging the deterioration of the exhaust purification catalyst from the measurement of the instantaneous oxygen adsorption amount and the instantaneous oxygen release amount. In other words, even when only the catalyst noble metal is deteriorated (including deterioration due to physical peeling and dropping, the same applies hereinafter unless otherwise specified), the catalyst is used when the oxygen adsorbent is healthy and oxygen is adsorbed quickly. There is a problem that deterioration cannot be detected.

また、従来技術3のように、直接空燃比センサの出力電圧を使用して空燃比変化勾配から劣化を検出する方法では、燃焼モデルを用いないので直接的であるが、瞬時酸素吸着量や瞬時酸素放出量の方法と同じく、以下の問題がある。すなわち、触媒貴金属だけが劣化した場合でも、酸素を素早く吸着した場合など、触媒劣化を検出できない場合があるという問題がある。   Further, the method of detecting deterioration from the air-fuel ratio change gradient using the output voltage of the direct air-fuel ratio sensor as in the prior art 3 is straightforward because a combustion model is not used, but the instantaneous oxygen adsorption amount and instantaneous Similar to the oxygen release method, there are the following problems. That is, even when only the catalyst noble metal deteriorates, there is a problem that catalyst deterioration may not be detected, for example, when oxygen is adsorbed quickly.

本発明は、上記のような従来のものの問題点を解決するためになされたものであり、内燃機関の燃焼モデルを介して複雑な計算を行なうことなく、排気浄化触媒を構成する触媒貴金属と酸素吸着物質のうちのどちらか一方だけが劣化した場合にも触媒劣化として検出することができる触媒劣化検出装置を提供することを目的とするものである。   The present invention has been made in order to solve the above-described problems of the prior art, and without performing complicated calculations via a combustion model of an internal combustion engine, the catalyst noble metal and oxygen constituting the exhaust purification catalyst It is an object of the present invention to provide a catalyst deterioration detection device that can detect catalyst deterioration even when only one of the adsorbed substances deteriorates.

本発明に係る触媒劣化検出装置は、内燃機関の排気通路に配置された排気浄化触媒の上流での酸素濃度を検出するために上記排気浄化触媒の上流側の排気通路に配置された上流側酸素センサと、上記排気浄化触媒の下流での酸素濃度を検出するために上記排気浄化触媒の下流側の排気通路に配置された下流側酸素センサと、上記排気浄化触媒の上流における酸素濃度を予め定めた値に設定する空燃比制御手段と、上記排気浄化触媒に流入するガス量を検出する流入ガス量検出手段と、上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、吸着酸素量と酸素吸着速度との関数で表される式、または上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、放出酸素量と酸素放出速度との関数で表される式、を用いて上記排気浄化触媒のを検出する劣化検出手段とを備えたものである。   An apparatus for detecting catalyst deterioration according to the present invention includes an upstream oxygen gas disposed in an exhaust passage upstream of an exhaust purification catalyst for detecting an oxygen concentration upstream of an exhaust gas purification catalyst disposed in an exhaust passage of an internal combustion engine. A sensor, a downstream oxygen sensor disposed in an exhaust passage downstream of the exhaust purification catalyst to detect an oxygen concentration downstream of the exhaust purification catalyst, and an oxygen concentration upstream of the exhaust purification catalyst. An air-fuel ratio control means for setting the value, an inflow gas amount detection means for detecting the amount of gas flowing into the exhaust purification catalyst, an oxygen concentration upstream and downstream of the exhaust purification catalyst, and an inflow gas amount, respectively. The amount of released oxygen calculated using the calculated expression expressed as a function of the amount of adsorbed oxygen and the oxygen adsorption rate, or the upstream and downstream oxygen concentrations and the amount of inflow gas, respectively, of the exhaust purification catalyst Formula represented by a function of the iodine release rate, with those having a deterioration detecting means for detecting the above exhaust gas purifying catalyst.

この発明によれば、排気浄化触媒を構成する触媒貴金属と酸素吸着物質のうちのどちらか一方だけが劣化した場合にも触媒劣化として検出することができ、劣化のタイプが様々異なる場合でも、漏れなく検出することができる、という従来にない顕著な効果を奏するものである。しかも、内燃機関の燃焼モデルを介した複雑な計算を行なう必要もない。   According to the present invention, even when only one of the catalyst precious metal and the oxygen adsorbing substance constituting the exhaust purification catalyst is deteriorated, it can be detected as catalyst deterioration, and even when the deterioration types are different, the leakage is not detected. There is an unprecedented remarkable effect that it can be detected without any problems. In addition, there is no need to perform complicated calculations via a combustion model of an internal combustion engine.

実施の形態1.
図1〜図5は本発明の実施の形態1による触媒劣化検出装置を説明するための図であり、より具体的には、図1は触媒劣化検出装置の全体構成を示す図、図2は限界電流型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と吸着酸素濃度との関係を示す特性図、図3は限界電流型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と放出酸素濃度との関係を示す特性図、図4は正常触媒と劣化触媒のそれぞれの頻度因子を説明する特性図、図5は触媒劣化度と頻度因子Aとの関係を示す特性図である。
Embodiment 1 FIG.
1 to 5 are diagrams for explaining a catalyst deterioration detection apparatus according to Embodiment 1 of the present invention. More specifically, FIG. 1 is a diagram showing an overall configuration of the catalyst deterioration detection apparatus, and FIG. FIG. 3 is a characteristic diagram showing the relationship between the detected oxygen concentration value and the adsorbed oxygen concentration of the upstream and downstream air-fuel ratio sensors when the limit current type air-fuel ratio sensor is used. FIG. 4 is a characteristic diagram illustrating the relationship between the oxygen concentration detection value of the side air-fuel ratio sensor and the released oxygen concentration, FIG. 4 is a characteristic diagram illustrating the frequency factors of the normal catalyst and the deteriorated catalyst, and FIG. 5 is the catalyst deterioration degree and frequency factor A. It is a characteristic view which shows the relationship.

本実施の形態による触媒劣化検出装置は、内燃機関1の排気通路2に配置された排気浄化触媒(以下、排気浄化触媒を単に触媒という。)3の上流での酸素濃度を検出するために触媒3の上流側の排気通路2に配置された上流側酸素センサ(空燃比センサ)41と、触媒3の下流での酸素濃度を検出するために触媒3の下流側の排気通路2に配置された下流側酸素センサ(空燃比センサ)42とを備えている。
さらに、触媒3に流入するガス量を検出する流入ガス量検出手段としてのエアフローメータ6を備えている。
The catalyst deterioration detection device according to the present embodiment is a catalyst for detecting an oxygen concentration upstream of an exhaust purification catalyst (hereinafter referred to simply as catalyst) 3 disposed in an exhaust passage 2 of the internal combustion engine 1. 3, an upstream oxygen sensor (air-fuel ratio sensor) 41 disposed in the upstream exhaust passage 2, and a downstream exhaust passage 2 of the catalyst 3 for detecting the oxygen concentration downstream of the catalyst 3. And a downstream oxygen sensor (air-fuel ratio sensor) 42.
Further, an air flow meter 6 is provided as an inflow gas amount detecting means for detecting the amount of gas flowing into the catalyst 3.

さらに、上流側酸素センサ(空燃比センサ)41および下流側酸素センサ(空燃比センサ)42でそれぞれ検出された、触媒3の上流および下流の酸素濃度と、エアフローメータ6で検出された流入ガス量とを用いてそれぞれ算出される、吸着酸素量と酸素吸着速度との関数で表される式、または触媒3の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、放出酸素量と酸素放出速度との関数で表される式、を用いて触媒3の劣化を検出する劣化検出手段として電子制御ユニット7を備えている。
またさらに、電子制御ユニット7はインジェクタ5と共に空燃比制御手段を構成しており、インジェクタ5を制御して触媒3の上流における酸素濃度を予め定めた値に設定する。
Furthermore, the upstream and downstream oxygen concentrations detected by the upstream oxygen sensor (air-fuel ratio sensor) 41 and the downstream oxygen sensor (air-fuel ratio sensor) 42, respectively, and the amount of inflow gas detected by the air flow meter 6 are detected. Released oxygen, which is calculated using a function of an adsorbed oxygen amount and an oxygen adsorption rate, or an oxygen concentration upstream and downstream of the catalyst 3 and an inflow gas amount, respectively. An electronic control unit 7 is provided as a deterioration detecting means for detecting deterioration of the catalyst 3 using an expression expressed by a function of the amount and the oxygen release rate.
Furthermore, the electronic control unit 7 constitutes an air-fuel ratio control means together with the injector 5, and controls the injector 5 to set the oxygen concentration upstream of the catalyst 3 to a predetermined value.

電子制御ユニット7は、内部に、演算を行うCPUや演算結果などの各種情報を記憶するRAM、バッテリによってその記憶内容が保持されるバックアップRAM、各制御および演算プログラムを格納したROM等を有している。電子制御ユニット7は、空燃比に基づいてエンジン1およびインジェクタ5を制御したり、触媒3の劣化判定を行ったりする。   The electronic control unit 7 includes a CPU for performing calculations, a RAM for storing various information such as calculation results, a backup RAM in which the stored contents are held by a battery, a ROM for storing each control and calculation program, and the like. ing. The electronic control unit 7 controls the engine 1 and the injector 5 based on the air-fuel ratio, and makes a determination on the deterioration of the catalyst 3.

触媒3としては、例えば三元触媒が用いられる。
酸素センサ(空燃比センサ)41,42としては、ジルコニア式の限界電流型を使用する。ジルコニア式の限界電流型酸素センサ(空燃比センサ)は、ジルコニアで形成された電解質の両面に白金電極を有し、一方の電極の電解質と反対側には多孔質層による拡散律速層を有している。他方の電極は酸素濃度一定の大気と接し、拡散律速層は測定ガスと接する。
For example, a three-way catalyst is used as the catalyst 3.
As the oxygen sensors (air-fuel ratio sensors) 41 and 42, zirconia type limiting current type is used. A zirconia-type limiting current oxygen sensor (air-fuel ratio sensor) has platinum electrodes on both sides of an electrolyte formed of zirconia, and a diffusion-controlling layer made of a porous layer on the opposite side of the electrolyte of one electrode. ing. The other electrode is in contact with the atmosphere having a constant oxygen concentration, and the diffusion-controlled layer is in contact with the measurement gas.

ジルコニアは酸素イオン伝導性を有し、両電極間に電圧を加えると、測定ガスが酸素雰囲気の場合は、拡散律速層を通って来た酸素は外側電極で酸素イオンとなりジルコニアを通過する。この時の電流値が酸素濃度に比例する。測定ガスが還元性雰囲気の場合は、拡散律速層を通って来た還元性ガスが酸素ポンプ効果でジルコニアを通過してきた酸素と反応する。この酸素量は還元性ガスを酸化させるのに必要な酸素量となる。酸素雰囲気、還元性雰囲気のポンプ電流は次の理論式より直接計算できる。
なお、このような理論式は一般的に知られたものであり、例えば、刊行物(衣斐寛之、「ジルコニア式酸素計−固体電解質ではかる」、堀場テクニカルレポート、1994年3月、No.8、p.55)に記載されている。
Zirconia has oxygen ion conductivity. When a voltage is applied between both electrodes, when the measurement gas is in an oxygen atmosphere, oxygen that has passed through the diffusion-controlled layer becomes oxygen ions at the outer electrode and passes through the zirconia. The current value at this time is proportional to the oxygen concentration. When the measurement gas is a reducing atmosphere, the reducing gas that has passed through the diffusion-controlled layer reacts with oxygen that has passed through the zirconia by the oxygen pump effect. This amount of oxygen is the amount of oxygen necessary to oxidize the reducing gas. The pump current in an oxygen atmosphere and a reducing atmosphere can be directly calculated from the following theoretical formula.
In addition, such a theoretical formula is generally known. For example, in publications (Hiroyuki Kinoshita, “Zirconia Oxygen Meter-Solid Electrolyte”, Horiba Technical Report, March 1994, No. 8) P.55).

Figure 0004348543
Figure 0004348543

ジルコニア式の酸素センサ41,42は、酸素イオン伝導性を利用しているので、約300℃以上の高温で使用する。そのため、電極付近では還元性ガスと酸素が反応する。ジルコニア式の酸素センサ41,42の電極付近はそのため過剰な分の酸素濃度を検出する。触媒3上においても同様に、触媒3上で還元性ガスが酸素と反応し、過剰な分の酸素を吸着する。   Since the zirconia oxygen sensors 41 and 42 utilize oxygen ion conductivity, they are used at a high temperature of about 300 ° C. or higher. Therefore, reducing gas and oxygen react near the electrode. Therefore, the oxygen concentration in the vicinity of the electrodes of the zirconia oxygen sensors 41 and 42 is detected. Similarly, on the catalyst 3, the reducing gas reacts with oxygen on the catalyst 3 to adsorb excess oxygen.

図2に触媒3の上流と下流における酸素濃度と空燃比との関係を示し、酸素雰囲気の場合の吸着酸素量の算出方法を説明する。また、図3に触媒の上流と下流における酸素濃度と空燃比との関係を示し、還元雰囲気における放出酸素量の算出方法を説明する。なお、図2および図3において、横軸は空燃比、縦軸は酸素濃度であり、上流側酸素濃度を表す直線と横軸との交点の空燃比が理論空燃比に相当する。   FIG. 2 shows the relationship between the oxygen concentration upstream and downstream of the catalyst 3 and the air-fuel ratio, and a method for calculating the amount of adsorbed oxygen in an oxygen atmosphere will be described. FIG. 3 shows the relationship between the oxygen concentration upstream and downstream of the catalyst and the air-fuel ratio, and a method for calculating the amount of released oxygen in the reducing atmosphere will be described. 2 and 3, the horizontal axis represents the air-fuel ratio, the vertical axis represents the oxygen concentration, and the air-fuel ratio at the intersection of the straight line representing the upstream oxygen concentration and the horizontal axis corresponds to the theoretical air-fuel ratio.

上流側および下流側空燃比センサ41,42で検出された電流値から上記関係式によって酸素濃度を算出し、酸素濃度差を計算すれば、触媒3で吸着あるいは放出された酸素(図2中の吸着酸素濃度あるいは図3中の放出酸素濃度)を算出することができる。従来技術1のように、この下流側空燃比センサから求まる酸素濃度値から内燃機関での燃焼モデルを使って内燃機関前の空燃比を推定して、さらに理論空燃比との差をとることにより酸素吸着量を推定する方法に較べて、直接触媒3の入り口(上流)と出口(下流)の酸素濃度を比較しているので、内燃機関の燃焼状態や触媒の劣化に関係なく、簡易な操作で実現象を直接検出することが可能である。   If the oxygen concentration is calculated from the current values detected by the upstream and downstream air-fuel ratio sensors 41 and 42 by the above relational expression and the difference in oxygen concentration is calculated, the oxygen adsorbed or released by the catalyst 3 (in FIG. 2) The adsorbed oxygen concentration or the released oxygen concentration in FIG. 3) can be calculated. As in the prior art 1, the air-fuel ratio before the internal combustion engine is estimated from the oxygen concentration value obtained from the downstream air-fuel ratio sensor using the combustion model in the internal combustion engine, and the difference from the stoichiometric air-fuel ratio is further taken. Compared with the method of estimating the oxygen adsorption amount, the oxygen concentration at the inlet (upstream) and outlet (downstream) of the catalyst 3 is directly compared, so that it is easy to operate regardless of the combustion state of the internal combustion engine and the deterioration of the catalyst. It is possible to directly detect actual phenomena.

排気ガスが酸素雰囲気の場合、この方法による単位時間当たりの吸着酸素量(吸着反応速度)は、
吸着反応速度={Xo(front)−Xo(rear)}×Qa (1)
で表すことができる。但し、Xo(front)は上流側空燃比センサ41から算出された酸素濃度、Xo(rear)は下流側空燃比センサ42から算出された酸素濃度、Qaはエアフローメータ6から実測されたガス流量である。エアフローメータ6は単位時間当りに機関シリンダ内に供給される吸入空気量Ga(g/sec)に比例した出力電圧を発生している。なお、ガス流量Qaは、エアフローメータ6を用いずにエンジン運転状態から推定してもよい。
When the exhaust gas is in an oxygen atmosphere, the amount of adsorbed oxygen per unit time (adsorption reaction rate) by this method is
Adsorption reaction rate = {Xo (front) −Xo (rear)} × Qa (1)
Can be expressed as However, Xo (front) is the oxygen concentration calculated from the upstream air-fuel ratio sensor 41, Xo (rear) is the oxygen concentration calculated from the downstream air-fuel ratio sensor 42, and Qa is the gas flow rate actually measured from the air flow meter 6. is there. The air flow meter 6 generates an output voltage proportional to the intake air amount Ga (g / sec) supplied into the engine cylinder per unit time. The gas flow rate Qa may be estimated from the engine operating state without using the air flow meter 6.

一方、化学反応は一般に温度と濃度の関数であり、反応にあずかる成分の濃度のベキ乗の形であらわされる(例えば、刊行物(「化学工学III」大竹伝雄著、岩波全書、p.12)参照)。
したがって酸素吸着速度(吸着反応速度)は、
酸素吸着速度=k×Xo(front)α×Yβ (2)
で表すことができる。
ここで、kは反応速度定数で温度の関数であり、次式に示すアレニウス式である。
k=A×exp(−Ea/RT) (3)
ここで、パラメータAは頻度因子、Eaは触媒3の活性化エネルギ、Rは気体定数、Tは触媒3の温度である。
(3)式を(2)式に代入し、
吸着反応速度=A×exp(―Ea/RT)×Xo(front)α×Yβ (4)
と表すことができる。
On the other hand, a chemical reaction is generally a function of temperature and concentration, and is expressed in the form of a power of the concentration of a component involved in the reaction (for example, a publication (“Chemical Engineering III” by Nobuo Otake, Iwanami Zensho, p.12) reference).
Therefore, the oxygen adsorption rate (adsorption reaction rate) is
Oxygen adsorption rate = k × Xo (front) α × Y β (2)
Can be expressed as
Here, k is a reaction rate constant and a function of temperature, and is an Arrhenius equation shown in the following equation.
k = A × exp (−Ea / RT) (3)
Here, the parameter A is a frequency factor, Ea is the activation energy of the catalyst 3, R is a gas constant, and T is the temperature of the catalyst 3.
Substituting equation (3) into equation (2),
Adsorption reaction rate = A × exp (−Ea / RT) × Xo (front) α × Y β (4)
It can be expressed as.

触媒浄化率の低下は、反応速度の低下によるので、式(4)より、頻度因子A、活性化エネルギEa、温度T、触媒上流側酸素濃度Xo(front)、吸着サイト濃度Yに依存する。触媒劣化のうち主要な劣化である熱劣化は回復が困難な検出しなければならない重大な劣化である。温度条件によって熱履歴の影響を受ける程度は触媒貴金属と酸素吸着物質とで異なるが、触媒貴金属、酸素吸着物質ともに熱履歴によって焼結が進むと比表面積が小さくなり、反応速度式中の頻度因子Aが小さくなる影響を受ける。活性化エネルギEaは触媒固有の値である。温度T、触媒上流側酸素濃度Xo(front)、および吸着サイト濃度Yは制御可能なパラメータであるので、頻度因子Aを評価することによって触媒劣化を判定することができる。   Since the reduction in the catalyst purification rate is due to the reduction in the reaction rate, it depends on the frequency factor A, the activation energy Ea, the temperature T, the catalyst upstream oxygen concentration Xo (front), and the adsorption site concentration Y from Equation (4). Thermal deterioration, which is the main deterioration of catalyst deterioration, is a serious deterioration that is difficult to recover and must be detected. The degree to which the thermal history is affected by temperature conditions differs between the catalytic noble metal and the oxygen adsorbing material, but the specific surface area of the catalytic noble metal and oxygen adsorbing material decreases as the thermal history progresses, and the frequency factor in the reaction rate equation A is affected by the decrease. The activation energy Ea is a value unique to the catalyst. Since the temperature T, the catalyst upstream oxygen concentration Xo (front), and the adsorption site concentration Y are controllable parameters, the deterioration of the catalyst can be determined by evaluating the frequency factor A.

ここで、式(4)中の各パラメータの決定方法について説明する。
活性化エネルギEaは、触媒に固有の値であるので、文献値から引用することができる。また、予め実際に温度を変化させて反応速度を測定することによって求めておくこともできる。具体的には所定の空燃比で定常運転を行い、酸素吸着サイト濃度Yの時間変化を測定する。一次反応の場合であれば酸素吸着サイト濃度Yの初期濃度をY0とすれば、以下の関係となる。
ln(Y0/Y)=kt (5)
ここで、tは運転時間である。時間に対してln(Y0/Y)をプロットし、傾きが速度定数kとなる。同じ測定を異なる温度Tで行いそれぞれの温度Tにおける速度定数kを求める。
速度定数kと温度Tとの関係は式(3)であり、式(3)の両辺の対数を取ると、
lnk=lnA−Ea/RT (6)
となる。1/Tに対してlnkをプロットすると切片がlnA、傾きが−Ea/Rとなり、傾きから活性化エネルギEaを求めることができる。
触媒3の温度Tは温度センサを取り付けて実際に測定してもよいし、エンジン1の運転状態とガス温度の関係を予め調べておいて実際の運転状態から推定することもできる。
Here, the determination method of each parameter in Formula (4) is demonstrated.
Since the activation energy Ea is a value inherent to the catalyst, it can be cited from literature values. It can also be obtained in advance by actually changing the temperature and measuring the reaction rate. Specifically, steady operation is performed at a predetermined air-fuel ratio, and the time change of the oxygen adsorption site concentration Y is measured. In the case of the primary reaction, if the initial concentration of the oxygen adsorption site concentration Y is Y 0 , the following relationship is established.
ln (Y 0 / Y) = kt (5)
Here, t is an operation time. Plotting ln (Y 0 / Y) against time, the slope is the rate constant k. The same measurement is performed at different temperatures T, and the rate constant k at each temperature T is obtained.
The relationship between the rate constant k and the temperature T is Equation (3). Taking the logarithm of both sides of Equation (3),
lnk = lnA-Ea / RT (6)
It becomes. When lnk is plotted against 1 / T, the intercept is lnA and the slope is -Ea / R, and the activation energy Ea can be obtained from the slope.
The temperature T of the catalyst 3 may be actually measured by attaching a temperature sensor, or the relationship between the operating state of the engine 1 and the gas temperature can be estimated in advance and estimated from the actual operating state.

α、βはそれぞれ反応次数である。これらの次数は予め実験によって求めておく。酸素濃度についての次数であるαは、酸素吸着サイト濃度Yを一定とした条件において、Xo(front)を変化させて酸素吸着速度を測定することによって求めることができる。式(2)について、
k’=k×Yβ (7)とおくと、
酸素吸着速度=k'×Xo(front)α (8)
と表される。
両辺対数を取ると、
log酸素吸着速度=logk'+α×logXo(front) (9)
y=切片+勾配×xより縦軸log酸素吸着速度、横軸logXo(front)としてプロットすると、その傾きから次数αが求まる。
α and β are reaction orders, respectively. These orders are obtained in advance by experiments. The order α with respect to the oxygen concentration can be obtained by measuring the oxygen adsorption rate by changing Xo (front) under the condition that the oxygen adsorption site concentration Y is constant. For equation (2)
If k ′ = k × Y β (7),
Oxygen adsorption rate = k 'x Xo (front) α (8)
It is expressed.
Taking the log of both sides,
log oxygen adsorption rate = logk '+ α x logXo (front) (9)
When y = intercept + gradient × x is plotted as the vertical axis log oxygen adsorption rate and the horizontal axis logXo (front), the order α is obtained from the slope.

βについても同様にして、流入酸素濃度を一定とした条件において、異なるYにおける酸素吸着速度を測定することによって求めることができる。
k"=k×X(front)α (10)とおくと、
酸素吸着速度=k”×Yβ (11)
と表される。
両辺対数を取ると、
log酸素吸着速度=logk”+β×Y (12)
縦軸log酸素吸着速度、横軸logYとしてプロットするとその傾きから次数βが求まる。
Similarly, β can be obtained by measuring the oxygen adsorption rate at different Y under the condition that the inflowing oxygen concentration is constant.
If k ″ = k × X (front) α (10),
Oxygen adsorption rate = k ″ × Y β (11)
It is expressed.
Taking the log of both sides,
log oxygen adsorption rate = logk ″ + β × Y (12)
When the vertical axis log oxygen adsorption rate and the horizontal axis logY are plotted, the order β is obtained from the slope.

また、酸素吸着サイト濃度Yの値の最大値は触媒の設計によって異なるので、予め測定しておく。測定方法は、例えば所定空燃比でエンジン1を運転し、触媒3の上流と下流の酸素濃度をモニタしながら運転を続ける。そして触媒3下流の酸素濃度が触媒3上流の酸素濃度と同じ値を示すまでの間式(1)を積分することで得ることができる。現在の酸素吸着サイト濃度Yの値は、現在までの期間で式(1)を積分し、現在までの積分値と最大値との差によって求めることができる。   In addition, the maximum value of the oxygen adsorption site concentration Y varies depending on the design of the catalyst, and is measured in advance. For example, the engine 1 is operated at a predetermined air-fuel ratio, and the operation is continued while monitoring the oxygen concentration upstream and downstream of the catalyst 3. And it can obtain by integrating Formula (1) until the oxygen concentration downstream of the catalyst 3 shows the same value as the oxygen concentration upstream of the catalyst 3. The current value of the oxygen adsorption site concentration Y can be obtained by integrating the equation (1) in the period up to the present and the difference between the integrated value up to the present and the maximum value.

(1)=(4)であるので、触媒3の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、酸素吸着速度と吸着酸素量との関数で表される式として、 Since (1) = (4), the equations represented by the functions of the oxygen adsorption rate and the adsorbed oxygen amount, respectively calculated using the oxygen concentration upstream and downstream of the catalyst 3 and the inflow gas amount,

Figure 0004348543
Figure 0004348543

が得られる。
y={Xo(front)−Xo(rear)} (14)
z=exp(−Ea/RT)×Xo(front)α/Qa (15)
x=Yβ (16)
とすると、
y=A×z×x (17)
となり、yとxのプロットの傾きから頻度因子Aを求めることができる。すなわち、{Xo(front)−Xo(rear)}とYβのプロットの傾きから頻度因子Aを求めることができる。
Is obtained.
y = {Xo (front) -Xo (rear)} (14)
z = exp (−Ea / RT) × Xo (front) α / Qa (15)
x = (16)
Then,
y = A * z * x (17)
Thus, the frequency factor A can be obtained from the slope of the y and x plots. That is, it is possible to determine the frequency factor A from the slope of a plot of {Xo (front) -Xo (rear )} and Y beta.

次に、排気ガスが還元雰囲気の場合について説明する。排気ガスが還元雰囲気の場合は、単位時間当たりの放出酸素量(酸素放出速度)は、
酸素放出速度=−{Xo(front)−Xo(rear)}×Qa (18)
で表すことができる。
一方、酸素放出に関する反応速度(酸素放出速度)は、速度定数k=A×exp(−Ea/RT)と還元剤濃度XRed(front)と酸素吸着濃度Oとに依存するので、
放出反応速度=A×exp(―Ea/RT)×XRed(front)γ×Oω (19)
で表すことができる。Oは式(18)を現在まで積分することで得られる。γ、ωは反応次数である。
Next, the case where the exhaust gas is in a reducing atmosphere will be described. When the exhaust gas is in a reducing atmosphere, the amount of released oxygen per unit time (oxygen release rate) is
Oxygen release rate = − {Xo (front) −Xo (rear)} × Qa (18)
Can be expressed as
On the other hand, the reaction rate for oxygen release (oxygen release rate) depends on the rate constant k = A × exp (−Ea / RT), the reducing agent concentration X Red (front), and the oxygen adsorption concentration O.
Release reaction rate = A × exp (−Ea / RT) × X Red (front) γ × O ω (19)
Can be expressed as O is obtained by integrating the equation (18) up to the present time. γ and ω are reaction orders.

(18)=(19)であるので、触媒3の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、放出酸素量と酸素放出速度との関数で表される式として、 Since (18) = (19), an expression expressed as a function of the amount of released oxygen and the rate of oxygen release calculated using the oxygen concentration upstream and downstream of the catalyst 3 and the amount of inflow gas, respectively,

Figure 0004348543
Figure 0004348543

が得られる。
この場合も、−{Xo(front)−Xo(rear)}とOωのプロットの傾きから頻度因子Aを求めることができる。
Is obtained.
In this case, - it can be obtained {Xo (front) -Xo (rear )} and O omega frequency factor A from the slope of a plot of.

次に、劣化判定方法について説明する。
上記関係式(13)、(20)より算出した頻度因子Aと実測の排気浄化率との関係をあらかじめ求めておき、このあらかじめ求めておいた頻度因子Aと排気浄化率との関係より、触媒3の劣化を判定する。
より具体的には、例えば排気が酸素雰囲気の場合は、図4に示したようにXo(front)−Xo(rear)と吸着サイト濃度Yの関係において、劣化触媒は正常触媒と比較して、頻度因子Aが小さい値を取ることから劣化を検出できる。すなわち、頻度因子Aと実測の排気浄化率との関係を基に、頻度因子Aの閾値を決めておき、式(13)から求められた頻度因子Aの値が閾値より小さい場合に、触媒は劣化していると判定する。
また、頻度因子Aと実測の排気浄化率との関係を基に、触媒の劣化度と頻度因子Aとの関係を図5のようにあらかじめ用意しておき、式(13)から求められた頻度因子Aの値より図5を用いて触媒の劣化度を検出してもよい。
Next, the deterioration determination method will be described.
The relationship between the frequency factor A calculated from the relational expressions (13) and (20) and the actually measured exhaust gas purification rate is obtained in advance, and the catalyst is determined from the relationship between the frequency factor A and the exhaust gas purification rate obtained in advance. 3 is determined.
More specifically, for example, when the exhaust gas is in an oxygen atmosphere, as shown in FIG. 4, in the relationship between Xo (front) -Xo (rear) and the adsorption site concentration Y, the deteriorated catalyst is compared with the normal catalyst. Since the frequency factor A takes a small value, deterioration can be detected. That is, based on the relationship between the frequency factor A and the actually measured exhaust purification rate, a threshold value of the frequency factor A is determined, and when the value of the frequency factor A obtained from the equation (13) is smaller than the threshold value, the catalyst Judge that it is deteriorated.
Further, based on the relationship between the frequency factor A and the actually measured exhaust purification rate, the relationship between the degree of deterioration of the catalyst and the frequency factor A is prepared in advance as shown in FIG. 5, and the frequency obtained from the equation (13). The degree of deterioration of the catalyst may be detected from the value of factor A using FIG.

なお、排気ガスが還元雰囲気の場合は、式(20)より、Xo(front)−Xo(rear)と酸素吸着濃度Oの関係において、劣化触媒は正常触媒と比較して、頻度因子Aが小さい値を取ることから、排気が酸素雰囲気の場合と同様に、触媒3の劣化あるいは劣化の度合いを検出できる。   In the case where the exhaust gas is in a reducing atmosphere, the frequency factor A is smaller for the deteriorated catalyst than for the normal catalyst in the relationship between Xo (front) -Xo (rear) and the oxygen adsorption concentration O from the equation (20). Since the value is taken, it is possible to detect the deterioration of the catalyst 3 or the degree of deterioration as in the case where the exhaust gas is in an oxygen atmosphere.

劣化判定のタイミングとしては、吸着サイト濃度Y、酸素吸着濃度Oを常に積算しておいて、触媒3中の酸素吸着量を常時モニタしている場合は、頻度因子Aを常時計算可能であるので、常時判定可能である。
あるいは、所定の酸素吸着量を設定し、吸着サイト濃度Yまたは酸素吸着濃度Oを所定値にするための前制御を行い、吸着サイト濃度Yまたは酸素吸着濃度Oが所定値に達した時の頻度因子Aを判定値とすることもできる。
また、あらかじめ吸着サイト濃度Yまたは酸素吸着濃度Oと頻度因子Aと触媒浄化率との関係をマップで持たせておいて、触媒浄化率の許容値以下の頻度因子Aが算出された場合は触媒劣化であると判定することもできる。
As the deterioration determination timing, if the adsorption site concentration Y and the oxygen adsorption concentration O are always integrated and the oxygen adsorption amount in the catalyst 3 is constantly monitored, the frequency factor A can be calculated at all times. , Can always be determined.
Alternatively, the frequency at which the adsorption site concentration Y or the oxygen adsorption concentration O reaches a predetermined value by setting a predetermined oxygen adsorption amount and performing pre-control for setting the adsorption site concentration Y or the oxygen adsorption concentration O to a predetermined value. Factor A can also be used as a judgment value.
Further, if the relationship between the adsorption site concentration Y or the oxygen adsorption concentration O, the frequency factor A, and the catalyst purification rate is given in advance in the map, and the frequency factor A that is less than the allowable value of the catalyst purification rate is calculated, the catalyst It can also be determined that the deterioration has occurred.

なお、上記説明では酸素センサ(空燃比センサ)41,42の出力電流値を酸素濃度値に変換したが、同一センサにおいては酸素濃度と電流値は比例関係であるので、酸素濃度に換算しないで直接電流値を使用して同様の判定を行うこともできる。この場合、式(13)、(20)の{Xo(front)−Xo(rear)}のかわりに、{電流値(front)−電流値(rear)}となり、頻度因子Aの絶対値は算出できないが、相対値として触媒劣化の検出が可能となる。   In the above description, the output current values of the oxygen sensors (air-fuel ratio sensors) 41 and 42 are converted into oxygen concentration values. However, in the same sensor, since the oxygen concentration and the current value are in a proportional relationship, they are not converted into oxygen concentrations. A similar determination can be made using the direct current value. In this case, instead of {Xo (front) −Xo (rear)} in the expressions (13) and (20), {current value (front) −current value (rear)} is obtained, and the absolute value of the frequency factor A is calculated. However, it is possible to detect catalyst deterioration as a relative value.

このように、本実施の形態では、触媒3の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、吸着酸素量と酸素吸着速度との関数で表される式、または触媒3の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、放出酸素量と酸素放出速度との関数で表される式、を用いて触媒3の劣化を検出するので、触媒3を構成する触媒貴金属と酸素吸着物質のうちの触媒貴金属だけが劣化したり剥離や脱落したりするなど、触媒貴金属および酸素吸着物質のどちらか一方だけが劣化した場合でも触媒劣化として検出することができる。   As described above, in the present embodiment, an equation represented by a function of the amount of adsorbed oxygen and the oxygen adsorption rate calculated using the upstream and downstream oxygen concentrations and the inflow gas amount of the catalyst 3, respectively, or the catalyst 3, the deterioration of the catalyst 3 is detected by using the expressions expressed by the functions of the released oxygen amount and the oxygen release rate, which are calculated using the upstream and downstream oxygen concentrations and the inflow gas amount, respectively. 3 Even if only one of the catalytic noble metal and oxygen adsorbing material deteriorates, such as the catalytic noble metal and oxygen adsorbing material of the catalyst 3 deteriorate or peel off or fall off, it is detected as catalyst deterioration. Can do.

すなわち、式(13)または式(20)で示される、触媒劣化を検出するのに用いる式が、吸着酸素量と酸素吸着速度との両方の関数または放出酸素量と酸素放出速度との両方の関数から成っているので、種々の要因で決定される触媒3の反応速度における、反応速度パラメータを分離して評価することが可能である。反応速度パラメータは触媒3の排気浄化性能を直接表すものであるので、例えば酸素吸着物質が健全であるが貴金属触媒だけが劣化したような場合でも、反応速度パラメータを評価するので排気浄化性能の劣化検出が可能である。また、吸着酸素量は酸素吸着速度または酸素放出速度を積分することで評価することができるので、酸素吸着物質の劣化も検出可能である。したがって、貴金属触媒および酸素吸着物質のどちらか一方だけが劣化した場合でも触媒劣化の検出が可能となる。   In other words, the equation used to detect catalyst degradation expressed by equation (13) or equation (20) is a function of both the amount of adsorbed oxygen and the oxygen adsorption rate or both the amount of released oxygen and the rate of oxygen release. Since it consists of functions, it is possible to separate and evaluate the reaction rate parameters in the reaction rate of the catalyst 3 determined by various factors. Since the reaction rate parameter directly represents the exhaust gas purification performance of the catalyst 3, for example, even when the oxygen adsorbing material is healthy but only the noble metal catalyst is deteriorated, the reaction rate parameter is evaluated, so that the exhaust gas purification performance is deteriorated. Detection is possible. Moreover, since the amount of adsorbed oxygen can be evaluated by integrating the oxygen adsorption rate or the oxygen release rate, it is possible to detect the deterioration of the oxygen adsorbing substance. Therefore, even when only one of the noble metal catalyst and the oxygen adsorbing material is deteriorated, the catalyst deterioration can be detected.

実施の形態2.
図6は本発明の実施の形態2による触媒劣化検出装置を説明するための図であり、より具体的には濃淡電池型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と吸着酸素濃度との関係を示す特性図である。なお、図6において、横軸は空燃比、縦軸は酸素濃度であり、上流側酸素濃度を表す直線と横軸との交点の空燃比が理論空燃比に相当する。
Embodiment 2. FIG.
FIG. 6 is a diagram for explaining a catalyst deterioration detection apparatus according to Embodiment 2 of the present invention. More specifically, oxygen concentration detection of upstream and downstream air-fuel ratio sensors when using a concentration cell type air-fuel ratio sensor. It is a characteristic view which shows the relationship between a value and adsorption oxygen concentration. In FIG. 6, the horizontal axis represents the air-fuel ratio, the vertical axis represents the oxygen concentration, and the air-fuel ratio at the intersection of the straight line representing the upstream oxygen concentration and the horizontal axis corresponds to the stoichiometric air-fuel ratio.

上記実施の形態1では酸素センサ(空燃比センサ)41,42としてジルコニア式の限界電流型のものを使用した場合について説明したが、本実施の形態では、ジルコニア式の濃淡電池型のものを使用する。他の構成は実施の形態1と同様であるので、以下では主に、実施の形態1との相違点について説明する。   In the first embodiment, the case where zirconia-type limiting current type sensors are used as the oxygen sensors (air-fuel ratio sensors) 41 and 42 has been described. However, in this embodiment, zirconia-type concentration cell type ones are used. To do. Since the other configuration is the same as that of the first embodiment, differences from the first embodiment will be mainly described below.

ジルコニア式の濃淡電池型酸素センサは、濃淡電池の原理で作動する。電池の電解質はジルコニアで形成され、電解質の両面に白金電極を有している。一方の電極が排気(測定ガス)と接し、他方の電極が酸素濃度一定の大気(参照ガス)と接している。両電極がそれぞれ酸素濃度の異なる雰囲気にさらされると、ネルンスト式で示される起電力を発生する。測定された起電力から理論式(21)によって酸素濃度が計算できる。なお、このような理論式は一般的に知られたものであり、例えば、刊行物(衣斐寛之、「ジルコニア式酸素計−固体電解質ではかる」、堀場テクニカルレポート、1994年3月、No.8、p.55)に記載されている。   The zirconia concentration cell type oxygen sensor operates on the principle of a concentration cell. The electrolyte of the battery is made of zirconia and has platinum electrodes on both sides of the electrolyte. One electrode is in contact with the exhaust gas (measurement gas), and the other electrode is in contact with the atmosphere (reference gas) having a constant oxygen concentration. When both electrodes are exposed to atmospheres having different oxygen concentrations, an electromotive force represented by the Nernst equation is generated. The oxygen concentration can be calculated from the measured electromotive force by the theoretical formula (21). In addition, such a theoretical formula is generally known. For example, in publications (Hiroyuki Kinoshita, “Zirconia Oxygen Meter-Solid Electrolyte”, Horiba Technical Report, March 1994, No. 8) P.55).

Figure 0004348543
Figure 0004348543

酸素センサ41,42として、濃淡電池型のものを用いた場合、図6に示すように、排気中に酸素が存在する理論空燃比からリーン運転でのみの測定が可能である。酸素センサ41,42によりリーン運転時に検出された酸素濃度を使用して、実施の形態1の場合と同様にして触媒劣化を検出することができ、実施の形態1と同様の効果が得られる。   When a concentration cell type is used as the oxygen sensors 41 and 42, as shown in FIG. 6, measurement can be performed only by lean operation from the stoichiometric air-fuel ratio where oxygen is present in the exhaust gas. Using the oxygen concentration detected during the lean operation by the oxygen sensors 41 and 42, catalyst deterioration can be detected in the same manner as in the first embodiment, and the same effect as in the first embodiment can be obtained.

なお、式(21)を用いて酸素センサ41,42の出力電圧値を酸素濃度値に変換したが、同一センサにおいては酸素濃度の対数と電圧値は比例関係であるので、酸素濃度に換算しないで直接電圧値を使用して同様の判定を行うこともできる。この場合、式(13)、(20)の{Xo(front)−Xo(rear)}のかわりに、{電圧値(front)−電圧値(rear)}となり、頻度因子Aの絶対値は算出できないが、相対値として触媒劣化の検出が可能となる。   Although the output voltage values of the oxygen sensors 41 and 42 are converted into oxygen concentration values using the equation (21), since the logarithm of the oxygen concentration and the voltage value are proportional to each other in the same sensor, they are not converted to the oxygen concentration. The same determination can be made using the voltage value directly. In this case, instead of {Xo (front) −Xo (rear)} in the equations (13) and (20), {voltage value (front) −voltage value (rear)} is obtained, and the absolute value of the frequency factor A is calculated. However, it is possible to detect catalyst deterioration as a relative value.

なお、上流側および下流側空燃比センサ(酸素センサ)41および42のいずれか一方に限界電流式、他方に濃淡電池式を使用してもよい。この場合もリーン運転でのみの測定が可能であり、リーン運転時に測定された酸素濃度を使用して、実施の形態1の場合と同様にして触媒劣化を検出することができ、実施の形態1と同様の効果が得られる。   A limiting current type may be used for one of the upstream and downstream air-fuel ratio sensors (oxygen sensors) 41 and 42, and a concentration cell type may be used for the other. In this case as well, measurement can be performed only in the lean operation, and catalyst deterioration can be detected in the same manner as in the first embodiment using the oxygen concentration measured during the lean operation. The same effect can be obtained.

本発明の実施の形態1による触媒劣化検出装置の全体構成を示す図である。It is a figure which shows the whole structure of the catalyst deterioration detection apparatus by Embodiment 1 of this invention. 本発明の実施の形態1に係り、限界電流型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と吸着酸素濃度との関係を示す特性図である。FIG. 5 is a characteristic diagram illustrating a relationship between the detected oxygen concentration values of the upstream and downstream air-fuel ratio sensors and the adsorbed oxygen concentration when the limit current type air-fuel ratio sensor is used according to the first embodiment of the present invention. 本発明の実施の形態1に係り、限界電流型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と放出酸素濃度との関係を示す特性図である。FIG. 6 is a characteristic diagram illustrating a relationship between the detected oxygen concentration values of the upstream and downstream air-fuel ratio sensors and the released oxygen concentration when the limit current type air-fuel ratio sensor is used according to the first embodiment of the present invention. 本発明の実施の形態1に係り、正常触媒と劣化触媒のそれぞれの頻度因子を説明する特性図である。FIG. 6 is a characteristic diagram illustrating frequency factors of a normal catalyst and a deteriorated catalyst according to the first embodiment of the present invention. 本発明の実施の形態1に係り、触媒劣化度と頻度因子Aとの関係を示す特性図である。FIG. 5 is a characteristic diagram illustrating a relationship between a catalyst deterioration degree and a frequency factor A according to the first embodiment of the present invention. 本発明の実施の形態2に係り、起電力型空燃比センサ使用時の上流側および下流側空燃比センサの酸素濃度検出値と吸着酸素濃度との関係を示す特性図である。FIG. 6 is a characteristic diagram illustrating a relationship between an oxygen concentration detection value and an adsorbed oxygen concentration of upstream and downstream air-fuel ratio sensors when using an electromotive force type air-fuel ratio sensor according to Embodiment 2 of the present invention.

符号の説明Explanation of symbols

1 エンジン、2 排気通路、3 触媒、41,42 酸素(空燃比)センサ、5 インジェクタ、6 エアフローメータ、7 電子制御ユニット。   1 engine, 2 exhaust passage, 3 catalyst, 41, 42 oxygen (air-fuel ratio) sensor, 5 injector, 6 air flow meter, 7 electronic control unit.

Claims (1)

内燃機関の排気通路に配置された排気浄化触媒の上流の酸素濃度を検出するために上記排気浄化触媒の上流側の排気通路に配置された上流側酸素センサと、
上記排気浄化触媒の下流の酸素濃度を検出するために上記排気浄化触媒の下流側の排気通路に配置された下流側酸素センサと、
上記排気浄化触媒の上流における酸素濃度を予め定めた値に設定する空燃比制御手段と、上記排気浄化触媒に流入するガス量を検出する流入ガス量検出手段と、
上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、酸素吸着速度の式、または上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、酸素放出速度の式、を用いて上記排気浄化触媒の劣化を検出する劣化検出手段とを備えた触媒劣化検出装置において、
上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、上記酸素吸着速度式は式(i)であり、上記排気浄化触媒の上流および下流の酸素濃度と流入ガス量とを用いてそれぞれ算出される、上記酸素放出速度式は式(ii)であり、式(i)または式(ii)より頻度因子Aを求め、あらかじめ求めておいた頻度因子Aと排気浄化触媒の排気浄化率との関係より、上記排気浄化触媒の劣化を検出することを特徴とす触媒劣化検出装置。
Figure 0004348543

ただし、
Xo(front)は排気浄化触媒の上流での酸素濃度、
Xo(rear)は排気浄化触媒の下流での酸素濃度、
Red(front)は排気浄化触媒の上流での還元剤濃度、
Qaは排気浄化触媒に流入するガス量、
Aは頻度因子、
Eaは排気浄化触媒の活性化エネルギー、
Rは気体定数、
Tは排気浄化触媒の温度、
Yは酸素吸着サイト濃度、
Oは酸素吸着濃度、
α,β,γ,ωは反応次数
である。
An upstream oxygen sensor disposed in the exhaust passage upstream of the exhaust purification catalyst for detecting an oxygen concentration upstream of the exhaust purification catalyst disposed in the exhaust passage of the internal combustion engine;
A downstream oxygen sensor disposed in an exhaust passage downstream of the exhaust purification catalyst for detecting an oxygen concentration downstream of the exhaust purification catalyst;
Air-fuel ratio control means for setting the oxygen concentration upstream of the exhaust purification catalyst to a predetermined value; inflow gas amount detection means for detecting the amount of gas flowing into the exhaust purification catalyst;
Using the oxygen adsorption rate equation calculated using the oxygen concentration and the inflow gas amount upstream and downstream of the exhaust purification catalyst, or the oxygen concentration and the inflow gas amount upstream and downstream of the exhaust purification catalyst, respectively. In a catalyst deterioration detection device comprising a deterioration detection means for detecting deterioration of the exhaust purification catalyst using an oxygen release rate equation calculated respectively.
Each of which is calculated using the upstream and downstream oxygen concentration and the inflow gas amount of the exhaust purification catalyst, wherein the oxygen adsorption rate is formula (i), the upstream and downstream oxygen concentration of the exhaust gas purifying catalyst each of which is calculated by using the gas amount, the formula of the oxygen release rate is an expression (ii), the formula (i) or seeking frequency factor a from the equation (ii), the frequency factor a was previously obtained and the relationship between the exhaust gas purification rate of the exhaust gas purifying catalyst, the catalyst deterioration detector you and detects the deterioration of the exhaust purification catalyst.
Figure 0004348543

However,
Xo (front) is the oxygen concentration upstream of the exhaust purification catalyst,
Xo (rear) is the oxygen concentration downstream of the exhaust purification catalyst,
X Red (front) is the reducing agent concentration upstream of the exhaust purification catalyst,
Qa is the amount of gas flowing into the exhaust purification catalyst,
A is a frequency factor,
Ea is the activation energy of the exhaust purification catalyst,
R is a gas constant,
T is the temperature of the exhaust purification catalyst,
Y is the oxygen adsorption site concentration,
O is the oxygen adsorption concentration,
α, β, γ, and ω are reaction orders.
JP2004243818A 2004-08-24 2004-08-24 Catalyst degradation detector Expired - Fee Related JP4348543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004243818A JP4348543B2 (en) 2004-08-24 2004-08-24 Catalyst degradation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004243818A JP4348543B2 (en) 2004-08-24 2004-08-24 Catalyst degradation detector

Publications (2)

Publication Number Publication Date
JP2006063807A JP2006063807A (en) 2006-03-09
JP4348543B2 true JP4348543B2 (en) 2009-10-21

Family

ID=36110517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004243818A Expired - Fee Related JP4348543B2 (en) 2004-08-24 2004-08-24 Catalyst degradation detector

Country Status (1)

Country Link
JP (1) JP4348543B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4449818B2 (en) 2005-05-16 2010-04-14 トヨタ自動車株式会社 Catalyst deterioration judgment device
US8148290B2 (en) 2006-06-27 2012-04-03 Basf Corporation Diesel exhaust treatment system catalyst monitoring
JP4756373B2 (en) * 2006-09-14 2011-08-24 トヨタ自動車株式会社 Exhaust gas state estimation device
US20120191288A1 (en) * 2011-01-21 2012-07-26 GM Global Technology Operations LLC On-board diagnostics system and method
US9261007B2 (en) 2011-10-24 2016-02-16 Toyota Jidosha Kabushiki Kaisha Catalyst-degradation detection device
JP2015112548A (en) * 2013-12-12 2015-06-22 株式会社キャタラー Material having oxygen storage/release capacity
JP2019209295A (en) * 2018-06-07 2019-12-12 ナブテスコ株式会社 Oxygen adsorption system

Also Published As

Publication number Publication date
JP2006063807A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US10184913B2 (en) Abnormality diagnosis system of a gas sensor
EP3029290B1 (en) Catalyst deterioration diagnosis system and catalyst deterioration diagnosis method
US8327620B2 (en) NOx sensor compensation
US20090242426A1 (en) Gas Sensor
EP3029292B1 (en) Catalyst deterioration diagnosis method
JP4894889B2 (en) NOX sensor correction method and NOX sensor
EP3441586A1 (en) Catalyst deterioration diagnosis method
US8131451B2 (en) Air-fuel ratio sensor and control apparatus for internal combustion engine
JP6794272B2 (en) Ammonia sensor calibration method
WO2012176280A1 (en) Malfunction detector for exhaust purifier
JP5093672B2 (en) NOx sensor deterioration determination control device and deterioration recovery control device
US11530665B2 (en) Deterioration determination apparatus for ammonia sensor
JP6421771B2 (en) Sulfur oxide detector
JP4348543B2 (en) Catalyst degradation detector
US8516795B2 (en) Exhaust gas sensor device, engine control device and method
US11808732B2 (en) Method for monitoring a gas sensor
JP2008169842A (en) STORAGE CONDITION ESTIMATING DEVICE FOR NOx STORAGE CATALYTIC CONVERTER
JP7057741B2 (en) Gas sensor diagnostic device
JP2005180419A (en) Sensor device for exhaust gas of internal combustion engine and method of operating the same
JP2010127091A (en) Deterioration detecting method of exhaust emission control catalyst
EP2378284B1 (en) Method of treatment of sensor element and sensor element
JP2009180150A (en) Abnormality determination device of nox sensor used for exhaust emission control system
JP4784445B2 (en) Exhaust temperature measuring device and exhaust temperature measuring method
JP2009150741A (en) Gas concentration detector
US20180188202A1 (en) NOx SENSOR WITH CATALYTIC FILTER AND POLARISATION

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090707

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees