JP2015112548A - Material having oxygen storage/release capacity - Google Patents
Material having oxygen storage/release capacity Download PDFInfo
- Publication number
- JP2015112548A JP2015112548A JP2013256741A JP2013256741A JP2015112548A JP 2015112548 A JP2015112548 A JP 2015112548A JP 2013256741 A JP2013256741 A JP 2013256741A JP 2013256741 A JP2013256741 A JP 2013256741A JP 2015112548 A JP2015112548 A JP 2015112548A
- Authority
- JP
- Japan
- Prior art keywords
- osc material
- catalyst
- hours
- osc
- rate constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Landscapes
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
本発明は、酸素吸蔵放出能(OSC)を有する材料(以下、「OSC材料」という)、特に、酸素放出速度定数が大きいOSC材料に関する。 The present invention relates to a material having an oxygen storage / release capability (OSC) (hereinafter referred to as “OSC material”), and more particularly to an OSC material having a large oxygen release rate constant.
エンジン等の内燃機関から排出される排気ガスには、炭化水素(HC)、一酸化炭素(CO)、窒素酸化物(NOx)等の有害な物質が含まれている。これらの物質は大気汚染の原因となるため、排気ガスを浄化することが必要とされる。 Exhaust gas discharged from an internal combustion engine such as an engine contains harmful substances such as hydrocarbons (HC), carbon monoxide (CO), and nitrogen oxides (NOx). Since these substances cause air pollution, it is necessary to purify the exhaust gas.
排気ガスを浄化するために、白金、パラジウム、ロジウム等の触媒金属が使用されている。ここで、排気ガスを効率的に浄化するためには、触媒金属の近傍における酸素の量を一定の範囲に制御することが有効である。この目的のため、触媒金属を担持する担体として、セリウム−ジルコニウム複合酸化物等のOSC材料が使用されている(例えば、特許文献1〜3)。
In order to purify the exhaust gas, catalytic metals such as platinum, palladium and rhodium are used. Here, in order to efficiently purify the exhaust gas, it is effective to control the amount of oxygen in the vicinity of the catalyst metal within a certain range. For this purpose, an OSC material such as a cerium-zirconium composite oxide is used as a carrier for supporting a catalytic metal (for example,
セリウム−ジルコニウム複合酸化物は、酸素過剰条件下においてセリウムが3価から4価へ酸化することによって酸素を吸蔵する。一方、酸素不足条件下ではセリウムが4価から3価へ還元することによって酸素を放出する。これにより、触媒金属の近傍における雰囲気変動を抑え、排気ガスを効率的に浄化することが可能となる。 The cerium-zirconium composite oxide occludes oxygen by oxidizing cerium from trivalent to tetravalent under oxygen-excess conditions. On the other hand, oxygen is released by reducing cerium from tetravalent to trivalent under oxygen-deficient conditions. Thereby, it is possible to suppress the atmospheric fluctuation in the vicinity of the catalytic metal and efficiently purify the exhaust gas.
現在、数多くのOSC材料が知られている。そのため、所望の目的を達成するためには、種々のOSC材料の中から最適なものを選択する必要がある。この選択の基準となるものは、一般的に、OSC材料におけるOSC発現温度及びOSC発現量である。これらの基準は新たなOCS材料を開発する際にも利用されており、所望の目的を達成できるように一定のOSC発現温度及びOSC発現量を有するOSC材料が開発されている。しかしながら、OSC発現温度及びOSC発現量の観点のみからでは、触媒金属の近傍における雰囲気変動を十分に抑制することは困難である。 A number of OSC materials are currently known. Therefore, in order to achieve a desired purpose, it is necessary to select an optimal one from various OSC materials. The standard for this selection is generally the OSC expression temperature and the OSC expression amount in the OSC material. These standards are also used when developing a new OCS material, and an OSC material having a certain OSC expression temperature and OSC expression amount has been developed so as to achieve a desired purpose. However, it is difficult to sufficiently suppress the atmospheric fluctuation in the vicinity of the catalyst metal only from the viewpoint of the OSC expression temperature and the OSC expression amount.
そのため、本発明は、触媒金属の近傍における雰囲気変動を十分に抑制することのできる新たなOSC材料を提供することを目的とする。 Therefore, an object of the present invention is to provide a new OSC material that can sufficiently suppress atmospheric fluctuation in the vicinity of the catalyst metal.
本発明者らが鋭意検討した結果、OSC発現速度の早いOSC材料を使用することによって、触媒金属の近傍における雰囲気変動を抑制できることを見出した。 As a result of intensive studies by the present inventors, it has been found that by using an OSC material having a high OSC expression rate, it is possible to suppress atmospheric fluctuation in the vicinity of the catalyst metal.
すなわち、本発明は以下を包含する。
[1]400℃での酸素放出速度定数が0.06sec−1以上である、酸素吸蔵放出能を有する材料。
[2]セリウムを含む、[1]に記載の材料。
[3]ジルコニウムを更に含む、[2]に記載の材料。
That is, the present invention includes the following.
[1] A material having an oxygen storage / release capability, wherein an oxygen release rate constant at 400 ° C. is 0.06 sec −1 or more.
[2] The material according to [1], containing cerium.
[3] The material according to [2], further comprising zirconium.
本発明によれば、酸素放出速度定数が大きいOSC材料を提供することができる。 According to the present invention, an OSC material having a large oxygen release rate constant can be provided.
<OSC材料>
本発明は、400℃での酸素放出速度定数が0.06sec−1以上であるOSC材料に関する。
<OSC material>
The present invention relates to an OSC material having an oxygen release rate constant at 400 ° C. of 0.06 sec −1 or more.
本明細書において「酸素放出速度定数」とは、OSC材料から酸素が放出される反応の速度を表すものである。酸素放出速度定数が大きいほど、OSC材料から酸素が放出されるまでにかかる時間が短くなる。一方、酸素放出速度定数が小さいほど、OSC材料から酸素が放出されるまでにかかる時間が長くなる。そのため、酸素放出速度定数が大きいOSC材料を使用することにより、雰囲気変動に迅速に対応することができる。 In this specification, the “oxygen release rate constant” represents the rate of reaction in which oxygen is released from the OSC material. The larger the oxygen release rate constant, the shorter the time taken for oxygen to be released from the OSC material. On the other hand, the smaller the oxygen release rate constant, the longer it takes to release oxygen from the OSC material. Therefore, by using an OSC material having a large oxygen release rate constant, it is possible to quickly cope with atmospheric fluctuations.
酸素放出速度定数が大きいほど迅速に雰囲気変動に対応することができるため、本発明に係るOSC材料の酸素放出速度定数は0.06sec−1以上であり、好ましくは0.1sec−1以上であり、より好ましくは0.5sec−1以上であり、更に好ましくは1sec−1以上であり、特に好ましくは2sec−1以上である。 Since the larger the oxygen release rate constant, the faster it can cope with the atmospheric fluctuation, the oxygen release rate constant of the OSC material according to the present invention is 0.06 sec −1 or more, preferably 0.1 sec −1 or more. , more preferably 0.5 sec -1, and even more preferably at 1 sec -1 or more, and particularly preferably a time of 2 sec -1 or more.
OSC材料の酸素放出速度定数の上限に特に制限はないが、例えば、10sec−1、8sec−1等を挙げることができる。 No particular limitation to the upper limit of the oxygen release rate constant OSC material, for example, may be mentioned 10 sec -1, the 8 sec -1, and the like.
酸素放出速度定数は本発明者らによって初めて見出されたものであり、以下の工程に従って決定することができる。 The oxygen release rate constant was found for the first time by the present inventors and can be determined according to the following steps.
(1)OSC材料に対して昇温還元(TPR)測定を行い、酸素放出のピークトップ温度(Tm)を測定する。 (1) Temperature-reduction (TPR) measurement is performed on the OSC material, and the peak top temperature (Tm) of oxygen release is measured.
(2)下記式(I):
2InTm−Inβ=E/RTm+In(E/ARP) (I)
[式中、βは昇温速度であり;Eは活性化エネルギーであり;Aは頻度因子であり;Pは水素の割合であり;Rは気体定数である]
に基づいて、E及びAを算出する。
(2) The following formula (I):
2InTm-Inβ = E / RTm + In (E / ARP) (I)
[Where β is the rate of temperature rise; E is the activation energy; A is the frequency factor; P is the percentage of hydrogen; R is the gas constant]
Based on the above, E and A are calculated.
(3)アレニウスの式:
k=Aexp(−E/RT)
に基づいて、400℃での速度定数を算出し、これをOSC材料の400℃での酸素放出速度定数とする。
(3) Arrhenius equation:
k = Aexp (−E / RT)
Based on the above, the rate constant at 400 ° C. is calculated, and this is set as the oxygen release rate constant at 400 ° C. of the OSC material.
より具体的には、以下の実施例において詳細に記載した方法に従って決定することができる。 More specifically, it can be determined according to the method described in detail in the following examples.
本発明に係るOSC材料は特別な成分を含んでいる必要はない。例えば、本発明に係るOSC材料は、セリア、セリウム−ジルコニウム複合酸化物、ニッケル酸化物等を含んでいることが好ましい。また、これらに加えて、ランタン、イットリウム、ネオジム、プラセオジウム等を含んでいてもよい。 The OSC material according to the present invention need not contain any special components. For example, the OSC material according to the present invention preferably contains ceria, cerium-zirconium composite oxide, nickel oxide and the like. In addition to these, lanthanum, yttrium, neodymium, praseodymium and the like may be included.
OSC材料がセリウム−ジルコニウム複合酸化物を含む場合、セリウムとジルコニウムとの重量比は特に限定されないが、例えば、90:5〜5:90等を挙げることができる。また、OSC材料におけるセリウムとジルコニウムとの合計の割合としては、例えば、70重量%以上、80重量%以上、90重量%以上、95重量%以上等を挙げることができる。 When the OSC material contains a cerium-zirconium composite oxide, the weight ratio of cerium and zirconium is not particularly limited, and examples thereof include 90: 5 to 5:90. Examples of the total ratio of cerium and zirconium in the OSC material include 70% by weight or more, 80% by weight or more, 90% by weight or more, and 95% by weight or more.
<排気ガス浄化用触媒>
上記OSC材料に触媒金属を担持することにより、触媒金属の近傍における雰囲気変動を抑制し、効率的に排気ガスを浄化することができる。また、触媒金属を担持したOSC材料を基材上に配置した排気ガス浄化用触媒の形態とすることにより、より効率的に排気ガスを浄化することができる。
<Exhaust gas purification catalyst>
By supporting the catalyst metal on the OSC material, it is possible to suppress the atmospheric fluctuation in the vicinity of the catalyst metal and efficiently purify the exhaust gas. Further, the exhaust gas can be purified more efficiently by adopting the form of an exhaust gas purification catalyst in which the OSC material carrying the catalyst metal is disposed on the substrate.
触媒金属としては、排気ガスを浄化するために一般的に使用されている金属を挙げることができる。例えば、貴金属、より具体的には、パラジウム、白金、ロジウム、イリジウム、ルテニウム等を挙げることができる。触媒金属は、1種を単独で使用してもよいし、2種以上を組み合わせて使用してもよい。 Examples of the catalyst metal include metals generally used for purifying exhaust gas. For example, noble metals, more specifically, palladium, platinum, rhodium, iridium, ruthenium and the like can be mentioned. A catalyst metal may be used individually by 1 type, and may be used in combination of 2 or more type.
基材としては、排気ガス浄化用触媒において一般的に使用されているものを挙げることができる。例えば、ストレートフロー型又はウォールフロー型のモノリス基材等を挙げることができる。基材の材質も特に限定されず、例えば、セラミック、炭化ケイ素、金属等の基材を挙げることができる。 Examples of the substrate include those commonly used in exhaust gas purification catalysts. For example, a straight flow type or wall flow type monolith substrate may be used. The material of the base material is not particularly limited, and examples thereof include base materials such as ceramic, silicon carbide, and metal.
例えば、図1及び図2に示すように、排気ガス浄化用触媒1を排気ガスの流路に配置することによって、排気ガスが当該触媒内を通過する。その際、排気ガスに含まれる有害な物質は、基材2上に配置された触媒金属担持OSC材料3によって浄化されて無害な物質に変換される。
For example, as shown in FIG. 1 and FIG. 2, the exhaust gas passes through the catalyst by disposing the exhaust
<OSC材料の製造方法>
本発明に係るOSC材料は、従来のOSC材料の製造方法とは異なる方法によって製造することができる。従来のOSC材料は、一般的には、当該材料の成分を含む溶液から当該成分を沈殿させ、これを焼成することによって製造される。一方、本発明に係るOSC材料は、例えば、従来の製造方法における焼成の前にOSC材料の成分を還元剤の存在下で加熱することによって製造することができる。具体的には、本発明に係るOSC材料の製造方法は、OSC材料の成分を還元剤の存在下で加熱する加熱工程、及び加熱工程で処理された成分を焼成する焼成工程を含む。このような工程を行うことにより、酸素放出速度定数が大きいOSC材料を製造することができる。
<Manufacturing method of OSC material>
The OSC material according to the present invention can be manufactured by a method different from the conventional OSC material manufacturing method. Conventional OSC materials are generally produced by precipitating the components from a solution containing the components of the materials and firing them. On the other hand, the OSC material according to the present invention can be produced, for example, by heating the components of the OSC material in the presence of a reducing agent before firing in the conventional production method. Specifically, the method for producing an OSC material according to the present invention includes a heating step of heating the components of the OSC material in the presence of a reducing agent, and a baking step of baking the components processed in the heating step. By performing such a process, an OSC material having a large oxygen release rate constant can be manufactured.
OSC材料の成分としては、例えば、セリウム、ジルコニウム、ニッケル、ランタン、イットリウム、ネオジム、プラセオジウム等を挙げることができる。 Examples of components of the OSC material include cerium, zirconium, nickel, lanthanum, yttrium, neodymium, and praseodymium.
還元剤としては、例えば、ヒドラジン、水素化ホウ素ナトリウム等を挙げることができる。 Examples of the reducing agent include hydrazine and sodium borohydride.
加熱工程において、還元剤に加えて、グルタミン酸水素ナトリウムを使用してもよい。グルタミン酸水素ナトリウムを使用することにより、OSC材料の酸素放出速度定数を更に大きくすることができる。 In the heating step, sodium hydrogen glutamate may be used in addition to the reducing agent. By using sodium hydrogen glutamate, the oxygen release rate constant of the OSC material can be further increased.
加熱工程における加熱温度は特に限定されないが、例えば、70〜100℃、80〜98℃、90〜95℃等を挙げることができる。 Although the heating temperature in a heating process is not specifically limited, For example, 70-100 degreeC, 80-98 degreeC, 90-95 degreeC etc. can be mentioned.
加熱工程における加熱時間は特に限定されないが、加熱時間を長くすることによって、OSC材料の酸素放出速度定数を更に大きくすることができる。例えば、0.25時間以上が好ましく、6時間以上がより好ましく、14時間以上が更に好ましく、24時間以上が特に好ましい。加熱時間の上限に特に制限はないが、例えば、96時間、72時間等を挙げることができる。 The heating time in the heating step is not particularly limited, but the oxygen release rate constant of the OSC material can be further increased by increasing the heating time. For example, it is preferably 0.25 hours or more, more preferably 6 hours or more, further preferably 14 hours or more, and particularly preferably 24 hours or more. Although there is no restriction | limiting in particular in the upper limit of heating time, For example, 96 hours, 72 hours, etc. can be mentioned.
焼成工程における焼成温度は特に限定されないが、例えば、600〜1000℃、700〜900℃等を挙げることができる。焼成時間は特に限定されないが、例えば、3〜7時間、4〜6時間等を挙げることができる。 Although the calcination temperature in a calcination process is not specifically limited, For example, 600-1000 degreeC, 700-900 degreeC etc. can be mentioned. Although baking time is not specifically limited, For example, 3 to 7 hours, 4 to 6 hours, etc. can be mentioned.
以下、実施例及び比較例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれに限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated in detail using an Example and a comparative example, the technical scope of this invention is not limited to this.
<酸素放出速度定数の測定方法>
昇温還元(TPR)装置:日本ベル株式会社製BELCAT
検出器:日本ベル株式会社製TCD
試料管:日本ベル株式会社製CAT−TPD−150−Q
サンプル量:0.1mg
<Measurement method of oxygen release rate constant>
Temperature reduction (TPR) device: BELCAT manufactured by Nippon Bell Co., Ltd.
Detector: Nippon Bell Co., Ltd. TCD
Sample tube: Nippon Bell Co., Ltd. CAT-TPD-150-Q
Sample amount: 0.1mg
(1)以下の実施例及び比較例で製造したOSC材料を乳鉢で10分間粉砕し、大気中120℃で12時間乾燥させる。乾燥させたOSC材料を0.1mg秤量し、試料管に入れ、図3に示すプログラムに従ってTPR測定を行う。 (1) The OSC materials produced in the following Examples and Comparative Examples are pulverized in a mortar for 10 minutes and dried at 120 ° C. in the atmosphere for 12 hours. 0.1 mg of the dried OSC material is weighed, put into a sample tube, and TPR measurement is performed according to the program shown in FIG.
(2)プログラムにおける前処理後に、各昇温速度(β=2、10、又は30℃/min)でのTCD(≒O2放出)ピークトップ温度(Tm)を測定する。 (2) After pre-processing in the program, the TCD (≈O 2 release) peak top temperature (Tm) at each rate of temperature increase (β = 2, 10, or 30 ° C./min) is measured.
(3)下記式(I):
2InTm−Inβ=E/RTm+In(E/ARP) (I)
[式中、βは昇温速度であり;Eは活性化エネルギーであり;Aは頻度因子であり;PはH2の割合(=0.05)であり;Rは気体定数である]
における左辺「2InTm−Inβ」を「1/Tm」に対してプロットし、直線を得る。
(3) The following formula (I):
2InTm-Inβ = E / RTm + In (E / ARP) (I)
[Wherein β is the heating rate; E is the activation energy; A is the frequency factor; P is the proportion of H 2 (= 0.05); R is the gas constant]
The left side of “2InTm−Inβ” is plotted against “1 / Tm” to obtain a straight line.
(4)得られた直線の傾きからEを算出し、切片からAを算出する(傾き=E/R;切片=In(E/ARP))。 (4) E is calculated from the slope of the obtained straight line, and A is calculated from the intercept (slope = E / R; intercept = In (E / ARP)).
(5)算出したE及びAをアレニウスの式に代入し、400℃での速度定数を算出する。算出した速度定数をOSC材料の400℃での酸素放出速度定数とする。 (5) The calculated E and A are substituted into the Arrhenius equation, and the rate constant at 400 ° C. is calculated. The calculated rate constant is defined as the oxygen release rate constant at 400 ° C. of the OSC material.
<式(I)の導出方法>
−dθ/dt=kθP (1)
[式中、θはO2の割合であり;tは時間であり;kは速度定数であり;PはH2の割合である]
β=dT/dt (2)
[式中、βは昇温速度であり;Tは温度である]
式(2)を式(1)に代入して、式(3):
−βdθ/dT=kθP (3)
を得る。
<Method for Deriving Formula (I)>
−dθ / dt = kθP (1)
[Wherein θ is the proportion of O 2 ; t is the time; k is the rate constant; P is the proportion of H 2 ]
β = dT / dt (2)
[Where β is the rate of temperature rise; T is the temperature]
Substituting equation (2) into equation (1), equation (3):
−βdθ / dT = kθP (3)
Get.
キャリアーガスの流速をFとし、生成した水の気相濃度をCとすると、式(4):
FC=kVsνmθP (4)
[式中、Vsνmは固体中の体積当たりの活性サイト数(=O)である]
が得られる。
When the flow rate of the carrier gas is F and the gas phase concentration of the generated water is C, the formula (4):
FC = kV s ν m θP (4)
[Wherein V s ν m is the number of active sites per volume in the solid (= O)]
Is obtained.
式(4)を変形し、式(5):
C=kVsνmθP/F (5)
を得る。式(5)におけるCが、Tの上昇によりどのように変化するかをTPRで測定する。Tが上昇するとkは大きくなるが、θは徐々に小さくなる。そこで、Cの濃度の極大値を与えるピーク温度を調べる。
Equation (4) is transformed into Equation (5):
C = kV s ν m θP / F (5)
Get. It is measured by TPR how C in the equation (5) changes as T increases. As T increases, k increases, but θ gradually decreases. Therefore, the peak temperature giving the maximum value of the C concentration is examined.
式(5)の両辺をTで微分し、0とおき、式(6)及び式(7):
dC/dT=VsνmP/Fd(kθ)/dT=0 (6)
d(kθ)/dT=0 (7)
を得る。アレニウスの式[k=Aexp(−E/RT)]及び式(3)を、式(7)に代入し、式(8)及び式(9):
d(kθ)/dT=dk/dTθ+kdθ/dT=
A(−E/R)exp(−E/RT)(−1/T2)θ−kkθP/β=
kθ(E/RT2−kP/β)=0 (8)
E/RT2=kP/β (9)
を得る。これを変形して(対数をとり)、式(I):
2InTm−Inβ=E/RTm+In(E/ARP) (I)
[式中、Tmはピークトップ温度である]
を得る。式(I)の導出方法としては、R.J.CVETANOVIC及びY.AMENOMIYA著、「Application of a Temperature−Programmed Desorption Technique to Catalyst Studies」、Advances in Catalysis、1967年、第17巻、第103〜149頁も参照されたい。
Differentiate both sides of Equation (5) by T, place it at 0, and then Equation (6) and Equation (7):
dC / dT = V s ν m P / Fd (kθ) / dT = 0 (6)
d (kθ) / dT = 0 (7)
Get. Substituting Arrhenius equation [k = Aexp (−E / RT)] and equation (3) into equation (7), equations (8) and (9):
d (kθ) / dT = dk / dTθ + kdθ / dT =
A (−E / R) exp (−E / RT) (− 1 / T 2 ) θ−kkθP / β =
kθ (E / RT 2 −kP / β) = 0 (8)
E / RT 2 = kP / β (9)
Get. This is transformed (logarithmically taken) to obtain the formula (I):
2InTm-Inβ = E / RTm + In (E / ARP) (I)
[Where Tm is the peak top temperature]
Get. As a method for deriving formula (I), R.I. J. et al. CVETANOVIC and Y.C. See also AMENAMIYA, "Application of a Temperature-Programmed Deposition Technology Techniques to Catalyst Studies", Advances in Catalysis, 1967, pp. 103-149.
<触媒金属担持OSC材料の製造>
[実施例1]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(200g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(550g:ZrO2として10重量%)、硝酸ランタン溶液(20g:La2O3として10重量%)、硝酸イットリウム溶液(30g:Y2O3として10重量%)、及びPVP K−30(0.1g)を添加し、攪拌して混合溶液を調製した。混合溶液を90〜95℃に加熱した後、尿素をpHが11となるまで添加し、共沈物を得た。これに、ヒドラジン(26g)及びL−グルタミン酸水素ナトリウム−水和物(12g)を添加し、90〜95℃で24時間攪拌した。得られた共沈物をろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Y複合酸化物(以下、「OSC材料a」という)(100g)を得た。
<Manufacture of catalytic metal-supported OSC material>
[Example 1]
(1) In ion-exchanged water (1300 ml), a cerium nitrate solution (200 g: 20% by weight as CeO 2 ), a zirconium oxynitrate solution (550 g: 10% by weight as ZrO 2 ), a lanthanum nitrate solution (20 g: as La 2 O 3) 10 wt%), an yttrium nitrate solution (30 g: 10 wt% as Y 2 O 3 ), and PVP K-30 (0.1 g) were added and stirred to prepare a mixed solution. After the mixed solution was heated to 90 to 95 ° C., urea was added until the pH was 11 to obtain a coprecipitate. To this was added hydrazine (26 g) and sodium hydrogen L-glutamate-hydrate (12 g), and the mixture was stirred at 90 to 95 ° C. for 24 hours. The obtained coprecipitate was filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Y complex oxide (henceforth "OSC material a") (100g).
上記の酸素放出速度定数の測定方法に従って、OSC材料aの酸素放出速度定数を決定した。OSC材料aの400℃での酸素放出速度定数は2.412sec−1であった。 The oxygen release rate constant of the OSC material a was determined according to the above oxygen release rate constant measurement method. The oxygen release rate constant of the OSC material a at 400 ° C. was 2.412 sec −1 .
(2)OSC材料a(49.5g)をイオン交換水(400ml)に分散させ、これに硝酸パラジウム溶液(10g:Pdとして5重量%)を投入し、OSC材料aに吸着担持させた。次に、吸引ろ過で水溶液を除去し、ろ液を誘電結合プラズマ(ICP)発光分光法で分析したところ、Pdの担持効率は100%であった。得られたPd担持粉末を110℃で12時間乾燥した後、大気中500℃で焼成し、Pd担持触媒(以下、「触媒a」という)を得た。触媒aを圧粉成型し、粉砕して、粒度を0.5〜1.0mmのペレット状に整粒した触媒(以下、「触媒A」という)(10g)を得た。 (2) OSC material a (49.5 g) was dispersed in ion-exchanged water (400 ml), and a palladium nitrate solution (10 g: 5 wt% as Pd) was added thereto, and adsorbed and supported on OSC material a. Next, the aqueous solution was removed by suction filtration, and the filtrate was analyzed by dielectric coupled plasma (ICP) emission spectroscopy. As a result, the loading efficiency of Pd was 100%. The obtained Pd-supported powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. in the atmosphere to obtain a Pd-supported catalyst (hereinafter referred to as “catalyst a”). The catalyst a was compacted and pulverized to obtain a catalyst (hereinafter referred to as “catalyst A”) (10 g) having a particle size of 0.5 to 1.0 mm.
[実施例2]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から14時間に変更したこと以外は実施例1と同様にOSC材料(以下、「OSC材料b」という)(100g)を製造した。
OSC材料bの400℃での酸素放出速度定数は2.172sec−1であった。
[Example 2]
(1) An OSC material (hereinafter referred to as “OSC material b”) (100 g) was added in the same manner as in Example 1 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 14 hours. Manufactured.
The oxygen release rate constant of the OSC material b at 400 ° C. was 2.172 sec −1 .
(2)OSC材料aの代わりにOSC材料bを使用したこと以外は実施例1と同様に触媒(以下、「触媒B」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst B”) (10 g) was produced in the same manner as in Example 1 except that the OSC material b was used instead of the OSC material a.
[実施例3]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から6時間に変更したこと以外は実施例1と同様にOSC材料(以下、「OSC材料c」という)(100g)を製造した。
OSC材料cの400℃での酸素放出速度定数は1.376sec−1であった。
[Example 3]
(1) An OSC material (hereinafter referred to as “OSC material c”) (100 g) was used in the same manner as in Example 1 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 6 hours. Manufactured.
The oxygen release rate constant of the OSC material c at 400 ° C. was 1.376 sec −1 .
(2)OSC材料aの代わりにOSC材料cを使用したこと以外は実施例1と同様に触媒(以下、「触媒C」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst C”) (10 g) was produced in the same manner as in Example 1 except that the OSC material c was used instead of the OSC material a.
[実施例4]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から0.25時間に変更したこと以外は実施例1と同様にOSC材料(以下、「OSC材料d」という)(100g)を製造した。
OSC材料dの400℃での酸素放出速度定数は0.471sec−1であった。
[Example 4]
(1) OSC material (hereinafter referred to as “OSC material d”) (100 g) as in Example 1 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 0.25 hour. ) Was manufactured.
The oxygen release rate constant of the OSC material d at 400 ° C. was 0.471 sec −1 .
(2)OSC材料aの代わりにOSC材料dを使用したこと以外は実施例1と同様に触媒(以下、「触媒D」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst D”) (10 g) was produced in the same manner as in Example 1 except that the OSC material d was used instead of the OSC material a.
[実施例5]
(1)L−グルタミン酸水素ナトリウム−水和物を使用しなかったこと以外は実施例4と同様にOSC材料(以下、「OSC材料e」という)(100g)を製造した。
OSC材料eの400℃での酸素放出速度定数は0.067sec−1であった。
[Example 5]
(1) An OSC material (hereinafter referred to as “OSC material e”) (100 g) was produced in the same manner as in Example 4 except that sodium L-glutamate sodium hydrate was not used.
The oxygen release rate constant of the OSC material e at 400 ° C. was 0.067 sec −1 .
(2)OSC材料aの代わりにOSC材料eを使用したこと以外は実施例1と同様に触媒(以下、「触媒E」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst E”) (10 g) was produced in the same manner as in Example 1 except that the OSC material e was used instead of the OSC material a.
[比較例1]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(200g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(550g:ZrO2として10重量%)、硝酸ランタン溶液(20g:La2O3として10重量%)、及び硝酸イットリウム溶液(30g:Y2O3として10重量%)を添加し、攪拌して混合溶液を調製した。次に、混合溶液に別途調製したアンモニア水溶液(25重量%)を室温下でpHが12となるまで添加し、共沈物を得た。共沈物を80〜90℃で120分間攪拌し、ろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Y複合酸化物(以下、「OSC材料f」という)(100g)を得た。
OSC材料fの400℃での酸素放出速度定数は0.014sec−1であった。
[Comparative Example 1]
(1) In ion-exchanged water (1300 ml), a cerium nitrate solution (200 g: 20% by weight as CeO 2 ), a zirconium oxynitrate solution (550 g: 10% by weight as ZrO 2 ), a lanthanum nitrate solution (20 g: as La 2 O 3) 10 wt%) and an yttrium nitrate solution (30 g: 10 wt% as Y 2 O 3 ) were added and stirred to prepare a mixed solution. Next, an aqueous ammonia solution (25% by weight) prepared separately was added to the mixed solution at room temperature until the pH was 12, thereby obtaining a coprecipitate. The coprecipitate was stirred at 80-90 ° C. for 120 minutes, filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Y complex oxide (henceforth "OSC material f") (100g).
The oxygen release rate constant of the OSC material f at 400 ° C. was 0.014 sec −1 .
(2)OSC材料aの代わりにOSC材料fを使用したこと以外は実施例1と同様に触媒(以下、「触媒F」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst F”) (10 g) was produced in the same manner as in Example 1 except that the OSC material f was used instead of the OSC material a.
[実施例6]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(50g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(750g:ZrO2として10重量%)、硝酸ランタン溶液(50g:La2O3として10重量%)、硝酸ネオジム溶液(50g:Nd2O3として10重量%)、硝酸イットリウム溶液(50g:Y2O3として10重量%)、及びPVP K−30(0.1g)を添加し、攪拌して混合溶液を調製した。混合溶液を90〜95℃に加熱した後、尿素をpHが11となるまで添加し、共沈物を得た。これに、ヒドラジン(12g)及びL−グルタミン酸水素ナトリウム−水和物(12g)を添加し、90〜95℃で24時間攪拌した。得られた共沈物をろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Nd−Y複合酸化物(以下、「OSC材料g」という)(100g)を得た。
OSC材料gの400℃での酸素放出速度定数は2.710sec−1であった。
[Example 6]
(1) A cerium nitrate solution (50 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (750 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (50 g: La 2 O 3 ) in ion-exchanged water (1300 ml) 10 wt%), neodymium nitrate solution (50 g: 10 wt% as Nd 2 O 3), yttrium nitrate solution (50g: Y 2 O 3 as a 10 wt%), and PVP K-30 a (0.1 g) was added The mixed solution was prepared by stirring. After the mixed solution was heated to 90 to 95 ° C., urea was added until the pH was 11 to obtain a coprecipitate. To this was added hydrazine (12 g) and sodium hydrogen L-glutamate-hydrate (12 g), and the mixture was stirred at 90 to 95 ° C. for 24 hours. The obtained coprecipitate was filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Nd-Y complex oxide (henceforth "OSC material g") (100g).
The oxygen release rate constant of the OSC material g at 400 ° C. was 2.710 sec −1 .
(2)OSC材料g(49.7g)をイオン交換水(400ml)に分散させ、これに硝酸ロジウム溶液(6g:Rhとして5重量%)を投入し、OSC材料gに吸着担持させた。次に、吸引ろ過で水溶液を除去し、ろ液をICP発光分光法で分析したところ、Rhの担持効率は100%であった。得られたRh担持粉末を110℃で12時間乾燥した後、大気中500℃で焼成し、Rh担持触媒(以下、「触媒g」という)を得た。触媒gを圧粉成型し、粉砕して、粒度を0.5〜1.0mmのペレット状に整粒した触媒(以下、「触媒G」という)(10g)を得た。 (2) The OSC material g (49.7 g) was dispersed in ion-exchanged water (400 ml), and a rhodium nitrate solution (6 g: 5% by weight as Rh) was added thereto and adsorbed and supported on the OSC material g. Next, the aqueous solution was removed by suction filtration, and the filtrate was analyzed by ICP emission spectroscopy. As a result, the loading efficiency of Rh was 100%. The obtained Rh-supported powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. in the atmosphere to obtain an Rh-supported catalyst (hereinafter referred to as “catalyst g”). The catalyst g was compacted and pulverized to obtain a catalyst (hereinafter referred to as “catalyst G”) (10 g) having a particle size of 0.5 to 1.0 mm.
[実施例7]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から6時間に変更したこと以外は実施例6と同様にOSC材料(以下、「OSC材料h」という)(100g)を製造した。
OSC材料hの400℃での酸素放出速度定数は1.541sec−1であった。
[Example 7]
(1) An OSC material (hereinafter referred to as “OSC material h”) (100 g) was obtained in the same manner as in Example 6 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 6 hours. Manufactured.
The oxygen release rate constant of the OSC material h at 400 ° C. was 1.541 sec −1 .
(2)OSC材料gの代わりにOSC材料hを使用したこと以外は実施例6と同様に触媒(以下、「触媒H」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst H”) (10 g) was produced in the same manner as in Example 6 except that the OSC material h was used instead of the OSC material g.
[実施例8]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から0.25時間に変更し、且つL−グルタミン酸水素ナトリウム−水和物を使用しなかったこと以外は実施例6と同様にOSC材料(以下、「OSC材料i」という)(100g)を製造した。
OSC材料iの400℃での酸素放出速度定数は0.081sec−1であった。
[Example 8]
(1) Example 6 with the exception that the stirring time at 90-95 ° C. in the presence of hydrazine was changed from 24 hours to 0.25 hours, and no sodium L-glutamate-hydrate was used. Similarly, an OSC material (hereinafter referred to as “OSC material i”) (100 g) was produced.
The oxygen release rate constant of the OSC material i at 400 ° C. was 0.081 sec −1 .
(2)OSC材料gの代わりにOSC材料iを使用したこと以外は実施例6と同様に触媒(以下、「触媒I」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst I”) (10 g) was produced in the same manner as in Example 6 except that OSC material i was used instead of OSC material g.
[比較例2]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(50g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(750g:ZrO2として10重量%)、硝酸ランタン溶液(50g:La2O3として10重量%)、硝酸ネオジム溶液(50g:Nd2O3として10重量%)、及び硝酸イットリウム溶液(50g:Y2O3として10重量%)を添加し、攪拌して混合溶液を調製した。次に、混合溶液に別途調製したアンモニア水溶液(25重量%)を室温下でpHが12となるまで添加し、共沈物を得た。共沈物を80〜90℃で120分間攪拌し、ろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Nd−Y複合酸化物(以下、「OSC材料j」という)(100g)を得た。
OSC材料jの400℃での酸素放出速度定数は0.029sec−1であった。
[Comparative Example 2]
(1) A cerium nitrate solution (50 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (750 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (50 g: La 2 O 3 ) in ion-exchanged water (1300 ml) 10 wt%), a neodymium nitrate solution (50 g: 10 wt% as Nd 2 O 3 ), and an yttrium nitrate solution (50 g: 10 wt% as Y 2 O 3 ) were added and stirred to prepare a mixed solution. Next, an aqueous ammonia solution (25% by weight) prepared separately was added to the mixed solution at room temperature until the pH was 12, thereby obtaining a coprecipitate. The coprecipitate was stirred at 80-90 ° C. for 120 minutes, filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Nd-Y complex oxide (henceforth "OSC material j") (100g).
The oxygen release rate constant of the OSC material j at 400 ° C. was 0.029 sec −1 .
(2)OSC材料gの代わりにOSC材料jを使用したこと以外は実施例6と同様に触媒(以下、「触媒J」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst J”) (10 g) was produced in the same manner as in Example 6 except that OSC material j was used instead of OSC material g.
[実施例9]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(350g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(200g:ZrO2として10重量%)、硝酸ランタン溶液(20g:La2O3として10重量%)、硝酸ネオジム溶液(30g:Nd2O3として10重量%)、硝酸プラセオジウム溶液(50g:Pr6O11として10重量%)、及びPVP K−30(0.1g)を添加し、攪拌して混合溶液を調製した。混合溶液を90〜95℃に加熱した後、尿素をpHが11となるまで添加し、共沈物を得た。これに、ヒドラジン(35g)及びL−グルタミン酸水素ナトリウム−水和物(12g)を添加し、90〜95℃で24時間攪拌した。得られた共沈物をろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Nd−Pr複合酸化物(以下、「OSC材料k」という)(100g)を得た。
OSC材料kの400℃での酸素放出速度定数は2.201sec−1であった。
[Example 9]
(1) A cerium nitrate solution (350 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (200 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (20 g: La 2 O 3 ) in ion-exchanged water (1300 ml) 10 wt%), neodymium nitrate solution (30 g: 10 wt% as Nd 2 O 3), praseodymium nitrate solution (50 g: 10% by weight Pr 6 O 11), and PVP K-30 a (0.1 g) was added The mixed solution was prepared by stirring. After the mixed solution was heated to 90 to 95 ° C., urea was added until the pH was 11 to obtain a coprecipitate. To this was added hydrazine (35 g) and sodium hydrogen L-glutamate-hydrate (12 g), and the mixture was stirred at 90 to 95 ° C. for 24 hours. The obtained coprecipitate was filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Nd-Pr complex oxide (henceforth "OSC material k") (100g).
The oxygen release rate constant of the OSC material k at 400 ° C. was 2.201 sec −1 .
(2)OSC材料k(49.55g)をイオン交換水(400ml)に分散させ、これにジニトロジアミン白金硝酸溶液(9g:Ptとして5重量%)を投入し、OSC材料kに吸着担持させた。次に、吸引ろ過で水溶液を除去し、ろ液をICP発光分光法で分析したところ、Ptの担持効率は100%であった。得られたPt担持粉末を110℃で12時間乾燥した後、大気中500℃で焼成し、Pt担持触媒(以下、「触媒k」という)を得た。触媒kを圧粉成型し、粉砕して、粒度を0.5〜1.0mmのペレット状に整粒した触媒(以下、「触媒K」という)(10g)を得た。 (2) OSC material k (49.55 g) was dispersed in ion-exchanged water (400 ml), and a dinitrodiamine platinum nitric acid solution (9 g: 5 wt% as Pt) was added thereto, and adsorbed and supported on OSC material k. . Next, the aqueous solution was removed by suction filtration, and the filtrate was analyzed by ICP emission spectroscopy. As a result, the loading efficiency of Pt was 100%. The obtained Pt-supported powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. in the atmosphere to obtain a Pt-supported catalyst (hereinafter referred to as “catalyst k”). The catalyst k was compacted and pulverized to obtain a catalyst (hereinafter referred to as “catalyst K”) (10 g) having a particle size of 0.5 to 1.0 mm.
[実施例10]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から6時間に変更したこと以外は実施例9と同様にOSC材料(以下、「OSC材料l」という)(100g)を製造した。
OSC材料lの400℃での酸素放出速度定数は1.213sec−1であった。
[Example 10]
(1) An OSC material (hereinafter referred to as “
The oxygen release rate constant of the
(2)OSC材料kの代わりにOSC材料lを使用したこと以外は実施例9と同様に触媒(以下、「触媒L」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst L”) (10 g) was produced in the same manner as in Example 9 except that the OSC material l was used instead of the OSC material k.
[実施例11]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から0.25時間に変更し、且つL−グルタミン酸水素ナトリウム−水和物を使用しなかったこと以外は実施例9と同様にOSC材料(以下、「OSC材料m」という)(100g)を製造した。
OSC材料mの400℃での酸素放出速度定数は0.064sec−1であった。
[Example 11]
(1) Example 9 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 0.25 hours, and no sodium L-glutamate-hydrate was used. Similarly, an OSC material (hereinafter referred to as “OSC material m”) (100 g) was produced.
The oxygen release rate constant of the OSC material m at 400 ° C. was 0.064 sec −1 .
(2)OSC材料kの代わりにOSC材料mを使用したこと以外は実施例9と同様に触媒(以下、「触媒M」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst M”) (10 g) was produced in the same manner as in Example 9 except that the OSC material m was used instead of the OSC material k.
[比較例3]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(350g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(200g:ZrO2として10重量%)、硝酸ランタン溶液(20g:La2O3として10重量%)、硝酸ネオジム溶液(30g:Nd2O3として10重量%)、及び硝酸プラセオジウム溶液(50g:Pr6O11として10重量%)を添加し、攪拌して混合溶液を調製した。次に、混合溶液に別途調製したアンモニア水溶液(25重量%)を室温下でpHが12となるまで添加し、共沈物を得た。共沈物を80〜90℃で120分間攪拌し、ろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La−Nd−Pr複合酸化物(以下、「OSC材料n」という)(100g)を得た。
OSC材料nの400℃での酸素放出速度定数は0.011sec−1であった。
[Comparative Example 3]
(1) A cerium nitrate solution (350 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (200 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (20 g: La 2 O 3 ) in ion-exchanged water (1300 ml) 10 wt%), neodymium nitrate solution (30 g: 10 wt% as Nd 2 O 3 ), and praseodymium nitrate solution (50 g: 10 wt% as Pr 6 O 11 ) were added and stirred to prepare a mixed solution. Next, an aqueous ammonia solution (25% by weight) prepared separately was added to the mixed solution at room temperature until the pH was 12, thereby obtaining a coprecipitate. The coprecipitate was stirred at 80-90 ° C. for 120 minutes, filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La-Nd-Pr complex oxide (henceforth "OSC material n") (100g).
The oxygen release rate constant of the OSC material n at 400 ° C. was 0.011 sec −1 .
(2)OSC材料kの代わりにOSC材料nを使用したこと以外は実施例9と同様に触媒(以下、「触媒N」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst N”) (10 g) was produced in the same manner as in Example 9 except that OSC material n was used instead of OSC material k.
[実施例12]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(25g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(900g:ZrO2として10重量%)、硝酸ネオジム溶液(50g:Nd2O3として10重量%)、及びPVP K−30(0.1g)を添加し、攪拌して混合溶液を調製した。混合溶液を90〜95℃に加熱した後、尿素をpHが11となるまで添加し、共沈物を得た。これに、ヒドラジン(5g)及びL−グルタミン酸水素ナトリウム−水和物(12g)を添加し、90〜95℃で24時間攪拌した。得られた共沈物をろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−Nd複合酸化物(以下、「OSC材料o」という)(100g)を得た。
OSC材料oの400℃での酸素放出速度定数は2.589sec−1であった。
[Example 12]
(1) In ion-exchanged water (1300 ml), a cerium nitrate solution (25 g: 20% by weight as CeO 2 ), a zirconium oxynitrate solution (900 g: 10% by weight as ZrO 2 ), a neodymium nitrate solution (50 g: as Nd 2 O 3) 10 wt%) and PVP K-30 (0.1 g) were added and stirred to prepare a mixed solution. After the mixed solution was heated to 90 to 95 ° C., urea was added until the pH was 11 to obtain a coprecipitate. To this was added hydrazine (5 g) and sodium hydrogen L-glutamate-hydrate (12 g), and the mixture was stirred at 90 to 95 ° C. for 24 hours. The obtained coprecipitate was filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-Nd complex oxide (henceforth "OSC material o") (100g).
The oxygen release rate constant of the OSC material o at 400 ° C. was 2.589 sec −1 .
(2)OSC材料o(49.85g)をイオン交換水(400ml)に分散させ、これに硝酸ロジウム溶液(3g:Rhとして5重量%)を投入し、OSC材料oに吸着担持させた。次に、吸引ろ過で水溶液を除去し、ろ液をICP発光分光法で分析したところ、Rhの担持効率は100%であった。得られたRh担持粉末を110℃で12時間乾燥した後、大気中500℃で焼成し、Rh担持触媒(以下、「触媒o」という)を得た。触媒oを圧粉成型し、粉砕して、粒度を0.5〜1.0mmのペレット状に整粒した触媒(以下、「触媒O」という)(10g)を得た。 (2) The OSC material o (49.85 g) was dispersed in ion-exchanged water (400 ml), and a rhodium nitrate solution (3 g: 5% by weight as Rh) was added thereto and adsorbed and supported on the OSC material o. Next, the aqueous solution was removed by suction filtration, and the filtrate was analyzed by ICP emission spectroscopy. As a result, the loading efficiency of Rh was 100%. The obtained Rh-supported powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. in the atmosphere to obtain an Rh-supported catalyst (hereinafter referred to as “catalyst o”). The catalyst o was compacted and pulverized to obtain a catalyst (hereinafter referred to as “catalyst O”) (10 g) having a particle size of 0.5 to 1.0 mm.
[実施例13]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から6時間に変更したこと以外は実施例12と同様にOSC材料(以下、「OSC材料p」という)(100g)を製造した。
OSC材料pの400℃での酸素放出速度定数は1.459sec−1であった。
[Example 13]
(1) An OSC material (hereinafter referred to as “OSC material p”) (100 g) was used in the same manner as in Example 12 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 6 hours. Manufactured.
The oxygen release rate constant of the OSC material p at 400 ° C. was 1.459 sec −1 .
(2)OSC材料oの代わりにOSC材料pを使用したこと以外は実施例12と同様に触媒(以下、「触媒P」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst P”) (10 g) was produced in the same manner as in Example 12 except that the OSC material p was used instead of the OSC material o.
[実施例14]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から0.25時間に変更し、且つL−グルタミン酸水素ナトリウム−水和物を使用しなかったこと以外は実施例12と同様にOSC材料(以下、「OSC材料q」という)(100g)を製造した。
OSC材料qの400℃での酸素放出速度定数は0.074sec−1であった。
[Example 14]
(1) Example 12 with the exception that the stirring time at 90-95 ° C. in the presence of hydrazine was changed from 24 hours to 0.25 hours and that no sodium L-glutamate-hydrate was used. Similarly, an OSC material (hereinafter referred to as “OSC material q”) (100 g) was produced.
The oxygen release rate constant of the OSC material q at 400 ° C. was 0.074 sec −1 .
(2)OSC材料oの代わりにOSC材料qを使用したこと以外は実施例12と同様に触媒(以下、「触媒Q」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst Q”) (10 g) was produced in the same manner as in Example 12 except that the OSC material q was used instead of the OSC material o.
[比較例4]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(25g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(900g:ZrO2として10重量%)、及び硝酸ネオジム溶液(50g:Nd2O3として10重量%)を添加し、攪拌して混合溶液を調製した。次に、混合溶液に別途調製したアンモニア水溶液(25重量%)を室温下でpHが12となるまで添加し、共沈物を得た。共沈物を80〜90℃で120分間攪拌し、ろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−Nd複合酸化物(以下、「OSC材料r」という)(100g)を得た。
OSC材料rの400℃での酸素放出速度定数は0.023sec−1であった。
[Comparative Example 4]
(1) A cerium nitrate solution (25 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (900 g: 10 wt% as ZrO 2 ), and a neodymium nitrate solution (50 g: Nd 2 O 3 ) in ion-exchanged water (1300 ml) As 10% by weight) and stirred to prepare a mixed solution. Next, an aqueous ammonia solution (25% by weight) prepared separately was added to the mixed solution at room temperature until the pH was 12, thereby obtaining a coprecipitate. The coprecipitate was stirred at 80-90 ° C. for 120 minutes, filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-Nd complex oxide (henceforth "OSC material r") (100g).
The oxygen release rate constant of the OSC material r at 400 ° C. was 0.023 sec −1 .
(2)OSC材料oの代わりにOSC材料rを使用したこと以外は実施例12と同様に触媒(以下、「触媒R」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst R”) (10 g) was produced in the same manner as in Example 12 except that the OSC material r was used instead of the OSC material o.
[実施例15]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(450g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(50g:ZrO2として10重量%)、硝酸ランタン溶液(50g:La2O3として10重量%)、及びPVP K−30(0.1g)を添加し、攪拌して混合溶液を調製した。混合溶液を90〜95℃に加熱した後、尿素をpHが11となるまで添加し、共沈物を得た。これに、ヒドラジン(45g)及びL−グルタミン酸水素ナトリウム−水和物(12g)を添加し、90〜95℃で24時間攪拌した。得られた共沈物をろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La複合酸化物(以下、「OSC材料s」という)(100g)を得た。
OSC材料sの400℃での酸素放出速度定数は2.058sec−1であった。
[Example 15]
(1) A cerium nitrate solution (450 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (50 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (50 g: La 2 O 3 ) in ion-exchanged water (1300 ml) 10 wt%) and PVP K-30 (0.1 g) were added and stirred to prepare a mixed solution. After the mixed solution was heated to 90 to 95 ° C., urea was added until the pH was 11 to obtain a coprecipitate. To this was added hydrazine (45 g) and sodium hydrogen L-glutamate-hydrate (12 g), and the mixture was stirred at 90 to 95 ° C. for 24 hours. The obtained coprecipitate was filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La complex oxide (henceforth "OSC material s") (100g).
The oxygen release rate constant of the OSC material s at 400 ° C. was 2.058 sec −1 .
(2)OSC材料s(49.7g)をイオン交換水(400ml)に分散させ、これに硝酸パラジウム溶液(6g:Pdとして5重量%)を投入し、OSC材料sに吸着担持させた。次に、吸引ろ過で水溶液を除去し、ろ液をICP発光分光法で分析したところ、Pdの担持効率は100%であった。得られたPd担持粉末を110℃で12時間乾燥した後、大気中500℃で焼成し、Pd担持触媒(以下、「触媒s」という)を得た。触媒sを圧粉成型し、粉砕して、粒度を0.5〜1.0mmのペレット状に整粒した触媒(以下、「触媒S」という)(10g)を得た。 (2) The OSC material s (49.7 g) was dispersed in ion-exchanged water (400 ml), and a palladium nitrate solution (6 g: 5% by weight as Pd) was added thereto, and adsorbed and supported on the OSC material s. Next, the aqueous solution was removed by suction filtration, and the filtrate was analyzed by ICP emission spectroscopy. As a result, the loading efficiency of Pd was 100%. The obtained Pd-supported powder was dried at 110 ° C. for 12 hours and then calcined at 500 ° C. in the atmosphere to obtain a Pd-supported catalyst (hereinafter referred to as “catalyst s”). The catalyst s was compacted and pulverized to obtain a catalyst (hereinafter referred to as “catalyst S”) (10 g) having a particle size of 0.5 to 1.0 mm.
[実施例16]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から6時間に変更したこと以外は実施例15と同様にOSC材料(以下、「OSC材料t」という)(100g)を製造した。
OSC材料tの400℃での酸素放出速度定数は1.101sec−1であった。
[Example 16]
(1) An OSC material (hereinafter referred to as “OSC material t”) (100 g) was used in the same manner as in Example 15 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 6 hours. Manufactured.
The oxygen release rate constant of the OSC material t at 400 ° C. was 1.101 sec −1 .
(2)OSC材料sの代わりにOSC材料tを使用したこと以外は実施例15と同様に触媒(以下、「触媒T」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst T”) (10 g) was produced in the same manner as in Example 15 except that the OSC material t was used instead of the OSC material s.
[実施例17]
(1)ヒドラジンの存在下における90〜95℃での攪拌時間を24時間から0.25時間に変更し、且つL−グルタミン酸水素ナトリウム−水和物を使用しなかったこと以外は実施例15と同様にOSC材料(以下、「OSC材料u」という)(100g)を製造した。
OSC材料uの400℃での酸素放出速度定数は0.061sec−1であった。
[Example 17]
(1) Example 15 except that the stirring time at 90 to 95 ° C. in the presence of hydrazine was changed from 24 hours to 0.25 hours, and sodium hydrogen L-glutamate-hydrate was not used. Similarly, an OSC material (hereinafter referred to as “OSC material u”) (100 g) was produced.
The oxygen release rate constant of the OSC material u at 400 ° C. was 0.061 sec −1 .
(2)OSC材料sの代わりにOSC材料uを使用したこと以外は実施例15と同様に触媒(以下、「触媒U」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst U”) (10 g) was produced in the same manner as in Example 15 except that the OSC material u was used instead of the OSC material s.
[比較例5]
(1)イオン交換水(1300ml)に硝酸セリウム溶液(450g:CeO2として20重量%)、オキシ硝酸ジルコニウム溶液(50g:ZrO2として10重量%)、及び硝酸ランタン溶液(50g:La2O3として10重量%)を添加し、攪拌して混合溶液を調製した。次に、混合溶液に別途調製したアンモニア水溶液(25重量%)を室温下でpHが12となるまで添加し、共沈物を得た。共沈物を80〜90℃で120分間攪拌し、ろ過し、純水で洗浄し、110℃で乾燥した。その後、大気中800℃で5時間焼成し、Ce−Zr−La複合酸化物(以下、「OSC材料v」という)(100g)を得た。
OSC材料vの400℃での酸素放出速度定数は0.009sec−1であった。
[Comparative Example 5]
(1) A cerium nitrate solution (450 g: 20 wt% as CeO 2 ), a zirconium oxynitrate solution (50 g: 10 wt% as ZrO 2 ), and a lanthanum nitrate solution (50 g: La 2 O 3 ) in ion-exchanged water (1300 ml) As 10% by weight) and stirred to prepare a mixed solution. Next, an aqueous ammonia solution (25% by weight) prepared separately was added to the mixed solution at room temperature until the pH was 12, thereby obtaining a coprecipitate. The coprecipitate was stirred at 80-90 ° C. for 120 minutes, filtered, washed with pure water, and dried at 110 ° C. Then, it baked at 800 degreeC in air | atmosphere for 5 hours, and obtained Ce-Zr-La complex oxide (henceforth "OSC material v") (100g).
The oxygen release rate constant of the OSC material v at 400 ° C. was 0.009 sec −1 .
(2)OSC材料sの代わりにOSC材料vを使用したこと以外は実施例15と同様に触媒(以下、「触媒V」という)(10g)を製造した。 (2) A catalyst (hereinafter referred to as “catalyst V”) (10 g) was produced in the same manner as in Example 15 except that the OSC material v was used instead of the OSC material s.
<耐久試験>
(1)実施例及び比較例で製造した触媒A〜Nを流通式の耐久試験装置に配置した。窒素ガスに酸素(O2)を1%加えたリーンガスと、窒素ガスに一酸化炭素(CO)を2%加えたリッチガスとを、触媒床温度1000℃、500ml/minの流量にて、3分周期で交互に20時間流通させる耐久試験を行った。
<Durability test>
(1) Catalysts A to N produced in Examples and Comparative Examples were placed in a flow-type durability test apparatus. A lean gas in which 1% of oxygen (O 2 ) is added to nitrogen gas and a rich gas in which 2% of carbon monoxide (CO) is added to nitrogen gas are mixed for 3 minutes at a catalyst bed temperature of 1000 ° C. and a flow rate of 500 ml / min. An endurance test was conducted in which the gas was alternately circulated for 20 hours at periodic intervals.
(2)実施例及び比較例で製造した触媒O〜Vを流通式の耐久試験装置に配置した。窒素ガスに酸素(O2)を1%加えたリーンガスと、窒素ガスに一酸化炭素(CO)を2%加えたリッチガスとを、触媒床温度950℃、500ml/minの流量にて、3分周期で交互に20時間流通させる耐久試験を行った。 (2) The catalysts O to V produced in Examples and Comparative Examples were placed in a flow-type durability test apparatus. A lean gas in which 1% of oxygen (O 2 ) is added to nitrogen gas and a rich gas in which 2% of carbon monoxide (CO) is added to nitrogen gas are mixed for 3 minutes at a catalyst bed temperature of 950 ° C. and a flow rate of 500 ml / min. An endurance test was conducted in which the gas was alternately circulated for 20 hours at periodic intervals.
<活性評価>
常圧固定床流通反応装置に触媒A〜Vをそれぞれ配置し、空燃比を変動させた際の活性を評価した。具体的には、500℃のストイキ相当モデルガス(C3H6:800ppm、CO:0.5%、NO:800ppm、H2:0.2%、O2:0.67%、CO2:10%、N2バランス)に対し、CO、O2インジェクションからパータベーションを与えて、A/Fを14.7±0.5(1Hz)とした。
<Activity evaluation>
Catalysts A to V were respectively arranged in a normal pressure fixed bed flow reactor, and the activity when the air-fuel ratio was varied was evaluated. Specifically, stoichiometric equivalent gas at 500 ° C. (C 3 H 6 : 800 ppm, CO: 0.5%, NO: 800 ppm, H 2 : 0.2%, O 2 : 0.67%, CO 2 : 10%, N 2 balance), and perturbation was given from CO and O 2 injection, so that A / F was 14.7 ± 0.5 (1 Hz).
上記条件下におけるHC及びNOxの浄化率を測定した。耐久試験後における500℃での浄化率を表1に示す。 The purification rate of HC and NOx under the above conditions was measured. Table 1 shows the purification rate at 500 ° C. after the durability test.
表1は、酸素放出速度定数が大きいOSC材料を使用することにより、効率的にHC及びNOxを浄化できることを示している。実施例1〜5及び比較例1における酸素放出速度定数とHC浄化率又はNOx浄化率との関係を図4及び5に示す。 Table 1 shows that HC and NOx can be efficiently purified by using an OSC material having a large oxygen release rate constant. The relationship between the oxygen release rate constant and the HC purification rate or NOx purification rate in Examples 1 to 5 and Comparative Example 1 is shown in FIGS.
1・・・排気ガス浄化用触媒、2・・・基材、3・・・触媒金属担持OSC材料
DESCRIPTION OF
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013256741A JP2015112548A (en) | 2013-12-12 | 2013-12-12 | Material having oxygen storage/release capacity |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013256741A JP2015112548A (en) | 2013-12-12 | 2013-12-12 | Material having oxygen storage/release capacity |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015112548A true JP2015112548A (en) | 2015-06-22 |
Family
ID=53526874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013256741A Ceased JP2015112548A (en) | 2013-12-12 | 2013-12-12 | Material having oxygen storage/release capacity |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015112548A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019511450A (en) * | 2016-04-01 | 2019-04-25 | パシフィック インダストリアル デベロップメント コーポレイション | Method for producing mesoporous zirconium-based composite oxide |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06246155A (en) * | 1993-02-26 | 1994-09-06 | Santoku Kinzoku Kogyo Kk | Cerium-containing multiple oxide capable of absorbing and discharging oxygen and its production |
JPH09278444A (en) * | 1996-04-05 | 1997-10-28 | Santoku Kinzoku Kogyo Kk | Multiple oxide having oxygen absorbing and releasing ability and its production |
JP2001089143A (en) * | 1999-09-22 | 2001-04-03 | Kinya Adachi | Cerium-containing compound oxide excellent in oxygen absorbing and releasing ability and method of producing the same |
JP2005170774A (en) * | 2003-12-15 | 2005-06-30 | Tosoh Corp | Compound oxide, method for producing the same, and exhaust gas cleaning catalyst |
JP2006063807A (en) * | 2004-08-24 | 2006-03-09 | Mitsubishi Electric Corp | Catalyst deterioration detecting device |
-
2013
- 2013-12-12 JP JP2013256741A patent/JP2015112548A/en not_active Ceased
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06246155A (en) * | 1993-02-26 | 1994-09-06 | Santoku Kinzoku Kogyo Kk | Cerium-containing multiple oxide capable of absorbing and discharging oxygen and its production |
JPH09278444A (en) * | 1996-04-05 | 1997-10-28 | Santoku Kinzoku Kogyo Kk | Multiple oxide having oxygen absorbing and releasing ability and its production |
JP2001089143A (en) * | 1999-09-22 | 2001-04-03 | Kinya Adachi | Cerium-containing compound oxide excellent in oxygen absorbing and releasing ability and method of producing the same |
JP2005170774A (en) * | 2003-12-15 | 2005-06-30 | Tosoh Corp | Compound oxide, method for producing the same, and exhaust gas cleaning catalyst |
JP2006063807A (en) * | 2004-08-24 | 2006-03-09 | Mitsubishi Electric Corp | Catalyst deterioration detecting device |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019511450A (en) * | 2016-04-01 | 2019-04-25 | パシフィック インダストリアル デベロップメント コーポレイション | Method for producing mesoporous zirconium-based composite oxide |
US10882755B2 (en) | 2016-04-01 | 2021-01-05 | Pacific Industrial Development Corporation | Method of making mesoporous zirconium-based mixed oxides |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5910833B2 (en) | Exhaust gas purification catalyst | |
JP4806613B2 (en) | Gas purification method, gas purification device, and gas purification catalyst | |
JP5674092B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
WO2014171443A1 (en) | Exhaust-gas purification catalyst | |
JP2016535671A (en) | Catalyst for oxidizing CO and HC at low temperature | |
JP5298105B2 (en) | Exhaust gas purification catalyst manufacturing method and motor vehicle | |
JP6107487B2 (en) | N2O decomposition catalyst and N2O-containing gas decomposition method using the same | |
JP6077367B2 (en) | Exhaust gas purification catalyst | |
JP5954223B2 (en) | Method for producing exhaust gas purifying catalyst | |
JP2013169480A (en) | Methane oxidation catalyst and method of manufacturing the same | |
JP5974850B2 (en) | Particulate filter with catalyst | |
JP2009208039A (en) | Catalyst for removing particulate matter and method for removing particulate matter by using the same | |
JP2015112548A (en) | Material having oxygen storage/release capacity | |
US9144788B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
EP3984634A2 (en) | HEAT-RESISTANT RUTHENIUM COMPOSITE AND USE THEREOF AS CATALYST FOR NOxSTORAGE AND REDUCTION | |
JP2015112553A (en) | Exhaust gas purification catalyst | |
JP2016043310A (en) | Nitrogen oxide occlusion material and catalyst for exhaust gas purification | |
JP6263991B2 (en) | A method for producing a catalyst material, a method for producing a particulate filter with a catalyst using the same, and a method for producing a three-way catalyst for a gasoline engine. | |
US9266093B2 (en) | Exhaust gas purification catalyst and method for producing the same | |
JP7136070B2 (en) | Exhaust gas purification system | |
CN109689204B (en) | Exhaust gas purifying catalyst and method for producing exhaust gas purifying catalyst | |
JP2015112555A (en) | Exhaust gas purification catalyst | |
JP6288113B2 (en) | Particulate filter | |
JP2019188389A (en) | Nitrogen oxide occlusion material and exhaust purification method | |
JP2005270892A (en) | Integral construction type co-removing catalyst and exhausted gas purification system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160809 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170530 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171017 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171206 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180206 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20180626 |