JP4348450B2 - Controllable load power consumption control method and controllable load control system - Google Patents

Controllable load power consumption control method and controllable load control system Download PDF

Info

Publication number
JP4348450B2
JP4348450B2 JP2004273298A JP2004273298A JP4348450B2 JP 4348450 B2 JP4348450 B2 JP 4348450B2 JP 2004273298 A JP2004273298 A JP 2004273298A JP 2004273298 A JP2004273298 A JP 2004273298A JP 4348450 B2 JP4348450 B2 JP 4348450B2
Authority
JP
Japan
Prior art keywords
power consumption
controllable load
frequency deviation
limit
est
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004273298A
Other languages
Japanese (ja)
Other versions
JP2006094578A (en
Inventor
潤次 近藤
格 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004273298A priority Critical patent/JP4348450B2/en
Publication of JP2006094578A publication Critical patent/JP2006094578A/en
Application granted granted Critical
Publication of JP4348450B2 publication Critical patent/JP4348450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、電力系統の需給バランス維持の適正化を図った、可制御負荷の消費電力制御方法及び可制御負荷制御システムに関する。   The present invention relates to a controllable load power consumption control method and a controllable load control system that optimizes the supply and demand balance of a power system.

有限な化石燃料の消費を抑制し、地球温暖化の原因となる二酸化炭素排出量を削減するためには、太陽光・風力などの再生可能資源を用いた発電や、排熱の有効利用により総合効率を高められる熱電併給の普及が重要である。これらは通常小容量のものが点在する「分散型電源」であり、その多くは出力が気象条件により変化したり、系統運用者からの出力調節の指示を受けずに運用される。そのため、現在の電力系統に分散型電源を大量に連系すると、系統全体の需給バランス維持が困難になる。系統全体の需給バランスが維持されないと、系統の周波数が変化し、タービン翼が振動し疲労破壊するのを防ぐため大容量火力発電ユニットを緊急停止するなど、系統の運用に大きな支障が生じる。   In order to reduce the consumption of finite fossil fuels and reduce carbon dioxide emissions that cause global warming, it is possible to combine power generation using renewable resources such as solar and wind power and effective use of exhaust heat. The widespread use of combined heat and power to increase efficiency is important. These are “distributed power supplies” that are usually dotted with small capacities, and many of them are operated without the output changing according to weather conditions or receiving an instruction to adjust the output from the system operator. For this reason, if a large number of distributed power sources are connected to the current power system, it becomes difficult to maintain the supply and demand balance of the entire system. If the supply and demand balance of the entire system is not maintained, the frequency of the system will change, and the large capacity thermal power generation unit will be stopped urgently in order to prevent the turbine blades from vibrating and causing fatigue failure.

そこで可制御負荷の消費電力調節が提案されている。可制御負荷とは、規定時間tlimit以内に規定のエネルギーeestを投入する必要はあるが、各時刻tにおける消費電力pを変動させても使用目的を達成できる負荷であり、電気温水器や空気調和機等が該当する。例えば電気温水器は、午後11時から翌朝午前7時までに水を85℃まで焚き上げるのに必要なエネルギーを投入する必要があるが、例えば午前2時の時点で必ずしもヒーターをオンしている必要はない。そこでこのような可制御負荷の消費電力を、系統内の総発電電力が過多のときに増してやり、逆に総発電電力が不足しているときに減らしてやることで、系統全体の需給バランスを維持し周波数偏差を抑制しようとするものである。ただし、各負荷の使用目的を達成するためには、規定時間tlimit以内に規定のエネルギーeestを投入するという制約条件は守らなければならない。 Therefore, power consumption adjustment of a controllable load has been proposed. The controllable load is a load that can achieve the intended purpose even if the power consumption p at each time t is fluctuated, although it is necessary to input the specified energy e est within the specified time t limit. Applicable to air conditioners. For example, an electric water heater needs to input energy necessary to raise water to 85 ° C from 11:00 pm to 7:00 am the following morning, but the heater is always turned on at, for example, 2 am There is no need. Therefore, by increasing the power consumption of such controllable loads when the total generated power in the system is excessive, and reducing it when the total generated power is insufficient, the supply and demand balance of the entire system is maintained. However, it is intended to suppress the frequency deviation. However, in order to achieve the purpose of use of each load, the constraint condition that the specified energy e est is input within the specified time t limit must be observed.

このような可制御負荷の制御方法として、系統運用者が各可制御負荷の運転情報を収集して指令を出す系統情報監視システムが提案されている(特許文献1参照)。そして、電気温水器の場合を例として、この系統情報監視システムにより需給バランスを維持することができ、系統の周波数偏差を充分に抑えられることが数値計算により確認されている(非特許文献1参照)。また、通信手段は用いずに、各可制御負荷が系統の周波数偏差を計測し、周波数偏差の規定範囲との大小関係からオン・オフ制御する手法が提案されている(非特許文献2)。   As such a controllable load control method, a grid information monitoring system in which a grid operator collects operation information of each controllable load and issues a command has been proposed (see Patent Document 1). Then, taking the case of an electric water heater as an example, it is confirmed by numerical calculation that the supply and demand balance can be maintained by this system information monitoring system and the frequency deviation of the system can be sufficiently suppressed (see Non-Patent Document 1). ). In addition, a method has been proposed in which each controllable load measures the frequency deviation of the system without using communication means, and performs on / off control based on the magnitude relationship with a specified range of the frequency deviation (Non-Patent Document 2).

特願2004−076847号公報Japanese Patent Application No. 2004-0776847 近藤潤次、 安芸裕久、山口浩、村田晃伸、石井格:「需給バランス維持のための可制御負荷の制御法に関する考察」(平成16年電気学会電力・エネルギー部門大会、470、2004年8月)Junji Kondo, Hirohisa Aki, Hiroshi Yamaguchi, Masanobu Murata, Satoshi Ishii: “Study on control method of controllable load to maintain supply-demand balance” (2004 Annual Meeting of the Institute of Electrical Engineers of Japan, 470, August 2004) ) 守谷直之、有満稔、上村敏、嶋田隆一:「電気温水器等の系統負荷を利用した周波数制御」(平成5年電気学会全国大会、1163、1993年3月)Naoyuki Moriya, Satoshi Arimitsu, Satoshi Uemura, Ryuichi Shimada: “Frequency control using system loads such as electric water heaters” (1993 Annual Conference of the Institute of Electrical Engineers of Japan, 1163, March 1993)

しかし、上記特許文献1や非特許文献1に示すような、系統情報監視システムでは、各可制御負荷と系統運用者の間で常にリアルタイムに情報・指令を授受する通信手段が必要である。このような通信手段が既設されている例はほとんど無く、その新設には莫大な投資が必要であるという問題があった。   However, in the system information monitoring system as shown in the above-mentioned Patent Document 1 and Non-Patent Document 1, communication means that always exchanges information and commands in real time between each controllable load and the system operator is necessary. There are almost no examples of such communication means already installed, and there has been a problem that enormous investment is required for the new establishment.

また、上記非特許文献2にように、通信手段は用いずに制御することも可能であるが、この手法では、各可制御負荷に規定時間tlimit以内に規定のエネルギーeestを投入するという制約条件を満たすことが全く保証されておらず、可制御負荷の使用目的を達成できる保証がないという問題があった。 Further, as described in Non-Patent Document 2, it is possible to control without using communication means, but in this method, a specified energy e est is input to each controllable load within a specified time t limit. There is a problem that it is not guaranteed that the constraint condition is satisfied, and there is no guarantee that the purpose of using the controllable load can be achieved.

このように、規定時間tlimit以内に規定のエネルギーeestを投入するという制約条件を満たしながら、リアルタイムに情報・指令を授受する通信手段を用いずに、系統全体の需給バランスを維持するように可制御負荷を制御するための制御アルゴリズムは確立されていないのが現状である。 In this way, while satisfying the constraint that the specified energy e est is input within the specified time t limit , the supply and demand balance of the entire system is maintained without using communication means that exchange information and commands in real time. At present, a control algorithm for controlling the controllable load has not been established.

本発明の目的は、上記の問題点に鑑み、規定時間tlimit以内に規定のエネルギーeestを投入するという制約条件を満たしながら、リアルタイムに情報・指令を授受する通信手段を用いずに、系統全体の需給バランスを維持することを可能にした、可制御負荷の消費電力制御方法及び可制御負荷制御システムを提供することにある。 In view of the above problems, the object of the present invention is to satisfy the constraint that the specified energy e est is input within the specified time t limit , without using communication means that exchange information and commands in real time. An object of the present invention is to provide a controllable load power consumption control method and a controllable load control system capable of maintaining the overall supply and demand balance.

本発明は、上記の課題を解決するために下記の手段を採用した。
第1の手段は、系統運用者と可制御負荷間で通信手段を介して情報をリアルタイムに授受することなく、可制御負荷が対象とする温度やその設定温度などの情報を取得して規定時間tlimitまでに投入する必要がある規定エネルギーeestを推定して将来平均消費電力ptar=(eest-∫p dt)/(tlimit-t)を算出し、また電力系統の周波数偏差を計測して、前記周波数偏差が規定範囲内の場合は前記将来平均消費電力に近づくように、前記周波数偏差が規定範囲外の場合は前記周波数偏差を抑制するように、前記可制御負荷の消費電力を制御することを特徴とする可制御負荷の消費電力制御方法である。
The present invention employs the following means in order to solve the above problems.
The first means obtains information such as the target temperature of the controllable load and its set temperature without exchanging information between the system operator and the controllable load via the communication means in real time, and the specified time. Estimate the stipulated energy e est that must be input before t limit, calculate future average power consumption p tar = (e est -∫p dt) / (t limit -t), and calculate the frequency deviation of the power system Measured power consumption of the controllable load so that when the frequency deviation is within a specified range, it approaches the future average power consumption, and when the frequency deviation is outside the specified range, the frequency deviation is suppressed. This is a method for controlling the power consumption of a controllable load, characterized in that

第2の手段は、可制御負荷と、該可制御負荷が対象とする温度やその設定温度などの情報を取得し、電力系統の周波数偏差を計測する検出手段と、系統運用者と可制御負荷間で通信手段を介して情報をリアルタイムに授受することなく、前記取得した情報に基づいて、規定時間tlimitまでに投入する必要がある規定エネルギーeestを推定して将来平均消費電力ptar=(eest-∫p dt)/(tlimit-t)を算出し、前記将来平均消費電力と前記周波数偏差から前記可制御負荷における消費電力を制御する制御手段とからなることを特徴とする可制御負荷制御システムである。 The second means includes a controllable load, a detection means for acquiring information such as a target temperature of the controllable load and a set temperature thereof, and measuring a frequency deviation of the power system, a system operator and the controllable load. Based on the acquired information, the specified energy e est that needs to be input by the specified time t limit is estimated and the future average power consumption p tar = (e est -∫p dt) / (t limit -t) is calculated, and control means for controlling power consumption in the controllable load from the future average power consumption and the frequency deviation is possible. Control load control system.

本発明の可制御負荷の消費電力制御方法及び可制御負荷制御システムによれば、系統運用者と各可制御負荷間に通信手段を新たに設けることなく、系統の周波数偏差を抑制するように可制御負荷の消費電力を調節することができる。この負荷を広く普及させた電力系統では、系統全体の需給バランス維持能力が大幅に向上する。これにより、分散型電源の導入可能量が増し、エネルギーの有効利用を図ることができる。   According to the controllable load power consumption control method and the controllable load control system of the present invention, it is possible to suppress the frequency deviation of the system without newly providing a communication means between the system operator and each controllable load. The power consumption of the control load can be adjusted. In an electric power system in which this load is widely spread, the ability to maintain a balance between supply and demand of the entire system is greatly improved. As a result, the amount of installable distributed power sources increases and energy can be used effectively.

本発明の第1の実施形態を図1及び図2を用いて説明する。
図1は本実施形態の発明に係る可制御負荷制御システムの構成を示す図である。
同図において、1は可制御負荷4が対象(例えば、空気調和機設置室内の空気、電気温水器の湯、冷蔵庫内の庫内空気等)とする温度を測定する温度センサ2やその設定温度などの情報を取得し、電力系統6の周波数偏差を計測する検出手段、3は可制御負荷4の温度センサ2や設定温度などの取得した情報に基づいて、規定時間tlimitまでに投入する必要がある規定エネルギーeestを推定して将来平均消費電力ptar=(eest-∫p dt)/(tlimit-t)を算出し、前記将来平均消費電力と前記検出手段1によって計測された周波数偏差から可制御負荷4における消費電力を決定する制御手段、4は、例えば、空調機、温水器、冷蔵庫等の可制御負荷、5は可制御負荷制御システム、6は電力系統である。
同図に示すように、この可制御負荷4は、例えば、総発電電力と給電力需要のバランスを監視し維持するための指令を出す中央給電指令所等の系統運用者との間でリアルタイムに情報交換を行うための通信手段を有さない負荷である。
A first embodiment of the present invention will be described with reference to FIGS.
FIG. 1 is a diagram showing a configuration of a controllable load control system according to the invention of this embodiment.
In the figure, reference numeral 1 denotes a temperature sensor 2 for measuring a temperature that is controlled by a controllable load 4 (for example, air in an air conditioner installation room, hot water in an electric water heater, air in a refrigerator, etc.) and its set temperature. For detecting the frequency deviation of the electric power system 6, and 3 is required to be input by the specified time t limit based on the acquired information such as the temperature sensor 2 of the controllable load 4 and the set temperature. The future average power consumption p tar = (e est −ep dt) / (t limit −t) is calculated by estimating a specified energy e est and measured by the future average power consumption and the detection means 1. Control means 4 for determining the power consumption in the controllable load 4 from the frequency deviation, 4 is a controllable load such as an air conditioner, water heater, refrigerator, etc., 5 is a controllable load control system, and 6 is a power system.
As shown in the figure, this controllable load 4 is, for example, in real time with a system operator such as a central power supply command station that issues a command for monitoring and maintaining the balance between the total generated power and the power supply demand. The load does not have a communication means for exchanging information.

可制御負荷4は、電力系統6の周波数偏差Δfとその時点において消費している電力pを計測する。ここで、可制御負荷4の最大消費電力をpmax、最低消費電力をpmin、周波数偏差の規定下限をΔfl、周波数偏差の規定上限をΔfh、αを1未満の正値、βをα未満の正値とする。可制御負荷4は、検出手段1において、温度センサ2や設定温度などの情報を取得して規定時間tlimitまでに投入する必要がある規定エネルギーeestを推定し、将来平均消費電力ptar=(eest-∫p dt)/(tlimit-t)を算出する。一般に系統内に可制御負荷が多数台普及しているとき、各可制御負荷のptarは分散するので、周波数偏差の規定下限Δflと規定上限Δfhはptarの関数として決定する。これは、各可制御負荷のΔflとΔfhを分散させないとある周波数偏差でいきなり多数の可制御負荷が電力調節を行ってしまい、逆の周波数偏差を起こしてしまう可能性があるからである。
制御手段3において、Δf>Δfhのときは消費電力をα(pmax-pmin)だけ増し、Δf<Δflのときは消費電力をα(pmax-pmin)だけ減らし、Δfl≦Δf≦Δfhかつp<ptarなら消費電力をβ(pmax-pmin)だけ増し、Δfl≦Δf≦Δfhかつp>ptarなら消費電力をβ(pmax-pmin)だけ減らすことを決定する。そして可制御負荷4は制御手段3からの指令どおりに消費電力を設定する。この一連の操作を規定時間間隔毎に繰り返す。以上の制御の流れ図を図2に示す。
The controllable load 4 measures the frequency deviation Δf of the power system 6 and the power p consumed at that time. Here, the maximum power consumption of the controllable load 4 is p max , the minimum power consumption is p min , the prescribed lower limit of the frequency deviation is Δf l , the prescribed upper limit of the frequency deviation is Δf h , α is a positive value less than 1, and β The positive value is less than α. The controllable load 4 obtains information such as the temperature sensor 2 and the set temperature in the detection means 1 and estimates the specified energy e est that needs to be input by the specified time t limit . The future average power consumption p tar = Calculate (e est -∫p dt) / (t limit -t). In general, when a large number of controllable loads are prevalent in the system, the p tar of each controllable load is dispersed. Therefore, the specified lower limit Δf l and the specified upper limit Δf h of the frequency deviation are determined as a function of p tar . This is because if Δf l and Δf h of each controllable load are not dispersed, a large number of controllable loads suddenly adjust the power with a certain frequency deviation, which may cause a reverse frequency deviation. .
In the control means 3, when Δf> Δf h , the power consumption is increased by α (p max −p min ), and when Δf <Δf l , the power consumption is decreased by α (p max −p min ), and Δf l ≦ If Δf ≦ Δf h and p <p tar, increase the power consumption by β (p max -p min ), and if Δf l ≦ Δf ≦ Δf h and p> p tar, decrease the power consumption by β (p max -p min ). Decide that. The controllable load 4 sets the power consumption according to the command from the control means 3. This series of operations is repeated at regular time intervals. A flow chart of the above control is shown in FIG.

次に、可制御負荷が多数導入された系統における需給バランス維持・系統周波数変動抑制の効果を確認するために行った数値計算について、図3から図5を用いて説明する。
計算に取り上げたモデル系統の系統容量を150MWとし、この値を%MW単位の基準とする。システムの基準周波数を50Hzとする。定格消費電力2.6 kW の可制御負荷が 5000 台導入されているとする。その総容量は系統容量の約 9% に相当する 13 MW である。全ての可制御負荷による総消費電力、その他の全ての負荷による総消費電力、調整発電ユニットの出力、経済負荷配分運転出力を、それぞれParc、 Pload、 Padj、 Pedcとする。このとき、モデル系統の周波数偏差は(1)式で表される。ここに、KLは負荷周波数特性定数で、KL=2%MW/%Hzとした。
Next, numerical calculations performed to confirm the effect of maintaining the supply and demand balance and suppressing the system frequency fluctuation in the system in which many controllable loads are introduced will be described with reference to FIGS.
The system capacity of the model system taken up in the calculation is set to 150 MW, and this value is used as a standard in% MW. The reference frequency of the system is 50Hz. Suppose 5000 controllable loads with a rated power consumption of 2.6 kW are installed. Its total capacity is 13 MW, corresponding to about 9% of the system capacity. Let P arc , P load , P adj , P edc be the total power consumption by all controllable loads, the total power consumption by all other loads, the output of the regulated power generation unit, and the economic load distribution operation output, respectively. At this time, the frequency deviation of the model system is expressed by equation (1). Here, K L is a load frequency characteristic constant, and K L = 2% MW /% Hz.

可制御負荷としては、消費電力を連続的に変化できるインバータ式の空気調和機を想定した。すべての可制御空気調和機は、定格消費電力 pmax=2.6 kW、送風時消費電力 pmin=0.15 kW で、消費電力を pminから pmax までの間の任意値に調節できるとする。各可制御空気調和機は、一般モードまたは調節モードのいずれかで運転する。5000台の可制御空気調和機の消費電力は、正規分布に従い分散しているとする。 As the controllable load, an inverter type air conditioner capable of continuously changing power consumption was assumed. All controllable air conditioners are rated power consumption p max = 2.6 kW and power consumption during ventilation p min = 0.15 kW, and power consumption can be adjusted to any value between p min and p max . Each controllable air conditioner operates in either a general mode or a regulation mode. It is assumed that the power consumption of 5000 controllable air conditioners is distributed according to a normal distribution.

一般モードの各可制御空気調和機は5秒毎に、その時刻tからtlimit=15 分後までの消費電力量 eest を予測し、将来平均消費電力 ptar(t)=eest/tlimitを計算し、将来平均消費電力比率γ(t) を(2)式で計算する。
周波数偏差の規定下限をΔfl=-0.2γ(t) Hz、規定上限をΔfh=0.2(1-γ(t)) Hzとする。そして周波数偏差Δfを計測し、Δfl≦Δf≦Δfhであるときは一般モードで運転し続ける。しかし、一度Δf>ΔfhまたはΔf<Δflになると、調節モード運転に移行する。それから規定時刻tlimit=15 分の間、調節モードで運転し続けた後に、一般モードに戻る。
一般モードでは、周波数偏差に関係なく、室内温度を設定温度に近づけるように動作する。すなわち一般モードでは、周波数偏差による消費電力調節を行わない従来の空気調和機と同じように電力消費をする。
Each controllable air conditioner in the general mode predicts power consumption e est from time t to t limit = 15 minutes every 5 seconds, and future average power consumption p tar (t) = e est / t Calculate limit, and calculate the future average power consumption ratio γ (t) using equation (2).
The specified lower limit of the frequency deviation is Δf l = −0.2γ (t) Hz, and the specified upper limit is Δf h = 0.2 (1-γ (t)) Hz. Then, the frequency deviation Δf is measured, and when Δf 1 ≦ Δf ≦ Δf h , the operation is continued in the general mode. However, at the time Delta] f> Delta] f h or Delta] f <Delta] f l, the process proceeds to adjustment mode operation. After that, it continues to operate in the adjustment mode for the specified time t limit = 15 minutes, and then returns to the general mode.
In the general mode, it operates so that the room temperature approaches the set temperature regardless of the frequency deviation. That is, in the general mode, power is consumed in the same manner as a conventional air conditioner that does not adjust power consumption based on frequency deviation.

調節モードでは、調節モードになった時刻 t0 を用い、各時刻tにおける将来平均消費電力 ptar(t) を(3)式で計算し、(3)式で得られたptar(t)を(2)式に代入して将来平均消費電力比率γ(t) を求める。
周波数偏差の規定下限をΔfl=-0.2γ(t) Hz、規定上限をΔfh=0.2(1-γ(t)) Hzとする。そして、Δf>Δfhの時は 5 秒毎に消費電力を Δp=0.1(pmax-pmin) だけ増し、Δf<Δflの時は 5 秒毎に消費電力を Δp だけ減らす。
また、Δfl≦Δf≦Δfhであるときは、消費電力p が ptar(t)より小さい場合は 5 秒毎に消費電力を 0.1Δp だけ増し、大きい場合は 5 秒毎に消費電力を 0.1Δp だけ減らす。
ただし、周波数偏差に関係なく、γ(t)=0 になったら消費電力を pminに、γ(t)=1 になったら消費電力を pmaxとして、時刻tがt0+tlimitになるまでその状態を維持する。
In the adjustment mode, using the time t 0 when the adjustment mode is entered, the future average power consumption p tar (t) at each time t is calculated by Equation (3), and p tar (t) obtained by Equation (3) is calculated. Is substituted into equation (2) to obtain the future average power consumption ratio γ (t).
The specified lower limit of the frequency deviation is Δf l = −0.2γ (t) Hz, and the specified upper limit is Δf h = 0.2 (1-γ (t)) Hz. And, increasing the power consumption every 5 seconds when the Δf> Δf h Δp = 0.1 only (p max -p min), reduce power consumption in every 5 seconds when the Δf <Δf l only Δp.
In addition, when Δf l ≦ Δf ≦ Δf h , the power consumption p If is smaller than p tar (t), the power consumption is increased by 0.1Δp every 5 seconds, and if it is larger, the power consumption is decreased by 0.1Δp every 5 seconds.
However, regardless of frequency deviation, when γ (t) = 0, power consumption is p min, and when γ (t) = 1, power consumption is p max , and time t becomes t 0 + t limit . Keep that state until.

各時刻における、全ての可制御負荷による総消費電力Parcは、5000台の可制御空気調和機の消費電力pの総和である。 The total power consumption P arc for all controllable loads at each time is the sum of the power consumption p of 5000 controllable air conditioners.

可制御負荷以外の全ての負荷による消費電力 Pload では、分散型電源からの発電出力分を差し引いている。夏季の消費電力を想定し全負荷(Parc+Pload)の最大値は130MW(系統容量の87%)としており、また分散型電源の大量導入により Pload の変動量が後述する Padjの可変範囲より大きいとした。 In the power consumption P load by all loads other than the controllable load, the power generation output from the distributed power source is subtracted. The maximum value of the assumed power consumption during the summer full load (P arc + P load) is 130MW is a (strain 87% of the volume), and by mass introduction of distributed power P adj variation amount of P load is described below It was assumed that it was larger than the variable range.

調整発電ユニットの発電出力 Padj は、出力範囲を 0≦Padj≦Padjmax=8.0MW、変化率を |dPadj/dt|≦3.0%MW/min に制限した。
Padj の変化量 ΔPadj はガバナフリー運転分 Pgov と負荷周波数調整分 Plfcの和となる(ΔPadj=Pgov+Plfc)。ガバナフリー運転は、発電機周波数特性定数 KG=5%MW/%Hzで行う。負荷周波数制御は(4)式で行うが、Δf は 5 秒前の値を用いる。なお、以上で用いたΔは差分の意である。
ここに、c1=-0.8KL、 c2=1×10-3%MW/(%Hz・s)とした。
The power generation output P adj of the regulated power generation unit was limited to an output range of 0 ≦ P adj ≦ P adjmax = 8.0 MW and a rate of change to | dP adj /dt|≦3.0% MW / min.
The variation [Delta] P adj of P adj is the governor-free operation amount P gov the sum of the load frequency adjustment component P lfc (ΔP adj = P gov + P lfc). The governor-free operation is performed with the generator frequency characteristic constant K G = 5% MW /% Hz. Load frequency control is performed using equation (4), but Δf is the value 5 seconds before. Note that Δ used above means a difference.
Here, c 1 = −0.8 K L and c 2 = 1 × 10 −3 % MW / (% Hz · s).

経済負荷配分運転出力 Pedc は、実際は数分先の需要予測を基に調節されるが、今回の計算では変化率を|dPedc/dt|≦0.3%MW/minに制限して低速な制御特性を模擬した。そして、調整発電ユニットの運転余力確保のため、Pedcは上記の制限の基でPadjをPadjmax/2 に近づけるように調節した。 Economic load distribution operation output P edc is actually adjusted based on demand forecast several minutes ahead, but in this calculation, the rate of change is limited to | dP edc / dt | The characteristics were simulated. Then, in order to secure the operating capacity of the regulated power generation unit, P edc was adjusted so that P adj was brought closer to P adjmax / 2 based on the above-mentioned restrictions.

上記の計算方法により、8時から20時までの12時間の周波数偏差を解析した結果を図3に示す。なお、図中のuは、5000台の空気調和機のうち、調節モード運転を行っている空気調和機の割合である。また比較として、本発明の空気調和機の代わりに、周波数偏差による消費電力調節を行わない従来の空気調和機を用いた場合の解析結果を図4に示す。図3と図4では、Ploadの時間変化は全く同じである。また、各空気調和機の各時刻における電力消費の需要は全く同じで、トータルの消費電力量も全く同じである。 FIG. 3 shows the result of analyzing the 12-hour frequency deviation from 8 o'clock to 20 o'clock by the above calculation method. In addition, u in a figure is a ratio of the air conditioner which is performing adjustment mode driving | operation among 5000 air conditioners. For comparison, FIG. 4 shows an analysis result in the case of using a conventional air conditioner that does not adjust power consumption by frequency deviation instead of the air conditioner of the present invention. 3 and 4, the time change of P load is exactly the same. Moreover, the demand of the power consumption at each time of each air conditioner is exactly the same, and the total power consumption is also the same.

図4の場合は、特に Padj が0またはPadjmaxとなり運転余力を全部出し切った際に、大きな周波数偏差が生じている。これに対し、本発明の可制御負荷を用いている図3の場合は、Padj のみならず Parc も周波数偏差を抑制するように変化しており、図4に比べて周波数偏差を大幅に低減できている。 In the case of FIG. 4, a large frequency deviation occurs especially when P adj becomes 0 or P adjmax and all the remaining operating capacity is exhausted . On the other hand, in the case of FIG. 3 using the controllable load of the present invention, not only P adj but also P arc changes so as to suppress the frequency deviation, and the frequency deviation is significantly larger than that of FIG. Reduced.

図3と図4の場合における、5秒毎に測定した周波数偏差の度数分布を図5に示す。図5より、本発明の可制御負荷が普及した電力系統では、周波数偏差を充分に抑制できることが明らかである。   FIG. 5 shows the frequency distribution of the frequency deviation measured every 5 seconds in the case of FIGS. From FIG. 5, it is clear that the frequency deviation can be sufficiently suppressed in the power system in which the controllable load of the present invention is widespread.

なお、実際の可制御負荷では、将来の規定時間tlimitまでに投入する必要がある規定エネルギー eest の予測値は、実際に必要な値に対して誤差を含む可能性がある。しかし、誤差が判明した時点で eest の値を修正していけば、上記の制御手法はそのまま適用できる。
また、αやβの値は、系統の規模と可制御負荷の普及率を考慮して決定する必要があり、普及率が高くなると変更する必要が生じる。この調節は手動または通信手段により行われることになるが、その変更は頻繁に行うものではなく、リアルタイムの通信手段は不要である。
Note that, with an actual controllable load, the predicted value of the specified energy e est that needs to be input by the specified time t limit in the future may include an error with respect to the actually required value. However, if the value of e est is corrected when the error is found, the above control method can be applied as it is.
Further, the values of α and β need to be determined in consideration of the scale of the system and the penetration rate of the controllable load, and need to be changed as the penetration rate increases. This adjustment is performed manually or by communication means, but the change is not made frequently, and real-time communication means are not required.

一実施形態の発明に係る可制御負荷の構成を示す図である。It is a figure which shows the structure of the controllable load which concerns on invention of one Embodiment. 可制御負荷の消費電力制御アルゴリズムの流れを示す図である。It is a figure which shows the flow of the power consumption control algorithm of a controllable load. 本実施形態の実施例として計算を行ったモデル系統における、周波数偏差、電力、調節モードの可制御負荷の割合の、時間変化を示す図である。It is a figure which shows a time change in the ratio of the frequency deviation, electric power, and the controllable load of an adjustment mode in the model system | strain which calculated as an Example of this embodiment. 本発明の可制御負荷の代わりに、周波数偏差による消費電力調節を行わない従来の負荷を用いた場合のモデル系統における、周波数偏差、電力、調節モードの可制御負荷の割合の、時間変化を示す図である。In the model system when a conventional load that does not adjust power consumption by frequency deviation is used instead of the controllable load of the present invention, the time variation of the frequency deviation, power, and the ratio of the controllable load in the adjustment mode is shown. FIG. 図3と図4の場合における、5秒毎に測定した周波数偏差の度数分布を示す図である。It is a figure which shows the frequency distribution of the frequency deviation measured every 5 second in the case of FIG. 3 and FIG.

符号の説明Explanation of symbols

1 検出手段
2 温度センサ
3 制御手段
4 可制御負荷
5 可制御負荷制御システム
6 電力系統
DESCRIPTION OF SYMBOLS 1 Detection means 2 Temperature sensor 3 Control means 4 Controllable load 5 Controllable load control system 6 Electric power system

Claims (2)

電力系統に接続され規定時間tlimit内に規定のエネルギーeestを投入する可制御負荷と、可制御負荷の電力消費に応じた状態変数の変化値およびその状態変数の閾値の情報を取得し、電力系統の周波数偏差を計測する検出手段と、時刻tに可制御負荷の上記情報に基づいて、任意の時刻tから任意に設定した規定時間tlimit内に投入する必要がある規定エネルギーeestを推定して
将来平均消費電力ptar=(eest-∫pdt)/(tlimit-(t−t0))
を算出し、前記将来平均消費電力と前記検出手段によって計測された周波数偏差Δfから可制御負荷における消費電力を決定する制御手段からなり、
前記制御手段は、前記可制御負荷の消費電力p、その消費電力に応じて変化する状態変数の値およびその状態変数の設定値の情報を取得して制御単位となる時刻t0からの規定時間tlimit内に前記可制御負荷に投入する必要がある規定エネルギーeestを推定し,
将来平均消費電力ptar=(eest-∫p dt)/ (tlimit-(t−t0))
および
将来平均消費電力比率γ=(ptar-pmin)/(pmax-pmin)
および
周波数偏差管理目標値kから
周波数偏差の規定下限値Δfl=-kγおよび上限値Δfh=k(1-γ)を算出し、
前記周波数偏差Δfが、Δf>Δfhの場合、前記可制御負荷の消費電力をα(pmax-pmin)増やし,
前記周波数偏差Δfが、Δf<Δflの場合、前記可制御負荷の消費電力をα(pmax-pmin)減らし、
前記周波数偏差ΔfがΔfl≦Δf≦Δfhの場合で且つp>ptarであれば、消費電力pをβ(pmax-pmin)減らし、
前記周波数偏差ΔfがΔfl≦Δf≦Δfhの場合で且つp<ptarであれば、消費電力pをβ(pmax-pmin)増やすように制御する
ことを特徴とする可制御負荷の消費電力制御方法。
但し、周波数偏差管理目標値kは正の値とし、係数αは1未満の正の値とし、係数βは1未満の正の値とする。
A controllable load that is connected to the power system and that inputs the specified energy e est within a specified time t limit , obtains information on the change value of the state variable according to the power consumption of the controllable load and the threshold value of the state variable, Based on the detection means for measuring the frequency deviation of the power system and the above-mentioned information of the controllable load at time t, the specified energy e est that needs to be input within the specified time t limit arbitrarily set from the arbitrary time t 0 estimating a by future average power p tar = (e est -∫pdt) / (t limit - (t-t 0))
And comprises control means for determining power consumption at a controllable load from the future average power consumption and the frequency deviation Δf measured by the detection means,
The control means obtains information on the power consumption p of the controllable load, the value of the state variable that changes in accordance with the power consumption, and the setting value of the state variable, and the specified time from time t 0 that becomes a control unit Estimate the specified energy e est that needs to be applied to the controllable load within t limit ,
Future average power p tar = (e est -∫p dt ) / (t limit - (t-t 0))
And future average power consumption ratio γ = (p tar -p min ) / (p max -p min )
And the specified lower limit Δf l = −kγ and upper limit Δf h = k (1-γ) of the frequency deviation from the frequency deviation management target value k,
When the frequency deviation Δf is Δf> Δf h , the power consumption of the controllable load is increased by α (p max -p min ),
The frequency deviation Delta] f is the case of Delta] f <Delta] f l, the power consumption of the controllable load decrease α (p max -p min),
When the frequency deviation Δf is Δf l ≦ Δf ≦ Δf h and p> p tar , the power consumption p is reduced by β (p max −p min ),
When the frequency deviation Δf is Δf l ≦ Δf ≦ Δf h and p <p tar , the power consumption p is controlled to be increased by β (p max −p min ). Power consumption control method.
However, the frequency deviation management target value k is a positive value, the coefficient α is a positive value less than 1, and the coefficient β is a positive value less than 1.
電力系統に接続され規定時間tlimit内に規定のエネルギーeestを投入する可制御負荷と、可制御負荷の電力消費に応じた状態変数の変化値およびその状態変数の閾値の情報を取得し、電力系統の周波数偏差を計測する検出手段と、可制御負荷の上記情報に基づいて、任意に設定した規定時間tlimit内に投入する必要がある規定エネルギーeestを推定して
将来平均消費電力ptar=(eest-∫p dt)/ (tlimit-(t−t0))
を算出し、前記将来平均消費電力と前記検出手段によって計測された周波数偏差から可制御負荷における消費電力を決定する制御手段からなり、
前記制御手段は、前記請求項1記載の可制御負荷の消費電力制御方法を実行するように構成されていることを特徴とする可制御負荷制御システム。
A controllable load that is connected to the power system and that inputs the specified energy e est within a specified time t limit , obtains information on the change value of the state variable according to the power consumption of the controllable load and the threshold value of the state variable, Based on the detection means that measures the frequency deviation of the power system and the above information on the controllable load, the estimated average energy e est that needs to be input within the arbitrarily set specified time t limit is estimated and the future average power consumption p tar = (e est -∫p dt) / (t limit - (t-t 0))
Comprising control means for determining power consumption in a controllable load from the future average power consumption and the frequency deviation measured by the detection means,
2. The controllable load control system according to claim 1, wherein the control means is configured to execute the controllable load power consumption control method according to claim 1.
JP2004273298A 2004-09-21 2004-09-21 Controllable load power consumption control method and controllable load control system Expired - Fee Related JP4348450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004273298A JP4348450B2 (en) 2004-09-21 2004-09-21 Controllable load power consumption control method and controllable load control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004273298A JP4348450B2 (en) 2004-09-21 2004-09-21 Controllable load power consumption control method and controllable load control system

Publications (2)

Publication Number Publication Date
JP2006094578A JP2006094578A (en) 2006-04-06
JP4348450B2 true JP4348450B2 (en) 2009-10-21

Family

ID=36235001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004273298A Expired - Fee Related JP4348450B2 (en) 2004-09-21 2004-09-21 Controllable load power consumption control method and controllable load control system

Country Status (1)

Country Link
JP (1) JP4348450B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575585B2 (en) * 2010-08-25 2014-08-20 アズビル株式会社 Energy sum suppression control device, power sum suppression control device and method
FR2978309B1 (en) * 2011-07-19 2015-08-21 Voltalis REAL-TIME MEASUREMENT AND MODULATION OF ELECTRICAL CONSUMPTION OF A PLURALITY OF ELECTRICAL EQUIPMENT
CN104335439A (en) * 2012-03-23 2015-02-04 大阪瓦斯株式会社 Power consumption mode guiding device and system
JP5692318B2 (en) * 2012-07-18 2015-04-01 三菱電機株式会社 Refrigeration cycle equipment
JP2014152727A (en) * 2013-02-12 2014-08-25 Hideki Kadoshima Power generating system and its control method

Also Published As

Publication number Publication date
JP2006094578A (en) 2006-04-06

Similar Documents

Publication Publication Date Title
JP4543217B2 (en) Grid information monitoring system
US9535135B2 (en) Method for calculating solar radiation amount and method for determining power to be supplied
JP6491494B2 (en) Hot water controller
JP6554923B2 (en) Power control method and power control system
JP5787162B2 (en) Operation management device, operation management method, program
JP2009247188A (en) Power demand control system
EP2763266B1 (en) Energy management system, energy management device, and power management method
EP3159995B1 (en) Device operation setting device and device operation setting value determination program
JP4348450B2 (en) Controllable load power consumption control method and controllable load control system
KR102251476B1 (en) Method for estimating the capacity of an energy storage system associated with renewable energy and apparatus therefor
Yang et al. Building electrification and carbon emissions: Integrated energy management considering the dynamics of the electricity mix and pricing
CN108683195B (en) Method for participating in frequency modulation of power system by temperature control load
US9547349B2 (en) Power management system, power management apparatus, and display control method
KR102268723B1 (en) System and method for controlling charging rate
JP5940263B2 (en) Power control apparatus and power control method
JP7066948B2 (en) Storage battery control device, storage battery control program
JP2008192103A (en) Carbon dioxide emission amount computing system and carbon dioxide emission amount computing method
JP2004271006A (en) Co-generation system
JP4545069B2 (en) Cogeneration system and control device
JP6889188B2 (en) Methods and regulators for operating fuel cells or fuel cell stacks
JP4535694B2 (en) Output control device and output control method for cogeneration system
FR3061268A1 (en) METHOD FOR DETERMINING THE DELAY CAPACITY OF A BUILDING OPERATING THERMAL INERTIA, ASSOCIATED DELIGHTING METHOD AND SYSTEM IMPLEMENTING SAID METHODS
JP5491730B2 (en) Power supply system
JP6105476B2 (en) Power generation system, control device, and power control method
CN104967150A (en) Control method of wind-power-plant real-time generating capacity

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120731

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130731

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees