JP4347990B2 - Liquid cooling device - Google Patents

Liquid cooling device Download PDF

Info

Publication number
JP4347990B2
JP4347990B2 JP2000098264A JP2000098264A JP4347990B2 JP 4347990 B2 JP4347990 B2 JP 4347990B2 JP 2000098264 A JP2000098264 A JP 2000098264A JP 2000098264 A JP2000098264 A JP 2000098264A JP 4347990 B2 JP4347990 B2 JP 4347990B2
Authority
JP
Japan
Prior art keywords
pipe
sub
row unit
tube row
thin tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000098264A
Other languages
Japanese (ja)
Other versions
JP2001280860A (en
Inventor
淳夫 池内
毅 寒野
信幸 徳田
拓也 西村
基温 南浦
博 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Original Assignee
Kansai Electric Power Co Inc
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Electric Power Co Inc, Sumitomo Electric Industries Ltd filed Critical Kansai Electric Power Co Inc
Priority to JP2000098264A priority Critical patent/JP4347990B2/en
Publication of JP2001280860A publication Critical patent/JP2001280860A/en
Application granted granted Critical
Publication of JP4347990B2 publication Critical patent/JP4347990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、腐食性液体を冷却するのに特に適したスペースの利用効率が良くて安価で運転音も静かな空冷式の液体冷却装置に関する。
【0002】
【従来の技術】
空冷式の液体冷却装置は、放熱フィンを有するパイプを用いて熱交換器を構成したものが一般的である。この種の熱交換器を用いた液体冷却装置は、ファンで放熱フィン付きパイプに対して直交空気流を生じさせ、パイプが吸収した熱を空気流に放出させてパイプ内に流した液体を冷却するようにしてある。
【0003】
【発明が解決しようとする課題】
従来の一般的な液体冷却装置は、熱交換器を良熱伝導性の胴やアルミニウムなどから成る放熱フィン付き金属パイプで形成しているので、冷却対象が腐食性液体(硫酸系、塩酸系などの強酸性液やアルカリ性液など)であるとパイプが腐食して使いものにならない。
【0004】
また、熱交換器の素材として酸やアルカリに強い特殊ステンレス鋼やチタンなどを用いると装置の製造が難しくなり、コストも大幅に上昇する。
【0005】
このため、腐食性液体の冷却には、熱交換器を合成樹脂で形成した水冷式の冷却装置が用いられている。合成樹脂は伝熱特性が悪いためフィンを付けても放熱特性はさほど高まらず、また、フィン無しの熱交換器を作ると空冷式では装置の大型化が著しくなるなどの理由により水冷式の装置が用いられているが、この水冷式の装置は空冷式のものに比べると設置コストやランニングコストの面で不利である。
【0006】
そこで、この発明は、腐食性液体の冷却用として特に適し、スペースの利用効率が良くて安価で運転音も静かな空冷式の液体冷却装置を実現して提供することを課題としている。
【0007】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、相反する側の端部を塞いだ平行配置の2本のサブ配管と、狭間隔で平行かつ平面的に配列して一端を一方のサブ配管に、他端を他方のサブ配管に各々接続連通させた多数本の細管とで細管列ユニットを構成し、
その細管列ユニットを、第1細管列ユニットと、その第1細管列ユニットに対して略対称形状にした第2細管列ユニットの2者で構成し、
この第1細管列ユニットと第2細管列ユニットをメイン配管の長手方向に所定の間隔をあけて、かつ細管長手方向に交互に位置をずらして配列し、各細管列ユニットの一方のサブ配管の開放端を細管列ユニットの一端側に設ける入口側メイン配管に、各細管列ユニットの他方のサブ配管の開放端を細管列ユニットの他端側に設ける出口側メイン配管に各々接続連通させ
各細管列ユニットの一方のサブ配管と他方のサブ配管の相反する側の端部を塞いで熱交換器を構成し、この熱交換器をファンを備えるダクト内に設置し、前記ファンで各細管の周囲に細管と平行な空気流を生じさせて入口側メイン配管から細管経由で出口側メイン配管に向けて流す液体を冷却するようにしたのである。
【0009】
かかる液体冷却装置は、冷却対象が腐食性液体である場合には、熱交換器を合成樹脂で形成する。その合成樹脂としては、PVC、ポリエチレン、ポリプロピレン、FRP等を利用できるが、中でも、硬質PVCがコスト面、加工性、耐腐食性の面で優れていて好ましい。
【0010】
【作用】
細管列ユニットを細管の長手方向に交互に位置をずらして配列すると、隣り合う細管列ユニットのサブ配管間に空気通路を確保して多数の細管を密集配置することができる。この発明では、こうして細管の配置密度を高め、スペースの利用効率を高めながら熱交換面積を広げる。熱交換に用いる管は径が細いほど冷却性に優れるので、細管を密集配置すれば、装置サイズを極力小さくしながら装置の冷却能力を高めることができる。
【0011】
また、空気流を細管と平行にすることで空気流の圧力損失を小さくする。
【0012】
さらに、入口側と出口側のサブ配管の相反する端部を塞ぐことで、それ等のサブ配管を通る液体の流れ方向を反対向きにして各細管に対する流量分配の均一化を図り、液体が全ての細管を平均的に流れるようにする。
【0013】
これにより、金属製の放熱フィン付きパイプを用いなくても空冷による冷却で高い冷却効率を得ることができ、熱交換器を合成樹脂管で形成して腐食性液体を冷却することが可能になる。
【0014】
また、空気流を細管と平行にすることで配管による風切り音が小さくなって運転音も静になる。
【0015】
なお、熱交換器を、金属に比べて熱伝導率の低い合成樹脂で形成したものは、金属パイプを用いた装置と同等の冷却効率を得るのは難しいが、装置を安価に作ることができ、その安価な装置で腐食性液体を冷却することが可能になるので、産業上の貢献度は非常に高い。
【0016】
また、略対称形状にした第1細管列ユニットと第2細管列ユニットを交互に配列して別個のメイン配管に接続したものは、メイン配管に対するサブ配管の接続が容易になる。
【0017】
【発明の実施の形態】
図1乃至図7に、この発明の液体冷却装置の実施形態を示す。
【0018】
図1は、全体の外観を示したものであって、図中の符号1、2は角筒状の下支持枠と上支持枠、3は外装枠、4はファン、5、6は平行配置の入口側メイン配管、7、8は同じく平行配置の出口側メイン配管である。外装枠3の内側には、図2乃至図4に示す内部ダクト9が設けられ、その内部ダクト9の内側に支持枠1、2で上下を支えた熱交換器10が組込まれている。
【0019】
熱交換器10は、第1細管列ユニットと、第2細管列ユニット12を定ピッチで交互に多数配列して作られている。
【0020】
第1配管列ユニット11は、図5に示すように、図中左端を塞いだサブ配管13と、図中右側を塞いだサブ配管14を水平姿勢にして平行に配置し、その2本のサブ配管13、14間に多数本の細管15を狭ピッチで平行かつ平面的に配列し、縦向きにした各細管15の下端をサブ配管13に、上端をサブ配管14に各々接続連通させて成る。
【0021】
また、第2細管列ユニット12は、第1細管列ユニット11と同じものを180°反転させたものであって、図6に示すように、図中右端を塞いだサブ配管16と、図中左端を塞いだサブ配管17を水平姿勢にして上下に平行に配置し、その2本のサブ配管16、17間に多数本の細管15を挟ピッチで平行かつ平面的に配列し、垂直にした各細管15の下端をサブ配管16に、上端をサブ配管17に各々接続連通させて成る。
【0022】
この略対称形状の第1、第2細管列ユニット11、12のサブ配管13、16の開放端側をそれぞれ180°反転させて入口側メイン配管5、6に、もう一方のサブ配管14、17の開放端側をそれぞれ180°反転させて出口側メイン配管7、8に別々に接続連通させて熱交換器10を構成している。
【0023】
このように、細管列ユニットとメイン配管を2組に分けると、メイン配管に対するサブ配管の接続がし易くて好ましい。入口側、出口側のメイン配管が各1本の場合、ユニット配列を狭間隔にするとサブ配管が輻湊して加工が難しくなるが、図示の形状であればその問題が生じない。入口側メイン配管5、6と出口側メイン配管7、8は、図の装置の場合、外部で合流させるが、装置内で合流させることもできる。
【0024】
ファン4は、熱交換器10の上方に設けており、このファンによって下支持枠1の下側から内部ダクト9内に空気が吸入され、各細管15の周りに細管と平行な空気流が生じる。その空気流は熱交換後、図のように装置の上部から横向きに、或いは真上に排出される。
【0025】
なお、第1、第2細管列ユニット11、12のサブ配管13と16及び14と17はそれ等の管の間に空気通路を生じさせるためにそれぞれ高さ位置をS(図7参照)ずらして配置される。この位置ずれ量Sは、スペースの利用効率を高めて空気通路を確保するために、サブ配管の直径Dsの2〜10倍程度にするのが好ましい。また、細管15の直径dは冷却性の面で30mm以下、その細管の配列ピッチP1 は、細管直径dの2倍以下(隙間g1 ≦d)、各サブ配管の直径DsはDs≦2d、細管列ユニット11、12の配列ピッチP2 は、P2 ≦3d(隙間g2 ≦2d)にするのが好ましい。その好ましい寸法関係を満足させると、良好な熱交換性を得ながら細管の密集度を高めることができる。なお、g2 を可及的に小さくすると隣り合うユニットのサブ配管と細管が接触するが、Sを適当に設定すればそれでも隣接ユニット間に空気通路を確保することができる。
【0026】
かかる構造の装置を試作した。その試作装置は、細管15として直径13mm、長さ2mの硬質PVC管を、サブ配管として直径20mmの硬質PVC管を、メイン配管として直径75mmの硬質PVC管を各々使用し、各細管15の両端を上下のサブ配管に溶接して取付け、さらに各サブ配管の片端をメイン配管に溶接して取付けた。
【0027】
また、1ユニット当りの細管本数を30本、ユニットの配列総数を26列とした。このほか、熱交換器を除く要素を金属製としたので、内部ダクト9の内外面と支持枠1、2、外装枠3の内面に耐食性塗装をそれぞれ施した。これにより、100kwの熱交換能力を持つ、耐腐食性に富んだ腐食性液体の冷却装置を得ることができた。なお、冷却対象が非腐食性液体の場合には、熱交換器を熱伝導性の良い金属で作ることができる。
【0028】
【発明の効果】
以上述べたように、この発明の液体冷却装置は、多数の細管を各細管に対する流量配分が均等化されるようにして狭ピッチで密集配置し、その細管の周囲に平行な空気流を生じさせて細管に通した液体の強制冷却を行うので、単純形状のパイプで形成された熱交換器を用いて空冷方式でスペースの利用効率を上げて高い冷却効率を得ることができ、装置の大サイズ化の抑制、コスト低減が図れる。
【0029】
また、熱交換器を合成樹脂で形成して安価な装置で腐食性液体を冷却することも可能になる。
【0030】
さらに、強制冷却用の空気を細管と平行向きに流すので、圧力損失、風切り音が小さく、運転音も静になる。
【0031】
なお、この発明の装置は、非腐食性液体の冷却に利用した場合にも運転音が静になると言う効果が得られる。
【図面の簡単な説明】
【図1】実施形態の装置の外観斜視図
【図2】同上の装置の内部を示す正面図
【図3】同上の装置の内部を示す側面図
【図4】同上の装置の内部を示す平面図
【図5】第1細管列ユニットの概要を示す正面図
【図6】第2細管列ユニットの概要を示す正面図
【図7】第1、第2細管列ユニットの配列状態を簡略化して示す側面図
【符号の説明】
1 下支持枠
2 上支持枠
3 外装枠
4 ファン
5、6 入口側メイン配管
7、8 出口側メイン配管
9 内部ダクト
10 熱交換器
11 第1細管列ユニット
12 第2細管列ユニット
13、14、16、17 サブ配管
15 細管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-cooled liquid cooling apparatus that is efficient in using a space particularly suitable for cooling a corrosive liquid, is inexpensive, and has a quiet operation sound.
[0002]
[Prior art]
In general, an air-cooled liquid cooling device includes a heat exchanger using a pipe having a radiation fin. The liquid cooling device using this type of heat exchanger cools the liquid that has flowed into the pipe by generating an orthogonal air flow with respect to the pipe with the radiating fin with a fan and releasing the heat absorbed by the pipe into the air flow. I have to do it.
[0003]
[Problems to be solved by the invention]
In conventional general liquid cooling devices, the heat exchanger is formed of a metal pipe with heat dissipation fins made of a heat-conductive cylinder or aluminum, etc., so the object to be cooled is a corrosive liquid (sulfuric acid, hydrochloric acid, etc.) If it is a strong acidic liquid or alkaline liquid, the pipe will corrode and will not be useful.
[0004]
In addition, if special stainless steel or titanium resistant to acids and alkalis is used as a material for the heat exchanger, it becomes difficult to manufacture the apparatus, and the cost is significantly increased.
[0005]
For this reason, a water-cooled cooling device in which a heat exchanger is formed of a synthetic resin is used for cooling the corrosive liquid. Synthetic resin has poor heat transfer characteristics, so even if fins are attached, the heat dissipation characteristics will not increase so much, and if a heat exchanger without fins is made, the air-cooled type will increase the size of the device significantly. However, this water-cooled device is disadvantageous in terms of installation cost and running cost as compared with an air-cooled device.
[0006]
Accordingly, an object of the present invention is to realize and provide an air-cooled liquid cooling device that is particularly suitable for cooling corrosive liquids, has good space utilization efficiency, is inexpensive, and quietly operates.
[0007]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, two sub-pipes arranged in parallel that close the opposite ends, and parallel and planarly arranged at a narrow interval, one end is connected to one sub-pipe. A plurality of thin tubes each having the other end connected to and communicated with the other sub-pipe, thereby forming a thin tube row unit;
The narrow tube row unit is composed of a first thin tube row unit and a second thin tube row unit that is substantially symmetrical with respect to the first thin tube row unit,
The first narrow tube row unit and the second thin tube row unit are arranged at predetermined intervals in the longitudinal direction of the main pipe and alternately shifted in the longitudinal direction of the narrow tube, and one sub-pipe of each narrow tube row unit is arranged . An open end is connected to and communicated with an inlet side main pipe provided on one end side of the narrow tube row unit, and an open end of the other sub pipe of each thin tube row unit is connected to an outlet side main pipe provided on the other end side of the thin tube row unit .
A heat exchanger is configured by closing the opposite ends of one sub-pipe and the other sub-pipe of each thin tube row unit , and this heat exchanger is installed in a duct equipped with a fan. An air flow parallel to the narrow pipe is generated around the pipe to cool the liquid flowing from the inlet side main pipe to the outlet side main pipe via the narrow pipe.
[0009]
In such a liquid cooling device, when the object to be cooled is a corrosive liquid, the heat exchanger is formed of a synthetic resin. As the synthetic resin, PVC, polyethylene, polypropylene, FRP and the like can be used. Among them, hard PVC is preferable in terms of cost, workability, and corrosion resistance.
[0010]
[Action]
If the thin tube row units are alternately arranged in the longitudinal direction of the thin tubes, the thin tube rows can be densely arranged by securing an air passage between the sub pipes of the adjacent thin tube row units. In the present invention, the arrangement density of the thin tubes is increased in this way, and the heat exchange area is expanded while increasing the space utilization efficiency. The smaller the diameter of the tube used for heat exchange, the better the cooling performance. If the thin tubes are arranged densely, the cooling capacity of the device can be increased while minimizing the size of the device.
[0011]
Moreover, the pressure loss of an air flow is made small by making an air flow parallel to a thin tube.
[0012]
Furthermore, by closing the opposite ends of the sub piping on the inlet side and the outlet side, the flow direction of the liquid passing through the sub piping is reversed, and the flow distribution to each thin tube is made uniform so that all the liquid is To flow through the tubules on average.
[0013]
As a result, high cooling efficiency can be obtained by cooling by air cooling without using a metal radiating finned pipe, and a corrosive liquid can be cooled by forming a heat exchanger with a synthetic resin pipe. .
[0014]
In addition, by making the air flow parallel to the narrow pipe, the wind noise caused by the piping is reduced and the operation noise is also reduced.
[0015]
In addition, it is difficult to obtain the same cooling efficiency as a device using a metal pipe if the heat exchanger is made of a synthetic resin having a lower thermal conductivity than metal, but the device can be made inexpensively. Since the corrosive liquid can be cooled with the inexpensive apparatus, the industrial contribution is very high.
[0016]
In addition, in the case where the first thin tube row units and the second thin tube row units having a substantially symmetrical shape are alternately arranged and connected to separate main pipes, the sub pipes can be easily connected to the main pipes.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 7 show an embodiment of the liquid cooling apparatus of the present invention.
[0018]
FIG. 1 shows the overall appearance. In the figure, reference numerals 1 and 2 are a rectangular cylindrical lower support frame and upper support frame, 3 is an exterior frame, 4 is a fan, and 5 and 6 are arranged in parallel. The inlet-side main pipes 7 and 8 are outlet-side main pipes arranged in parallel. An internal duct 9 shown in FIGS. 2 to 4 is provided inside the exterior frame 3, and a heat exchanger 10 that is supported up and down by support frames 1 and 2 is incorporated inside the internal duct 9.
[0019]
The heat exchanger 10 is made by arranging a large number of first thin tube row units and second thin tube row units 12 alternately at a constant pitch.
[0020]
As shown in FIG. 5, the first pipe row unit 11 is arranged in parallel with a sub-pipe 13 that closes the left end in the figure and a sub-pipe 14 that closes the right side in the figure in a horizontal posture. A large number of narrow tubes 15 are arranged in parallel and in a plane at a narrow pitch between the pipes 13 and 14, and the lower ends of the narrow tubes 15 are vertically connected to the sub-pipe 13 and the upper ends are connected to the sub-pipe 14 respectively. .
[0021]
Further, the second thin tube row unit 12 is obtained by inverting the same one as the first thin tube row unit 180 by 180 °, and as shown in FIG. 6, a sub-pipe 16 that closes the right end in the drawing, The sub-pipes 17 with the left end closed are placed in a horizontal position in parallel in the vertical direction, and a large number of thin tubes 15 are arranged in parallel and planarly at a pitch between the two sub-pipes 16 and 17 so as to be vertical. Each thin tube 15 is connected to the sub pipe 16 at the lower end and connected to the sub pipe 17 at the upper end.
[0022]
The open ends of the sub pipes 13 and 16 of the first and second narrow tube row units 11 and 12 having substantially symmetrical shapes are inverted by 180 °, respectively, to the inlet side main pipes 5 and 6 and the other sub pipes 14 and 17. The heat exchanger 10 is configured by reversing the open end sides of each of them by 180 ° and connecting them separately to the outlet main pipes 7 and 8.
[0023]
As described above, it is preferable to divide the thin tube row unit and the main pipe into two sets because it is easy to connect the sub pipe to the main pipe. When there is one main pipe on the inlet side and one on the outlet side, if the unit arrangement is narrow, the sub pipes will radiate and processing will be difficult, but the problem will not arise if the shape is as shown. In the case of the illustrated apparatus, the inlet-side main pipes 5 and 6 and the outlet-side main pipes 7 and 8 are joined outside, but can also be joined in the apparatus.
[0024]
The fan 4 is provided above the heat exchanger 10, and air is sucked into the internal duct 9 from the lower side of the lower support frame 1 by this fan, and an air flow parallel to the narrow tubes is generated around each narrow tube 15. . After the heat exchange, the air flow is discharged sideways or directly above the apparatus as shown in the figure.
[0025]
The sub pipes 13 and 16 and 14 and 17 of the first and second thin tube row units 11 and 12 are shifted in height by S (see FIG. 7) in order to create an air passage between these pipes. Arranged. The positional deviation amount S is preferably about 2 to 10 times the diameter Ds of the sub piping in order to increase the space utilization efficiency and secure the air passage. The diameter d of the thin tubes 15 is 30 mm or less in terms of cooling, the arrangement pitch P 1 of the thin tubes is less than twice the diameter of the thin tubes d (gap g 1 ≦ d), and the diameter Ds of each sub-pipe is Ds ≦ 2d. The arrangement pitch P 2 of the thin tube row units 11 and 12 is preferably P 2 ≦ 3d (gap g 2 ≦ 2d). When the preferable dimensional relationship is satisfied, the density of the thin tubes can be increased while obtaining good heat exchange properties. Note that if g 2 is made as small as possible, the sub-pipe and the thin pipe of the adjacent unit come into contact with each other. However, if S is set appropriately, an air passage can be secured between the adjacent units.
[0026]
An apparatus having such a structure was prototyped. The prototype uses a rigid PVC pipe having a diameter of 13 mm and a length of 2 m as the narrow pipe 15, a rigid PVC pipe having a diameter of 20 mm as the sub pipe, and a rigid PVC pipe having a diameter of 75 mm as the main pipe. Were welded to the upper and lower sub-pipes, and one end of each sub-pipe was welded to the main pipe.
[0027]
In addition, the number of capillaries per unit was 30, and the total number of units arranged was 26 rows. In addition, since the elements excluding the heat exchanger were made of metal, the inner and outer surfaces of the internal duct 9 and the inner surfaces of the support frames 1 and 2 and the outer frame 3 were coated with corrosion resistance. As a result, a corrosive liquid cooling device having a heat exchange capacity of 100 kw and rich in corrosion resistance could be obtained. When the object to be cooled is a non-corrosive liquid, the heat exchanger can be made of a metal having good heat conductivity.
[0028]
【The invention's effect】
As described above, the liquid cooling apparatus of the present invention arranges a large number of narrow tubes densely at a narrow pitch so that the flow distribution to each thin tube is equalized, and generates a parallel air flow around the narrow tubes. Since the liquid is forcedly cooled through a narrow tube, a high-efficiency cooling system can be obtained by using a heat exchanger formed of simple pipes to increase the space utilization efficiency by air cooling. Suppression and cost reduction can be achieved.
[0029]
It is also possible to cool the corrosive liquid with an inexpensive apparatus by forming the heat exchanger with a synthetic resin.
[0030]
Furthermore, since forced cooling air flows in a direction parallel to the thin tubes, the pressure loss and wind noise are small, and the operation sound is quiet.
[0031]
In addition, the apparatus of this invention has an effect that the operation sound is quiet even when it is used for cooling the non-corrosive liquid.
[Brief description of the drawings]
FIG. 1 is an external perspective view of an apparatus according to an embodiment. FIG. 2 is a front view showing the inside of the apparatus. FIG. 3 is a side view showing the inside of the apparatus. FIG. 5 is a front view showing the outline of the first capillary row unit. FIG. 6 is a front view showing the outline of the second capillary row unit. FIG. 7 is a simplified arrangement of the first and second capillary row units. Side view shown [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Lower support frame 2 Upper support frame 3 Exterior frame 4 Fans 5 and 6 Inlet side main piping 7 and 8 Outlet side main piping 9 Internal duct 10 Heat exchanger 11 First narrow tube row unit 12 Second narrow tube row unit 13 and 14 16, 17 Sub piping 15 Narrow tube

Claims (3)

相反する側の端部を塞いだ平行配置の2本のサブ配管(13,14及び16,17)と、狭間隔で平行かつ平面的に配列して一端を一方のサブ配管(13,16)に、他端を他方のサブ配管(14,17)に各々接続連通させた多数本の細管(15)とで細管列ユニットを構成し、
その細管列ユニットとして、第1細管列ユニット(11)と、その第1細管列ユニットに対して略対称形状にした第2細管列ユニット(12)の2者を設け、
この第1細管列ユニット(11)と第2細管列ユニット(12)をメイン配管の長手方向に所定の間隔をあけて、かつ細管長手方向に交互に位置をずらして配列し、各細管列ユニットの一方のサブ配管(13,16)の開放端を細管列ユニットの一端側に設ける入口側メイン配管(5,6)に、各細管列ユニットの他方のサブ配管(14,17)の開放端を細管列ユニットの他端側に設ける出口側メイン配管(7,8)に各々接続連通させ
前記第1、第2細管列ユニットの一方のサブ配管(13,16)と他方のサブ配管(14,17)の相反する側の端部を塞いで熱交換器(10)を構成し、この熱交換器(10)をファン(4)を備えるダクト内に設置し、前記ファン(4)で各細管(15)の周囲に細管と平行な空気流を生じさせて前記入口側メイン配管(5,6)から細管経由で前記出口側メイン配管(7,8)に向けて流す液体を冷却するようにした液体冷却装置。
Two sub-pipes (13, 14 and 16, 17) arranged in parallel with the opposite ends closed, and one sub-pipe (13, 16) arranged in parallel and in a narrow space at one end And a plurality of thin tubes (15) each having the other end connected to and communicated with the other sub-pipe (14, 17) to form a thin tube row unit,
As the thin tube row unit, there are provided a first thin tube row unit (11) and a second thin tube row unit (12) having a substantially symmetrical shape with respect to the first thin tube row unit,
The first thin tube row unit (11) and the second thin tube row unit (12) are arranged at predetermined intervals in the longitudinal direction of the main pipe and alternately shifted in the longitudinal direction of the thin tube. The open end of the other sub-pipe (14, 17) of each thin tube row unit is connected to the inlet-side main pipe (5, 6) provided at one end of the thin tube row unit with the open end of one of the sub-pipe (13, 16). Are connected to and communicated with the outlet side main pipes (7, 8) provided on the other end side of the thin tube row unit ,
A heat exchanger (10) is formed by closing the opposite ends of one of the first and second sub-pipe units (13, 16) and the other sub-pipe (14, 17) of the first and second narrow tube row units. heat exchanger (10) installed in a duct with a fan (4), the fan (4) in the inlet-side main piping causing capillary parallel air flow around each capillary (15) (5 , liquid cooling apparatus that cools the liquid to flow towards the outlet side main pipe via capillary 6) (7,8).
前記第1細管列ユニット(11)と第2細管列ユニット(12)の各サブ配管(13,16及び14,17)の高さの位置ずれ量(S)を、前記サブ配管(13,14,16,17)の直径(Ds)の2〜10倍にした請求項1に記載の液体冷却装置。 The positional displacement amount (S) of the height of each sub-pipe (13, 16, and 14, 17) of the first thin tube row unit (11) and the second thin tube row unit (12) is determined as the sub-pipe (13, 14). , 16, 17) The liquid cooling device according to claim 1, wherein the diameter (Ds) is 2 to 10 times the diameter (Ds) . 前記細管(15)の直径(d)を30mm以下、その細管(15)の配列ピッチ(P )を細管の直径(d)の2倍以下、各サブ配管(13,16及び14,17)の直径(Ds)を細管(15)の直径(d)の2倍以下、第1細管列ユニット(11)と第2細管列ユニット(12)の配列ピッチ(P )を細管の直径(d)の3倍以下とした請求項1又は2に記載の液体冷却装置。 The diameter (d) of the thin tubes (15) is 30 mm or less, the arrangement pitch (P 1 ) of the thin tubes (15) is twice or less the diameter (d) of the thin tubes, and each sub-pipe (13, 16 and 14, 17). Is equal to or less than twice the diameter (d) of the capillary tube (15), and the arrangement pitch (P 2 ) of the first capillary tube unit (11) and the second capillary tube unit (12) is the diameter of the capillary tube (d The liquid cooling device according to claim 1 or 2, wherein the liquid cooling device is 3 times or less .
JP2000098264A 2000-03-31 2000-03-31 Liquid cooling device Expired - Fee Related JP4347990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000098264A JP4347990B2 (en) 2000-03-31 2000-03-31 Liquid cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000098264A JP4347990B2 (en) 2000-03-31 2000-03-31 Liquid cooling device

Publications (2)

Publication Number Publication Date
JP2001280860A JP2001280860A (en) 2001-10-10
JP4347990B2 true JP4347990B2 (en) 2009-10-21

Family

ID=18612767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000098264A Expired - Fee Related JP4347990B2 (en) 2000-03-31 2000-03-31 Liquid cooling device

Country Status (1)

Country Link
JP (1) JP4347990B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388521A (en) * 2012-05-09 2013-11-13 北汽福田汽车股份有限公司 Radiator, engine cooling system and vehicle
WO2022209359A1 (en) * 2021-04-01 2022-10-06 三菱重工業株式会社 Cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322667A (en) * 2005-05-19 2006-11-30 T Rad Co Ltd Resin-made heat exchanger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103388521A (en) * 2012-05-09 2013-11-13 北汽福田汽车股份有限公司 Radiator, engine cooling system and vehicle
CN103388521B (en) * 2012-05-09 2015-08-12 北汽福田汽车股份有限公司 Radiator, engine-cooling system and vehicle
WO2022209359A1 (en) * 2021-04-01 2022-10-06 三菱重工業株式会社 Cooling system
DE112022001934T5 (en) 2021-04-01 2024-03-14 Mitsubishi Heavy Industries, Ltd. Cooling system

Also Published As

Publication number Publication date
JP2001280860A (en) 2001-10-10

Similar Documents

Publication Publication Date Title
US10619951B2 (en) Phase transition suppression heat transfer plate-based heat exchanger
JP5385588B2 (en) Air conditioner outdoor unit
CN103575132A (en) Efficient heat exchange tube fin for filler coupling coil evaporative condenser
CN103575133A (en) Filler coupling coil evaporative condenser
JP2011112331A (en) Heat exchanger for exhaust gas
JP5638512B2 (en) Gas cooler
JP4347990B2 (en) Liquid cooling device
CN111412690A (en) Heat exchanger of heat pump unit
CN210512784U (en) Micro-channel heat exchanger
CN116294703A (en) Fin tube type heat exchanger
JP2010107130A (en) Heat exchanger unit and indoor unit of air conditioner using the same
JP3957021B2 (en) Heat exchanger
CN210070307U (en) Refrigerator and built-in condenser thereof
CN105066737A (en) Horizontal high-pressure air cooler
CN2406209Y (en) Flat-tube type heat-exchanger
CN218626919U (en) Flue gas heat exchange device for gas boiler
CN112460856A (en) Condenser
JP2006202800A (en) Cooler of semiconductor device
CN216205479U (en) Cast aluminum radiator based on similar oval water channel
JP2017227342A (en) Corrugated fin type heat exchanger
CN209371749U (en) A kind of condenser for drying machine
CN214502170U (en) Plate radiator of high-efficient heat conduction
CN217818264U (en) Spiral tube type heat exchanger
JPS63197887A (en) Heat exchanger
KR20110030980A (en) Heat exchanging fin and heat exchanger having the fin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090610

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090717

R150 Certificate of patent or registration of utility model

Ref document number: 4347990

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120724

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130724

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees